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In this paper, we report a theoretical investigation of surface acoustic waves propagating in one-

dimensional phononic crystal. Using finite element method eigenfrequency and frequency response

studies, we develop two model geometries suitable to distinguish true and pseudo (or leaky) surface

acoustic waves and determine their propagation through finite size phononic crystals, respectively.

The novelty of the first model comes from the application of a surface-like criterion and, addition-

ally, functional damping domain. Exemplary calculated band diagrams show sorted branches of

true and pseudo surface acoustic waves and their quantified surface confinement. The second model

gives a complementary study of transmission, reflection, and surface-to-bulk losses of Rayleigh

surface waves in the case of a phononic crystal with a finite number of periods. Here, we demon-

strate that a non-zero transmission within non-radiative band gaps can be carried via leaky modes

originating from the coupling of local resonances with propagating waves in the substrate. Finally,

we show that the transmission, reflection, and surface-to-bulk losses can be effectively optimised

by tuning the geometrical properties of a stripe.VC 2016 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4939825]

I. INTRODUCTION

Since the first study by John Strutt (3rd Lord Rayleigh)

in 1885, Rayleigh surface waves (RSWs), the simplest of

surface acoustic waves (SAWs), have become the subject of

a large number of papers, monographs, applications, and

patents.1–8 The experimental and theoretical studies of the

propagation of SAWs in periodically corrugated surfaces of

the 1970s and 1980s initiated informally the field of pho-

nonic crystals (PnCs).9–12 The artificial second-order perio-

dicity, introduced by an array of grooves or metallic stripes,

was shown to result in the appearance of surface Brillouin

zones, zone folding, pseudo-SAWs, and in particular cases

frequency band gaps.12–20 The research from the last twenty

years has pointed out numerous attractive properties of

PnCs over wide length and frequency scales, which can

be applied to, e.g., seismic waves filters, coherent phonon

sources, tunable acoustic filters, waveguides, and thermal

management.21–24

RSWs can be described as non-dispersive SAWs propa-

gating near the free surface of a homogenous solid state me-

dium with a finite penetration depth into bulk. Typically, in

isotropic materials, the amplitude of RSWs decays exponen-

tially to zero in a depth of several wavelengths. The propaga-

tion of RSWs in elastically anisotropic materials, such as

crystals, is more complex; thus, velocity and penetration

depth strongly depend on the direction, plane of propagation,

and elastic anisotropy ratio.5,25 Therefore, the full analysis of

RSWs requires numerical methods such as those based on

the partial waves approach or elastodynamic Green

functions.5–7,26,27 Moreover, these techniques allow investi-

gating pseudo-RSWs, also called leaky RSWs. These waves

appear in the radiative zone (or supersonic domain) of the

dispersion relation diagram, defined by the sound line of the

slow transverse bulk acoustic wave (T2BAW). Generally,

they differ from true-RSWs in a small radiating component

so that the amplitude of pseudo-RSWs does not decay com-

pletely to zero with depth. Under certain conditions, pseudo-

RSWs can be measured by means of ultrasonic techniques or

Brillouin light scattering (BLS).5,25,28 These waves, in a

broader context of true- and pseudo-SAWs propagating in

PnCs, also piezoelectric, were investigated experimentally

by transmission measurements29 and theoretically mostly by

means of plane wave expansion (PWE) based meth-

ods.16,17,30,31 Nevertheless, in the case of theoretical studies

based on the finite element method (FEM), pseudo-SAWs

have been, up to now, mostly neglected by applying the cone

of sound criterion.29,32–34 Although this approach enables

sorting surface-like solutions and overcomes the limitations

of FEM, it does not appear to be well-founded. For example,

it fails in the case of true-SAWs that may appear at some iso-

lated points in the radiative zone.18,35

In the present work, we consider theoretically SAWs of

sagittal polarisation in finite size 1D PnCs (see Fig. 1) propa-

gating normally to the stripes. Contrary to the previous

reports, we show a way to sort surface-like solutions and dis-

tinguish true- and pseudo-SAWs within a framework of the

FEM eigenfrequency analysis. With this background, we

comparatively investigate finite PnCs for which transmis-

sion, reflection, and surface-to-bulk losses are calculated by

the frequency response FEM model. Here, we propose a new

procedure, which basically assumes the excitation of RSWs
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without bulk-like components and a Fourier transform-based

analysis of transmitted and reflected RSWs. Besides the nov-

elty of the provided models, which can be extended to 3D,

our findings show the importance of pseudo-SAWs in the

design and optimisation of PnCs based high efficiency acous-

tic filters, reflectors, or waveguides.

II. FEM MODEL

A. Eigenfrequency study

Rayleigh surface waves propagating in anisotropic

media can be described as a specific superposition of three

bulk acoustic waves (BAWs), which satisfies the stress free

boundary condition.5,7,26 Therefore, the general and appro-

priate FEM analysis requires a 3D study. Fortunately, for

isotropic materials or high symmetry planes and directions

of crystals, where the displacement component perpendicular

to the sagittal plane equals zero, this problem can be simpli-

fied to a 2D space. The presented model considers SAWs

propagating in the [110] direction of the (001) plane of Si,

where the above condition is satisfied. In this case, SAWs

exhibit a unique feature resulting from the elastic anisotropy.

Namely, the subsonic RSW degenerates with a T2BAW

while the true-RSW appears in the pseudo-RSW branch

lying in the supersonic domain.5,7 This particular case, where

the phase velocity of RSWs is higher than that of the slowest

bulk wave, has its consequences for FEM calculations of

SAWs in homogenous anisotropic materials and surface

PnCs as well. All FEM-based studies of SAWs in the litera-

ture use the approach, which allows overcoming the limita-

tion in a form of a finite unit cell. Simply, the elastic half-

space is imitated by a thick slab with fixed and free boundary

conditions for the bottom and upper planes, respectively,

ensuring an exponential decay of the SAWs amplitude with

depth. The thickness of this slab is usually arbitrarily defined

and, according to the commonly accepted penetration depth

of SAWs, set to be of several SAW wavelengths.25,29,32,36,37

However, a more rigorous definition should include the elas-

tic anisotropy ratio, direction, and plane of propagation and

possible existence of pseudo-SAWs.

In this paper, we focus on specific 1D surface PnCs

made of rectangular stripes on the (001) plane of silicon and

periodic in the [110] direction. The dispersion relation of

sagittal SAWs propagating normally to the stripes was deter-

mined by looking for mechanical eigenmodes of the unit

cell, depicted in Fig. 1(a). The corresponding eigenfrequen-

cies f ¼ x=2p were calculated by solving the elastodynamic

equation of motion

�qx2ui �
@rij
@xj

¼ 0; (1)

where the summation convention ði ¼ f1; 2; 3gÞ is applied, q
describes the mass density, and ui are components of the dis-

placement. The Cauchy stress tensor, given by rij, is defined

by the Hooke’s law

rij ¼ Cijklukl: (2)

Here, uij is the infinitesimal strain tensor expressed as

uij ¼
1

2

@ui
@xj

þ
@uj
@xi

� �

: (3)

Cijkl is the fourth rank elastic tensor, which in the Voigt

notation is given by the 6� 6 symmetric elastic matrix CKL.

For cubic silicon, CKL has three non-zero and independent

components: C11, C12, and C44. The specific crystallographic

orientation of the system, where x1jj½110� and x2jj½001�,
imposes a transformation of Cijkl according to the formula

C0
pqrs ¼ apiaqjarkaslCijkl, where aij are direction cosines.38

The new elastic constants in the Voigt notation are given by

C0
KL and gathered in Table I.

FIG. 1. Illustration of FEM models used in (a) eigenfrequency and (b) frequency response studies (description in the text).

TABLE I. Elastic constants of Si in original CKL (GPa) and rotated C0
KL

(GPa) coordinates. C0
KL that does not appear remains unchanged.

C11 C12 C44 C0
11 C0

33 C0
55 C0

13

165.7 63.9 79.9 194.7 194.7 50.9 34.9
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The width of the unit cell denoted as a defines the lattice

constant and the reciprocal lattice wave number as G

¼ 2np=a (n is an integer). The height h and width w of a par-

ticular stripe are parametric and chosen to be comparable

with the lattice period. The Bloch-Floquet periodic boundary

conditions (BCs) are applied for edges normal to the x1 axis,

except those of the stripe. The proposed 2D model assumes a

plane strain with a zero displacement in the x3 direction

ðu3 ¼ 0Þ. Therefore, two remaining components of the dis-

placement u1 and u2 at these edges are defined to be

uj expðiqx1Þ, where j ¼ f1; 2g and q 2 h0; p=ai is a wave

number from the reduced first Brillouin zone (IBZ). The total

height H of the unit cell is set as wavelength dependent, i.e.,

H ¼ 10kþ h, where k ¼ 2p=q. Contrary to the previous

reports, we propose the unit cell to be made out of two func-

tional domains E1 and E2 (see Fig. 1(a)) with and without

damping properties, respectively. The height of the domain

E1 is taken as 8k, which is sufficient for the SAWs propagat-

ing in the chosen orientation of silicon. Nevertheless, for any

other material and crystallographic orientation, this value

has to be determined individually. The upper boundaries of

E1, defining the stripe, are taken to be stress free. The mate-

rial properties for this domain are defined by the rotated elas-

tic constants C0
KL gathered in Table I and mass density

q ¼ 2331 kg=m3.

The additional domain E2, with the height of 2k, intro-

duces damping into the FEM model by an artificial viscos-

ity.39 Herein, the elastic matrix is complex and given by

C0
KL E2ð Þ ¼ C0

KL E1ð Þ 1þ 5i
2k� x2

2k

� �3
" #

: (4)

As follows from the above equation, the real part of the

elastic matrix of E2 is the same as for E1 while the imagi-

nary part is position dependent. The magnitude of the viscos-

ity is modulated by a cubic function of the position in the x2
axis (see Fig. 1(a)). In this way, the displacement is continu-

ously attenuated from an arbitrary value at the boundary

between E1 and E2 to zero at the bottom of the unit cell.

This additional damping domain introduces some general

advantages to the FEM analysis of SAWs and surface PnCs.

First of all, there is no need to fix the displacement on the

bottom boundary, what is crucial for the study of pseudo-

SAWs. In principle, we avoid imposing zero displacement of

the radiating term of pseudo-SAWs at a given depth, which

may result in some artificial features in the dispersion of

these waves. The second and the most important benefit, dis-

cussed later, makes FEM analysis capable to distinguish

true- and pseudo-SAWs.

B. Frequency response study

Figure 1(b) illustrates the geometry of the FEM model

described in this section, which is based on the system previ-

ously presented in Ref. 40. However, here we use the fre-

quency response instead of a transient study that results in a

higher calculations efficiency. The structure is divided into

seven functional domains (D1, D2, …, D7) with wavelength

and thereby frequency dependent sizes. The total height of the

structure set to 11k is sufficient to ensure no influence of the

boundaries on the results. By applying the equation of motion

�qx2ui �
@rij
@xj

¼ Fi exp i/ð Þ; (5)

we solve the steady state response from harmonic loads with

the amplitude of force per unit volume Fi, driving frequency

f ¼ x=2p, and phase shift /. The domain D1 acts as a gener-

ator of RSWs of given parametric frequency and arbitrary

amplitude. The common and easiest approach of introducing

RSWs into the system uses a point load acting in the out-of-

plane direction (here x2). Nevertheless, this results in evanes-

cent bulk-like excitations, which, if the source and PnC are

close enough, can obscure the total picture of the problem.

Therefore, we apply a body load to D1 with amplitudes

Fi ¼ @rij=@xj. The latter is determined from Eqs. (2) and (3),

where the displacement field ui is defined by the RSW5,6

ui ¼
X

3

n

AðnÞu
ðnÞ
0i exp½iqðl1x1 þ l

ðnÞ
2 x2Þ�: (6)

The above equation is a superposition of three waves with

appropriate weighting factors AðnÞ and amplitudes u
ðnÞ
0i , where

q ¼ ð2pf Þ=vR. The considered RSW propagates in the

x1jj½110� direction with phase velocity vR ¼ 5087 ðm=sÞ and

direction cosine l1 ¼ 1. The values of l
ðnÞ
2 describing the attenu-

ation of RSW amplitude with depth are tabulated together with

AðnÞ and u
ðnÞ
i0 in the Appendix. Once the strain tensor is deter-

mined the values of Fi are calculated from the expressions

F1 ¼ C0
11

@u11
@x1

þ C12

@u22
@x2

þ 2C44

@u12
@x2

; (7)

F2 ¼ C11

@u22
@x2

þ C12

@u11
@x2

þ 2C44

@u12
@x1

; (8)

F3 ¼ 0: (9)

Obviously, the above does not apply to the remaining

domains, for which Fi¼ 0. The elastic properties for the

domains D1, D2, D3, and D4 are given by the rotated elastic

constants C0
KL and mass density q. The natural but unwanted

reflections from the boundaries due to the finite size of the

system are avoided by means of three damping domains—

D5, D6, and D7. Similarly, as in the previously described

model, we use a position-dependent attenuation resulting

from the artificial viscosity (see Eq. (4)). The amplitudes of

the incident, reflected, and transmitted RSWs are determined

by a spatial fast Fourier transform (FFT) of two line probes

with a length of 10k and placed with a distance of 5k before

and after the PnC.

III. RESULTS AND DISCUSSION

A. Dispersion relation

In practice, calculations of SAWs dispersion diagrams

require a parametric sweep of the wave number q within the

IBZ. The value of q defines the periodic boundary conditions

of the model and the height of the unit cell. Therefore, to
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avoid a singularity at q¼ 0, which results in an infinitely

high unit cell, we start calculations from a very small, but

nonzero wave number. To sort out SAWs from all FEM solu-

tions, we use a parameter n, which points the centre of the

elastic energy in the x2 axis

n ¼ 1�

ð

S

Ex2dS

H

ð

S

EdS

0

B

B

B

@

1

C

C

C

A

; (10)

where the integrals are taken over the unit cell area S, H is the

total height of the unit cell, and E ¼ 1
2
Cijkluijukl is the free elas-

tic energy density. For the considered case, E takes the form3

E ¼
1

4
C11 u211 þ 2u222
� �

þ C12 u211 þ 4u11u22
� ��

þ 2C44 u211 þ 4u212
� �

Þ: (11)

Generally n is a fraction with values from 0 to 1, where

surface-like solutions are those with n approaching 0. In this

work, we assume that SAWs are given by n 2 ð0; 0:2Þ.
Nevertheless, this range depends on the geometrical and mate-

rial properties applied to the unit cell and has to be defined

individually. Nevertheless, n does not provide any information

that could allow us to differentiate pseudo- and true-SAWs.

At this point, we take advantage of the additional damping do-

main E2 shown in Fig. 1(a). If the unit cell is sufficiently high,

then the displacement field of the true-SAW is located near to

the free surface of E1 and the displacement in E2 is negligible.

Consequently, the additional damping is not required, E2

remains passive, and all the eigenfrequencies are real num-

bers. This circumstance changes when FEM eigenmodes cor-

respond to pseudo-SAWs. Then, the small radiating

component of these waves result in nonzero displacement of

E2 and activates the damping properties of this domain. As a

consequence, FEM eigenfrequencies are complex numbers

with a typically small imaginary part, which decreases to-

gether with the magnitude of the leaking component of the

displacement. In other words, the surface-like solutions for

which Imðf Þ ¼ 0 and Imðf Þ 6¼ 0 correspond to true- and

pseudo-SAWs, respectively. Figure 2 depicts three exemplary

band diagrams of SAWs propagating in PnCs with the same

period a ¼ 500 nm but differing in the size of the stripe. The

dotted and dashed lines highlighting the local resonances

(LR0, LR1, and LR2) and bulk acoustic waves (LBAW and

T1BAW), respectively, are added as a reference. The local

resonances are defined by a discrete spectrum of mechanical

modes of the isolated stripe that can be tuned by changing its

geometrical features. From all the FEM solutions, only those

displaying the surface-like parameter n < 0:2 are plotted

using two colour scales for true- (red) and pseudo-SAWs

(blue). Furthermore, the type of SAWs and features such as

penetration depth and leaking can be determined by exploiting

FEM displacement fields. The evolution of the total displace-

ment amplitude of the unit cell with depth can be described by

its projection on the x2 axis given by the formula

a x2ð Þ ¼

ð

S

u201 þ u202
� �1

2dx1
ð

S

dx1

: (12)

In principle, the SAW penetration depth seems to be an

arbitrary value, usually taken as few wavelengths.4,6 In this

work, we define this depth as the distance from the free sur-

face where aðx2Þ is e
�10 smaller than its maximum value.

FIG. 2. Exemplary band diagrams of SAWs propagating in PnCs differing in sizes of the stripe (description in the text).
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Figure 2(a) obtained for the unperturbed (001) surface

of Si shows nothing more than a dispersion of RSWs propa-

gating in the ½110� direction. Naturally, the artificially

applied periodicity results in nonphysical zone folding.

Nevertheless, in this simple example, the proposed model

properly sorts surface-like solutions and selects all of them

as true-RSWs even when they are placed above the fast

transverse wave threshold (T1BAW). An exemplary RSW at

reduced wave number qR ¼ 0:4 (qR ¼ qa=2p) marked as

mode A in Fig. 2(a) is depicted in upper Fig. 3(a) in the form

of displacement fields at four different phases. Here, as in

the next examples of Fig. 3, we take the wave propagation to

the right. Automatically, we find the particle motion (arrows)

on the free surface as counterclockwise, which is a typical

feature of RSWs. Lower part of Fig. 3(a) shows the evolution

of the projected total displacement, given by Eq. (12), with

depth in linear and logarithmic scales. From this figure and

using the above definition, we find the penetration depth to

be 3:19k.
The second exemplary band structure obtained for a

PnC made of stripes with width w ¼ 200 nm and height h

¼ 100 nm is depicted in Fig. 2(b). Herein, the periodic per-

turbation of the surface leads to zone folding of RSWs and

Bragg band gap at the zone boundary. All the visible

branches demonstrate RSW-like nature, i.e., the free surface

particle motion is elliptical and counterclockwise. Both true-

RSWs have small n, and thereby, they are localised very

close to the free surface. Furthermore, they are limited by

the fast transverse wave threshold. At first glance, the zone

folded true-RSW branch seems to transform smoothly into

the pseudo-RSW at the crossing point with the T1BAW.

However, there is no intermediate state between these two

types of waves and the transition is discontinuous.

Moreover, the pseudo-RSWs gradually increase the penetra-

tion depth and finally vanish while moving from the

T1BAW to the LBAW. This behaviour can be attributed to

the Brekhovskikh attenuation of SAWs, which is induced by

the periodicity and occurs above the transverse wave thresh-

old.15,18,35,41 All the frequencies, in the considered range,

which lie above the pseudo-RSW branch are forbidden for

SAWs. However, contrarily to bulk or plate PnCs, the pres-

ence of this wide stop band does not have to result in the full

reflection of the incident wave. On the contrary, the reflec-

tion is only partial, and the incident wave undergoes partial

conversion into BAWs. The latter, considered for finite PnCs

in Sec. III B, results in losses of the elastic energy confined

to the free surface. The local resonance LR0 appears within

the wide band gap above the pseudo-RSWs without any

interaction with propagating waves, which could be mani-

fested as SAWs in the dispersion relation. We shall use the

next example shown in Fig. 2(c) to analyse in detail the prop-

erties of the particular modes, labelled B, C, D, E, and F, as

representatives of the corresponding branches. This PnC dif-

fers from the previous one only in the height (h ¼ 200 nm)

of the stripe. As previously discussed, true-SAWs forming

three branches are limited by the transverse wave threshold

whereas two other corresponding to pseudo-SAWs appear

between the T1BAW and LBAW thresholds. Besides this

general similarity, the increased height of the stripe leads to

significant changes in the dispersion of SAWs. First of all,

FIG. 3. Displacement fields for differ-

ent phases and corresponding projected

amplitude of the total displacement

aðx2Þ as a function of depth of modes

depicted in Fig. 2.
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the eigenfrequencies of the separated stripe, which define the

local resonances, are downshifted so one of them, LR0,

crosses sound lines of RSW, T1BAW, and LBAW inside the

IBZ. In this way, similar to the case of bulk PnCs or metama-

terials, it gives rise to anti-crossing of propagating modes

accompanied by a reduction in the group velocity and open-

ing of sub-wavelength band gaps.32,42 The lowest branch

from the non-radiative zone, labelled true-RSW1, spans the

whole IBZ; however, it is limited by horizontal and oblique

asymptotes given by LR0 and RSW, respectively. A particu-

lar mode (mode B in Fig. 3(b)) at qR ¼ 0:3 shows the typical

displacement field of the RSW-like wave: a particle motion

on the free surface is counterclockwise for both substrate

and stripe. While approaching the zone boundary, the pene-

tration depth of true-RSW1 decreases and the local reso-

nance dominates coupling with RSWs of the substrate. This

leads to flattening of the dispersion and reduction in the

group velocity. The upper branch, true-RSW2 has a cutoff

wave number determined by the fast transverse wave thresh-

old. The displacement fields at qR ¼ 0:3 (see upper part of

Fig. 3(c)) show a counterclockwise particle motion on the

surface of the substrate. However, for the surface of the

stripe, it is opposite. This, together with the cutoff of the

phase velocity given by the T1BAW, makes true-RSW2 sim-

ilar to Sezawa waves.4,6 As follows from Figs. 3(a)–3(c),

these waves decay slower with depth than the RSWs of the

substrate and the true-RSW1 with the same wave number.

Thus, in general, the penetration depth also depends on the

wave number.

The sub-wavelength and indirect band gap between

true-RSW1 and true-RSW2 certainly applies to true-SAWs,

but it does not rule out some nonzero transmission in finite

PnCs. The possible transmission may appear via pseudo-

SAWs formed by the hybridisation of the local resonance

LR0 with bulk waves propagating in the substrate, what we

shall discuss in Sec. III B. Figure 3(d) shows features of a

specific case, a mode D at qR ¼ 0:193, where the radiative

component of the total projected displacement is only about

e�6:13 of its maximum value on the free surface. Moreover,

the surface-like parameter n is about two times smaller than

for the RSW of unperturbed Si. In this case, the particle

motion of both substrate and stripe is clockwise what makes

these waves substantially different from RSWs. The last

branch formed in the non-radiative region, true-RSW3, ter-

minates at the fast transverse wave threshold and appears in

a very narrow range of wave numbers just next to the zone

boundary. As we see in Fig. 3(e) at qR ¼ 0:49, the penetra-

tion depth of the mode E goes down to 6:39k, which is two

times deeper than for RSWs. The particle motion of the free

surface is counterclockwise as for RSWs; however, the dis-

placement fields of these two waves (compare upper Figs.

3(a) and 3(e)) are completely different. The indirect band

gap, which rises between true-RSW2 and true-RSW3 is

defined partially at the zone boundary (the lower limit) and

on the transverse wave threshold. Similarly, to the previous

one, it appears in the sub-wavelength regime, but this time, it

applies for both true- and pseudo-SAWs. In the considered

range of frequencies, the true-RSW3 at the zone boundary

determines the lower limit of a wide stop band for true-

SAWs. However, the leaky branch present at about 6:3GHz
just below the LBAW threshold may result in a nonzero

transmission of SAWs through finite PnCs. The dispersion

together with displacement fields and evolution of aðx2Þ with
depth allow us to classify these waves as longitudinal leaky

surface acoustic waves (LLSAWs). In principle, longitudinal

waves propagating through the free surface are attenuated

within a distance of a wavelength. Nevertheless, as was

shown, e.g., for Si and LiNbO3, a periodically corrugated

surface can support the propagation of LLSAWs.14,43,44

B. Transmission, reflection, and losses

In this section, we show results of the FEM frequency

response study based on the model geometry described in

Fig. 1(b) and made out of finite PnCs (100 periods) sur-

rounded by unperturbed silicon. Here, we analyse PnCs with

the same spacing and stripe width as in Sec. III A while the

height is used as a tuning parameter. As we have assumed,

on the left hand side of the PnCs, the model generates RSWs

at a given frequency f and without bulk-like components.

What is important, RSWs scattered on a surface imperfection

can create leaky bulk waves, which if reaching the probe

may affect the results. To overcome this issue, we use two

line probes placed on two sides of the PnC (see Fig. 1(b)),

which determine out-of-plane displacement u2 in a line seg-

ment of length 10k. RSWs propagating in a pristine surface

of Si are non-dispersive; thus, for the frequency f, the ampli-

tudes of the incident, reflected, and transmitted RSWs are

given as the outputs of the FFT of the corresponding dis-

placement profiles at 1=k ¼ f=vR. The transmission T, reflec-

tion R, and surface-to-bulk losses B coefficients are defined

as follows:

T ¼
uT02
uI02

 !2

; R ¼
uR02
uI02

 !2

; B ¼ 1� T � R; (13)

where uI02; u
T
02, and uR02 are amplitudes of the out-of-plane

displacement of incident, transmitted, and reflected RSWs,

respectively. The spectra of T, R, and B are obtained by

sweeping the frequency f, and thereby q in Eq. (6), in a range

of 0:01–12GHz. Before going into a more general picture,

let us consider a specific case of PnC, the dispersion relation

of which we have already analysed in detail. Figure 4(a)

depicts the dispersion relation, the same shown in Fig. 3(c).

However, here, we marked the band gaps for true- and

pseudo-SAWs, and we shall use it as complementary data

for the frequency response study. In addition to the finite

PnCs, we examine a reference system where the periodic

array is substituted by a single building element, a stripe. As

follows from Figs. 4(b)–4(d), all three coefficients T, R, and

B, respectively, are frequency dependent. While increasing

the frequency the wavelength and penetration depth of

RSWs become comparable to the stripe dimensions. This is

generally accompanied by an increase of B and a reduction

of T. In our case, this trend is modified, at different levels, by

the presence of three local resonances LR0 (2:85GHz), LR1
(7:34GHz), and LR2 (10:37GHz). The effect of the funda-

mental mechanical eigenmode of the stripe is stronger, but
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all local resonances give rise to deeps of T and peaks R and

B. We now turn on to examine the PnCs with respect to the

results for the single stripe. As we see in Fig. 4, the predicted

band gaps in the dispersion relation perfectly match

bandwidths of zero transmission. Up to approximately

2:63GHz, T is carried via true-RSW1 and resembles

the behaviour of the single stripe. As we expected, the propa-

gation of SAWs is not completely cancelled inside the

FIG. 4. (a) Dispersion relation of SAWs taken from Fig. 2(c) and corresponding coefficients of (b) transmission T, (c) reflection R, and (d) surface-to-bulk

losses B plotted for a PnC and single stripe as a reference.

FIG. 5. Coefficients of transmission (T), reflection (R), and surface-to-bulk losses (B) as a function of frequency and height of the stripe calculated for the

model geometry of Fig. 1(b) made out of (a)–(c) a single stripe and (d)–(f) PnCs with 20 periods.

025308-7 Graczykowski et al. J. Appl. Phys. 119, 025308 (2016)



non-radiative band gap between true-RSW1 and true-

RSW2. Interestingly, the deep of T at 2:85GHz found for

the single stripe turns into a peak in the case of the PnC.

Although T at that point is relatively smaller for the PnC,

RSWs are clearly transmitted through the PnC via pseudo-

SAWs. Going to higher frequencies, SAWs are effectively

stopped within a narrow range defined between branches of

pseudo-SAWs and true-RSW2. The transmission via true-

RSW2 remains high but lower than 0.8 due to partial

reflection and conversion to BAWs at the interfaces of the

PnC. The pass band of true-RSW3 shows relatively small T

while that of LLSAWs is practically not visible. From the

viewpoint of potential applications of PnCs as SAWs

reflectors, the reflection coefficient R has to be maximised,

what is not trivial when surface-to-bulk losses become an

important issue.40,45 As we see in Fig. 4(c), the reflectivity

related to LR0 is about 0.4, and this within the second

band gap varies between 0.6 and 0.7. However, the maxi-

mum R¼ 0.85 appears as a narrow peak at 5:66GHz within

the third band-gap just above true-RSW3. This situation is

accompanied by very curious behaviour of surface-to-bulk

losses. At this point, B for PnCs has a deep and surpris-

ingly is about 2.6 times lower than that for the single

stripe. This finding suggests that the interface between the

flat surface and PnCs is not defined by the first single

stripe. Consequently, we can optimise R within a given

range of frequencies by an appropriate design of the PnCs.

As a summary of this section, we show an exemplary opti-

misation study, which in practice is an extension of the

case shown in Fig. 4. All three coefficients T, R, and B are

calculated as a function of frequency and height of the

stripe and plotted in a colour scale. Figures 5(a)–5(c) show

results for the reference system build of a single stripe with

fixed width and varied height in a range of 20–400 nm.

Here again, the presence of the local resonances clearly

manifested in the 2D maps of T, R, and B. In principle,

they lead to reduction of T and simultaneous increase of R

and B. Similar calculations showed in Figs. 5(d)–5(f) were

performed for PnCs made of 20 stripes with fixed spacing

and width and height varied as in the example above. From

the comparison with the previous case, we can conclude

that the periodic array decreases the transmission in a

favour of mainly the radiation to bulk. These adverse losses

under certain frequencies and sizes can be minimised and

accompanied by very high reflectivity. Herein, the overall

picture points to LR0 as only one from all the mechanical

eigenmodes of the stripe, which substantially affects T, R,

and B.

IV. CONCLUSIONS

Making use of FEM, we studied SAWs dispersion and

propagation through PnCs made of an array of rectangular

stripes on the (001) surface of Si. A new approach within a

framework of the eigenfrequency study allowed us to over-

come the limitation of FEM in the form of a finite height

unit cell. By applying an additional viscoelastic domain we

sorted true- and pseudo-SAWs without resorting to the sound

cone criterion. In this way, we avoided imposing a fixed

displacement boundary condition, which affects the radiative

component and, consequently, the dispersion of pseudo-

SAWs. We showed dispersion features such as zone folding,

band gaps originating from Bragg reflections and local

resonances, the latter splitting RSWs into Rayleigh- and

Sezawa-like waves, and the presence of LLSAWs. We fur-

ther performed a comparative and complementary study of

transmission, reflection, and surface-to-bulk losses in finite

PnCs. The novelty of the developed FEM frequency

response model is based on the generation of pure RSWs and

its analysis by the spatial FFT. The obtained results showed

that the local resonances, driven by geometrical features of

the stripe, lead to opening of sub-wavelength band gaps.

Moreover, in the same bandwidth, they hybridise with propa-

gating bulk waves and give rise to pseudo-SAWs with a very

small leaky component. This leads directly to nonzero trans-

mission of RSWs through a finite PnC. We uncovered an

interesting phenomenon which is manifested by decreasing

surface-to-bulk losses in PnCs with respect to a single stripe.

This feature appears within a band gap, just above true-

RSW3, and is accompanied by a sharp increase in the reflec-

tivity. The presented approach shows a novel insight on the

propagation of true- and pseudo-SAWs in PnCs, which can

be useful for the design and optimisation of devices employ-

ing SAWs.
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APPENDIX: COEFFICIENTS AðnÞ; u
ðnÞ
0i , AND l

ðnÞ
2

The coefficients AðnÞ; u
ðnÞ
0i , and l

ðnÞ
2 , which appear in

Eq. (6), can be obtained by, e.g., the partial waves

approach.5,6 Using this formalism, we find velocity of RSWs

as vR ¼ 5087m=s and corresponding coefficients gathered in

Table II.

TABLE II. Coefficients u
ðnÞ
0i ; l

ðnÞ
2 , and AðnÞ.

1 l
ð1Þ
2 �0:4041828618678606� 0:5314332666932391i

2 l
ð2Þ
2 0:4041828618678606� 0:5314332666932391i

3 l
ð3Þ
2 0:3433811825660294þ 0i

4 u
ð1Þ
01 0:473292646309311þ 0:361528977733201i

5 u
ð2Þ
01 �0:473292646309311þ 0:361528977733201i

6 u
ð3Þ
01 0þ 0i

7 u
ð1Þ
02 0:803299987058830þ 0i

8 u
ð2Þ
02 0:803299987058830þ 0i

9 u
ð3Þ
02 0þ 0i

10 u
ð1Þ
03 0þ 0i

11 u
ð2Þ
03 0þ 0i

12 u
ð3Þ
03 �1þ 0i

14 Að1Þ Að1þ 0iÞ

14 Að2Þ Að�0:607025491288873þ 0:794682359767411iÞ

15 Að3Þ Að0þ 0iÞ
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