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Summary We consider a fully discrete finite element approximation of
the nonlinear cross-diffusion population model: Find u ;, the population of
the i*" species, i = 1 and 2, such that

3u¢

at —A[C¢U¢+G¢U?+uin] —bZV(’U,ZVU) :gi(ul,UQ),

Where_] 75 7 and gi(ul, U2) = (Hl = Yii Wi — VYij ’LL]') u;. In the above, the
given data is as follows: v is an environmental potential, ¢c; € R>g, a; €
R~ are diffusion coefficients, b; € R are transport coefficients, p; € R>q
are the intrinsic growth rates, and v;; € R>( are intra-specific, whereas
Yij, © # J, € Ryq are interspecific competition coefficients. In addition
to showing well-posedness of our approximation, we prove convergence in
spacedimensionsd < 3. Finally some numerical experimentsin one space
dimension are presented.

Mathematics Subject Classification (1991): 65M 60, 65M 12, 35K 55, 92D25

1 Introduction

Let 2 c R? d > 1, with a Lipschitz boundary 92 having normal v.
We consider afully discrete finite element approximation of the following
nonlinear cross-diffusion population model:

(P) Findu; : £2 x [0, T] — R, the population of the i** species, i = 1 and
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2, such that
‘?;f V. Biur,uz) = gi(ur,us) N0 =02 x (0,7], (1.1a)
Bi(ui,u2) . v =10 ondf?2 x (0,71, (1.1b)
ui(+,0) = ud(-) >0 in £2; (1.1c)

where, for j # i, the flux terms

Bi (w1, we) := V(c;w; + a; w? + w; wj) + b w; Vo
= (Ci +2a;w; + w]’) Vw; + w; (ij + b; VU) , (1.28)

and the reaction terms
gi(w1, w2) = (s — Yis Wi — Yij W) W; (1.2b)

are of Lotka-Volterratype. In the above, the given datais as follows. v €
HY(Q2)nWbs(02), s > d, isan environmental potentia, c; € R>o, a; €
R~ are diffusion coefficients, b; € R are transport coefficients, p; € R>g
aretheintrinsicgrowthrates, and v;; € R>( areintra-specific, whereas;;,
i # j, € R>¢ are interspecific competition coefficients.

We review briefly what is known about the system (P). Firstly, without
loss of generality, one can take the coefficient of the cross-diffusion term
A(uq ug) in both equations in (P) to be unity, by rescaling the unknowns
{u1,us2}; see[7] for details. Secondly, the system (P) is strongly coupled
with diffusion matrix

A(ug,ug) := (

c1+2a1ug + usy uUq > (13)

Us o+ 2a9uy + up

Unfortunately, there is no maximum or comparison principle for such cou-
pled systems. We note that

2
€T A(ur, uz) € > Z +(2a-Du) & VEERE (14)

If 8a; > 1and¢; > 0,7 = 1, 2, then A(uq, ug) is positive definite for
u1, ug > 0. Inthis case of weak cross-diffusion, the existence of a global
weak solutionto (P) in any space dimension is easily proved in [6]. Obvi-
ously for general data, including strong cross-diffusion; thet is, ¢; € R>g
and a; € Ryg, 7 = 1,2, then A(uy,us) is not positive definite. Exis-
tence of a global weak solution to (P) for such genera data has only been
established recently. Using an exponentia transformation of the unknown
variables, {u, us}, existence of aglobal weak solutionto (P) in one space
dimension was established in [7]. Very recently existence of a global weak
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solution to (P) in up to three space dimensions has been established in [5]
without using an exponential transformation, which restricted the proof in
[7] to one space dimension. For other existence results for (P) under re-
stricted choices of the coefficients, see the referencesin [7] and [5].

A key step of the multi-dimension existence proof in [5] isto establish
and exploit an entropy inequality. As this will play a central role in our
finite element approximation of (P), we review briefly thisinequality here.
Firstly, weintroduce F' € C*°(R+() such that for al s € R+

F(s):=s(lns—1)+1>0= F'(s) =lns = F'(s) =s'. (L5)

Multiplyingtheith equation of (P) by F”(u;), and integrating over (2 yields
fori =1, 2, with j # 4, that

d

7 F(u;)dx + / [(ciuy +2a; +u; ' uy) [Vu|? + V. V] d
n n

:/[_bivv-vui+gi(ulau2) F'(u;)]dz. (1.6)
Q
Summing (1.6) over i yieldsthat

2 2
d -1 2
7 /Q ;:1 F(u;)dx + /Q ;:1 (civ; "+ 2a;) V|~ da

1
+/ (@> Vu, +
N U1

2
= /QZH%’ Vu. Vu; + gi(u1, ug) F'(u;) | dz . (1.7)
=1

dx

7N
§|§
no -
"
(NI
<
<
no

Obvioudly, the bound (1.7) isonly formal sincee.g. apriori we do not know
that u;(z,t) € R for F' to be well defined. To make this bound rigor-
ous, and in constructing our numerical approximation of (P), one hasto go
through a regularization procedure. We introduce an alternative regulariza-
tion procedure, which we believe to be more transparent, to that employed
in [5]. We replace F' € C*°(R-() for any ¢ € (0,1) by the regularized
function F, : R — R such that

325552+(1n5—1)s+1 s<e,
F.(s):={ (Ins—1)s+1 e<s<el, (18
e (s2—e72)

3 + (lne7t—1)s+1 el <s.
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Hence F. € C%1(R) with the first two derivatives of F. given by

e ls4+lne—1 s<e,
Fl(s):={ Ins e<s<el, (1.99)
{5s+1n511 el <s
g1 s<eg,
and  F/(s):=¢ s7! e<s<el, (1.9b)
{6 el <s;

respectively. We introduce also
~ -1
Ae(s) == [F/(s)]7F and  A(s) = {51 s=¢ . (110

The corresponding regularised version of (P) isthen
(Pe) Findu; : £2 x[0,7] — R, 4 =1and 2, such that

Oue i .

a—{ -V. ﬂs,i(us,la u5,2) = gs,i(ue,lu u5,2) in O, (1113.)

Be,i(Ue,1,Ue2) . v =10 on 90 x (0,7,
(1.11b)

Uei(-,0) = ud(-) >0 in 2 (1.11¢)

wherefor j # 4

Bei(wi, wa) := (¢; + 2 a; Ac(w;) + Ac(wy) ) Vwy
+ )\E(wl) (Vw] + b; VU) s (1123.)
Ge,i(wi, wa) 1= p; w; — (Vis Ae(ws) + Yij Ae(w;) ) Ae(w;). (1.12b)

Multiplying the i*® equation of (P.) by F!(u.;), integrating over 2 and
summing over ¢ yields, on noting (1.10), the analogue of (1.7)

2 2
d —1 2
- /Q ;F(u) da + /Q ;(Ci Ae(ue )™ +2a) [Vue|* do
M(uez)\ 2 M)\ o [
elUe 2 elUeg 1
+ : Vueg1 + : Vue
/_Q ()‘E(ue,l)> ! ()‘E(UE,2)> 2

2
= / Z[ —b; Vu. Ve + gei(ue 1, ue2) Fl(ue;) ] dz. (1.13)
2 i=1

dx

It is easily established from (1.8), (1.9a) and (1.10) that for & € (0, e~2)

F.(s)>5s*—2 Vs>0 and F.(s) > Vs <0; (1.148)

2
2¢
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max{\(s), s F.(s)} < 2F.(s) + 1 VseR, (1.14b)
Ae(s) Fl(s) >s—1 VseR. (1.14c)

From the inequalities (1.14a—), and noting that [1 — s] < 1 — [s]_ for all
s € R,weobtainfori = 1, 2, with j # ¢, that

Ge,i(ue 1, ue2) Fl(ue;)
SO+ 2 p Fe(ue) + [ Vi Ae(veq) +Yig Ae(ue,y) ] [1— ue )+
< CH 2 (pi +vis) Fe(uei) + 2735 Fe(ue j)
5’1 £
+ 5= (yii + 7ig) [uedl® + 5 (vii [Ae(uei)]® + 735 [Ae(ue 5)]?)
S C + (2 j2% + 4'72'1' + ’Yij) FE(’U,EJ') + 3’72']' FE(’U,EJ') . (115)
It is crucial in bounding the above that the coefficients v;;, v;; € Rxo.

Combining (1.13) and (1.15), and applying a Gronwall inequality yields
the following uniform bounds

2
sup / Fo(ue)
2 o |2
We seeimmediately from the above that the assumptiona; € R~ iscrucia

to obtain a uniform L2(0, T"; H*(£2)) bound on u. ;. Although u. ; can go
negative, it followsfrom (1.16) and (1.14a) that

2
sup /Q [;\ (e i] \2] dz < Ce. (1.17)

2
dm+/ Y ai|Vu P dzdt < C. (1.16)

Qr

te(0,T)

One can then use (1.16) and (1.17) to pass to the limit ¢ — 0 in (P.) in
order to prove existence of a non-negative solutionto (P). Aswe have stated
previously, we believe this procedure to be simpler and more transparent to
the alternative regularization procedure adopted in [5].

It is the goal of this paper to introduce a fully discrete finite element
approximation of (P) that is consistent with the entropy inequality (1.13).
In order to derive a discrete analogue of (1.13), we adapt atechnique intro-
ducedin[12,9] for deriving a discrete entropy bound for the thin film equa-
tion, adegenerate nonlinear fourth order parabolic equation. Thistechnique
has also been adapted to the thin film equation in the presence of surfac-
tant, [2,4], and to a degenerate nonlinear second order parabolic system
modeling bacterial pattern formation, [3].

We are not aware of any numerical analysis on the problem (P), except
for the convergence of a semi-discretization in time (continuous in space)
scheme in one space dimension, based on the exponential transformation
of the unknown variables, {u1, u2}, see [7]. The layout of this paper is as
follows. In §2 we formulate our fully discrete finite el ement approximation
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to (P) and derive a discrete analogue of the entropy bound (1.13). In §3
we establish convergence of our approximation in one, two and three space
dimensions; and hence existence of a solution to (P) under basically the
same assumptionsasin [5]. In §4 we present some numerical computations
in one space dimension. Finally, we note that the techniques in this paper
can be easily adapted to other cross-diffusion systems; e.g. [8].

Notation and Auxiliary Results

We have adopted the standard notation for Sobolev spaces, denoting the
norm of W™4(G) (m € N, q € [1,00] and G a bounded domain in R¢
with a Lipschitz boundary) by || - || .4, @nd the semi-norm by |- |, 4 . For
q = 2, W™2(Q) will be denoted by H™ (G with the associated norm and
semi-norm written, asrespectively, ||-||m ¢ and |- - For ease of notation,
in the common casewhen G = (2 the subscript “ £2” will be dropped on the
above norms and semi-norms. Throughout (-, -) denotes the standard L ?2
inner product over {2.

For later purposes, we recall the following well-known Sobolev inter-
polation results, e.g. see[1]: Let z € H !(£2) then theinequality

[1,00] if d=1,
2lo, < Cl2lg77Nl2lIf  holdsforr € { [1,00) if d=2, (118)
[1,6] if d=3;

where o = QT(ZJjQ))d and C' is a constant depending only on (2 and . We

recall aso the following compactness result. Let Xy, X and X; be Banach
spaces, X, k = 0, 1, reflexive, with a compact embedding Xy — X
and a continuous embedding X — X;. Then, for ax. > 1, kK = 0, 1, the
embedding

{neL*0,T;Xp): %€ L(0,T; X1) } = L0, T; X)  (1.19)

is compact.

For g € (1,00), let (W"4(£2)) denote the dual of W 19(£2). Itis con-
venient to introduce the “inverse Laplacian” operator G : (W14(2))" —
Wha' (), ¢ = 47, such that

(VGz, V) + (Gz,n) = (z,m)q  ¥n€WH(L2), (1.20)

and (-, -), denotes the duality pairing between (W14(£2))" and W¢(2).
Itfollowsthat ||G - ||1,, isanormon (W4(£2))".
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Throughout C' denotes a generic constant independent of 4, 7 and ¢, the
mesh and temporal discretisation parameters and the regul arization param-
eter. In addition C(aq, - - -, ar) denotes a constant depending on the argu-
ments {a;}._;.

2 Finite Element Approximation

We consider the finite element approximation of (P) under the following
assumptions on the mesh:

(A) Let £2 be a polygonal or polyhedral domainif d = 2 or d = 3. Let
{T"}1>0 be aquasi-uniform family of partitionings of 2 into digjoint
open simplices x with h,, := diam(x) and h := max, 7 hy, SO that
2 = U,.cE. Inaddition, it isassumed for d = 2 or 3that all simplices
k € T" are generically right-angled (for d = 3 this means that all
tetrahedra have two vertices at whichtwo edgesintersect at right angles,
see below for more details).

We note that a cube is easily partitioned into such tetrahedra.
Associated with 7" isthe finite element space

Shi={xeC(): x|, islinearVreTh c H'(Q).  (21)
We introduce al'so

Sgo::{xesh:xzomrz}c
Héo(ﬁ) ={necHY(N):n>0aeinR}. (22

Let J betheset of nodesof 7" and {p;} ;s the coordinates of these nodes.
Let {x;}jes bethe standard basis functions for S”; that is x; € S%, and

x;(pi) = d;; foral i,j € J. Weintroduce 7" : C(2) — S", theinter-
polation operator, such that (7"n)(p;) = n(p;) for al j € J. A discrete

semi-inner product on C'(2) isthen defined by
o) = [ # () m(e) dz = Somym(p) ), @3
jeJ

wherem; := (1, x;) > 0. Theinduced discrete semi-norm isthen |n|;, :=

[(n,7)"]2, where p € C(£2). We introduce also the L2 projection Q" :
L?(£2) — S" defined by

(@™, )" =(n,x) Vxesm (2.4)



8 John W. Barrett, James F. Blowey

Similarly to the approach in [12] and [9], we introduce, for any ¢ €
(0,1), A, : S* — [L°°(02)]9*¢ such that for all z* € S* and a.e. in 2

A (2") is symmetric and positive definite, (2.59)
A (2" VAl EL(2M)] = V2 (2.5b)

Firstly, we give the construction of A, in the simple case when d = 1.
Given zh € Sh and k € T" having vertices p; and p, we set

)=z p) 1
FL("(pi))—FL(2"(p;)) — FI'(2"(9))
A(2") | = forsome¢ € k if 2 (px) # 2"(p;), (2.6)
m it 2" (pi) = 2"(p;).
Clearly the piecewise constant construction in (2.6) satisfies the conditions

(2.5a,b).

Following [9] we extend the above constructionto d = 2 or 3. Let
{e;}&_, be the orthonormal vectors in R¢, such that the ;" component
of e; isd;j, 1,5 = 1 — d. Given non-zero constants p;, i = 1 — d,
let %({pi}L,) be areference simplex in R with vertices {p;}Z,, where
Po is the origin and p; = p;_1 + piei, i = 1 — d. Givenax € Th
with vertices {p;, 4 ., such that Dj, isnot aright-angled vertex, then there
exists a rotation/reflection matrix R,, and non-zero constants {p; }¢_, such
that the mapping R, : 7 € R? — p;, + R,z € R? maps the vertex p;
topj,, i = 0 — d,and hence & = R({p;}%,) to k. Foral k € T" and
2h e §h weset

2Z) = "(ReZ) VZeR. (2.7)
AsRI = R, we have that
v = R. V7", (2.8)
where z = (21, 2a)7, V = (5%, 52)7, & = (31, 3a)T and
V= (52 52-)" Wethen set
Ac(2") |w:= Ry A(2") |z RE, (29

where A_(2") | isthe d x d diagonal matrix with diagonal entries, k =
1—d,
) _ 2 (pj, ) 2" (pjy)
2 (po)) — FL(M(pj),))—FL(Z"(ps))
A Rl = Ty [Of Somes bAWem by, e,
it 2" (pj,) # 2" (pjo),

1 — 1 H h _ h
FI'Z(Bo) — F7 (2" (p3y)) if z (pjk) =z (pjo)'
(2.10)
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It easily follows from (2.7) and (2.8) that A.(z") constructed in (2.9) and
(2.10) satisfies (2.5a,b). Throughout we make use of the fact that powers
of the matrices A.(2}) and A.(z}) commute for any 2! € S*, see (2.9). It
is the construction (2.9) and (2.10) that requires the right angle constraint
on the partitioning 7 ". We note that thisis not such a severe constraint, as
there exist adaptive finite element codes that satisfy this requirement, see
e.g. [11]. Another consequence of the right angle constraint on 7 " isthat

IV AT < (Vx, VA" A(x)])  Vxes”. (2.12)

In additionto 7", let0 = tg < t; < ... < ty_1 < tx = T bea
partitioning of [0, 7] into possibly variable time steps 7, := ¢, — t,—1,
n=1— N.Weset 7 := max,—1_,N 7. FOr any givene € (0,1), we
then consider the following fully discrete finite element approximation of

(P):
(PLT) For n > 1find {UZy, U} € [S")? suchthat for i = 1 and 2, with

j #i,andforal y € S"

Un.iUnfl h
(B2E2x) + (o 200 AU2) + AU VU2 T

+ (A(UZ,) VUL + b V(z™)], Vx)
= (1 U2y — [via AE(UZJI) + vij Ae(Uéf;l)] AU, 0", (212)

where U?; € S" isan approximation of u} e.g. U?; = 7"u or Q).

Below we recall some well-known results concerning S* for any « €
Th, x, 2" € ", m € {0,1},p € [1,00], 5 € [2,00] ifd = 1 and s €
(d,o0]ifd=20r3:

|X|1,p,n < Ch,zl |X|0,p,n; (2.13)

,d(l,%)
IX|mre < Chg * IX|m.p,x Vr € [p,o0; (2.14)
lim || (7 = 7")n1,s =0 VneWh(£2); (215)
(I = 7")nlm,s < C R Pl Ve WS (2); (2.16)
[xPde < [ 7" [x?]dx < (d +2) [ x*dx; (2.17)

(6 2") — (2" < (T = 7" (2o < CAT™ Xl 2" 1,5
(2.18)

wherep’ = %. It followsfrom (2.4) for al n € L°>°(£2) that

Q") (ps) = (1, x5)

Vied = |1Q"oco <Moo (2.19)
(LXJ')
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In addition, it holdsfor m € {0, 1} that

(I = Q" lmyr < CR "™ nl1y, YneW ()  foranyr € [2,00].
(2.20)
It isalso easily established that

|20 < Ch G2, V2"eSsh foranyqe (1,2 (221)
Finally, we notethat (2.20) and (2.21) exploit the fact that we have a quasi-
uniform family of partitionings {7 "} 4o.

We now recall two lemmas concerning A.(+).

Lemma 2.1 Let the assumptions (A) hold and let || - || denote the spectral

norm on R¥*4, Then for any given ¢ € (0, 1) the function A, : S" —
[L>°(£2)]%*¢ satisfies

etle<eTA(Me<eteTe  VeeRd hesh (2.22)

and is continuous. In particular it holdsfor all z ', 28 € S", k € T" that

~

1(Ac(zt) = Acz)) e | = I(AeE) — A(E) = |
< max || (pi) = 4@+ |2 (i) = A 0)l | 223)

k=1—

where we have adopted the notation (2.9) and (2.10).

Proof The proof is asimple modification of the proof of Lemma2.1in[3].
O

It follows from (1.10) that for all x € 7" and for al 2" € S*
(I — 7" Ae(2") 0,008 < P [VA(Z") 0,000 < i [VZ 0,000 - (2.24)

The following Lemmais an extension of (2.24) to A.(-).

Lemma 2.2 Let the assumptions(A) hold. Thenfor any givene € (0, 1) the
function A, : S* — [L°(£2)]?*4 issuch that for all x € T"

max [{A:(2") = Ae(") T}H(2)|| < he [VE" || V2" €S, (225)
whereZ isthed x d identity matrix.

Proof The proof is asimple modification of the proof of Lemma2.3in[4].
O

Theorem 2.1 Let the assumptions (A) hold and {U;", U2, '} € [S")?,
n > 1. Then for all e € (0,e72), for all h > 0 and for all 7,, such that
wt, < 1, where w := max{2 p; + y11 + V12,2 2 + v21 + Y22}, there
exists a solution {U",, U} € [S"]? to the n-th step of (P27) .

&,
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Proof Fori = 1and?2, withj # i, let A? : [S"]2 — S" besuch that for all
x € Sh

(AU, Us), )" = (U; = UM, X)h
+ 7 [( [ci +2a; A (Us) + A:(U;) | VU;, V)
+ (4:(U) [VU; + b V(7"0) ], VX)
— (i Ui = [y Ae(UZTY) 473 A (U2 TA(UR), x)" ] - (2.26)

Therefore, on noting (2.26), we havethat (2.12) isequivalentto: Find {U [y,
Uy} € [S"? such that

Assume that for a given R € R+, there does not exist {U;,Us} €
[S]2, := { (2h, 2) € [SM)? |22 + | 2412 < R*} with A7(Uy, Uy) = 0,
i =1, 2. It followsimmediately from (2.26), (2.23), (1.10) and (1.9b) that
AT is continuous on [S h] Hence we can define the continuous function
B" = (B, BY) : [SM% — [S")%, where B (Uy, Us) := —R A?(Uy, Us)
/(2 1AM Uy, U2)|%)%- As [S"]2 isa convex and compact subset of the
finite dimensional space [S"?; the Brouwer fixed point theorem, see e.g.
[10 Theorem 9.36], asserts that there exists {Us, Uz} € [S™% such that

B (Uy,Us) = U;, i = 1, 2. Moreover, we have that |Us |7 + |U2|h = R2
We will now prove acontradi ctionfor R sufficiently large.

Choosing x = 7" [F!(U;)] in(2.26), and noting (2.5b) and (2.22), yields
fori =1, 2, withj # 4, that

(AX(U1, ), FUU)" = (U; — U FLUy)"
+ 7 [ ([ [AUD)] ™Y + 2, T + [A(U)] 71 A:(U) | VUG, V)
— (1 Ui = i Ae(U2TY) +7i A (U2 1 A(U3), FAUR) )"
+ (VU; +b; V(n"™), VU;) | . (2.28)

It followsfrom (1.9b) and (1.8) that for: =1, 2

g0

> (F.(U;) — F(UZTY), D)+ S U3 — § U213 . (229)

(U = U2 EL U = (F(Us) = (U, D) + 51U = U

Combining (2.28) and (2.29), and noting that 37 | |U;|? = R?, (2.5a),
)\5(5) > 0 for al s, Fé(s) >0ifs>1, i Yiiy Vij € Rzo, (114a—c) and
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a; € R+ yields, similarly to (1.15), that
2

S (A (U, Us), FAU))" >

i=1

R* 4 [1 =2 pimy] (F=(Us), 1)h

Mw

|

1

<.
Il

2
+ 1 [ D (e L4 20; ) VU;, VU;) + b; (V(n™), VU;) |
=1

+Tn|([ (U0)] T AL (U2))% VUL + ([Ac(Un)] T Ac(U1)) 2 VU3 [}

+Tnz (ia A (UL + g A (U, [U )" = o2, U2

i=1,j#4
2 2
> SR+ (1= 2 pma] (Fe(Ui), )" = 25— (vai+ %) | U7
i=1 i=1,j#4
2
=782 Y (i + ) (UL DR — O U2y o)
i=1,57#1
2
> SR+ Z [1 =7 (2 i + vii + vi5) ] (Fe(U3), 1)"
i=1,j#4
-t uryt w') (2:30)

Hence on noting our assumptionon 7,,, and on choosing R sufficiently large
we have that

2
D (AU Us), FU))" > £ R? — C(ULL, U5 who) > 0. (2.31)

i=1

2
Similarly to (2.29), on noting (1.8) and that Z |U;|? = R%, wehavefor R
=1
sufficiently large that
2 2
D (UL FLUN" =D [(Fe(Ui) = Fe(0), )"+ 5 [Ui3 ]
=1 =1
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Clearly (2.31) and (2.32) for R sufficiently large contradictsthat {U1, Us}
isafixed point of B™

2 2

> (Ui, FUU)) =D (BRUL, Us), FLU(UL))"
=1 i=1
R YL (A} (Uy, Us), FL(U))"

= — - = < 0. (2.33)
(Zi:l |A?(U1, U2)|%)§
Therefore, under the given assumptions on € and 7,,, we have existence of
asolutionto (2.27) and hence (2.12), then-th step of (P27). O

Lemma 2.3 Let the assumptions of Theorem 2.1 hold. Then for all € €
(0, 6*2), for all h > 0, and for all 7,, > 0 such that w7, < 1 a solution
{Ur,, U} tothen-th step of (P £7) is such that

2
D+, Zai |U§l|%
2

(14+3wm) Z F(U2 DD+ Cr 1+ |7")3]. (2.34)
=1

tjw
|

(1—-—wm)
i=1

Proof Similarly to (2.28) and (2.30), on choosing x = w"[F.(U! ")) in
(2.12), and noting (2.5b), (1.98) and (1.14b,c), we obtain for i = 1, 2,
j # 1, that

(U2 = UL FUUZ))" + 70 (VUL + b V("0), VUZ,)
+ 70 ([ [A(UZ)] T+ 20 T+ [AL(U2)]) 1 A(UE;) | VUL, VUL)
= 7o (1 UZ; — i M (UZTH) + 705 A (UL 1 AU, FUUZ) )
< [ [2 (F(UZ), D" + 12|
+ (i A (UZTH) + 9 A (UL, [L = UL)4)"] . (2.35)

Similarly to (1.15), on noting that [1 — s]y < 1 — [s]_ for al s € R,
(1.14a,b) and (2.3), we havefor i = 1, 2, j # i, that

(i A (UL +7i5 AU 1), [1 = U2 )"
< 2 (75 Fo(UZTY) + i Fo (U, 1" + 55 (s +935) [[UZ] -2
+ 5 [ [ A (U2 + i (U2 DR+ C
<3 (v F(UZT) + i F (U2, D"
+ (i + ig) (Fe(UZ), D+ C (2.36)

Similarly to (2.30), summing (2.35) over ¢ and noting (2.29), (2.36) and
(2.5a) yieldsthe desired result (2.34). O
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Remark 2.1 We note that (2.34) is a discrete analogue of the formal energy
estimates (1.7) and (1.13). Furthermore with no reaction terms, p; = v;; =
vij = 0,4 =1and 2, withj # 4, then 32 | (F.(), 1)* isadiscrete Lya-
punov functional for (P7). In addition, for such data (U, 1) = (U2;,1),
forn>1andi=1, 2.

Theorem 2.2 Let the assumptions of Lemma 2.3 hold. Let u? € L>(£2)
withud(z) > 0forae z € 2,i=1, 2,andv € H'(£2) N W8(£2) with
ﬁ >d. Fori=1,2leeU2 = Q") € 84, or UY; = n'u € S, if
uf € HY(02) N WHP(82) with 3 > d. Then for all € € (0,e72), for all 7
such that w 7 <1-¢<1landforall h > 0asolution{U, U}, to

(P27Y is such that

2
max > [(F(UZ), )" + 7 |a" U]} + U2,

n=1—N 4
=1

N 2
+Zm Zaz-llU;f@-II%

<Ce 5 |1+|n v|1+z F(U2), )" <C. (237)
In addition
N 2
Doy [ )b, + 1T D (UZ) o, + U6,
n=1 =1
Ur 1 q
+ [Ae(UZ)6,r + ’Q [7] ] <C, (2.38)
1,9
2 d+1 2 (d+1
where r = 24 and g — 2(d+1)'
Proof It followsfrom (2.34) thatforn =1 — N
2 . 2
S (FUR), D < Cr [ 1+ n 1] e 50 Y (F(URY), 1R
i=1 i=1
(2.39)

Hence it followsfrom (2.39), (2.19), (2.16) and our assumptionson ! and
v that
2 toT 2
_max 121(FE(U571),1) <Ce v |1+|m v|1+Z(F U,
<C. (2.40)
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Choosing x = 1in(2.12), and noting (2.3) and (1.10), yields that
(L= pimy) (Ul 1) < (UZH L) n=1—=N, i=1,2. (241

g0

Hence it follows from (2.41) and (2.19) that

max (U7, 1) <ed (U9,1)<Ces  i=1,2. (242

ne1-—sN £,1) £,17
In addition, it followsfrom (2.42), (1.14a) and (2.40) that forn =1 - N
UZilo1 < (x"UZ], 1) (UE"“ 1) —2(m [Uéf@-]f, 1)
The max over n bound in (2.37) then follows from (2.40), (2.3), (1.144)
and (2.43). Summing (2.34) for n = 1 — N and noting (2.40) yields the
summation over n bound in (2.37) with ||- || 1 replaced by |- |;. Noting (2.43)
and a Poincaré inequality yieldsthe desired || - ||, bound in (2.37).

It followsfrom (2.9), (2.10), (1.10), (2.14), (1.18), (2.37) and (2.11) for
the stated choice of r

AU 6, < C Y g 7" IN(UZ)]Ib o0 < C 17" (UL [ 0

KETH
< CIr"IA(UZ)] o2 I (U2 11
<SC[L+[|ULIIF]  n=1—=N, i=1,2. (244
Hence the first two bounds in (2.38) follow from (2.44) and (2.37). The
third and fourth boundsin (2.38) follow similarly.
It followsfrom (1.10), (2.19), (2.17), Sobolev embedding and (2.11) for
anyne W' (2),¢ =2(d+1),andforn =1 — N andi, j = 1, 2 that
(A(UZT) A(UZ), Q") < (A(UZTH), Ae(UZ)" [nlo,co
< O (U Do 17" AUZ N 111,
< 7" AU Mo 1011 [10llg - (245)

From (1.20), (2.4), (2.12), (2.16), (2.20) and (2.45) we obtain for any n €
whd'(Q)andforn=1— Nandi =1, 2 that

;: ot uz-Uzy
ur Ul ur Ul
= (5717—77177 77) = ( n 7Qh )
2
<OMy |1+ Y U2 | Inllg (2.462)
k=1

2
where M, ::1+Z[|A5(ng)|0,r+|wh[A5(Ug,;1)]|om} . (2.46b)
k=1
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It follows from (2.46a,b), (1.10), (2.37), the first two boundsin (2.38) and
(2.19) for the stated choice of ¢ that fori = 1, 2

q N a

<C Z Tn M
17q n=1

2

1+ Z U111
k=1

g
2

Unfl

ur.— )
g[ s,zT £,1 ]

n

N
2
n=1

2

<C <C. (247)

N 2_5(1 N
Z T Mﬁ] |:Z T
n=1

n=1

2
1+Z||U£k”1
k=1

Hence we obtain the desired fifth bound in (2.38). O

3 Convergence

Let
Ueilt) = Slstyr, 4 it gnel b fty g t,] n>1 (319)
and
US(6) =02, U_,(t):=Ul7" te (tp1,ta] n>1. (3.1b)

We note for future reference that

Ui ~ UL =t —t5) % te(tyrnty) n>1, (32

wheret; :=t, andt; :=t, 1. Weintroduce also
T(t) := t€ (th—1,tn] n>1. (3.3
Using the above notation, (P ?’T) can be restated as:

Find {U. 1, U.2} € [C([0,T]; S™) |? suchthat for i = 1 and 2, with j # i,
andforall y € L2(0,T; S")

T . h
/ [(‘93’;’1 , x) + ([ei + 24 4:(UZ) + A(UF)] VU, Vy)
0

+ (A(US) VUL, 4+ 6:V(7"0) ], V) | dt

T
— /0 (i U2 — [ Ae(U) + 5 AU AeUZ), )" . (3.4
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Lemma 3.1 Let the assumptionsof Theorem 2.2 hold. In addition, let {7 ",
()Y, ebpao be such that 7, eh™ a1 — 0, as i — 0, with either
(i) < Ch?or (i) u) € HY(N) if U0 = Qh , 1 = 1,2 or (iii)
w) € H(2)NnWHA(2), 8 > d,if U2, = «"uf i— 1, 2. Then there

exists a subsequence of {U. 1, Uz 2} 1, Where {Uc,1,Uc 2} solve (P? ™) and
functions

u; € L*(0,T; Hio(2)) N L' () nWHI(0, T; (WH'(2)))  (35)

with u;(-,0) = u2(-) in (Wh(2)), i = 1,2, wherer = 21 o —

26D and ¢’ = 2 (d + 1), such thatash — 0
Uei» Uy = u; weaklyin L*(0,T; H'(£2)) N L"(27),
(3.68)

6Us i ou; 1 1

G — G%¢  weaklyin LY(0, T, W>1(£2)),  (3.6b)
U, Uw. —u;  stronglyin L2(0,T; L°(£2)),  (3.78)
A(UZ), 7" A(UZ)] = w;  stronglyin L2(0,T; L7(£2)),  (3.7b)
A(UZ) —w T stronglyin L*(0,T; L7(£2));  (3.7¢)

where s € [2,00]ifd =1,s € [2,00)ifd=2ands € [2,6)ifd = 3.

Proof If (i) holds, that isT; < C h?, then it follows from (2.13) and (2.19)
that

n U1 <Ccludh<Cc  i=1,2. (3.8)

Alternatively, (3.8) can be achieved with more regularity on u? via (2.20)
and (2.16) if (ii) or (iii) hold, respectively. Noting (3.1a,b), (2.37), (2.38),
(3.8), (2.19), (2.9) and (2.10) we havefor i = 1, 2 that

+ — +
||U5(,¢)||%2(0,TH1(9))+5 LrhuS)- H%OO(OTL(Q))
+ U ||L°°(OTL1(Q + 14U} i )HLT(QT)

+ A < M riomy + 1T ALUEN 12

+) U ;
U o) + 19252 a0 rawraqay S C - (39)

In the above, and throughout, the notation U( ) means with and without
the superscript +. Although U, ; can go negatlve the amount it can is con-
trolled by the regularization parameter e through the second term in (3.9),
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the analogue of (1.17). Furthermore, we deduce from (3.2) and (3.9) for
i=1, 2that

8Usi
I1G [Uei = UZ] lpao.rwraqay) < CTIG75 oo, rwraqy < C .
(3.10)

Hence on noting (3.9), (3.10), (1.19) and the compact embedding H *(2)
— L*(42), we can choose a subsequence {U. 1, U 2}, such that the con-
vergence results (3.5) with HL,(£2) replaced by H'(2), (3.6a,b) and (3.74)
hold. -

We now consider (3.7¢). Firstly, we notefor i = 1, 2 that

llus = Ae(UZ) 220,752 02))
< lus — Ae(ui) | 20, 07(2)) + [Ae(w) = Ae(UZ) 22 0,1:27(2))
+ A (UZ5) = A U) 20000y (311)
Asu; € L"(27), recall (3.5), it followsfrom (1.10) for : = 1, 2 that
||ul — Xs(ui)HLQ(O,T;LT(Q)) —0 a —0. (312)

Noting (1.10), we havefor ¢ = 1, 2 that

IXe (i) = XU L2 0.7:0m(02)) < Ilwi — Ul p2omiryy - (313)
It followsfrom (1.10), (2.14) and (3.9) for ¢ = 1, 2 that

||X5(U$') - )‘E(Uei,i)HL?(O,T;LT(Q))
< e = [UZ]-lr20m50)) < lle = 7" UL -2

< ChiG—v [e + 7 (U] p2gap | < Ce2 b, (314)
Noting (2.24), (2.25), (2.14) and (3.9), we havefor i = 1, 2 that

(I = 7"V X(UZ) Nrzo,rsnr(@)) + 1A(UZ) T = Ac(UZ) l20,7507(02))
< Ch'GD VUS| 20, < CRF . (3.15)

Combining (3.11), (3.12), (3.13), (3.14) (3.15) and noting (3.7a) and our
assumption on ¢ yields the desired result (3.7b,c). Finaly, we note that
(379 and (3.9) = u; > 0 a.e. = Héo((?) in(35). O

Theorem 3.1 Let all the assumptions of Lemma 3.1 hold. Then there ex-
ists a subsequence of {U. 1, U. 2 }n, where {U 1, U. 2} solve (P?’T), and
functions {u1, ue } satisfying (3.5), (3.6a,b) and (3.7a—c). Furthermore, we

have that u;, i = 1, 2, fulfil u;(-,0) = ud(-) in (Wh9(2) ), ¢ = 221,
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and satisfy for i = 1 and 2, j # 4, and for all n € LY (0, T; W9 (£2)),
¢ =2(d+1),

T
/0[<%an>q’dt+([Ci-l-?aiui"‘uj]vuri-uiVuj—l—bl-Vv,Vn)]dt
T
:/0 ([ #s = vii wi — vij uj)ug,m) dt. (3.16)

Proof For any n € L (0,T; W4 (£2)), we choose x = 7"7 in (3.4) and
now analyse the subsequent terms. Firstly (2.18), the embedding H (0, T';
X) = C([0,T]; X), (2.21), (3.9) and (2.16) yield for i = 1, 2 and for all
ne L0, T; Wh'(2))and 77 € H* (0, T; Who(£2)) that

/OT |:<6g;,i’7rhn)h B <ag;,i’7rhn)] dtl
S‘/o [ 'l vﬂ) (8g§’imh[n—m)] dt‘
o
(Ue
(

8
(10 252) - (02 252) "] at
+| Wt
Uei(:,0), 75(:, 0)) = (Uei(-, 0), 77, 0))"

T), 757, T = Ve, T), 77, T)) |
<C U ; h
> ||QT||L‘1(O,T;W1#I(Q)) |7 [n — 7] HLtI’(O,T;le‘I'(Q))

+

+ C 1 ||Usill oo (0,12 (2) 17" 0 e 0, 7507000 ()
< Cln =0l orwre o)) T CRlnlmormwiew). @17

Furthermore, it follows from (1.20) and (3.9) fori = 1, 2 and for all n €
L9 (0,T; Whe'(12)) that

[ -

8Usi
<C ||ga—t’||Lq(0,T;W17q(Q)) ||(I - Wh)n||LlI'(07T;W1#I'(Q))
< - Wh)”HLq’(o,T;Wl,q’(Q)) . (3.18)

Combining (3.17), the denseness of H(0,7; W*°(£2)) in L7(0,T;
W' (£2)), (3.18), (2.15), (1.20) and (3.6b) yields for i = 1, 2 and for
alne L0, T; Whi'(02)) that

[ o)t o [T wnoo o
0
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It followsfrom (3.9) fori, j = 1, 2andforaln € LY (0, T; W7 (02))
that

T
/0 (A(UZ) VU, V(T — 7)) di

< AU (o) INUS N 2000 IV U = 7"l a1
<C|- Wh)”HLq’(o,T;Wl,q’(Q)) . (3.20)

Similarly to (3.20), it follows from (3.9) and (3.5) for i, j = 1, 2 and for
alne LY0,T; Whi'(2)) and 77 € HY(0,T; WH(02)) that

/T( [A:(U;) = u; T) VU, Vn) dt‘
0

T
< | [ (AU2) =0y T) VUL Vi)t + I~ )l

< CNA(UZ) = wi Tl 20,707 (2)) IVl Low (21
+ OV =l e (0 - (3:20)

Combining (3.20), (2.15), (3.21), (3.7¢), H'(0,T; W1>°(£2)) is dense in
L7(0,T; Wh9(2)) and (3.68) yields for 4, j = 1,2 and for dl n €
L9 (0, T; Whe'(2)) that

T T
/0(AE(U;j)VU;i,V(whn))dt%/o (u; Vug, V) dt,

T T
/ (VU V(x'n)) dt — / (Vui, Vp)dt  ash—0. (3.22)
0 0

Similarly to the derivation of (3.22), one can show for i = 1, 2 and for all
ne LY(0,T; Wh9'(02)) that

T T
/ (AE(U;Q) V(z™), V(x"y)) dt — / (u; Vv,Vn)dt ash—0.
’ ’ (3.23)

Similarly to the derivation of (3.22), it followsfrom (2.18), (3.9), (2.15)
and (3.6a) fori = 1, 2 and for all € LI (0, T; W7 (2)) that

T h T
/ (Uw-,whn) at — / (us,n)dt ash — 0. (3.24)
0 0
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Noting a generalisation of (2.18), (2.13), (2.11), (2.16) and (3.9) yields
fori, j =1, 2andfor al n € L7 (0, T; W7 (£2)) that

T
/0 (UL AUZ), 7n)" = (P (UL 7" D (U], 7") | dt(

T
< [ 1= (PP DT 7 )
< CR? |7 IN(UZ) ez 0,150 02)) 17 (U)o mwrim(2))
X ||7Thn||Lq’(07T;W17q’(Q))

<Ch ||U;¢||L2(0,T;H1(Q)) ||7Th[)‘s(U;j)]||LT(QT) ||77||Lq’(07T;W17q’(Q))

S Ch, ||n||L‘1,(O,T;W17‘1,(Q)) . (325)
Similarly to (3.25), it follows from (3.9), (3.5), and (2.16) for i, j = 1, 2
andforal n € L9 (0, T; Whe' (02)) that

T

[ Dz #0207 — ()]

< 17 AU 20y 17" 1l Lot gy 17" (U] = will L2221

il o) 17"l Lo gy 17" U] = w5l £

+ sl 22 14l e gy 1T = 7)1l L

<C

2
h+ Z ||7Th[)‘s(U;k)] - UkHL?(QT)] ||n||Lq’(07T;W17q’(Q)) :
k=1
(3.26)
Combining (3.25) and (3.26), and noting (3.7b), yieldsfor i, j = 1, 2 and
foraln e LI (0,T; WhH7'(2)) that

T T
/(AE(Uai)AE(U;j),whn)hdt—>/ (u;uj,m)dt ash — 0. (3.27)
0 0

Finally, combining (3.4), (3.19), (3.22), (3.23), (3.24) and (3.27) yields

4 Numerical Results

Before presenting some numerical resultsin one space dimension, we state
briefly our algorithm for solving the resulting system of nonlinear algebraic
equations for {U",, UL, } arising at each time level from the approximar

tion (PQ’T). We used the following iterative approach to solve (2.12) for
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{Un,, U} Given U € Sh, i = 1,2, for k > 1find {U, ULy} €
[S")? such that for i = 1, 2, with j # 4, and for all y € S”

Tn &,0 £,0 )

n,k_ nfl h
(Ug,i UE,Z ’X> +([Ci+2ai AE(Un,kfl) _'_AE(UZ,kal)] VUn,k VX)

+ (AU VU + b V() ], V)
= (UL = [ A(UZTY) + 9 AU AU, 0" (49)
(4.1) requires alinear solve at each iteration and isthe natural extension of
the iterative procedure proposed in [9] for solving a related finite element
approximation of the thin film equation. We set, for n > 1, UZ;O = U;f;l
and adopted the stopping criteria

max UL — U 0,00 < tol (4.2)

(2

withtol = 1077, and set U, = UQ;’“. Althoughwe are unableto show con-
vergence of theiteration (4.1), we observed good convergence propertiesin
practice (at most 10 iterationsand this maximum only being required in the
very early stages of the evolution) with the exception of the experiments
with strong transport (b1 = 20 and 40).

Unless otherwise stated, in al experiments we chose a uniform parti-
tioning of £2 = (0, 3) with mesh pointsp; = (j — 1)h,j = 1 — 301, i.e.
h =10"2; auniformtimestepr, =7 =103 andsete = 5 x 10~ ".

No Reaction Terms

We repeated the experiments in [6] which show the behaviour of the two
interacting species for different choices of the parameters and initial data.
In each experiment we set p; = v;; = vi; = 0, v(z) = —1.5(z — 0.5)?,
and U2, = 7" u?. We note that these discretisation parameters h and  are
exactl)/ the same as those chosen in [6] for their finite difference approxi-
mation of (P). In contrast to their approximation, our approximation (P?’T)
conserves mass exactly, recall Remark 2.1. For these experiments, we in-
tegrated in time until a numerical stationary solution, U 551 was achieved.
Thiswas determined by ’
max [UZ = U loe <5 x 1071,

which is far more severe than the stopping criteria (4.2). In al of these
experiments we found that

Cmax | [e;+2a; A(US) + A(US,)] VUE,
i=1,2, j#i ) ) )

+ A(US) [VUE; 4+ b, V(n"0) 0,0 <1077, (4.3)
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which should be zero for an “exact” numerical stationary solution of (P?’T).

In all the figures below U2, (-) and UZ,(-) are plotted as a solid and
dashed line, respectively. In addition, all numerical stationary solutiontimes
are correct to one decimal place.
A: Largeand small cross-diffusion terms

Wetook b; = ¢; = 1, u{(z) = 10,u(z) = 20,and a; = 0, 0.1, 10; see
Figure 4.1A. The numerical stationary solutionsfor a; = 0, 0.1, 10 were
achieved at times 5.0, 3.0 and 0.9, respectively.
B: Largediffusion coefficients ¢; compared to a;, i.€e. ¢; > a;

All parameterswerethesameasin A, except a; = 0.01, ¢; = 1, 10, 100;
see Figure 4.1B. The numerical stationary solutions for ¢; = 1, 10, 100
were achieved at times 4.7, 1.6 and 0.2.

35 ) 300 e

30 ///0/ \\\\\\ | 25 L7 \\\1\\

25/,,,,,&1\:\;& ] 20:::’ffl’ﬁ(i::};{}’\‘?i “““
S Joix\{?::«i;: ——————————— 115 \
10\16%’ - ] 5

A1 3 s BT s

Fig. 4.1. A: Curveslabelled with a; values, B: with ¢; values.

C. Segregation effects dueto alargeratio of transport coefficients

All parameters werethe same asin A, except a; = 1 and by = 4, 8, 20,
40; see Figure 4.2A. In addition, for b; = 40 wetook 7 = 5 x 10~% inor-
der to achieve convergence of the iterative solver. The numerical stationary
solutionsfor b, = 4, 8, 20, 40 were achieved at times0.8, 0.7, 0.7 and 0.6.
Only in the case of b; = 40, did U, become negative and throughout the

experiment awayssatisfied min min U7}, (p;) > —5 x 1072,
je '

n=1,--,

We repeated this experiment with a; = 0.1; see Figure 4.2B. When
by = 40 wetook 7 = 2 x 10~ in order to achieve convergence of the
iterative solver. The numerical stationary solutionsfor b, = 4, 8, 20, 40
were achieved at times 1.7, 1.4, 1.6 and 1.8. Only in the cases of b1 = 20
and 40 did U, become negative and throughout each experiment always
satisfied min min U (p;) > —3 x 107°.

: J

n=1,--,N jeJ
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30,

Fig. 4.2. A: Curveslabelled with b, valueswith a; = 1, B: with a; = 0.01.

D: Discontinuousinitial data
All parameters werethe same asin A, except a; = 1, by = 8, ug =10
and

o J12 0<z<15
1718 15<2<3’

see Figure 4.3A where v? isaso plotted. The numerical stationary solution
was achieved at time 0.7.

Ag———F 5 3 B 1 5 3

Fig. 4.3. A: Discontinuousinitial data, B: Segregation of species.

E. Segregation of the two species

All parameterswerethe same asin A, excepta; = 1, a3 = 0.01,b; =
40 and uy = 10; see Figure 4.3B. The numerical stationary solution was
achieved at time 1.5. Throughout the experiment  min mi? U2y (pj) >

n=1,-- N j&

—4 x 1075,

There is very good agreement with the above figures and the corre-
sponding figuresin [6], except for Figure 4.1B in the case of ¢; = 1. This
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is probably due to a typographical error in [6], rather than a significant dif-
ference in these different approximations of (P).

Reaction Terms

We now include reaction terms. All parameters were the same as in A
above, except a; = 0.1, ao = 0.05, u; = 1,

_ (0.1 0.1> (0.5 0.1) (0.5 0.5) and (0.5 0.5)
7=V\o0101) \o501)° \0505 0.10.1)°
which are labelled v1, 2, v3 and 4 in Figure 4.4A; where we plot the nu-
merical stationary solutions. These were achieved at times 110, 108, 100
and 100. We note that the corresponding diffusion matrix, (1.3), is not pos-
itivedefiniteonrecalling (1.4); and w = 2.2, 2.6, 3.0 and 3.0, respectively,
on recaling the definition in Theorem 2.1. Throughout the experiments

min minU(p;) > 5 x 10™°. We repeated this experiment with
. je )

n=1,--,N
_(0.10.1
T=\0505)°
and even with this asymmetric initial data obtained the same numerical
stationary solution as that labelled 4 in Figure 4.4A with U5, and UZ,
interchanged. When we repeated the experiment with a1 = as, then the

numerical stationary solutions satisfied Ugl = U§2 for v1, 72 andvs3; asto
be expected.

25
12 /,»’)‘4\\
’ 20|

8 . i 15

3 2

Fig. 4.4. A: Curves|labelled with reaction matrices, B: ui(+,0.2).
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Convergence Experiment

We take the initial data and all other parameters as in the previous exper-
iment with ~,, except ¢; = 0 and T" = 0.2. However, the uniform mesh
parameters h, T and € were al varied. Aswe do not know the exact solution
to (P), a comparison was made between the solutions of (P ?’T) on acoarse
mesh, U, ;, with that on a fine mesh, w;. The discretization parameters on
the coarse mesheswere 7 = 256 h2/90,e = 10~ *hand h = 3/(#J — 1)
where #J = 2F + 1 with k = 5,6, 7 and 8; while those for the fine mesh
were the same except #.J = 2! + 1. We repeated thisexperiment, but took
T = h/30. We note that in both cases al the assumptions of Theorem 3.1
hold. In Figure 4.4B, we plot u;(-, 0.2) the “true solution” of (P) and note
that there has been a large change from the initial data. In Figure 4.5, we
plot |w;(-,t) — Us(+, t)]0,00 VErsustime with the graphslabelled by #.J and
in Table 4.1 we give the values of &; = |u;(+,0.2) — U i(+,0.2)|0.c0 COI-
rect to 3 s.f. for the different meshes. With 7 oc h? the ratios of successive
&1 are 3.38, 3.18 and 2.94 while those of £ are 3.70, 3.72 and 3.41. With
7  h theratios of successive £ are 2.04, 2.05 and 2.10 while those of £,
are 1.93, 1.99 and 2.04.

A o1 = o2 By o o or 02

Fig. 45. A: |ui(-,t) — Uz i (-, t)|0,00 VErsustimewith r oc h?, B: with 7 =ox h.
#J | & & #J | & &
33 | 0.350 0.653 33 | 0.0976 | 0.109
A: 65 | 0.104 0.177 B: 65 | 0.0477 | 0.0566
129 | 0.0326 | 0.0476 129 | 0.0232 | 0.0285
257 | 0.0111 | 0.0139 257 | 0.0111 | 0.0139

Table4.1. & withA: 7 < h? andB: 7 x h.
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