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Summary We consider a fully discrete finite element approximation of
the nonlinear cross-diffusion population model: Find u i, the population of
the ith species, i = 1 and 2, such that

∂ui
∂t
−Δ [ ci ui + ai u2i + ui uj ]− bi∇ . (ui∇v) = gi(u1, u2),

where j �= i and gi(u1, u2) := (μi − γii ui − γij uj) ui. In the above, the
given data is as follows: v is an environmental potential, c i ∈ R≥0, ai ∈
R>0 are diffusion coefficients, bi ∈ R are transport coefficients, μi ∈ R≥0
are the intrinsic growth rates, and γii ∈ R≥0 are intra-specific, whereas
γij , i �= j, ∈ R≥0 are interspecific competition coefficients. In addition
to showing well-posedness of our approximation, we prove convergence in
space dimensions d ≤ 3. Finally some numerical experiments in one space
dimension are presented.

Mathematics Subject Classification (1991):65M60, 65M12, 35K55,92D25

1 Introduction

Let Ω ⊂ Rd, d ≥ 1, with a Lipschitz boundary ∂Ω having normal ν.
We consider a fully discrete finite element approximation of the following
nonlinear cross-diffusion population model:
(P) Find ui : Ω × [0, T ]→ R, the population of the ith species, i = 1 and



2 John W. Barrett, James F. Blowey

2, such that

∂ui
∂t
−∇ . βi(u1, u2) = gi(u1, u2) in ΩT := Ω × (0, T ], (1.1a)

βi(u1, u2) . ν = 0 on ∂Ω × (0, T ], (1.1b)

ui(·, 0) = u0i (·) ≥ 0 in Ω; (1.1c)

where, for j �= i, the flux terms

βi(w1, w2) := ∇(ciwi + ai w2i +wiwj) + bi wi∇v
≡ (ci + 2 aiwi + wj)∇wi +wi (∇wj + bi∇v) , (1.2a)

and the reaction terms

gi(w1, w2) := (μi − γiiwi − γij wj)wi (1.2b)

are of Lotka-Volterra type. In the above, the given data is as follows: v ∈
H1(Ω) ∩W 1,s(Ω), s > d, is an environmental potential, ci ∈ R≥0, ai ∈
R>0 are diffusion coefficients, bi ∈ R are transport coefficients, μi ∈ R≥0
are the intrinsic growth rates, and γii ∈ R≥0 are intra-specific, whereas γij ,
i �= j, ∈ R≥0 are interspecific competition coefficients.

We review briefly what is known about the system (P). Firstly, without
loss of generality, one can take the coefficient of the cross-diffusion term
Δ(u1 u2) in both equations in (P) to be unity, by rescaling the unknowns
{u1, u2}; see [7] for details. Secondly, the system (P) is strongly coupled
with diffusion matrix

A(u1, u2) :=

(
c1 + 2 a1 u1 + u2 u1

u2 c2 + 2 a2 u2 + u1

)
. (1.3)

Unfortunately, there is no maximum or comparison principle for such cou-
pled systems. We note that

ξTA(u1, u2) ξ ≥
2∑
i=1

(ci + (2 ai − 14 ) ui) ξ2i ∀ ξ ∈ R2 . (1.4)

If 8 ai ≥ 1 and ci > 0, i = 1, 2, then A(u1, u2) is positive definite for
u1, u2 ≥ 0. In this case of weak cross-diffusion, the existence of a global
weak solution to (P) in any space dimension is easily proved in [6]. Obvi-
ously for general data, including strong cross-diffusion; that is, c i ∈ R≥0
and ai ∈ R>0, i = 1, 2, then A(u1, u2) is not positive definite. Exis-
tence of a global weak solution to (P) for such general data has only been
established recently. Using an exponential transformation of the unknown
variables, {u1, u2}, existence of a global weak solution to (P) in one space
dimension was established in [7]. Very recently existence of a global weak
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solution to (P) in up to three space dimensions has been established in [5]
without using an exponential transformation, which restricted the proof in
[7] to one space dimension. For other existence results for (P) under re-
stricted choices of the coefficients, see the references in [7] and [5].

A key step of the multi-dimension existence proof in [5] is to establish
and exploit an entropy inequality. As this will play a central role in our
finite element approximation of (P), we review briefly this inequality here.
Firstly, we introduce F ∈ C∞(R>0) such that for all s ∈ R>0

F (s) := s (ln s− 1) + 1 ≥ 0⇒ F ′(s) = ln s⇒ F ′′(s) = s−1 . (1.5)

Multiplying the ith equation of (P) by F ′(ui), and integrating overΩ yields
for i = 1, 2, with j �= i, that

d

dt

∫
Ω

F (ui) dx+

∫
Ω

[
(ci u

−1
i + 2 ai + u

−1
i uj) |∇ui|

2 +∇uj .∇ui
]
dx

=

∫
Ω

[−bi∇v .∇ui + gi(u1, u2)F ′(ui) ] dx . (1.6)

Summing (1.6) over i yields that

d

dt

∫
Ω

2∑
i=1

F (ui) dx+

∫
Ω

2∑
i=1

(ci u
−1
i + 2 ai) |∇ui|

2 dx

+

∫
Ω

∣∣∣∣∣
(
u2
u1

)1
2

∇u1 +
(
u1
u2

) 1
2

∇u2

∣∣∣∣∣
2

dx

=

∫
Ω

2∑
i=1

[−bi∇v .∇ui + gi(u1, u2)F ′(ui) ] dx . (1.7)

Obviously, the bound (1.7) is only formal since e.g. a priori we do not know
that ui(x, t) ∈ R>0 for F to be well defined. To make this bound rigor-
ous, and in constructing our numerical approximation of (P), one has to go
through a regularization procedure. We introduce an alternative regulariza-
tion procedure, which we believe to be more transparent, to that employed
in [5]. We replace F ∈ C∞(R>0) for any ε ∈ (0, 1) by the regularized
function Fε : R→ R≥0 such that

Fε(s) :=

⎧⎪⎪⎨⎪⎪⎩
s2−ε2
2 ε + (ln ε− 1) s+ 1 s ≤ ε ,
(ln s− 1) s+ 1 ε ≤ s ≤ ε−1 ,
ε (s2−ε−2)

2 + (ln ε−1 − 1) s+ 1 ε−1 ≤ s .

(1.8)
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Hence Fε ∈ C2,1(R) with the first two derivatives of Fε given by

F ′ε(s) :=

⎧⎨⎩ ε
−1 s+ ln ε− 1 s ≤ ε ,
ln s ε ≤ s ≤ ε−1 ,
ε s+ ln ε−1 − 1 ε−1 ≤ s

(1.9a)

and F ′′ε (s) :=

⎧⎨⎩ ε
−1 s ≤ ε ,
s−1 ε ≤ s ≤ ε−1 ,
ε ε−1 ≤ s ;

(1.9b)

respectively. We introduce also

λε(s) := [F
′′
ε (s)]

−1 and λ̃ε(s) :=

{
s s ≤ ε−1 ,
ε−1 ε−1 ≤ s . (1.10)

The corresponding regularised version of (P) is then
(Pε) Find uε,i : Ω × [0, T ]→ R, i = 1 and 2, such that

∂uε,i
∂t
−∇ . βε,i(uε,1, uε,2) = gε,i(uε,1, uε,2) in ΩT , (1.11a)

βε,i(uε,1, uε,2) . ν = 0 on ∂Ω × (0, T ],
(1.11b)

uε,i(·, 0) = u0i (·) ≥ 0 in Ω; (1.11c)

where for j �= i

βε,i(w1, w2) := (ci + 2 ai λε(wi) + λε(wj) )∇wi
+ λε(wi) (∇wj + bi∇v) , (1.12a)

gε,i(w1, w2) := μi wi − (γii λε(wi) + γij λε(wj) ) λε(wi). (1.12b)

Multiplying the ith equation of (Pε) by F ′ε(uε,i), integrating over Ω and
summing over i yields, on noting (1.10), the analogue of (1.7)

d

dt

∫
Ω

2∑
i=1

Fε(uε,i) dx+

∫
Ω

2∑
i=1

(ci [λε(uε,i)]
−1 + 2 ai) |∇uε,i|2 dx

+

∫
Ω

∣∣∣∣∣
(
λε(uε,2)

λε(uε,1)

) 1
2

∇uε,1 +
(
λε(uε,1)

λε(uε,2)

)1
2

∇uε,2

∣∣∣∣∣
2

dx

=

∫
Ω

2∑
i=1

[−bi∇v .∇uε,i + gε,i(uε,1, uε,2)F ′ε(uε,i) ] dx . (1.13)

It is easily established from (1.8), (1.9a) and (1.10) that for ε ∈ (0, e−2)

Fε(s) ≥ ε
2 s
2 − 2 ∀ s ≥ 0 and Fε(s) ≥ s2

2 ε ∀ s ≤ 0 ; (1.14a)
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max{λε(s), s F ′ε(s)} ≤ 2Fε(s) + 1 ∀ s ∈ R , (1.14b)

λε(s)F
′
ε(s) ≥ s − 1 ∀ s ∈ R . (1.14c)

From the inequalities (1.14a–c), and noting that [1− s]+ ≤ 1− [s]− for all
s ∈ R, we obtain for i = 1, 2, with j �= i, that

gε,i(uε,1, uε,2)F
′
ε(uε,i)

≤ C + 2 μi Fε(uε,i) + [ γii λε(uε,i) + γij λε(uε,j) ] [1− uε,i]+
≤ C + 2 (μi + γii)Fε(uε,i) + 2 γij Fε(uε,j)
+ ε

−1
2 (γii + γij) [uε,i]

2
− +

ε
2 (γii [λε(uε,i)]

2 + γij [λε(uε,j)]
2)

≤ C + (2 μi + 4 γii + γij)Fε(uε,i) + 3 γij Fε(uε,j) . (1.15)

It is crucial in bounding the above that the coefficients γ ii, γij ∈ R≥0.
Combining (1.13) and (1.15), and applying a Gronwall inequality yields
the following uniform bounds

sup
t∈(0,T )

∫
Ω

[
2∑
i=1

Fε(uε,i)

]
dx +

∫
ΩT

2∑
i=1

ai |∇uε,i|2 dx dt ≤ C . (1.16)

We see immediately from the above that the assumption a i ∈ R>0 is crucial
to obtain a uniform L2(0, T ;H1(Ω)) bound on uε,i. Although uε,i can go
negative, it follows from (1.16) and (1.14a) that

sup
t∈(0,T )

∫
Ω

[
2∑
i=1

| [uε,i]− |2
]
dx ≤ C ε. (1.17)

One can then use (1.16) and (1.17) to pass to the limit ε → 0 in (P ε) in
order to prove existence of a non-negative solution to (P). As we have stated
previously, we believe this procedure to be simpler and more transparent to
the alternative regularization procedure adopted in [5].

It is the goal of this paper to introduce a fully discrete finite element
approximation of (P) that is consistent with the entropy inequality (1.13).
In order to derive a discrete analogue of (1.13), we adapt a technique intro-
duced in [12,9] for deriving a discrete entropy bound for the thin film equa-
tion, a degenerate nonlinear fourth order parabolic equation. This technique
has also been adapted to the thin film equation in the presence of surfac-
tant, [2,4], and to a degenerate nonlinear second order parabolic system
modeling bacterial pattern formation, [3].

We are not aware of any numerical analysis on the problem (P), except
for the convergence of a semi-discretization in time (continuous in space)
scheme in one space dimension, based on the exponential transformation
of the unknown variables, {u1, u2}, see [7]. The layout of this paper is as
follows. In §2 we formulate our fully discrete finite element approximation
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to (P) and derive a discrete analogue of the entropy bound (1.13). In §3
we establish convergence of our approximation in one, two and three space
dimensions; and hence existence of a solution to (P) under basically the
same assumptions as in [5]. In §4 we present some numerical computations
in one space dimension. Finally, we note that the techniques in this paper
can be easily adapted to other cross-diffusion systems; e.g. [8].

Notation and Auxiliary Results

We have adopted the standard notation for Sobolev spaces, denoting the
norm of Wm,q(G) (m ∈ N, q ∈ [1,∞] and G a bounded domain in Rd

with a Lipschitz boundary) by ‖ ·‖m,q,G and the semi-norm by | · |m,q,G. For
q = 2,Wm,2(G) will be denoted byHm(G) with the associated norm and
semi-norm written, as respectively, ‖·‖m,G and |·|m,G. For ease of notation,
in the common case whenG ≡ Ω the subscript “Ω” will be dropped on the
above norms and semi-norms. Throughout (·, ·) denotes the standard L 2

inner product over Ω.
For later purposes, we recall the following well-known Sobolev inter-

polation results, e.g. see [1]: Let z ∈ H 1(Ω) then the inequality

|z|0,r ≤ C|z|1−σ0,1 ‖z‖σ1 holds for r ∈

⎧⎪⎨⎪⎩
[1,∞] if d = 1,

[1,∞) if d = 2,

[1, 6] if d = 3;

(1.18)

where σ = 2 (r−1)d
r (d+2) and C is a constant depending only on Ω and r. We

recall also the following compactness result. LetX0, X andX1 be Banach
spaces, Xk, k = 0, 1, reflexive, with a compact embedding X0 ↪→ X
and a continuous embedding X ↪→ X1. Then, for αk > 1, k = 0, 1, the
embedding

{ η ∈ Lα0(0, T ;X0) : ∂η∂t ∈ L
α1(0, T ;X1) } ↪→ Lα0(0, T ;X) (1.19)

is compact.
For q ∈ (1,∞), let

(
W 1,q(Ω)

)′
denote the dual of W 1,q(Ω). It is con-

venient to introduce the “inverse Laplacian” operator G :
(
W 1,q(Ω)

)′ →
W 1,q

′
(Ω), q′ = q

q−1 , such that

(∇Gz,∇η) + (Gz, η) = 〈z, η〉q ∀ η ∈W 1,q(Ω), (1.20)

and 〈·, ·〉q denotes the duality pairing between
(
W 1,q(Ω)

)′ and W 1,q(Ω).

It follows that ‖G · ‖1,q′ is a norm on
(
W 1,q(Ω)

)′.
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ThroughoutC denotes a generic constant independent of h, τ and ε, the
mesh and temporal discretisation parameters and the regularization param-
eter. In addition C(a1, · · ·, aI) denotes a constant depending on the argu-
ments {ai}Ii=1.

2 Finite Element Approximation

We consider the finite element approximation of (P) under the following
assumptions on the mesh:

(A) Let Ω be a polygonal or polyhedral domain if d = 2 or d = 3. Let
{T h}h>0 be a quasi-uniform family of partitionings of Ω into disjoint
open simplices κ with hκ := diam(κ) and h := maxκ∈T h hκ, so that
Ω = ∪κ∈T hκ. In addition, it is assumed for d = 2 or 3 that all simplices
κ ∈ T h are generically right-angled (for d = 3 this means that all
tetrahedra have two vertices at which two edges intersect at right angles,
see below for more details).

We note that a cube is easily partitioned into such tetrahedra.
Associated with T h is the finite element space

Sh := {χ ∈ C(Ω) : χ |κ is linear ∀ κ ∈ T h} ⊂ H1(Ω). (2.1)

We introduce also

Sh≥0 := {χ ∈ Sh : χ ≥ 0 in Ω} ⊂
H1≥0(Ω) := {η ∈ H1(Ω) : η ≥ 0 a.e. in Ω} . (2.2)

Let J be the set of nodes of T h and {pj}j∈J the coordinates of these nodes.
Let {χj}j∈J be the standard basis functions for S h; that is χj ∈ Sh≥0 and
χj(pi) = δij for all i, j ∈ J . We introduce πh : C(Ω) → Sh, the inter-
polation operator, such that (πhη)(pj) = η(pj) for all j ∈ J . A discrete
semi-inner product on C(Ω) is then defined by

(η1, η2)
h :=

∫
Ω

πh(η1(x) η2(x)) dx =
∑
j∈J
mj η1(pj) η2(pj), (2.3)

where mj := (1, χj) > 0. The induced discrete semi-norm is then |η|h :=
[ (η, η)h ]

1
2 , where η ∈ C(Ω). We introduce also the L2 projection Qh :

L2(Ω)→ Sh defined by

(Qhη, χ)h = (η, χ) ∀ χ ∈ Sh. (2.4)
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Similarly to the approach in [12] and [9], we introduce, for any ε ∈
(0, 1), Λε : Sh → [L∞(Ω)]d×d such that for all zh ∈ Sh and a.e. in Ω

Λε(z
h) is symmetric and positive definite, (2.5a)

Λε(z
h)∇πh[F ′ε(zh)] = ∇zh. (2.5b)

Firstly, we give the construction of Λε in the simple case when d = 1.
Given zh ∈ Sh and κ ∈ T h having vertices pj and pk, we set

Λε(z
h) |κ:=

⎧⎪⎪⎨⎪⎪⎩
zh(pk)−zh(pj)

F ′ε(zh(pk))−F ′ε(zh(pj))
= 1
F ′′ε (zh(ξ))

for some ξ ∈ κ if zh(pk) �= zh(pj),
1

F ′′ε (zh(pk))
if zh(pk) = zh(pj).

(2.6)

Clearly the piecewise constant construction in (2.6) satisfies the conditions
(2.5a,b).

Following [9] we extend the above construction to d = 2 or 3. Let
{ei}di=1 be the orthonormal vectors in Rd, such that the j th component
of ei is δij , i, j = 1 → d. Given non-zero constants ρi, i = 1 → d;
let κ̂({ρi}di=1) be a reference simplex in Rd with vertices {p̂i}di=0, where
p̂0 is the origin and p̂i = p̂i−1 + ρiei, i = 1 → d. Given a κ ∈ T h
with vertices {pji}di=0, such that pj0 is not a right-angled vertex, then there
exists a rotation/reflection matrix Rκ and non-zero constants {ρi}di=1 such
that the mapping Rκ : x̂ ∈ Rd → pj0 + Rκx̂ ∈ Rd maps the vertex p̂i
to pji , i = 0 → d, and hence κ̂ ≡ κ̂({ρi}di=1) to κ. For all κ ∈ T h and
zh ∈ Sh, we set

ẑh(x̂) ≡ zh(Rκx̂) ∀ x̂ ∈ κ̂. (2.7)

As RTκ ≡ R−1κ , we have that

∇zh ≡ Rκ∇̂ẑh, (2.8)

where x ≡ (x1, · · ·, xd)T , ∇ ≡ ( ∂∂x1 , · · ·,
∂
∂xd
)T , x̂ ≡ (x̂1, · · ·, x̂d)T and

∇̂ ≡ ( ∂∂x̂1 , · · ·,
∂
∂x̂d
)T . We then set

Λε(z
h) |κ:= Rκ Λ̂ε(ẑh) |κ̂ RTκ , (2.9)

where Λ̂ε(ẑh) |κ̂ is the d × d diagonal matrix with diagonal entries, k =
1→ d,

[Λ̂ε(ẑ
h) |κ̂]kk :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ẑh(p̂k)−ẑh(p̂0)
F ′ε(ẑh(p̂k))−F ′ε(ẑh(p̂0))

≡ zh(pjk)−z
h(pj0)

F ′ε(zh(pjk ))−F ′ε(zh(pj0))

= 1
F ′′ε (zh(ξ))

for some ξ between pjk and pj0
if zh(pjk) �= zh(pj0),

1
F ′′ε (ẑh(p̂0))

≡ 1
F ′′ε (zh(pj0))

if zh(pjk) = z
h(pj0).

(2.10)
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It easily follows from (2.7) and (2.8) that Λε(zh) constructed in (2.9) and
(2.10) satisfies (2.5a,b). Throughout we make use of the fact that powers
of the matrices Λε(zh1 ) and Λε(zh2 ) commute for any zhi ∈ Sh, see (2.9). It
is the construction (2.9) and (2.10) that requires the right angle constraint
on the partitioning T h. We note that this is not such a severe constraint, as
there exist adaptive finite element codes that satisfy this requirement, see
e.g. [11]. Another consequence of the right angle constraint on T h is that

|∇πh[λε(χ)]|21 ≤ (∇χ,∇πh[λε(χ)]) ∀ χ ∈ Sh . (2.11)

In addition to T h, let 0 = t0 < t1 < . . . < tN−1 < tN = T be a
partitioning of [0, T ] into possibly variable time steps τ n := tn − tn−1,
n = 1 → N . We set τ := maxn=1→N τn. For any given ε ∈ (0, 1), we
then consider the following fully discrete finite element approximation of
(P):
(Ph,τε ) For n ≥ 1 find {Unε,1, Unε,2} ∈ [Sh]2 such that for i = 1 and 2, with
j �= i, and for all χ ∈ Sh(

Unε,i−U
n−1
ε,i

τn
, χ

)h
+ ( [ci + 2 aiΛε(U

n
ε,i) + Λε(U

n
ε,j)]∇Unε,i,∇χ)

+ (Λε(U
n
ε,i) [∇Unε,j + bi∇(πhv) ],∇χ)

= (μi U
n
ε,i − [γii λε(Un−1ε,i ) + γij λε(U

n−1
ε,j )] λε(U

n
ε,i), χ)

h , (2.12)

where U0ε,i ∈ Sh is an approximation of u0i e.g. U
0
ε,i ≡ πhu0i or Qhu0i .

Below we recall some well-known results concerning S h for any κ ∈
T h, χ, zh ∈ Sh, m ∈ {0, 1}, p ∈ [1,∞], s ∈ [2,∞] if d = 1 and s ∈
(d,∞] if d = 2 or 3:

|χ|1,p,κ ≤ C h−1κ |χ|0,p,κ ; (2.13)

|χ|m,r,κ ≤ C h
−d ( 1

p
−1
r
)

κ |χ|m,p,κ ∀ r ∈ [p,∞] ; (2.14)

lim
h→0
‖(I − πh)η‖1,s = 0 ∀ η ∈W 1,s(Ω) ; (2.15)

|(I − πh)η|m,s ≤ C h1−m |η|1,s ∀ η ∈W 1,s(Ω) ; (2.16)∫
κ χ
2 dx ≤

∫
κ π
h[χ2] dx ≤ (d+ 2)

∫
κ χ
2 dx ; (2.17)

|(χ, zh)− (χ, zh)h| ≤ |(I − πh)(χ zh)|0,1 ≤ C h1+m |χ|m,p |zh|1,p′ ;
(2.18)

where p′ = p
p−1 . It follows from (2.4) for all η ∈ L∞(Ω) that

(Qhη)(pj) =
(η, χj)

(1, χj)
∀ j ∈ J =⇒ |Qhη|0,∞ ≤ |η|0,∞ . (2.19)
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In addition, it holds form ∈ {0, 1} that

|(I −Qh)η|m,r ≤ C h1−m |η|1,r ∀ η ∈W 1,r(Ω) for any r ∈ [2,∞].
(2.20)

It is also easily established that

|zh|0,q ≤ C h−1 ‖Gzh‖1,q ∀ zh ∈ Sh for any q ∈ (1, 2]. (2.21)

Finally, we note that (2.20) and (2.21) exploit the fact that we have a quasi-
uniform family of partitionings {T h}h>0.

We now recall two lemmas concerning Λε(·).
Lemma 2.1 Let the assumptions (A) hold and let ‖ · ‖ denote the spectral
norm on Rd×d. Then for any given ε ∈ (0, 1) the function Λε : Sh →
[L∞(Ω)]d×d satisfies

ε ξT ξ ≤ ξTΛε(zh)ξ ≤ ε−1 ξT ξ ∀ ξ ∈ Rd, zh ∈ Sh (2.22)

and is continuous. In particular it holds for all z h1 , zh2 ∈ Sh, κ ∈ T h that

‖(Λε(zh1 )− Λε(zh2 )) |κ ‖ = ‖(Λ̂ε(ẑh1 )− Λ̂ε(ẑh2 )) |κ̂ ‖

≤ ε−2 max
k=1→d

[
|zh1 (pjk)− zh2 (pjk)|+ |zh1 (pj0)− zh2 (pj0)|

]
, (2.23)

where we have adopted the notation (2.9) and (2.10).

Proof The proof is a simple modification of the proof of Lemma 2.1 in [3].
��

It follows from (1.10) that for all κ ∈ T h and for all zh ∈ Sh

|(I − πh)λε(zh)|0,∞,κ ≤ hκ |∇λε(zh)|0,∞,κ ≤ hκ |∇zh|0,∞,κ . (2.24)

The following Lemma is an extension of (2.24) to Λ ε(·).
Lemma 2.2 Let the assumptions (A) hold. Then for any given ε ∈ (0, 1) the
functionΛε : Sh → [L∞(Ω)]d×d is such that for all κ ∈ T h

max
x∈κ
‖{Λε(zh)− λε(zh) I}(x)‖ ≤ hκ |∇zh |κ | ∀ zh ∈ Sh, (2.25)

where I is the d× d identity matrix.

Proof The proof is a simple modification of the proof of Lemma 2.3 in [4].
��

Theorem 2.1 Let the assumptions (A) hold and {U n−1ε,1 , U
n−1
ε,2 } ∈ [Sh]2,

n ≥ 1. Then for all ε ∈ (0, e−2), for all h > 0 and for all τn such that
ω τn ≤ 1, where ω := max{2 μ1 + γ11 + γ12, 2 μ2 + γ21 + γ22}, there
exists a solution {U nε,1, Unε,2} ∈ [Sh]2 to the n-th step of (P h,τε ) .
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Proof For i = 1 and 2, with j �= i, letAni : [S
h]2 → Sh be such that for all

χ ∈ Sh

( (Ani (U1, U2), χ)
h =

(
Ui − Un−1i , χ

)h
+ τn

[
( [ci + 2 aiΛε(Ui) + Λε(Uj) ]∇Ui,∇χ)

+ (Λε(Ui) [∇Uj + bi∇(πhv) ],∇χ)
− (μi Ui − [γii λε(Un−1ε,i ) + γij λε(U

n−1
ε,j ) ] λε(Ui), χ)

h
]
. (2.26)

Therefore, on noting (2.26), we have that (2.12) is equivalent to: Find {U nε,1,
Unε,2} ∈ [Sh]2 such that

Ani (U
n
ε,1, U

n
ε,2) = 0 i = 1, 2 . (2.27)

Assume that for a given R ∈ R>0, there does not exist {U1, U2} ∈
[Sh]2R := { (zh1 , zh2 ) ∈ [Sh]2 : |zh1 |2h + |zh2 |2h ≤ R2 } withAni (U1, U2) = 0,
i = 1, 2. It follows immediately from (2.26), (2.23), (1.10) and (1.9b) that
Ani is continuous on [S h]2R. Hence we can define the continuous function
Bn ≡ (Bn1 , Bn2 ) : [Sh]2R → [Sh]2R, where Bni (U1, U2) := −RAni (U1, U2)
/(
∑2
i=1 |Ani (U1, U2)|2h)

1
2 . As [Sh]2R is a convex and compact subset of the

finite dimensional space [Sh]2; the Brouwer fixed point theorem, see e.g.
[10, Theorem 9.36], asserts that there exists {U1, U2} ∈ [Sh]2R such that
Bni (U1, U2) = Ui, i = 1, 2. Moreover, we have that |U1|2h + |U2|2h = R2.
We will now prove a contradiction for R sufficiently large.

Choosingχ ≡ πh[F ′ε(Ui)] in (2.26), and noting (2.5b) and (2.22), yields
for i = 1, 2, with j �= i, that

( (Ani (U1, U2), F
′
ε(Ui))

h =
(
Ui − Un−1i , F ′ε(Ui)

)h
+ τn

[
( [ci [Λε(Ui)]

−1 + 2 ai I + [Λε(Ui)]−1Λε(Uj) ]∇Ui,∇Ui)
− (μi Ui − [γii λε(Un−1ε,i ) + γij λε(U

n−1
ε,j ) ] λε(Ui), F

′
ε(Ui) )

h

+ (∇Uj + bi∇(πhv),∇Ui)
]
. (2.28)

It follows from (1.9b) and (1.8) that for i = 1, 2

(Ui − Un−1ε,i , F
′
ε(Ui))

h ≥ (Fε(Ui)− Fε(Un−1ε,i ), 1)
h + ε2 |Ui − U

n−1
ε,i |2h

≥ (Fε(Ui)− Fε(Un−1ε,i ), 1)
h + ε4 |Ui|2h −

ε
2 |U

n−1
ε,i |2h . (2.29)

Combining (2.28) and (2.29), and noting that
∑2
i=1 |Ui|2h = R2, (2.5a),

λε(s) ≥ 0 for all s, F ′ε(s) ≥ 0 if s ≥ 1, μi, γii, γij ∈ R≥0, (1.14a–c) and
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ai ∈ R>0 yields, similarly to (1.15), that

2∑
i=1

( (Ani (U1, U2), F
′
ε(Ui))

h ≥ ε
4 R
2 +

2∑
i=1

[1− 2 μiτn] (Fε(Ui), 1)h

+ τn
[ 2∑
i=1

( [ci [Λε(Ui)]
−1 + 2 ai I ]∇Ui,∇Ui) + bi (∇(πhv),∇Ui)

]
+ τn | ([Λε(U1)]−1Λε(U2))

1
2 ∇U1 + ([Λε(U2)]−1Λε(U1))

1
2 ∇U2 |20

+ τn

2∑
i=1,j �=i

(γii λε(U
n−1
ε,i ) + γij λε(U

n−1
ε,j ), [Ui]−)

h − C(Un−1ε,1 , U
n−1
ε,2 )

≥ ε
4 R
2 +

2∑
i=1

[1− 2 μiτn] (Fε(Ui), 1)h − τn ε
−1
2

2∑
i=1,j �=i

(γii + γij) | [Ui]−|2h

− τn ε2
2∑

i=1,j �=i
(γii + γji) |λε(Un−1ε,i )|2h −C(Un−1ε,1 , U

n−1
ε,2 , π

hv)

≥ ε
4 R
2 +

2∑
i=1,j �=i

[1− τn (2 μi + γii + γij) ] (Fε(Ui), 1)h

− C(Un−1ε,1 , U
n−1
ε,2 , π

hv) . (2.30)

Hence on noting our assumption on τn, and on choosingR sufficiently large
we have that

2∑
i=1

( (Ani (U1, U2), F
′
ε(Ui))

h ≥ ε
4 R
2 −C(Un−1ε,1 , U

n−1
ε,2 , π

hv) > 0 . (2.31)

Similarly to (2.29), on noting (1.8) and that
2∑
i=1

|Ui|2h = R2, we have for R

sufficiently large that

2∑
i=1

(Ui, F
′
ε(Ui))

h ≥
2∑
i=1

[ (Fε(Ui)− Fε(0), 1)h+ ε2 |Ui|2h ]

≥ ε
2 R
2 − 2 |Ω| > 0 . (2.32)
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Clearly (2.31) and (2.32) for R sufficiently large contradicts that {U1, U2}
is a fixed point of Bn

2∑
i=1

(Ui, F
′
ε(Ui))

h =

2∑
i=1

(Bni (U1, U2), F
′
ε(Ui))

h

= −R
∑2
i=1(A

n
i (U1, U2), F

′
ε(Ui))

h

(
∑2
i=1 |Ani (U1, U2)|2h)

1
2

< 0. (2.33)

Therefore, under the given assumptions on ε and τn, we have existence of
a solution to (2.27) and hence (2.12), the n-th step of (P h,τε ). ��
Lemma 2.3 Let the assumptions of Theorem 2.1 hold. Then for all ε ∈
(0, e−2), for all h > 0, and for all τn > 0 such that ω τn ≤ 1 a solution
{Unε,1, Unε,2} to the n-th step of (P h,τε ) is such that

(1− ω τn)
2∑
i=1

(Fε(U
n
ε,i), 1)

h + τn

2∑
i=1

ai |Unε,i|21

≤ (1 + 3ω τn)
2∑
i=1

(Fε(U
n−1
ε,i ), 1)

h +C τn [ 1 + |πhv|21 ] . (2.34)

Proof Similarly to (2.28) and (2.30), on choosing χ ≡ π h[F ′ε(Unε,i)] in
(2.12), and noting (2.5b), (1.9a) and (1.14b,c), we obtain for i = 1, 2,
j �= i, that

(Unε,i − Un−1ε,i , F
′
ε(U

n
ε,i))

h + τn (∇Unε,j + bi∇(πhv), ∇Unε,i)
+ τn ( [ ci [Λε(U

n
ε,i)]

−1 + 2 ai I + [Λε(Unε,i)]−1Λε(Unε,j) ]∇Unε,i,∇Unε,i)
= τn (μi U

n
ε,i − [γii λε(Un−1ε,i ) + γij λε(U

n−1
ε,j ) ] λε(U

n
ε,i), F

′
ε(U

n
ε,i) )

h

≤ τn
[
μi [ 2 (Fε(U

n
ε,i), 1)

h + |Ω| ]
+ (γii λε(U

n−1
ε,i ) + γij λε(U

n−1
ε,j ), [1− Unε,i]+)h

]
. (2.35)

Similarly to (1.15), on noting that [1 − s]+ ≤ 1 − [s]− for all s ∈ R,
(1.14a,b) and (2.3), we have for i = 1, 2, j �= i, that

(γii λε(U
n−1
ε,i ) + γij λε(U

n−1
ε,j ), [1− Unε,i]+)h

≤ 2 (γiiFε(Un−1ε,i ) + γij Fε(U
n−1
ε,j ), 1)

h + ε
−1
2 (γii + γij) |[Unε,i]−|2h

+ ε2 [ γii |λε(U
n−1
ε,i )|2h + γij |λε(U

n−1
ε,j )|2h ] +C

≤ 3 (γiiFε(Un−1ε,i ) + γij Fε(U
n−1
ε,j ), 1)

h

+ (γii + γij) (Fε(U
n
ε,i), 1)

h +C . (2.36)

Similarly to (2.30), summing (2.35) over i and noting (2.29), (2.36) and
(2.5a) yields the desired result (2.34). ��
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Remark 2.1 We note that (2.34) is a discrete analogue of the formal energy
estimates (1.7) and (1.13). Furthermore with no reaction terms, μi = γii =
γij = 0, i = 1 and 2, with j �= i, then

∑2
i=1, (Fε(·), 1)h is a discrete Lya-

punov functional for (P h,τε ). In addition, for such data (U nε,i, 1) = (U
0
ε,i, 1),

for n ≥ 1 and i = 1, 2.

Theorem 2.2 Let the assumptions of Lemma 2.3 hold. Let u0i ∈ L∞(Ω)
with u0i (x) ≥ 0 for a.e. x ∈ Ω, i = 1, 2, and v ∈ H1(Ω) ∩W 1,β(Ω) with
β > d. For i = 1, 2, let U 0ε,i ≡ Qhu0i ∈ Sh≥0, or U0ε,i ≡ πhu0i ∈ Sh≥0 if

u0i ∈ H1(Ω) ∩W 1,β(Ω) with β > d. Then for all ε ∈ (0, e−2), for all τ
such that ω τ ≤ 1− δ < 1 and for all h > 0 a solution {U nε,1, Unε,2}Nn=1 to

(Ph,τε ) is such that

max
n=1→N

2∑
i=1

[
(Fε(U

n
ε,i), 1)

h + ε−1|πh[Unε,i]−|20 + |Unε,i|0,1
]

+
N∑
n=1

τn

2∑
i=1

ai ‖Unε,i‖21

≤ C e 4ω Tδ
[
1 + |πhv|21 +

2∑
i=1

(Fε(U
0
ε,i), 1)

h

]
≤ C . (2.37)

In addition
N∑
n=1

τn

2∑
i=1

[
|Λε(Unε,i)|r0,r + |πh[λε(Unε,i) ] |r0,r+ |Unε,i|r0,r

+ |λε(Unε,i)|r0,r +
∥∥∥∥G [Unε,i−Un−1ε,i

τn

]∥∥∥∥q
1,q

]
≤ C , (2.38)

where r = 2 (d+1)
d and q = 2 (d+1)

2d+1 .

Proof It follows from (2.34) that for n = 1→ N
2∑
i=1

(Fε(U
n
ε,i), 1)

h ≤ C τn [ 1 + |πhv|1 ] + e
4ω τn
δ

2∑
i=1

(Fε(U
n−1
ε,i ), 1)

h .

(2.39)

Hence it follows from (2.39), (2.19), (2.16) and our assumptions on u0i and
v that

max
n=1→N

2∑
i=1

(Fε(U
n
ε,i), 1)

h ≤ C e
4ω T
δ

[
1 + |πhv|21 +

2∑
i=1

(Fε(U
0
ε,i), 1)

h

]
≤ C . (2.40)
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Choosing χ ≡ 1 in (2.12), and noting (2.3) and (1.10), yields that

(1− μi τn) (Unε,i, 1) ≤ (Un−1ε,i , 1) n = 1→ N, i = 1, 2 . (2.41)

Hence it follows from (2.41) and (2.19) that

max
n=1→N

(Unε,i, 1) ≤ e
ω T
δ (U0ε,i, 1) ≤ C e

ω T
δ i = 1, 2 . (2.42)

In addition, it follows from (2.42), (1.14a) and (2.40) that for n = 1→ N
|Unε,i|0,1 ≤ (πh|Unε,i|, 1) ≤ (Unε,i, 1)− 2 (πh[Unε,i]−, 1)

≤ C [ 1 + |πh[Unε,i]−|20 ] ≤ C i = 1, 2 . (2.43)

The max over n bound in (2.37) then follows from (2.40), (2.3), (1.14a)
and (2.43). Summing (2.34) for n = 1 → N and noting (2.40) yields the
summation over n bound in (2.37) with ‖·‖1 replaced by |·|1. Noting (2.43)
and a Poincarè inequality yields the desired ‖ · ‖1 bound in (2.37).

It follows from (2.9), (2.10), (1.10), (2.14), (1.18), (2.37) and (2.11) for
the stated choice of r

|Λε(Unε,i)|r0,r ≤ C
∑
κ∈T h

hdκ |πh[λε(Unε,i)]|r0,∞,κ ≤ C |πh[λε(Unε,i)] |r0,r

≤ C |πh[λε(Unε,i)] |r−20,1 ‖πh[λε(Unε,i)] ‖21
≤ C [ 1 + ‖Unε,i‖21 ] n = 1→ N, i = 1, 2 . (2.44)

Hence the first two bounds in (2.38) follow from (2.44) and (2.37). The
third and fourth bounds in (2.38) follow similarly.

It follows from (1.10), (2.19), (2.17), Sobolev embedding and (2.11) for
any η ∈W 1,q′(Ω), q′ = 2 (d+1), and for n = 1→ N and i, j = 1, 2 that

|(λε(Un−1ε,i ) λε(U
n
ε,j), Q

hη)h| ≤ (λε(Un−1ε,i ), λε(U
n
ε,j)
h |η|0,∞

≤ C |πh[λε(Un−1ε,i )]|0,r ‖πh[λε(Unε,j)]‖1 ‖η‖1,q′
≤ |πh[λε(Un−1ε,i )]|0,r ‖Unε,j‖1 ‖η‖1,q′ . (2.45)

From (1.20), (2.4), (2.12), (2.16), (2.20) and (2.45) we obtain for any η ∈
W 1,q

′
(Ω) and for n = 1→ N and i = 1, 2 that

(∇G[U
n
ε,i−U

n−1
ε,i

τn
],∇η) + (G[U

n
ε,i−U

n−1
ε,i

τn
], η)

= (
Unε,i−U

n−1
ε,i

τn
, η) = (

Unε,i−U
n−1
ε,i

τn
, Qhη)h

≤ CMn

[
1 +

2∑
k=1

‖Unε,k‖1

]
‖η‖1,q′ , (2.46a)

where Mn := 1 +

2∑
k=1

[
|Λε(Unε,k)|0,r + |πh[λε(Un−1ε,k )]|0,r

]
. (2.46b)
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It follows from (2.46a,b), (1.10), (2.37), the first two bounds in (2.38) and
(2.19) for the stated choice of q that for i = 1, 2

N∑
n=1

τn

∥∥∥∥G[Unε,i−Un−1ε,i

τn
]

∥∥∥∥q
1,q

≤ C
N∑
n=1

τnM
q
n

[
1 +

2∑
k=1

‖Unε,k‖1

]q

≤ C
[
N∑
n=1

τnM
r
n

]2−q
2

⎡⎣ N∑
n=1

τn

[
1 +

2∑
k=1

‖Unε,k‖1

]2⎤⎦
q
2

≤ C . (2.47)

Hence we obtain the desired fifth bound in (2.38). ��

3 Convergence

Let

Uε,i(t) :=
t−tn−1
τn
Unε,i +

tn−t
τn
Un−1ε,i t ∈ [tn−1, tn] n ≥ 1 (3.1a)

and

U+ε,i(t) := U
n
ε,i, U−ε,i(t) := U

n−1
ε,i t ∈ (tn−1, tn] n ≥ 1. (3.1b)

We note for future reference that

Uε,i − U±ε,i = (t− t±n )
∂Uε,i
∂t t ∈ (tn−1, tn) n ≥ 1, (3.2)

where t+n := tn and t−n := tn−1. We introduce also

τ̄(t) := τn t ∈ (tn−1, tn] n ≥ 1. (3.3)

Using the above notation, (P h,τε ) can be restated as:
Find {Uε,1, Uε,2} ∈ [C([0, T ];Sh) ]2 such that for i = 1 and 2, with j �= i,
and for all χ ∈ L2(0, T ;Sh)∫ T
0

[(
∂Uε,i
∂t , χ

)h
+ ( [ci + 2 aiΛε(U

+
ε,i) + Λε(U

+
ε,j)]∇U

+
ε,i,∇χ)

+ (Λε(U
+
ε,i) [∇U

+
ε,j + bi∇(π

hv) ],∇χ)
]
dt

=

∫ T
0
( μiU

+
ε,i − [ γii λε(U

−
ε,i) + γij λε(U

−
ε,j)] λε(U

+
ε,i), χ)

h dt . (3.4)
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Lemma 3.1 Let the assumptions of Theorem 2.2 hold. In addition, let {T h,
{τn}Nn=1, ε}h>0 be such that τ, ε h−

d
d+1 → 0, as h → 0, with either

(i) τ1 ≤ C h2 or (ii) u0i ∈ H1(Ω) if U 0ε,i ≡ Qh u0i , i = 1, 2 or (iii)

u0i ∈ H1(Ω) ∩ W 1,β(Ω), β > d, if U0ε,i ≡ πh u0i , i = 1, 2. Then there

exists a subsequence of {Uε,1, Uε,2}h, where {Uε,1, Uε,2} solve (P h,τε ) and
functions

ui ∈ L2(0, T ;H1≥0(Ω)) ∩ Lr(ΩT ) ∩W 1,q(0, T ; (W 1,q
′
(Ω))′) (3.5)

with ui(·, 0) = u0i (·) in (W 1,q(Ω) )′, i = 1, 2, where r = 2(d+1)
d , q =

2 (d+1)
2d+1 and q′ = 2 (d+ 1), such that as h→ 0

Uε,i, U
±
ε,i → ui weakly in L2(0, T ;H1(Ω)) ∩ Lr(ΩT ),

(3.6a)

G ∂Uε,i∂t → G
∂ui
∂t weakly in Lq(0, T ;W 1,q(Ω)), (3.6b)

Uε,i, U
±
ε,i → ui strongly in L2(0, T ;Ls(Ω)), (3.7a)

λε(U
±
ε,i), π

h[λε(U
±
ε,i)]→ ui strongly in L2(0, T ;Lr(Ω)), (3.7b)

Λε(U
±
ε,i)→ ui I strongly in L2(0, T ;Lr(Ω)); (3.7c)

where s ∈ [2,∞] if d = 1, s ∈ [2,∞) if d = 2 and s ∈ [2, 6) if d = 3.

Proof If (i) holds, that is τ1 ≤ C h2, then it follows from (2.13) and (2.19)
that

τ1 ‖U0ε,i‖21 ≤ C |U0ε,i|20 ≤ C i = 1, 2 . (3.8)

Alternatively, (3.8) can be achieved with more regularity on u0i via (2.20)
and (2.16) if (ii) or (iii) hold, respectively. Noting (3.1a,b), (2.37), (2.38),
(3.8), (2.19), (2.9) and (2.10) we have for i = 1, 2 that

‖U (±)ε,i ‖2L2(0,T ;H1(Ω)) + ε
−1‖πh[U (±)ε,i ]−‖2L∞(0,T ;L2(Ω))

+ ‖U (±)ε,i ‖L∞(0,T ;L1(Ω)) + ‖Λε(U
(±)
ε,i )‖rLr(ΩT )

+ ‖λε(U (±)ε,i )‖rLr(ΩT ) + ‖π
h[λε(U

(±)
ε,i ) ] ‖rLr(ΩT )

+ ‖U (±)ε,i ‖
r
Lr(ΩT )

+ ‖G ∂Uε,i∂t ‖
q
Lq(0,T ;W 1,q(Ω))

≤ C . (3.9)

In the above, and throughout, the notation U (±)ε,i means with and without
the superscript±. AlthoughUε,i can go negative, the amount it can is con-
trolled by the regularization parameter ε through the second term in (3.9),



18 John W. Barrett, James F. Blowey

the analogue of (1.17). Furthermore, we deduce from (3.2) and (3.9) for
i = 1, 2 that

‖G [Uε,i − U±ε,i] ‖Lq(0,T ;W 1,q(Ω)) ≤ Cτ ‖G
∂Uε,i
∂t ‖Lq(0,T ;W 1,q(Ω)) ≤ C τ .

(3.10)

Hence on noting (3.9), (3.10), (1.19) and the compact embedding H 1(Ω)
↪→ Ls(Ω), we can choose a subsequence {Uε,1, Uε,2}h such that the con-
vergence results (3.5) withH 1≥0(Ω) replaced byH1(Ω), (3.6a,b) and (3.7a)
hold.

We now consider (3.7c). Firstly, we note for i = 1, 2 that

‖ui − λε(U±ε,i)‖L2(0,T ;Lr(Ω))
≤ ‖ui − λ̃ε(ui)‖L2(0,T ;Lr(Ω)) + ‖λ̃ε(ui)− λ̃ε(U±ε,i)‖L2(0,T ;Lr(Ω))

+ ‖λ̃ε(U±ε,i)− λε(U
±
ε,i)‖L2(0,T ;Lr(Ω)). (3.11)

As ui ∈ Lr(ΩT ), recall (3.5), it follows from (1.10) for i = 1, 2 that

‖ui − λ̃ε(ui)‖L2(0,T ;Lr(Ω))→ 0 as ε→ 0 . (3.12)

Noting (1.10), we have for i = 1, 2 that

‖λ̃ε(ui)− λ̃ε(U±ε,i)‖L2(0,T ;Lr(Ω)) ≤ ‖ui − U
±
ε,i‖L2(0,T ;Lr(Ω)) . (3.13)

It follows from (1.10), (2.14) and (3.9) for i = 1, 2 that

‖λ̃ε(U±ε,i)− λε(U
±
ε,i)‖L2(0,T ;Lr(Ω))

≤ ‖ε− [U±ε,i]−‖L2(0,T ;Lr(Ω)) ≤ ‖ε− π
h [U+ε,i]−‖L2(0,T ;Lr(Ω))

≤ C h−d ( 12−1r )
[
ε+ ‖πh [U+ε ]−‖L2(ΩT )

]
≤ C ε 12 h−1r . (3.14)

Noting (2.24), (2.25), (2.14) and (3.9), we have for i = 1, 2 that

‖(I − πh)[λε(U±ε,i) ]‖L2(0,T ;Lr(Ω)) + ‖λε(U±ε,i) I − Λε(U±ε,i)‖L2(0,T ;Lr(Ω))
≤ C h1−d (

1
2
−1
r
) ‖∇U±ε ‖L2(ΩT ) ≤ C h

1−1
r . (3.15)

Combining (3.11), (3.12), (3.13), (3.14) (3.15) and noting (3.7a) and our
assumption on ε yields the desired result (3.7b,c). Finally, we note that
(3.7a) and (3.9)⇒ ui ≥ 0 a.e.⇒ H1≥0(Ω) in (3.5). ��

Theorem 3.1 Let all the assumptions of Lemma 3.1 hold. Then there ex-
ists a subsequence of {Uε,1, Uε,2}h, where {Uε,1, Uε,2} solve (P h,τε ), and
functions {u1, u2} satisfying (3.5), (3.6a,b) and (3.7a–c). Furthermore, we
have that ui, i = 1, 2, fulfil ui(·, 0) = u0i (·) in (W 1,q(Ω) )′, q = 2 (d+1)

2 d+1 ,
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and satisfy for i = 1 and 2, j �= i, and for all η ∈ L q′(0, T ;W 1,q′(Ω)),
q′ = 2 (d+ 1),∫ T
0

[
〈∂ui∂t , η〉q′ dt+ ( [ ci + 2 ai ui + uj ]∇ui + ui∇uj + bi∇v,∇η)

]
dt

=

∫ T
0
( [ μi − γii ui − γij uj ] ui, η) dt . (3.16)

Proof For any η ∈ Lq′(0, T ;W 1,q′(Ω)), we choose χ ≡ πhη in (3.4) and
now analyse the subsequent terms. Firstly (2.18), the embedding H 1(0, T ;
X) ↪→ C([0, T ];X), (2.21), (3.9) and (2.16) yield for i = 1, 2 and for all
η ∈ Lq′(0, T ;W 1,q′(Ω)) and η̃ ∈ H1(0, T ;W 1,∞(Ω)) that∣∣∣∣ ∫ T

0

[ (
∂Uε,i
∂t , π

hη
)h
−
(
∂Uε,i
∂t , π

hη
)]
dt

∣∣∣∣
≤
∣∣∣∣ ∫ T
0

[ (
∂Uε,i
∂t , π

h[η − η̃]
)h
−
(
∂Uε,i
∂t , π

h[η − η̃]
)]
dt

∣∣∣∣
+

∣∣∣∣ ∫ T
0

[ (
Uε,i,

∂(πhη̃)
∂t

)
−
(
Uε,i,

∂(πhη̃)
∂t

)h ]
dt

∣∣∣∣
+
∣∣∣ (Uε,i(·, T ), πhη̃(·, T ))h− (Uε,i(·, T ), πhη̃(·, T )) ∣∣∣

+
∣∣∣ (Uε,i(·, 0), πhη̃(·, 0))− (Uε,i(·, 0), πhη̃(·, 0))h ∣∣∣

≤ C ‖G ∂Uε,i∂t ‖Lq(0,T ;W 1,q(Ω)) ‖πh[η − η̃] ‖Lq′(0,T ;W 1,q′(Ω))
+ C h ‖Uε,i‖L∞(0,T ;L1(Ω)) ‖πhη̃‖H1(0,T ;W 1,∞(Ω))

≤ C ‖η − η̃‖Lq′(0,T ;W 1,q′(Ω)) +C h ‖η̃‖H1(0,T ;W 1,∞(Ω)) . (3.17)

Furthermore, it follows from (1.20) and (3.9) for i = 1, 2 and for all η ∈
Lq
′
(0, T ;W 1,q

′
(Ω)) that∣∣∣∣ ∫ T

0

(
∂Uε,i
∂t , (I − π

h)η
)
dt

∣∣∣∣
≤ C ‖G ∂Uε,i∂t ‖Lq(0,T ;W 1,q(Ω)) ‖(I − π

h)η‖Lq′(0,T ;W 1,q′(Ω))
≤ C ‖(I − πh)η‖Lq′(0,T ;W 1,q′(Ω)) . (3.18)

Combining (3.17), the denseness of H 1(0, T ;W 1,∞(Ω)) in Lq
′
(0, T ;

W 1,q
′
(Ω)), (3.18), (2.15), (1.20) and (3.6b) yields for i = 1, 2 and for

all η ∈ Lq′(0, T ;W 1,q′(Ω)) that∫ T
0

(
∂Uε,i
∂t , π

hη
)h
dt→

∫ T
0
〈∂ui∂t , η〉q′ dt as h→ 0. (3.19)
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It follows from (3.9) for i, j = 1, 2 and for all η ∈ Lq′(0, T ;W 1,q′(Ω))
that∣∣∣∣ ∫ T

0
(Λε(U

+
ε,j)∇U

+
ε,i,∇(I − π

h)η) dt

∣∣∣∣
≤ C ‖Λε(U+ε,j)‖Lr(ΩT ) ‖∇U

+
ε,i‖L2(ΩT ) ‖∇(I − π

h)η‖Lq′(ΩT )
≤ C ‖(I − πh)η‖Lq′(0,T ;W 1,q′(Ω)) . (3.20)

Similarly to (3.20), it follows from (3.9) and (3.5) for i, j = 1, 2 and for
all η ∈ Lq′(0, T ;W 1,q′(Ω)) and η̃ ∈ H1(0, T ;W 1,∞(Ω)) that∣∣∣∣ ∫ T

0
( [Λε(U

+
ε,j)− uj I )∇U

+
ε,i,∇η) dt

∣∣∣∣
≤
∣∣∣∣ ∫ T
0

( [Λε(U
+
ε,j)− uj I )∇U

+
ε,i,∇η̃) dt

∣∣∣∣+ C ‖∇(η̃ − η)‖Lq′(ΩT )
≤ C ‖Λε(U+ε,j)− uj I‖L2(0,T ;Lr(Ω)) ‖∇η̃‖L∞(ΩT )

+C ‖∇(η̃− η)‖Lq′(ΩT ) . (3.21)

Combining (3.20), (2.15), (3.21), (3.7c), H1(0, T ;W 1,∞(Ω)) is dense in
Lq
′
(0, T ;W 1,q

′
(Ω)) and (3.6a) yields for i, j = 1, 2 and for all η ∈

Lq
′
(0, T ;W 1,q

′
(Ω)) that

∫ T
0
(Λε(U

+
ε,j)∇U+ε,i,∇(πhη) ) dt→

∫ T
0
( uj∇ui,∇η) dt ,∫ T

0
(∇U+ε,i,∇(π

hη) ) dt→
∫ T
0
(∇ui,∇η) dt as h→ 0 . (3.22)

Similarly to the derivation of (3.22), one can show for i = 1, 2 and for all
η ∈ Lq′(0, T ;W 1,q′(Ω)) that∫ T
0
(Λε(U

+
ε,i)∇(πhv),∇(πhη) ) dt→

∫ T
0
( ui∇v,∇η) dt as h→ 0 .

(3.23)

Similarly to the derivation of (3.22), it follows from (2.18), (3.9), (2.15)
and (3.6a) for i = 1, 2 and for all η ∈ Lq′(0, T ;W 1,q′(Ω)) that∫ T

0

(
Uε,i, π

hη
)h
dt→

∫ T
0
(ui, η) dt as h→ 0. (3.24)
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Noting a generalisation of (2.18), (2.13), (2.11), (2.16) and (3.9) yields
for i, j = 1, 2 and for all η ∈ Lq′(0, T ;W 1,q′(Ω)) that∣∣∣∣∫ T
0

[
(λε(U

−
ε,i) λε(U

+
ε,j), π

hη)h − (πh[λε(U−ε,i)] πh[λε(U+ε,j)], πhη)
]
dt

∣∣∣∣
≤
∫ T
0
| (I − πh) ( πh[λε(U−ε,i)] π

h[λε(U
+
ε,j)] π

hη ) |0,1 dt

≤ C h2 ‖πh[λε(U−ε,i)]‖L2(0,T ;H1(Ω)) ‖πh[λε(U+ε,j)]‖Lr(0,T ;W 1,r(Ω))
× ‖πhη‖Lq′(0,T ;W 1,q′(Ω))

≤ C h ‖U−ε,i‖L2(0,T ;H1(Ω)) ‖πh[λε(U+ε,j)]‖Lr(ΩT ) ‖η‖Lq′(0,T ;W 1,q′(Ω))
≤ C h ‖η‖Lq′(0,T ;W 1,q′(Ω)) . (3.25)

Similarly to (3.25), it follows from (3.9), (3.5), and (2.16) for i, j = 1, 2
and for all η ∈ Lq′(0, T ;W 1,q′(Ω)) that∣∣∣∣∫ T
0

[
(πh[λε(U

−
ε,i)] π

h[λε(U
+
ε,j)], π

hη)− (ui uj, η)
]
dt

∣∣∣∣
≤ ‖πh[λε(U+ε,j)]‖Lr(ΩT ) ‖π

hη‖Lq′(ΩT ) ‖π
h[λε(U

−
ε,i)]− ui‖L2(ΩT )

+ ‖ui‖Lr(ΩT ) ‖π
hη‖Lq′(ΩT ) ‖π

h[λε(U
−
ε,j)]− uj‖L2(ΩT )

+ ‖ui‖L2(ΩT ) ‖uj‖Lr(ΩT ) ‖(I − π
h)η‖Lq′(ΩT )

≤ C
[
h+

2∑
k=1

‖πh[λε(U−ε,k)]− uk‖L2(ΩT )

]
‖η‖Lq′(0,T ;W 1,q′(Ω)) .

(3.26)

Combining (3.25) and (3.26), and noting (3.7b), yields for i, j = 1, 2 and
for all η ∈ Lq′(0, T ;W 1,q′(Ω)) that∫ T
0

(λε(U
−
ε,i) λε(U

+
ε,j), π

hη)h dt→
∫ T
0

(ui uj, η) dt as h→ 0. (3.27)

Finally, combining (3.4), (3.19), (3.22), (3.23), (3.24) and (3.27) yields
that {u1, u2} satisfy (3.16). ��

4 Numerical Results

Before presenting some numerical results in one space dimension, we state
briefly our algorithm for solving the resulting system of nonlinear algebraic
equations for {U nε,1, Unε,2} arising at each time level from the approxima-

tion (P h,τε ). We used the following iterative approach to solve (2.12) for
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{Unε,1, Unε,2}: Given Un,0ε,i ∈ Sh, i = 1, 2, for k ≥ 1 find {Un,kε,1 , U
n,k
ε,2 } ∈

[Sh]2 such that for i = 1, 2, with j �= i, and for all χ ∈ Sh(
Un,kε,i −U

n−1
ε,i

τn
, χ

)h
+ ( [ci + 2 aiΛε(U

n,k−1
ε,i ) + Λε(U

n,k−1
ε,j )]∇Un,kε,i ,∇χ)

+ (Λε(U
n,k−1
ε,i ) [∇Un,kε,j + bi∇(π

hv) ],∇χ)

= (μi U
n,k
ε,i − [γii λε(U

n−1
ε,i ) + γij λε(U

n−1
ε,j ) ] λε(U

n,k−1
ε,i ), χ)h . (4.1)

(4.1) requires a linear solve at each iteration and is the natural extension of
the iterative procedure proposed in [9] for solving a related finite element
approximation of the thin film equation. We set, for n ≥ 1, U n,0ε,i ≡ U

n−1
ε,i

and adopted the stopping criteria

max
i=1, 2

|Un,kε,i − U
n,k−1
ε,i |0,∞ < tol (4.2)

with tol = 10−7, and setUnε,i ≡ U
n,k
ε,i . Although we are unable to show con-

vergence of the iteration (4.1), we observed good convergence properties in
practice (at most 10 iterations and this maximum only being required in the
very early stages of the evolution) with the exception of the experiments
with strong transport (b1 = 20 and 40).

Unless otherwise stated, in all experiments we chose a uniform parti-
tioning of Ω = (0, 3) with mesh points p j = (j − 1)h, j = 1 → 301, i.e.
h = 10−2; a uniform time step τn = τ = 10−3 and set ε = 5× 10−7.

No Reaction Terms

We repeated the experiments in [6] which show the behaviour of the two
interacting species for different choices of the parameters and initial data.
In each experiment we set μi = γii = γij = 0, v(x) = −1.5(x − 0.5)2,
and U0ε,i = π

hu0i . We note that these discretisation parameters h and τ are
exactly the same as those chosen in [6] for their finite difference approxi-
mation of (P). In contrast to their approximation, our approximation (Ph,τε )
conserves mass exactly, recall Remark 2.1. For these experiments, we in-
tegrated in time until a numerical stationary solution, U Sε,i, was achieved.
This was determined by

max
i=1, 2

|Un,1ε,i − U
n,0
ε,i |0,∞ < 5× 10−11,

which is far more severe than the stopping criteria (4.2). In all of these
experiments we found that

max
i=1,2, j �=i

| [ci + 2 aiΛε(USε,i) + Λε(USε,j)]∇USε,i

+ Λε(U
S
ε,i) [∇USε,j + bi∇(πhv) ] |0,∞ < 10−7, (4.3)
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which should be zero for an “exact” numerical stationary solution of (Ph,τε ).
In all the figures below U Sε,1(·) and USε,2(·) are plotted as a solid and

dashed line, respectively. In addition, all numerical stationary solution times
are correct to one decimal place.
A: Large and small cross-diffusion terms

We took bi = ci = 1, u01(x) = 10, u
0
2(x) = 20, and ai = 0, 0.1, 10; see

Figure 4.1A. The numerical stationary solutions for a i = 0, 0.1, 10 were
achieved at times 5.0, 3.0 and 0.9, respectively.
B: Large diffusion coefficients ci compared to ai, i.e. ci � ai

All parameters were the same as in A, except ai = 0.01, ci = 1, 10, 100;
see Figure 4.1B. The numerical stationary solutions for c i = 1, 10, 100
were achieved at times 4.7, 1.6 and 0.2.
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Fig. 4.1. A: Curves labelled with ai values, B: with ci values.

C: Segregation effects due to a large ratio of transport coefficients
All parameters were the same as in A, except ai = 1 and b1 = 4, 8, 20,

40; see Figure 4.2A. In addition, for b1 = 40 we took τ = 5× 10−4 in or-
der to achieve convergence of the iterative solver. The numerical stationary
solutions for b1 = 4, 8, 20, 40 were achieved at times 0.8, 0.7, 0.7 and 0.6.
Only in the case of b1 = 40, did Unε,1 become negative and throughout the
experiment always satisfied min

n=1,··· ,N
min
j∈J
Unε,1(pj) > −5 × 10−5.

We repeated this experiment with ai = 0.1; see Figure 4.2B. When
b1 = 40 we took τ = 2 × 10−4 in order to achieve convergence of the
iterative solver. The numerical stationary solutions for b 1 = 4, 8, 20, 40
were achieved at times 1.7, 1.4, 1.6 and 1.8. Only in the cases of b1 = 20
and 40 did Unε,1 become negative and throughout each experiment always
satisfied min

n=1,··· ,N
min
j∈J
Unε,1(pj) > −3 × 10−5.
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Fig. 4.2. A: Curves labelled with b1 values with ai = 1, B: with ai = 0.01.

D: Discontinuous initial data
All parameters were the same as in A, except ai = 1, b1 = 8, u02 = 10

and

u01 =

{
12 0 ≤ x ≤ 1.5
8 1.5 < x ≤ 3

;

see Figure 4.3A where u0i is also plotted. The numerical stationary solution
was achieved at time 0.7.
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Fig. 4.3. A: Discontinuous initial data, B: Segregation of species.

E: Segregation of the two species
All parameters were the same as in A, except a1 = 1, a2 = 0.01, b1 =

40 and u02 = 10; see Figure 4.3B. The numerical stationary solution was
achieved at time 1.5. Throughout the experiment min

n=1,··· ,N
min
j∈J
Unε,1(pj) >

−4× 10−5.

There is very good agreement with the above figures and the corre-
sponding figures in [6], except for Figure 4.1B in the case of c i = 1. This
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is probably due to a typographical error in [6], rather than a significant dif-
ference in these different approximations of (P).

Reaction Terms

We now include reaction terms. All parameters were the same as in A
above, except a1 = 0.1, a2 = 0.05, μi = 1,

γ =

(
0.1 0.1
0.1 0.1

)
,

(
0.5 0.1
0.5 0.1

)
,

(
0.5 0.5
0.5 0.5

)
and

(
0.5 0.5
0.1 0.1

)
,

which are labelled γ1, γ2, γ3 and γ4 in Figure 4.4A; where we plot the nu-
merical stationary solutions. These were achieved at times 110, 108, 100
and 100. We note that the corresponding diffusion matrix, (1.3), is not pos-
itive definite on recalling (1.4); and ω = 2.2, 2.6, 3.0 and 3.0, respectively,
on recalling the definition in Theorem 2.1. Throughout the experiments
min

n=1,··· ,N
min
j∈J
Unε,i(pj) > −5 × 10−5. We repeated this experiment with

γ =

(
0.1 0.1
0.5 0.5

)
,

and even with this asymmetric initial data obtained the same numerical
stationary solution as that labelled γ 4 in Figure 4.4A with U Sε,1 and USε,2
interchanged. When we repeated the experiment with a1 = a2, then the
numerical stationary solutions satisfied U Sε,1 = U

S
ε,2 for γ1, γ2 and γ3; as to

be expected.
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Fig. 4.4. A: Curves labelled with reaction matrices, B: ui(·, 0.2).
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Convergence Experiment

We take the initial data and all other parameters as in the previous exper-
iment with γ4, except ci = 0 and T = 0.2. However, the uniform mesh
parameters h, τ and εwere all varied. As we do not know the exact solution
to (P), a comparison was made between the solutions of (P h,τε ) on a coarse
mesh, Uε,i, with that on a fine mesh, ui. The discretization parameters on
the coarse meshes were τ = 256 h2/90, ε = 10−4h and h = 3/(#J − 1)
where #J = 2k + 1 with k = 5, 6, 7 and 8; while those for the fine mesh
were the same except#J = 211+1. We repeated this experiment, but took
τ = h/30. We note that in both cases all the assumptions of Theorem 3.1
hold. In Figure 4.4B, we plot ui(·, 0.2) the “true solution” of (P) and note
that there has been a large change from the initial data. In Figure 4.5, we
plot |ui(·, t)−Uε,i(·, t)|0,∞ versus time with the graphs labelled by#J and
in Table 4.1 we give the values of Ei = |ui(·, 0.2)− Uε,i(·, 0.2)|0,∞ cor-
rect to 3 s.f. for the different meshes. With τ ∝ h2 the ratios of successive
E1 are 3.38, 3.18 and 2.94 while those of E2 are 3.70, 3.72 and 3.41. With
τ ∝ h the ratios of successive E1 are 2.04, 2.05 and 2.10 while those of E2
are 1.93, 1.99 and 2.04.
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Fig. 4.5. A: |ui(·, t) − Uε,i(·, t)|0,∞ versus time with τ ∝ h2, B: with τ =∝ h.

A:

#J E1 E2
33 0.350 0.653
65 0.104 0.177

129 0.0326 0.0476
257 0.0111 0.0139

B:

#J E1 E2
33 0.0976 0.109
65 0.0477 0.0566

129 0.0232 0.0285
257 0.0111 0.0139

Table 4.1. Ei with A: τ ∝ h2 and B: τ ∝ h.
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