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We compare contemporary practices of global approximation using cubic B-splines in conjunctionwith doublemultiplicity of inner
knots (�1-continuous) with older ideas of utilizing local Hermite interpolation of third degree. �e study is conducted within the
context of the Galerkin-Ritz formulation, which forms the background of the 	nite element structural analysis. Numerical results,
concerning static and eigenvalue analysis of rectangular elastic structures in plane stress conditions, show that both interpolations
lead to identical results, a 	nding that supports the view that they are mathematically equivalent.

1. Introduction

Structural analysis is usually performed using commercial
codes that include 	nite elements of low (usually 	rst or sec-
ond) degree, where the accuracy of the calculations increases
by mesh re	nement (ℎ-version). Alternatively, keeping the
number and the position of the nodal points unaltered, the
numerical solution improves using polynomials of higher
degree (�-version) [1].

As an extension of the above �-version “philosophy,”
tensor-product Lagrange polynomials as well as CAD-based
(Gordon-Coons) macroelements—based on several inter-
polations—have been used [2–4]. �e aforementioned ma-
croelements integrate the solid modelling (CAD: computer-
aided-design) with the analysis (CAE: computer-aided-engi-
neering). In more detail, these macroelements use the same
global approximation for both the geometry and the dis-
placement vector. In order to avoid the undesired numerical
oscillations caused by Lagrange polynomials of high degree,
the next generation of CAD-based macroelements replaced
them with tensor-product B-splines [5]. Since 2005, the
nonuniform-rational-B-splines (NURBS) interpolation has
started to prevail [6].

A careful study of literature reveals that most of recent
papers referring to the so-called isogeometric analysis (IGA)

start with some essentials on the de	nition of B-splines and
relevant recursive formulas due to de Boor [7]. It should be
recalled that NURBS is an extension of B-splines (nonuni-
form and rational) modi	ed on the basis of weighting coef-
	cients, thus producing fully controlled sculptured surfaces
[8, 9]. In a B-splines expansion, the multiplicity of the inner
knots plays a signi	cant role in the continuity of the variables.
In general, the multiplicity of � inner knots per breakpoint in
combinationwith a piecewise polynomial of degree� ensures��−�-continuity of the variable (here: displacement compo-
nents) [7, 9]. �us considering cubic B-splines (� = 3) in
conjunctionwith double inner knots (� = 2),�1-continuity is
ensured. Höllig [5, page 93] has solved plane stress problems
using B-splines of degree � = 2, 3, 4, and 5, but his study is not
a complete investigation on the in�uence of the multiplicity
and corresponding continuity of variables involved.

On the other point of view, tensor-product Hermite ele-
ments of third degree have been proposed for the solution
of fourth-order problems, such as plate-bending problems,

using Galerkin-Ritz formulation.�e need for smoother (�1)
global basis functions is also encountered in second-order
problems when collocation 	nite element methods are uti-
lized [10, page 66].

With these situations in mind, we next examine the rela-
tionship between particular Hermite elements of third degree
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and cubic B-splines elements with multiplicity � = 2. Given
that both a global interpolation (B-splines) and a local one

(Hermite elements) ensure �1-continuity, the question arises
whether and how these are mutually equivalent.

Numerical examples concerning rectangular structures in
plane stress conditions reveal that both approximations are
equivalent to one another.

2. The General Elastodynamic Problem

2.1. Governing Equations. In the case of an elastic, isotropic,
and homogeneous 2D structure, the governing equation in
the domain Ω is given by

L
�� + b = �ü in Ω, (1)

where � = {�� �� ���}� is the stress tensor, b = {�� ��}� is
the body force, L� = [ �/�� 0 �/��0 �/�� �/�� ] is the stress operator, � is

the mass density, and ü = {�̈ V̈}� is the acceleration vector.
Considering the Hookean elasticity matrix in 2D prob-

lems (plane stress or plane strain),

E = (�11 �12 0�21 �22 00 0 �33) , (2)

the relationship between the stress, �, and the strain � ={�� �� ���}� is
� = E�. (3)

In addition, the relationship between the strain and the dis-

placement vector, u = {� V}�, is
� = Lu. (4)

�erefore, the 	nal governing equation (Naviér-Kirchho�) is
written as follows:

Du + b = �ü, (5)

where

D = L
�
EL (6)

is a quadratic operator.

2.2. Boundary Conditions. Let us consider the 	eld of dis-

placements u(�, �) = {�(�, �) V(�, �)}� on the domain Ω,
which is required to ful	l the governing equation (5). �e
boundary conditions that correspond to this problem are of
two types as follows:

(a) essential conditions, such as u = u(�) on Γ1 (Dirichlet
type),

(b) natural conditions of the type t = t(�) on Γ2 (Neu-
mann type), with t denoting the traction, the com-
ponents of which are related to the stress tensor as
follows: �� = ���� + �����,

�� = ����� + ����, (7)

where �� and �� are the components of the outward normal
vector on the boundary Γ2. �e total boundary is Γ = Γ1 + Γ2.
3. Global and Local Interpolation

Below we present the two interpolations that will be com-
pared to each other.

3.1. 
e B-Splines as a Global Functional Set. In the evolution
of time, B-splines have appeared in two di�erent forms.

3.1.1. Older De�nitions. �e concept of B-splines was pub-
lished in 1946 and some years later by Schoenberg [11]
and Schoenberg and Whitney [12]. It refers to the points(�0, �0), (�1, �1), . . . , (��, ��) with �0 < �1 < ⋅ ⋅ ⋅ < ��, which
we wish to interpolate through a multiply-de	ned function�(�). �e points �0, �1, . . . , �� are called “breakpoints.” For
a cubic polynomial (� = 3), the desired properties are as
follows.

(i) In each interval �	−1 ≤ � ≤ �	, with � = 1, 2, . . . , �,
function �(�) is a cubic polynomial.

(ii) Function �(�) and the 	rst and second derivatives are
continuous at the above points.

Introducing the truncated power as

⟨� − �	⟩
+ = {0, � ≤ �	(� − �	)
 , � > �	, (8)

which is�
−1-continuous, the original expression consists of
a power series in the form [11, 12]:

� (�) = !0 + !1� + !2�2 + !3�3 + �−1∑
�=1

�� ⟨� − ��⟩3+ . (9)

It is apparent that (9) includes (� + 3) terms and ensures �2-
continuity, because for simplicity we considered % = 3.

Alternatively, (9) can be modi	ed so as to include addi-
tional truncated polynomials of second degree; that is,

� (�) = !0 + !1� + !2�2 + !3�3
+ �−1∑
�=1

�� ⟨� − ��⟩2+ +
�−1∑
�=1

&� ⟨� − ��⟩3+ . (10)

Obviously, (10) includes 2(� + 1) terms and ensures �1-
continuity.

3.1.2. Contemporary Procedures. �ebreakthroughwasmade
in 1972, independently by de Boor [7] and Cox [13], who
both achieved the B-spline function and its derivatives to
be rapidly computed through recursive formulas. �e latter
procedures exist today in MATLAB (spline toolbox) under
the name “spcol.”

In brief, for a nondecreasing set of (� + 1) breakpoints(�0, �1, . . . , ��−1, ��) and for a certain polynomial degree “�,”
we de	ne the knot vector “V”:

{V} = [V0, . . . , V
] , (11)
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which highly depends on the chosenmultiplicity � of internal
knots (usually single or double), as follows.

(i) Multiplicity � = 1:
{V}�=1

= [
[�0, . . . , �0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
�+1

, �1, �2, . . . , ��−1, ��, . . . , ��⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
�+1

]
] . (12)

(ii) Multiplicity � = 2:
{V}�=2

= [
[�0, . . . , �0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
�+1

, �1, �1⏟⏟⏟⏟⏟⏟⏟⏟⏟
2

, �2, �2⏟⏟⏟⏟⏟⏟⏟⏟⏟
2

, . . . , ��−1, ��−1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
2

, ��, . . . , ��⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
�+1

]
] .
(13)

�erefore, (12) and (13) lead to the uni	ed relationship:

% = 2 (� + 1) + � (� − 1) − 1, � = 1, 2. (14)

Based on the abovementioned computed knot vector {V},
the vector of control points is denoted by

{P} = [P0, . . . ,P��] , (15)

where the number of control points (�� + 1) is related to the
number of elements in the knot vector (% + 1) as follows:

% = �� + � + 1. (16)

�e �th B-splines basis functions of degree � (order � + 1),
denoted by ?	,�(�), are de	ned as

?	,0 (�) = {1 if �	 ≤ � < �	+10 otherwise,
?	,� (�) = � − �	�	+� − �	?	,�−1 (�)

+ �	+�+1 − �
�	+�+1 − �	+1?	+1,�−1 (�) .

(17)

�en, for every position � ∈ [0, A], with normalized
coordinate B = �/A ∈ [0, 1], we can determine the values
of �� + 1 basis functions, ?	,�(�) or ?	,�(B), � = 0, . . . , ��, as
follows.

(i) �e Cartesian coordinate is approximated in terms of
control points as

� (B) = �∑
	=0

?	 (B) ⋅ �	. (18)

(ii) �e variable is approximated as

� (B) = �∑
	=0

?	 (B) ⋅ !	. (19)

It is worth mentioning that the coe�cients !	 in (19) are
generally di�erent than the nodal values �	 associated with
the breakpoints, except for the ends where !0 ≡ �0 and !� ≡��.

3.2. Piecewise Hermite Approximation. We refer again to the
sequence �0 < �1 < ⋅ ⋅ ⋅ < ��, which was mentioned in
Section 3.1. Let Ω = [�	−1, �	] be an arbitrary element in a

	nite element partition of the interval [!, �] ≡ [�0, ��]. A �1-
cubic element is obtained by implementing the function and
derivatives at the ends �	−1 and �	 of each element.

�e actual element Ω is transformed linearly to the
master element Ω = [0, 1] by the map B = (1 + E)/2, whereE = {1+[2�−(�	−1+�	)]/(�	−�	−1)}/2. OnΩ, interpolating �
and �� ≡ ��/�B at the end nodes F = 1, 2, the cubic Hermite
expansion has the form:

� (B) = 2∑
�=1

��G0� (B) + 2∑
�=1

���G1� (B) , (20)

where the Hermite basis functions {G0� , G1�} satisfy the inter-
polation properties at end nodes B1 = 0, B2 = 1:

G0� (B�) = H��, G1� (B�) = 0,
�G0��B (B�) = 0, �G1��B (B�) = H��,

(21)

for local nodal indices F = 1, 2 and I = 1, 2. Using properties
(21) we may construct the Hermite cubics directly as

G00 (B) = 1 − 3B2 + 2B3, G01 (B) = 3B2 − 2B3,
G10 (B) = B − 2B2 + B3, G11 (B) = −B2 + B3. (22)

3.3. Contemporary versus Older De�nitions. For the particu-
lar case of � = 3 (cubic splines) under this study, it is trivial
to prove that

(i) when the multiplicity equals one (� = 1), the (� + 3)
basis functions involved in (19) are equivalent (not
identical) to those basis functions in (9);

(ii) when the multiplicity equals two (� = 2), the 2(� +1) basis functions involved in (19) are equivalent (not
identical) to those basis functions in (10);

(iii) therefore, a lot of research conducted in 1960s using
the older framework ((9) and (10)) may be repeated
on the new uni	ed framework of (19).

In this paper, we are concerned with � = 2, which
corresponds only to (10).

In order to get a better idea, the one-dimensional unit
domain was divided into four subdivisions (Ω = [0, 1], �� =4), and then (i) local shape functions using Hermite poly-
nomials of third degree and (ii) global basis functions using
cubic B-splines (in conjunction with � = 2) are compared
in Figure 1. Although each set of four local Hermite shape
functions was separately plotted (in the intervals [0, 1/4],[1/4, 2/4], [2/4, 3/4], and [3/4, 1]), Figure 1(a) shows that all
of them (as a whole) present also a global character. Although
both of the aforementioned sets have this global character, a
	rst look at Figure 1 does not reveal any apparent relationship
between the Hermite polynomials (shown in Figure 1(a))



4 Journal of Structures

−0.2

0

0.2

0.4

0.6

0.8

1.2
Hermite polynomials

0 0.2 0.4 0.6 0.8 1

1

(a)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Cubic B-splines

(b)

Figure 1: (a) Local and (b) global shape functions.

and the cubic B-splines (shown in Figure 1(b)). In more
detail, concerning the Hermite polynomials, those two shape
functions that correspond to �exural DOFs vary between 0
and 1, whereas those two that correspond to slopes obtain
both positive and negative values. In contrast, all B-splines
basis functions are nonnegative and generally less than unity.

4. Tensor-Product Shape Functions

Let us consider a rectangular domainΩ = (ABCD) = [0, !]×[0, �] inR2.�e axis origin is chosen at corner A, whereas the
Cartesian axes � and � lie on the sides AB and AD, respec-
tively.Without loss of generality, the sides (AB, CD) and (BC,
DA) are uniformly divided into �� and �� segments, respec-
tively, thus leading to (��+1) breakpoints along AB or CD, as
well as (�� +1) breakpoints along BC or DA. In this paper, we
use a unique polynomial degree (cubic:� = 3) for both�- and�-directions. As a result, the univariate function �(�, 0) along
the side AB can be interpolated through a piecewise B-splines
polynomial of third degree in �, whereas the function �(0, �)
along the side DA can be interpolated through a piecewise
B-splines polynomial of third degree in �.
4.1. Tensor-Product B-Splines. Given the uniform subdivi-
sions �� and �� of the intervals [0, !] and [0, �], respectively,
the breakpoints along each of the four sides (AB, BC, CD,
and DA) are determined. Moreover, given the multiplicity
of internal knots, � = 2, as well as the polynomial degrees� = 3, the control points in the �- and �-directions are
also determined. If the patch is curvilinear, then �- and �-
coordinates have to be replaced by the B- and K-normalized
coordinates, respectively.

While in older B-splines formulation [11, 12] the degrees
of freedom are associated with the (�� + 1) × (�� + 1) nodal
points x	� lying at the intersections of �th and Fth lines per-
pendicular to the axes and passing through the breakpoints

(�	, ��), in this—let us say—“modern” formulation we have
to deal only with the tensor-product of L control points. Since
the multiplicity of internal knots is � = 2, the tensor-product
consists of L = 4(�� + 1)(�� + 1) coe�cients !	�, for each
displacement component.

�erefore, the two-dimensional global shape functions
are given by (the double subscript is here to emphasize the
two directions)

� = 2 : N	� (�, �) = ?	 (�) ⋅ ?� (�) ,
� = 0, . . . , 2 (�� + 1) ∧ F = 0, . . . , 2 (�� + 1) . (23)

Since the multiplicity is equal to two, then the univariate

approximation is �1-continuous (whereas for 2-D � ∈�1,1(Ωst)); Ωst = [0, 1] × [0, 1] is the standard reference
square.

In general, the L control points are divided into two
categories, that is, ��,in in the interior of the domain Ω and��,� (generally) near the boundary (L = ��,in + ��,�). In more
detail, if a side of the quadrilateral ABCD (e.g., AB) is straight
(as in this study) the corresponding control points lie on this
side (AB). In contrast, if the side is curved, then the extreme
control points (P0 and P�) will belong to the boundary and
even they coincide with the corners (e.g., A and B), whereas
the rest will be either inside or outside the domain Ω in
accordance with the curvature of the curve AB.

4.2. Tensor-Product Hermite. Consider the Hermite cubicsG0�(B), G1�(B) for F = 1, 2 on B ∈ [0, 1] de	ned in (22) and

introduce G0�(K), G1�(K) in the orthogonal coordinate K. �e

tensor-product on Ω consists of the 16 functions:

{G
��� (B, K)} = {G
� (B)} × {G�� (K)} (24)
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on Ωst = [0, 1] × [0, 1] with % = 0, 1, and � = 0, 1, for nodesI = 1, 2 and R = 1, 2. �e interpolant is

S (B, K) = 2∑
�,�=1

1∑

,�=0

�
��� G
� (B) G�� (K) , (25)

where �00�� = �(B�, K�), �10�� = T�/TB at (B�, K�), and so on.
Using the maps B → � and K → �, we obtain the cor-

responding tensor-product shape functions on the rectangleΩ. Considering the chain rule, the derivatives in the B and K
directions in (25) transform to partial derivatives in � and �.
�ere are now four element shape functions associated with
each node to interpolate the corner values of �, �� ≡ T�/T�,�� ≡ T�/T�, and ��� ≡ T2�/T�T�. For each variable �, the
element has 16 degrees of freedom. �e form of the element
interpolant (25) transforms to

�ℎ (�, �) = 2∑
�,�=1

1∑

,�=0

�
��� G
� (B) G�� (K) , (26)

where {�
��� } = {�(��, ��), T�(��, ��)/T�, T�(��, ��)/T�, T2�(��, ��)/T�T�} and we have suppressed the superscript V on
the element shape functions for notational simplicity. Details
are given in the Appendix.

�is tensor-product basis ensures �1-continuity, as is
evident from the formof the global basis functions at an inter-
face between two elements in the discretization. Equivalently,
di�erentiating (26) with respect to � and evaluating ��(�, �)
on side � = �� yields a cubic function ��(�) on this side
that is uniquely determined by the function value �� and its
derivative (��)� at the endpoints of that side.
5. Galerkin-Ritz Procedure

5.1. General. For the given partial di�erential equation (5),
we seek an approximate solution to (5) which is a linear com-
bination of the bivariate global basis functions {N	(�, �)}, � =1, 2, . . . , L:

�̃ (�, �; �) = �∑
�=1

Y� (�) ⋅ N� (�, �) . (27)

In this paper, the candidate functions are cubic B-splines ((23)
in conjunction with generalized coe�cients Y�) or Hermite
polynomials ((25) in conjunction with kinematic degrees of
freedom �
��� ). It should be clari	ed that the variable �̃ in (27)
stands for either the horizontal or the vertical displacement
components at any point of the elastic structure.

Based on the global shape functions N� involved in (27),
we can apply the well-known Galerkin-Ritz method.

Without loss of generality, the boundary consists of �̃1
breakpoints (which correspond to �1 control points) under
Dirichlet and �̃2 ones (which correspond to �2 control points)
underNeumannboundary conditions. For the sake of brevity,
below we limit the discussion in the two typical cases of
boundary conditions, that is, Dirichlet-type and Neumann-
type boundary conditions.

In the general elastodynamic problem the equations of
motion are

[M] {ä} + [C] {ȧ} + [K] {a} = {f (�)} , (28)

where [M] is the mass matrix, [C] is the dampingmatrix, and[K] is the sti�ness matrix, with

[M] = ∫
Ω
N
��N�Ω,

[K] = ∫
Ω
(LN)� � (LN) �Ω. (29)

A�er imposing the boundary conditions, the dimensions
of each matrix in (28) become �eq × �eq, where �eq is the
number of equations (i.e., the number of unrestricted degrees
of freedom: coe�cients or kinematic DOFs). For a certain
choice of �� × �� subdivisions, �eq has the same value either
the B-splines or the Hermite formulation is implemented.

5.2. Numerical Implementation. �e numerical procedure is
performed as follows. �e domain is uniformly divided into
a certain number of �� × �� subdivisions (cells), thus leading
to (�� + 1) × (�� + 1) nodes.

Concerning the determination of the proper Gaussian
quadrature, we start from the observation that the elements%	� of the mass matrix are products of two basis functions,
each of piecewise �th (i.e., third) degree. In the particular
case of a rectangular domain which is the topic of this paper,
the integrant becomes of piecewise sixth degree and thus it
requires four-point Gauss quadrature per direction, that is,
sixteen Gauss points per integration cell.

6. Numerical Examples

TwoMATLAB codes of very similar architecture were devel-
oped on a standard PC Pentium IV as follows:

(i) a code based on rectangular 4-node (32-DOF) Her-
mite elements;

(ii) a code based on contemporary cubic B-splines in
conjunction with double inner knots; the basis func-
tions?	,� and their derivatives were created using the
“spcol” function, which exists in the Spline Toolkit.

�e eigenvalues were calculated using the standard “eig”
function.

�e theory is now elucidated by three examples: one
example deals with static analysis while the remaining two
examples deal with the eigenvalue analysis of rectangular
structures in plane stress conditions.With respect to the exact
solution, �exact, the quality of the numerical solution �̃ is
evaluated in terms of the relative error, which was calculated
as follows:

V� = (�̃ − �exact)�exact × 100%. (30)
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Figure 2: Example 1: cantilever beam subject to a parabolically distributed shear force ^.

Example 1 (cantilever beam). Consider a cantilever beam
subject to end load as shown in Figure 2. �e following
parameters were used: G = 3.0 × 107 kPa; ] = 0.30,_ = 12m,A = 48m, ^ = 1000 kN, and plane stress conditions.

�e solution is given by Timoshenko and Goodier [14] as

�� = − �̂6Gb [3 (2A − �) � + (2 + ]) (�2 − _24 )] ,
�� = ^6Gb [3]�2 (A − �) + (4 + 5]) _2�4 + (3A − �) �2] ,

(31)

where b is the moment of inertia and for a beam with
rectangular cross-section and unit thickness it is given by

b = _312 . (32)

�e rectangular domain is uniformly discretized using of ��×�� subdivisions along the �- and �-directions, respectively, as
shown in Figure 2 (for �� = 1, 2). For these models, Figure 3
shows that the �exural displacement at the middle of the free
side BC (see Figure 2) converges to the exact solution even for
a very small number of subdivisions.

Example 2 (square plate in plane stress). Consider a square
plate of uniform thickness under plane stress conditions,
which is 	xed along its entire boundary. �e following

parameters were used: G/� = 104 and ] = 0.30.
In the absence of an analytical solution, a parametric

analysis using ANSYS (PLANE42 elements) shows that for a
uniformmesh of 90× 90 elements the solution has practically
converged. �e relative errors (cf. (30)) for the 	rst six
eigenvalues are shown in Figure 4. �e horizontal axis cor-
responds to the previously mentioned number of equations
(unrestricted DOF), �eq.
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Example 2: eigenvalues of square plate
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Figure 4: Example 2: convergence diagram of the 	rst six calculated
eigenvalues.

Example 3 (clamped plate in plane stress). Consider a rect-
angular plate of dimensions A × _ = 48 × 12m of uniform
thickness under plane stress conditions, which is clamped
along one of its smallest sides. �e following parameters

were used: G/� = 104 and ] = 0.20. Keeping a constant
ratio of subdivisions (�� : �� = 4) the plate is discretized
into �� × �� elements of square form. As an exact solution
we have considered the numerical solution using 600 × 150
PLANE42 ANSYS elements. �e results, shown in Figure 5,
reveal monotonic convergence.

Example 3: eigenvalues of rectangular plate
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Figure 5: Example 3: convergence diagram of the 	rst six calculated
eigenvalues.

7. Discussion

Bicubic B-spline interpolation has been previously used for
the 	nite element analysis of plates [5, 15] based on Galerkin-
Ritz formulation, as well as in conjunction with collocation
methods for potential problems [7, 10].

In the advent of the isogeometric analysis [6], the older
piecewise interpolations have been substituted by knots and
control points, but in some cases it may be a recast of older
formulations. Within this framework, it was shown that B-
splines interpolation in conjunction with double inner knots

ensures �1-continuity. In other words, although it seems that
cubic B-splines interpolation is a global approximation of
both geometry and variable within the entire rectangular
domain, it is equivalent of splitting the domain into �� × ��
subdivisions along the �- and �-directions, respectively, and
considering local approximation within each of the afore-
mentioned �� × �� Hermite elements. A similar coincidence
has been previously noticed in problems of one dimension,
however, in conjunction with the collocation method [16].

According to Carey and Oden [10, page 68], unfortu-
nately, there is one serious shortcoming regarding the above-

mentioned tensor-product Hermite elements—to retain �1-
continuity, the discretization must be restricted to consist of
rectangles in two dimensions and rectangular prisms in three
dimensions. So far, two alternatives have been proposed:
(i) the use of nonconforming and (ii) simplex elements.
Alternatively, it is anticipated that the tensor-product B-
splines formulation (in conjunction with double inner knots)
will be applicable to problems with curved boundary, at the
cost of determining the Jacobian and its inverse.

Remaining within the context of rectangular elements,
higher order macroelements can be used. One possibility is
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to use similar global functions with those previously used for
plate bending [17]. In addition, modi�ed Hermite polynomi-

als, a family of �1-rectangular elements of increasing degree,
have been proposed (see, e.g., [10, page 67]). Based on the
equivalency revealed in this paper, it is anticipated that sim-
ilar results will be obtained when substituting the two afore-
mentioned alternatives with proper breakpoints and corre-
sponding multiplicities. For example, at inner points only
the displacement components can be considered, whereas
at extreme points their derivatives can be considered as
well.While explicit expressions have been previously derived,
equivalent B-splines with proper select of multiplicities are
anticipated to be applicable.

8. Conclusions

�e Galerkin-Ritz method using contemporary tensor-
product cubic B-splines with double inner knots (global in-
terpolation) was found to be numerically equivalent to the

older �1-continuous Hermite elements of third degree (local
interpolation) when applied to rectangular domains. �is
	nding is valid for both static and eigenvalue problems.
�e superiority of the contemporary tensor-product cubic B-
splines is probably that, in principle, they can work for non-
rectangular structures as well. Moreover, ongoing research
reveals that global B-splines interpolation can readily imple-
ment several modi	ed Hermite alternatives such as higher
degree or di�erent number of function values and derivatives
at internal and external points.

Appendix

Interpolation Using Cubic
Hermite Polynomials

�e cubic Hermite polynomials are

G00 (h) = 1 − 3h2 + 2h3, G01 (h) = 3h2 − 2h3,
G10 (h) = h − 2h2 + h3, G11 (h) = −h2 + h3, (A.1)

where h represents either B- or K-normalized coordinates.
Based on these polynomials we can construct their tensor

products to derive the global functions. For a rectangular
element ABCD having four degrees per node (�, T�/TB, T�/TK, T2�/TBTK) in the �-direction and another four DOFs

(V, TV/TB, TV/TK, T2V/TBTK) in the �-direction, the tensor-
product basis on master element consists of the 16 functions
grouped in sets of 4 per node:

NA (B, K)
= [G00 (B) G00 (K) G10 (B) G00 (K) G00 (B) G10 (K) G10 (B) G10 (K)]
NB (B, K)
= [G01 (B) G00 (K) G11 (B) G00 (K) G01 (B) G10 (K) G11 (B) G10 (K)]

NC (B, K)
= [G01 (B) G01 (K) G11 (B) G01 (K) G01 (B) G11 (K) G11 (B) G11 (K)]
ND (B, K)
= [G00 (B) G01 (K) G10 (B) G01 (K) G00 (B) G11 (K) G10 (B) G11 (K)] .

(A.2)

Renaming the corners A, B, C, and D with the local numbers
1, 2, 3, and 4, respectively, and considering the abovemen-
tioned four degrees of freedom per node for the �-displace-
ment:

(�, T�/TB, T�/TK, T2�/TBTK) , (A.3)

and another four degrees of freedom per node for the �-dis-
placement:

(V, TV/TB, TV/TK, T2V/TBTK) , (A.4)

the vector of degrees of freedom is of the dimensions 32 × 1
as follows:

d = [uA uB uC uD kA kB kC kD]� , (A.5)

with

uA = [�� (T�TB )
�

(T�TK)
�

( T2�TBTK)
�
]� ,

kA = [V� (TVTB)� (TVTK)
�

( T2VTBTK)
�
]� ,

(A.6)

and so on.
Finally, for each element the interpolation of the compo-

nents, � and V, will be

{� (�, �)
V (�, �)}
= [NA NB NC ND 0 0 0 0

0 0 0 0 NA NB NC ND
]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2×32

⋅
[[[[[[[[[[
[

uA

uB

uC

uD

kA

kB

kC

kD

]]]]]]]]]]
]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

32×1

.
(A.7)
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