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Abstract. The present work deals with a two-step nonlinear finite element ana-
lysis for misaligned multi-disk rotors on short oil-film bearings of various types
(cylindrical, pocket, symmetrical three-lobed, unsymmetrical three-lobed). As a
first step, the conventional parallel, angular and combined parallel and angular mis-
alignments are modelled using Lagrange multipliers. The static equilibrium posi-
tion of the journal within the bearing is determined using an iterative nonlinear
static finite element analysis. The present work proposes a method for comput-
ing the displacement-dependent stiffness terms from the experimental static load-
displacement data. Finally, the orbit of the rotor around the static equilibrium is
determined using a time-integration scheme.
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1. Introduction

Misalignment related malfunction of a rotor is the second most common type
(Muszynska 2005) and is just next to rotor malfunction due to unbalance. Many authors
commented (Muszynska 2005, Lees 2007) that a lot of work is still to be done in the field
of physical understanding and modelling of misalignments. Yu & Adams (1989) discussed
about radial motion and misalignment in journal bearings and seals. By misalignment, they
meant the bending (rotation) of the portion of the shaft within long bearings. They proposed a
rigorous mathematical framework for linear rotor-bearing analysis with radial and rotational
motion within bearings. Ding & Krodkiewski (1993); Krodkiewski & Ding (1993) considered
an aligned rotor in misaligned multiple oil-film bearings. They solved Reynolds equation to
account for the nonlinearity in the bearing. Xu & Marangoni (1994) performed a total mod-
elling of the motor and the driver shaft, flexible coupling and the rotor by using the method
of component mode synthesis (CMS). The coupling is of universal type and allows angular
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misalignment between the driver and the driven. Since the axes of the driver and driven shafts
are inclined at an angle, the torque on the driven shaft varies periodically creating angular
acceleration and deceleration of the driven shaft. This gets coupled with the unbalance flexu-
ral vibration and generates higher order harmonics in unbalance response. Sekhar & Prabhu
(1995) considered standard parallel and angular misalignments at the coupling locations.
They introduced a higher order finite element model to evaluate the force and moment due to
misalignment. By performing a linear finite element analysis they could show the presence of
the second order harmonic in response. The flexibility of the backup structures is also taken
into account in the analysis. Nicolajsen demonstrated the change in the stability limit due to
presence of misalignment in the arrangement of the oil-film bearings. However, nonlinearity
of the bearings was not considered. Lee & Lee (1999) derived a model of the coupling from
which the force and moment at the coupling can be computed for combined misalignment.
They assumed that the driver shaft is rigid compared to the flexible coupling and the driven
shaft. They also used a nonlinear roller bearing model. The bearing can provide force and
moment to the rotor. Experiments were carried out to validate the model. The whirling
orbit deforms and collapses to straight line with increasing misalignment. Al-Hussain &
Redmond (2002) developed a set of nonlinear equations describing the motion of a system
with parallel misalignment. Al-Hussain (2003) considered two rotor segments with angular
misalignment. A flexible coupling was used to couple the rotor segments. Each rotor segment
was mounted on two hydrodynamic bearings. The hydrodynamic bearings were modelled
using standard eight-coefficient model. With the kinematic conditions considered, the kinetic
and potential energy expressions were derived. The stability borderlines were computed for
different values of angular misalignment and flexible coupling stiffness. Sinha et al (2004)
considered that misalignment produces a constant force at the coupling. Based on this, they
attempted to estimate both unbalance and misalignment from run down of different test
rotors. According to Muszynska (2005) any constant radial force (or constant moment about
a radial axis) on a rotor can be a cause of misalignment and can shift the normal operating
point of the rotor within the bearings, which in consequence may trigger nonlinearity. This
nonlinearity is the reason for presence of second and other higher order harmonics in rotor
vibration. Lees (2006, 2007) considered two rotor segments with parallel misalignment.
Idealized rigid coupling connects the rotor segments. Bolts connect the couplings to each
other. While for the first rotor segment the bolts are on a circle with center at the coupling
center, for the second segment the center of the pitch circle of the bolts differs from that of the
coupling.

The present work proposes a two-step nonlinear finite element analysis of a rotor with
parallel, angular or combined misalignment in couplings and supported by one or more oil-
film bearings. This work is an extension of Muszynska’s (2005) simple two-degree of freedom
rotor model to more general finite element model of shaft disc systems on multiple bearings.
The present work first proposes a fairly general coupling misalignment model using Lagrange
multipliers. For an integrated analysis of the driver and driven shaft, a simple coupling model
is also proposed. Since, in presence of more than two bearings a rotor becomes statically
indeterminate, the present work first computes the static equilibrium position of the rotor
system using a nonlinear static finite element analysis. It then proposes a method to compute
the quadratic nonlinear force from oil-film bearings. Using this information, the present work
performs a dynamic analysis around the static equilibrium position using Newmark scheme
specially adapted to tackle nonlinear forces.
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Figure 1. The coordinate sys-
tems used.

2. Analysis

2.1 Coordinate systems

The coordinate systems are shown in figure 1. For the three right-handed coordinate systems
XYZ, X′Y ′Z′ and X̄Ȳ Z̄, the axes X, X′ and X̄ are coincident. They are along the axis of the
rotor. All the finite element equations are written with respect to the XYZ coordinate system.
In the present work, the Z axis points vertically upward. At each oil-film bearing location
coordinate systems X′Y ′Z′ and X̄Ȳ Z̄ are considered. In the X′Y ′Z′ coordinate system the
axis Y ′ points towards the static radial displacement of the journal. In the X̄Ȳ Z̄ coordinate
system the axis Z̄ points towards the static resultant force on the journal. The angles γ0, γ1, θ

and α0 between different axes are indicated in figure 1.

2.2 Modelling of coupling misalignment in a finite element model of a rotor

The coupling is modelled using three constituents — coupling left half (CLH), coupling right
half (CRH) and flexible part of coupling (CF). The CLH and CRH can be considered as short
circular beams of large diameter so that they become almost rigid elements. The CF element is
assumed to be composed of two shear springs and two rotational springs. The CF element has
two nodes and just like beam elements two translation and two rotation degrees of freedom
are attached with each node. Between two translation degrees of freedom in Y direction at two
nodes there is a shear spring. There is another shear spring between two translation degrees
of freedom in Z direction. Similarly, there are two rotation springs between two like pairs
of rotation degrees of freedom at two nodes. No coupling between translation and rotation
degrees of freedom is considered.

A schematic diagram of the coupling element is explained in figure 2. In the figure only
a single plane (XY) is shown for simplicity. The two translation degrees of freedom at two
nodes of CLH are dn1 and dn3. The two rotation degrees of freedom at two nodes of CLH
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Figure 2. Schematic diagrams in two-dimension for coupling with (a) parallel misalignment and
(b) angular misalignment.

are dn2 and dn4. They are actually infinitesimal rotation vectors in the Z direction. Similarly,
in CRH, there are four degrees of freedom dn5, dn6, dn7 and dn8. In the flexible part the two
translation degrees of freedom are dn3 and dn5 and two rotation degrees of freedom are dn4

and dn6.
The shaft at the left end of the coupling is first attached to CLH. The rightmost node of

this portion of the shaft share common degrees of freedom (dn1 and dn2 in the XY plane)
with left node of CLH. Then the coupling is assembled with its three constituent parts CLH,
CF and CRH. In case of misalignment the right node of CRH does not share all the degrees
of freedom at that node with the leftmost node of the portion of the shaft located at the right
side of the coupling. Let the degrees of freedom of the leftmost node of the shaft at the right
of CRH be dn9 (translation) and dn10 (rotation).

For parallel misalignment in XY plane,

dn7 = dn9 + vma. (1)

For angular misalignment in XY plane,

dn8 = dn10 + Bma. (2)

The total kinetic energy of the system can be expresses as

T = 1

2
{Ḋ}T [M]{Ḋ}. (3)

The vector {D} contains all translation and rotation degrees of the finite element model. The
coupling degrees of freedom stated above are also part of the elements of the vector {D}. The
matrix [M] is the standard mass matrix.

Without considering the energy stored in the coupling, the total potential energy of the
system is

V = 1

2
{D}T [K]{D} − {D}T {F }. (4)

Where, the vector {F } contains concentrated nodal force/moment along the degrees of
freedom.
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Since misalignments introduce static force and moment to the system, a static analysis is
performed first. The finite element equations for static analysis can be derived from the prin-
ciple of minimization of potential energy. The misalignments can be considered as constraints
and included in the minimization principle via Lagrange multipliers. The potential energy
stored in the coupling is also now included.

V = 1

2
{Do}T [K]{Do} − {Do}T ({Fo} + {Fwt }) + 1

2
kshear (don5 − don3)

2

+ 1

2
krot(don4 − don6)

2 + λ1(don7 − don9 − vma) + λ2(don8 − don10 − Bma).

(5)

The static displacement is denoted by the symbol {Do}. The symbol doj stands for the entry
in the j th row of the static displacement vector {Do}. The entry doj is the static displacement
for the j th degree of freedom. Since in the static condition the misaligned parts of the rotor
are attached using a coupling, the misalignment constraints should be applied on the static
displacements. The vectors {Fo} and {Fwt } are the static part of the bearing force and weight
of the discs respectively.

The static finite element equations can be derived using

∂V

∂d̄oj

= 0. (6)

Where, the term d̄oj includes all degrees of freedom and the Lagrange multipliers. The
Lagrange multipliers will now be considered as two new degrees of freedom and consequently
two rows and columns will be appended to the stiffness matrix. This stiffness matrix that
includes coupling stiffness and the constraint equations (incorporated via Lagrange multi-
pliers) will be termed as [K̄]. The force vector is also appended in the same process and
denoted by {F̄ }.

2.3 Derivation of displacement-dependent stiffness for short bearings from static load-
deflection data

For short cylindrical bearings the expressions for the forces on the journal in the directions
Y ′ and Z′ are as follows (Appendix A):

FJy ′ = FηfJY ′(ε, ε̇, γ̇ ) = Fη{f1(ε) + ε̇g1(ε) + γ̇ h1(ε)} (7a)

FJz′ = FηfJZ′(ε, ε̇, γ̇ ) = Fη{f2(ε) + ε̇g2(ε) + γ̇ h2(ε)} (7b)

Fη = ηL3	

2δ2
. (7c)

Where, the eccentricity ratio ε is defined as e
δ
. The radial displacement of the journal is

denoted by e. The difference between the bearing and journal radii is denoted by δ. In case of a
noncircular bore, a reference circle for the bearing is considered. The functionsf1, f2, g1, g2, h1

and h2 are functions of clearance ratio ε alone. These functional forms can be determined
analytically. Several authors (Holmes (1960), Kramer (1990)) have presented these func-
tional forms for short cylindrical bearing. In this work, however, approximate functional
forms of f1 and f2 are determined from available experimental static load-deflection data.
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Figure 3. Experimental static
load deflection curve from
Glienicke along with theoreti-
cal curve for short cylindrical
bearing (Kramer 1990).

Under static conditions

F0Jy′ = Fηf1(ε0), (8a)

F0Jz′ = Fηf2(ε0). (8b)

The eccentricity ratio under static equilibrium position is denoted by ε0. The symbol γ0

denotes the corresponding angle measured from axis Ȳ .
One can consider a case where a static reaction force FJ0 acts on the journal is in the

positive Z direction. From figure 2 one can arrive at the following relation:

f1(ε0) cos γ0 − f2(ε0) sin γ0 = 0. (9a)

f1(ε0) sin γ0 + f2(ε0) cos γ0 = FJ0/Fη = S∗. (9b)

Solving for f1 and f2 one gets

f1(ε0) = S∗ cos γ0 f2(ε0) = S∗ sin γ0. (10)

From the static load-deflection curve for a value of Sommerfeld number one finds out the
corresponding values of the eccentricity ratio ε0 and the angle γ0. A table of discrete values
of eccentricity ratio versus the functions f1(ε) and f2(ε) can thus be generated. An appro-
priate data fitting technique can then be used to approximate for the above functions. Let the
approximate functions be f̂1(ε) and f̂2(ε) respectively. The static load-deflection curves are
taken from Kramer (1990) and presented in figure 3.

In the present work, a rational function based data fitting technique has been used, where
the numerator and the denominator are expressed in terms of fourth order polynomials.

f̂1(ε) = α0 + α1ε + α2ε
2 + α3ε

3 + α4ε
4

β0 + β1ε + β2ε2 + β3ε3 + β4ε4
. (11a)

f̂2(ε) = μ0 + μ1ε + μ2ε
2 + μ3ε

3 + μ4ε
4

ν0 + ν1ε + ν2ε2 + ν3ε3 + ν4ε4
. (11b)
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Equation (7) can now be expressed in terms of the approximate functions f̂1(ε) and f̂2(ε)

F̂Jy ′ = Fη{f̂1(ε) + ε̇g1(ε) + γ̇ h1(ε)} (12a)

F̂J z′ = Fη{f̂2(ε) + ε̇g2(ε) + γ̇ h2(ε)}. (12b)

The coordinates ε0, γ0 represent the static equilibrium position in the polar coordinate system.
The coordinates ȳ0, z̄0 specify the same position in the ȳ − z̄ Cartesian coordinate system.
Now, during rotor motion, let the present position of the bearing be a little shifted from
the static equilibrium position. The coordinates for the present journal center can either be
represented by the variables ε = ε0 + ε, γ = γ0 + γ or by ȳ = ȳ0 + ȳ, z̄ = z̄0 + z̄.

From equation (7) one may write

F̂j ȳ = F̂Jy ′(ε, ε̇, γ ) cos γ − F̂J z′(ε, ε̇, γ ) sin γ. (13a)

F̂J z̄ = F̂Jy ′(ε, ε̇, γ ) sin γ + F̂J z′(ε, ε̇, γ ) cos γ. (13b)

From Taylor’s series expansion, the stiffness matrix can be written as

[
kȳȳ kȳz̄

kz̄ȳ kz̄z̄

]
= −

⎡
⎣ ∂F̂J ȳ

∂ȳ

∂F̂J ȳ

∂z̄

∂F̂J z̄

∂ȳ

∂F̂J z̄

∂z̄

⎤
⎦ Evaluated at ε = ε0, γ = γ0, ε̇ = 0, γ̇ = 0.

(14a)

Since the derivatives are evaluated at ε̇ = 0, γ̇ = 0 the functions g1, g2, h1, h2 will not enter
the above expression.

The following standard chain-rule of differentiation is used above:

∂

∂ȳ
= ∂

∂ε

∂ε

∂ȳ
+ ∂

∂γ

∂γ

∂ȳ

∂

∂z̄
= ∂

∂ε

∂ε

∂z̄
+ ∂

∂γ

∂γ

∂z̄
. (14b)

Where,

∂ε

∂ȳ
= 1

δ
cos γ0,

∂γ

∂ȳ
= − 1

e0
sin γ0,

∂ε

∂z̄
= 1

δ
sin γ0,

∂γ

∂z̄
= 1

e0
cos γ0.

(14c)

Using standard coordinate transformation relation[
kyy kyz

kzy kzz

]
= [T ]T

[
kȳȳ kȳz̄

kz̄ȳ kz̄z̄

]
[T ]. (15)

Where,

[T ] =
[

cos
(

π
2 − θ

) − sin
(

π
2 − θ

)
sin

(
π
2 − θ

)
cos

(
π
2 − θ

)
]

. (16)

The displacement-dependent stiffnesses can be derived in a similar fashion.

kȳ,ȳȳ = −1

2

∂2F̂J ȳ

∂ȳ2
, kȳ,ȳz̄ = −1

2

∂2F̂J ȳ

∂ȳ∂z̄
, kȳ,z̄z̄ = −1

2

∂2F̂J ȳ

∂z̄2
. (17a)

kz̄,ȳȳ = −1

2

∂2F̂J z̄

∂ȳ2
, kz̄,ȳz̄ = −1

2

∂2F̂J z̄

∂ȳ∂z̄
, kz̄,z̄z̄ = −1

2

∂2F̂J z̄

∂z̄2
. (17b)
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Figure 4. Plot of displacement-dependent stiffness from Taylor series expansion of approximate
expressions for (a) short cylindrical bearings and (b) short pocket bearing.

The above six coefficients for short cylindrical bearing, pocket bearing, unsymmetrical and
symmetrical three-lobed bearing are presented in figures 4 and 5.

2.4 Two-step analysis

The motion of an unbalanced rotor in oil-film bearing is considered as a dynamic motion
around a static equilibrium position. More than two bearings make a rotor statically indeter-
minate. In this case, under static load, an iterative scheme is employed to find out the location
of the journal within the bearing.

Once the static equilibrium position due to static loads like weight and misalignment are
known, one can determine the constant stiffness and displacement-dependent stiffness as
described in the previous section. Then around the equilibrium position one can compute the
dynamic motion of the journal. At any instant of time the total displacement of the rotor will
be the algebraic sum of its static and dynamic displacements.

Figure 5. Plot of displacement-dependent stiffness from Taylor series expansion of approximate
expressions for (a) short unsymmetrical three-lobed bearing and (b) short symmetrical three-lobed
bearing.
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Therefore, the total displacement {D} can be broken up into two parts as follows:

{D} = {D0} + {D}, (18)

where, the static displacement is {D0} and the dynamic displacement is {D}.
2.4a Iterative determination of static deflection of statically indeterminate finite element rotor
models: The following iterative scheme is used here for determining the static equilibrium
position of the rotor.

The algorithm can be described in following steps:

(i) Form stiffness matrix [K̄] and right hand side force vector {F̄ }.
(ii) Consider large stiffness at oil-film bearing locations as a part of support conditions and

have an initial guess for {D̄0} = [K̄]−1{F̄ }.
(iii) Get equilibrium force using {F̄eq} = [K̄]{D̄0}.
(iv) Get the Y and Z components of forces at the oil-film bearing locations and compute

the angles θ .
(v) Get the Y and Z components of displacements at the oil-film bearing locations and

compute the eccentricity ratios ε0 angles γ1.
(vi) From the values of eccentricity ratios ε0 compute

{
F̂Jy

F̂Jz

}
=

[
cos λ1 − sin λ1

sin λ1 cos λ1

] {
F̂Jy ′

F̂J z′

}

at oil-film bearing locations. For short cylindrical bearings instead of fitted function the
actual theoretically obtained function may be used.

(vii) Get out of balance force vector using {dF̄ } = {F̄ }−{F̄eq}+Reaction Forces on Journal.
(viii) Depending on the values of eccentricity ratios ε0 compute stiffnesses at bearing locations

and appropriately transform it in the Y − Z coordinate system using equation (15).
(ix) Get the tangent stiffness matrix [K̄t ] = [K̄] + Bearing stiffness.
(x) Get {dD0} = [K̄t ]−1{dF̄ }.

(xi) {D̄0} = {D̄0} + {dD̄0}.
(xii) Go to step (iii) if convergence is not achieved.

2.4b Static equilibrium equations: As indicated by (6) the static equilibrium equations can
be written as

[K̄]{D̄o} = {F̄ }. (19a)

A way to establish this equilibrium in an iterative manner is described in the previous
section 2·4a. Once the solution of equation (19a) is known one can obtain the static equili-
brium equation in terms of the actual degrees of freedom {Do}.

With reference to the case shown in figure 2, equation (19a) can be written as

[
[K] [P ]

[P ]T [0]

] ⎧⎪⎨
⎪⎩

{Do}{
λ1

λ2

}
⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

{F0} + {Fwt }{
νma

Bma

}
⎫⎪⎬
⎪⎭ . (19b)
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The first part of equation (19b) becomes

[K]{Do} = {Fo} + {Fwt } − [P ]

{
λ1

λ2

}
. (20)

In equation (20) from the inflated degrees freedom (due to inclusion of Lagrange multipliers)
once again comes back to its original form.

Therefore, the static equilibrium equation is given by

[K]{Do} = {Fo} + {F st}. (21)

Where, the misalignment forces are expressed as

{Fma} = −[P ]

{
λ1

λ2

}
. (22)

The misalignment force and the weight are combined in a single vector

{F st } = {Fwt } + {Fma}. (23)

The static equilibrium condition given by equation (21) is established by the iterative scheme
described in the previous section 2·4a However, the iterative scheme works on the inflated
degrees of freedom.

2.4c Simplified dynamic analysis: The governing equation for dynamic analysis can be
obtained as follows:

[M]{D̈} + ([C] + [G]){Ḋ} + [K]{D} = {F st } + {Funb} + {F bearing}. (24)

The symbol {F st } stands for static forces on the rotor due to weight and misalignment. The
unbalance force vector is denoted by {F unb}. The force on the rotor from the bearing is
{F bearing}. The rotor is linear. The sources of nonlinearity are the forces on the rotor from
the bearing.

According to equation (18) {D} = {D0} + {D}, where, the static displacement is {D0}
and the dynamic one is {D}. Inserting this expression for {D} in equation (24)

[M]{D̈} + ([C] + [G]){Ḋ} + [K]{Do + D} = {F st } + {Funb} + {F bearing}. (25)

The nonlinear bearing force is expanded in a Taylor series around the static equilibrium
position in a static force {Fo}, a linear (in displacement) force {F lin} and a quadratic (in
displacement) force {Fnl}.

[M]{D̈} + ([C] + [G]){Ḋ} + [K]{Do + D}
= {F st } + {Funb} + {Fo} + {F lin} + {Fnl}. (26)

From static equilibrium equation (21),

[K]{Do} = {F st } + {Fo}. (27a)

The remaining part of equation (26) is therefore,

[M]{D̈} + ([C] + [G]){Ḋ} + [K]{D} − {F lin} = {Funb} + {Fnl}. (27b)
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Now, using {F lin} = −[Kbearing ]{D} and [Kc] = [K] + [Kbearing ] one obtains

[M]{D̈} + ([C] + [G]){Ḋ} + [Kc]{D} = {Funb} + {Fnl}. (28)

The static forces due to weight and misalignment have been taken into account in the static
analysis in equation (27a) and they are not included in the equation of motion (equation 27b)
for the dynamic case. The force vector {Fnl} is included to account for the nonlinear forces.
In the present only quadratic nonlinearity is considered.

From the plots of displacement-dependent stiffness versus eccentricity ratio (figures 4
and 5), one easily finds, that except for symmetrical three-lobed bearing (figure 5b), the
displacement-dependent stiffness increases with increasing eccentricity ratio. In all the cases

the value of kz̄,z̄z̄ = − 1
2

∂2F̂J z̄

∂z̄2 is considerably larger than all other five such coefficients.
Therefore, in this work only this single coefficient and the resulting nonlinear quadratic
force are considered. After appropriate coordinate transformation one can write the following
relation:

If the index i denotes a node at bearing location,

Fnl
iz̄ = −kz̄,z̄z̄u2

iz̄. (29)

The dynamic displacement at node i in the direction z̄ is represented by uiz̄

uiz̄ = sin
(π

2
− θ

)
uiy + cos

(π

2
− θ

)
uiz. (30)

Fnl
iy = Fnl

iz̄ cos θ (31a)

Fnl
iy = Fnl

iz̄ cos θ. (31b)

Equation (28) is integrated in time using the Newmark scheme specially adapted to handle the
nonlinear force. At time step t the value of the unknown displacements are to be computed.
For this computation one needs to know the nonlinear force vector {Fnl}. But the value of this
nonlinear force vector depends on the current displacements. At each time step, an iterative
loop is used to accurately evaluate the quadratic force.

With reference to figure 2a one also notes that in the dynamic condition the degrees of
freedom dn7 and dn9 move together. The same condition also applied for the rotational
degrees of freedom as shown in figure 2b.

3. Numerical example

The finite element model of the rotor system used in static and dynamic analyses are shown
in figure 6a and 6b respectively. An integrated modelling of the rotor system is attempted

Figure 6a. The finite element model used for static analysis.
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Figure 6b. The finite element model used for dynamic analysis.

considering the bearing of the motor, the coupling, one oil-film bearing and a self-aligning
bearing. The oil-film bearing is of short cylindrical type. The bearing at the motor end is
assumed to be of deep groove type and it does not allow translation and rotation. The self-
aligning bearing is modelled as a simple support. The mild steel shaft has a diameter of 20 mm.
The dimensions along the length of the shaft are shown in figure 6b. The disc has a mass of
10 kg and radius of gyration for polar moment of inertia is 100 mm.

The weight of the disc is a static force on the shaft. Misalignment is another source of
static force and moment. In this example, only parallel misalignment in the horizontal (Y )

direction is considered. The location of the misalignment is close to the oil-film bearing and is
shown in the figure 6. Here, the problem is statically indeterminate. The constraint condition
is d013 = d017 + vma .

The subscript 0 indicates static equilibrium conditions and the parallel misalignment is
denoted by the symbol vma .

The translation and rotation stiffnesses of the coupling element are chosen high so that the
coupling is almost rigid and the misalignment generates a large reaction force on the oil-film
bearing.

The oil-film bearing parameters are as follows:
Length = L = 10 mm, Clearance = δ = 0.030 mm, Dynamic viscosity = η = 0.03 ×

10−6 Ns/mm. The first step in the analysis is to find out the static position of the bearing
within the journal and the static displacement of the rotor system as well. Based on this
analysis the constant stiffness and the displacement-dependent stiffness of the bearing will
be determined and used in the subsequent nonlinear dynamic analysis. It is assumed that the
rotor will have its dynamic motion around its static equilibrium position. In the static analysis
the misalignment of the rotor is varied and the corresponding position of the journal is shown
in figure 7 for different spin speeds of the rotor.

The following values are obtained from the static analysis for a spin speed of 500 rad/s and
misalignment of 1 mm.

Resultant static force FJ0 = 1312 N, eccentricity ratio ε0 = 0.8 and angle θ = 2◦.
A displacement-dependent stiffness of kz̄,z̄z̄ = 4 × 107 N/mm2 is considered. The orbit

of the journal around the static equilibrium position is shown in figure 8a. The FFT of the
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Figure 7. The static equilibrium
position of journal center under
constant with varying misalign-
ment and spin speed.

displacement in the Y direction indicates the presence of 2nd and 3rd harmonic in the response
(figure 8b).

4. Discussion

In this work, the steady state response of a misaligned rotor subjected to unbalance excita-
tion at a given spin speed (equation 28) is computed using numerical time-integration pro-
cedures. The response is first computed using a Newmark scheme and then the solution is
verified using a Runge–Kutta method. At each time step dynamic equilibrium is established
in several iterations. The time-integration starts from an initial condition. Then the transient
parts slowly die down with time and the steady state solution is reached. The time step selected
t = 0.00005 s and 40000 iterations are required before steady state conditions are obtained.
In some cases of damped nonlinear vibration the steady state solution depends on initial con-
ditions (Nayfeh & Mook 1995). However, in the present case, the steady state solution is
found to be independent of the same. Figure 8 shows the steady state solution. Figure 9 shows
how from one given initial conditions the solution evolves in time.

With the advent of high speed computational facilities numerical time integration schemes
have become popular in nonlinear vibration analysis. However, when one needs to compute
the response of a rotor over a range of spin speed the present method has to be used repeatedly

Figure 8. The (a) orbit formed by and (b) the FFT of response (in the Y -direction) of the journal
center at a misalignment value of 1 mm.
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Figure 9. The evolution of the
solution from initial conditions in
a time-integrations scheme.

with different values of spin speed. Response computation at each spin speed requires a full
time-integration. For each time-integration a large number of time steps have to be considered
to reach the steady state conditions. Therefore, for studying steady state phenomena the
present method is time-consuming. This is indeed a drawback of the procedure for studying
steady state nonlinear phenomena like jump, bifurcation, etc. A jump in this case is sudden
change in rotor orbit with a small change in spin speed.

The present work deals with multi-degree of freedom (MDOF) system with nonlinearity
at bearings. The finite element model used for dynamic analysis has 30 degrees of freedom.
It is difficult to apply standard perturbation techniques to such MDOF systems. However, one
approach could be condensing out the linear degrees of freedom using appropriate dynamic
condensation technique and then apply the standard perturbation techniques. The method of
harmonic balance in combination with a continuation algorithm can be a choice (Groll &
Ewins 2001). However, the harmonic balance method inflates the number of degrees of
freedom and at each frequency several iterations have to be performed. The method becomes
more and more complicated with increase in number of the assumed harmonics.

5. Conclusion

In the present work a finite element analysis of a misaligned rotor, supported on oil-film
bearing is performed. Misalignment introduces nonlinearity in vibration response. This model
is, therefore, believed to be useful for development of techniques for detection of misalignment
by post-processing of vibration response. Different methods based on frequency response
functions can be explored for this purpose. In a rotor subjected on multiple oil-film bearings, it
is also interesting to identify the bearing(s) operating in the sufficiently high nonlinear region.

List of symbols

p = p(X, φ, t) Oil-film pressure
X, Y, Z, Y ′, Z′, Ȳ , Z̄, φ, γ, θ Coordinates and angles as described in figure 1
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t Time variable
η Dynamic viscosity
h = h(φ, t) Oil film thickness when the journal and the bearing centers

are not coincident
h0(φ) Oil film thickness when the journal and the bearing centers

are coincident
e, γ Polar coordinates of journal center with respect to Ȳ , Z̄

e0, γ0 Polar coordinates of journal center with respect to Ȳ , Z̄ for
static equilibrium

{D}, {D0}, {D} Vectors of total nodal displacements, static nodal displace-
ments and dynamic nodal displacements respectively. {D} =
{D0} + {D}

{D̄0} Inflated vector of static displacement degrees of freedom due
to inclusion of Lagrange multipliers

{F̄ } Inflated (due to inclusion of Lagrange multiplier) static force
vector of weight and static part of bearing force

d̄oj j th element of {D̄0}
dj , doj , dj Total displacement, static displacement and dynamic dis-

placement at degree of freedom j respectively
uiz̄ Dynamic displacement at node i and direction Z̄

FJy ′, FJz′ Components of forces on journal in Y ′ and Z′ directions
F̂Jy ′, F̂Jz′ Components of forces on journal in Y ′ and Z′ directions

obtained after appropriate data fitting
F̂J ȳ , F̂J z̄ Components of forces on journal in Ȳ and Z̄ directions

obtained after appropriate data fitting
FJ0 Resultant static force on journal
{Funb} The force vector with appropriate entries for unbalance
{Fnl} The quadratic (in displacement) force obtained from Taylor

series expansion of the bearing force
Fnl

iz̄ Nonlinear force at node i in the direction Z̄

{F st } Static force on the rotor due to weight of the discs
{Fma} Misalignment force on the rotor
{Fo} The constant part of bearing force obtained from Taylor

series expansion of the bearing force
{F lin} The linear (in displacement) force obtained from Taylor

series expansion of the bearing force
[K], [Kc] Stiffness of the rotor without and with the bearing stiffness

respectively
[K̄] Stiffness of the rotor where Lagrange multipliers are

included as degrees of freedom
[M] Mass matrix of the rotor
[G] Gyroscopic matrix of the rotor
[C] Damping matrix of the rotor.
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Appendix A

Functional form of FJy ′FJy ′FJy ′ and FJz′FJz′FJz′

For a relatively short bearing the change in pressure in the circumferential direction can be
neglected in comparison with that in the axial direction. This allows one to neglect the term ∂p

∂φ

in the Reynolds equation. After this approximation the Reynolds equation appears as follows
(Kramer 1990):

∂2p

∂x2
= 6η

h3

[
	

∂h0

∂φ
+ e(	 − 2γ̇ ) sin(φ − γ ) − 2ė cos(φ − γ )

]
, (A1)

where

h(φ, t) = h0(φ) − e(t) cos[φ − γ (t)]. (A2)

Noting that the right hand side of equation is not a function of the axial direction xand using
the conditions that ∂p

∂x
= 0 for x = 0 and p = 0 for x = ±L

2 ,

p(φ, x, t) = 3η

h3

[
	

∂h0

∂φ
+ e(	 − 2γ̇ ) sin(φ − γ ) − 2ė cos(φ − γ )

] (
x2 − L2

4

)
. (A3)

Integrating over the length of the bearing, the pressure per unit circumferential length

q(φ, t) = Fη

1

(h/δ)3

[
−1

δ

∂h0

∂φ
+ ε

(
2γ̇

	
− 1

)
sin(φ − γ ) + 2ε̇

	
cos(φ − γ )

]
,

(A4)

where,

Fη = ηL3	

2δ2
. (A5)

Force along the directions Y ′ and Z′ can be obtained by appropriate integrations over the
circumference.

Therefore,

FJy ′ = FηfJY ′(ε, ε̇, γ̇ ) = Fη{f1(ε) + ε̇g1(ε) + γ̇ h1(ε)}
FJz′ = FηfJZ′(ε, ε̇, γ̇ ) = Fη{f2(ε) + ε̇g2(ε) + γ̇ h2(ε)}. (A6)
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