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FINITE ELEMENT APPROXIMATION
OF A PARABOLIC INTEGRO-DIFFERENTIAL EQUATION

WITH A WEAKLY SINGULAR KERNEL

C. CHEN, V. THOMÉE, AND L. B. WAHLBIN

Abstract. We give error estimates for the numerical solution by means of the

Galerkin finite element method of an integro-differential equation of parabolic

type with a memory term containing a weakly singular kernel. Optimal-order

estimates are shown for spatially semidiscrete and completely discrete methods.

Special attention is paid to the regularity of the exact solution.

1. INTRODUCTION

We shall consider the initial value problem (with ut = du/dt)

u, + Au= I K(t - s)Bu(s)ds + f(t)   in Si, fori>0,
(1 1) Jo
v ' ' w = 0   ondSi,  f>0,

u(0) = Mo   inQ,

where A is a linear positive self adjoint elliptic and B a general partial differen-

tial operator of second order with smooth, time-independent coefficients, where

K is a weakly singular kernel K(t) such that

(1.2) \K(t)\<Cra   with 0<q < 1, for t>0,

and where Si is a sufficiently smooth domain in Rd, d > 1. Integro-differential

equations of this nature appear in applications such as heat conduction in mate-
rials with memory, population dynamics, and visco-elasticity; cf., e.g., Friedman

and Shinbrot [3], Heard [5], and Renardy, Hrusa, and Nohel [12]. For equations

with nonsmoofh kernels such as in (1.2), we refer to Grimmer and Pritchard

[4], Lunardi and Sinestrari [10], and Lorenzi and Sinestrari [9] and references

therein. Finite element methods for problems of the form (1.1) with a smooth

kernel K have been discussed in, e.g., Sloan and Thomée [13], Yanik and Fair-

weather [15], Thomée and Zhang [14], LeRoux and Thomée [6], Cannon and

Lin [1], and Lin, Thomée, and Wahlbin [7].
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588 C. CHEN, V. THOMEE, AND L. B. WAHLBIN

For the numerical solution we assume that we are given a family {Sh} of

finite-dimensional subspaces of Hq = H¿ (Si) such that

(1.3) in|-{||v — jtll -i-A||w — ̂||i> < C7Ä2||t7||2,    VveH2nH¿,
X€Sh

where || • || is the norm in L2 = L2(Si) and || • ||s that in Hs = Hs(Si).

We consider first the semidiscrete problem of finding uk : [0, oo) —> Sk such
that

(tth,t,X) + A(uh,x)=  i K(t-s)B(uh(s),x)ds + (f(t),X),

(1.4) J°
VxeSh, t>0,

«a(0) = uoh,

where (•, •) is the inner product in L2 and A(-, •) and B(-, •) are the bilinear

forms on H¿ associated with the differential operators A and B , and where

u0h is an appropriate approximation in S h of the initial data in (1.1). We shall
show that, for each T > 0, we then have the error estimate

(1.5) \\uh(t) - » (OH < CTh2 |||mo||2 + J \\u,\\2ds\    for t < T.

We shall also consider the discretization in time of (1.4). Thus, let k be

a time step, and let U" e Sh be the approximation of the exact solution of
(1.1) at time /„ - nk . The time discretization considered will be based on the

backward difference quotient dtUn = (U" - U"~l)/k. The integral term then

has to be evaluated by numerical quadrature from the values of the U" , but

since the integrand is singular, even when the solution is smooth, we shall use

product integration: We shall approximate <f> in Jn(<t>) = /0'" K(t„ -s)<f>(s)ds

by the piecewise constant function taking the value cp(tj) in (tj, tj+x), and thus
use

n-l    .tj+t n-1

Jn(4>) « Qn(<f>) = Y K^" - 5Wj)«fr = 5Z Kn-j<Ktj) ,
j=0 Jti j=0

where

(1.6) Kj= f K(s)ds.
Jtj-i

Our completely discrete scheme is therefore

(dtUn,x) + A(U",X)

n-\

(1.7) =YKn-jB(Uj,x) + if{tn),x),    VxtSh, n>\,
7=0

U° = U0h.

For this completely discrete method we shall show

(1.8) ||C/" - if(f„)|| < CT(h2 + k)i\\uoh + J\\\u„\\ + \\ut\\2)ds\    for t < T.

Before we analyze these discrete methods, we shall discuss the existence and

regularity of the solution of ( 1.1 ) and show, in particular, that the regularity
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FINITE ELEMENT APPROXIMATION 589

required for the estimates (1.5) and (1.8) are satisfied under appropriate as-

sumptions on the data. In the case of a weakly singular kernel the regularity of
the solution with respect to time is limited, which makes higher-order quadra-

ture formulas less attractive, as well as quadratures based on the use of sparser

sets of time levels, such as those treated in [13] and [6].

2. AN EXISTENCE AND REGULARITY RESULT

In this section we shall study the existence and regularity of the solutions of
(1.1) and show, in particular, that the regularity required for the error estimates
(1.5) and (1.8) holds under appropriate assumptions on the data of (1.1).

We shall need the following version of Gronwall's lemma.

Lemma 1. Assume that y is a nonnegative function in Lx(0, T) which satisfies

(2.1) y(t)<b(t) + ß i (t-syay(s)ds  for 0 < t < T,
Jo

where b(t) > 0, ß > 0. Then there is a constant Cj such that

y(t) < b(t) + CT [ (t- s)-ab(s) ds   for t < T.
Jo

Proof. Let Kx(s) = ßs~a for 0 < 5 < T, and let Kx*f denote the convolution

(Kx*f)(t)= [ Kx(t-s)f(s)ds.
Jo

Recall that this is a bounded operator on Lx(0, T). With K¡ the kernel of the

i times iterated convolution, we have

Ki(s)<C(i,a)s^-a)-1,

and we easily see that K¡ * b(t) < CKX * b(t) for /' > 2. Hence, applying Kx*

to (2.1) i times in succession, we obtain

y(t)<b(t) + C(Kx*b)(t) + (Kj*y)(t).

For i( 1 - a) - 1 > 0, we have

(Ki*y)(t)<C fy(s)ds
Jo

and we can use the ordinary Gronwall lemma. Since

b(s)ds<C(Kx*b)(t),
Jo>o

this concludes the proof.   D

We shall also need the following lemma.

Lemma 2. Let K e Lx(0, T).  Then for each e > 0 there is a constant Ce

Q(\\K\\Li(o,t)) such that

rT

(2.2)
'o   jo
/    /   K(t-s)f(s)f(t)dsdt
Jo  Jo

[  f(t)2dt + Ce[   \K(T-t)\ff(s)2dsdt.
Jo Jo Jo
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590 C. CHEN, V. THOMEE, AND L. B. WAHLBIN

Proof. In this proof, let (•, •) and || • || denote the inner product and norm in

L2(0, T). We have, using the Cauchy-Schwarz inequality,

\(K *f)(t)\2 < Qf ' \K(s)\l'2\K(s)\l'2\f(t - s)\ds^j

<\\K\\LÁ0,T)f\K(s)\f2(t-s)ds.
Jo

Hence, integrating with respect to t and changing the order of integration, and

then changing variables,

\\K*f\\2<\\K\\Ld0,T)J   \K(s)\J  f2(t-s)dtds

= \\K\\Ll{0,T) ¡T\K(T-x)\ fTf2(o)dodx.
Jo Jo

Hence, for the left-hand side of (2.2),

\(K*f,f)\<\\K*f\\\\f\\<e\\f\\2 + j-e\\K*f\\2

<e\\f\\2 + ±\\K\\Ld0,T)Jo   \K(T-t)\jj(s)2dsdt,

which is the desired inequality.   □

The following is our main existence and regularity result.

Theorem 1. Assume that u0 e Hß n H¿, fe W([0, T];Hß-2) and f*ft e
1.00(0, T; H0~2) with ß > 2, 0 < 7 < 1. Then there exists a unique solu-

tion of (I A) in W([0, T];L2). Furthermore, u e W([Q, T}; H2 n H¿), ut e

W([0, T];L2)nLx(0,T;H2nH¿),  and utt e Lx(0, T; L2).

Proof. We shall use the procedure of Faedo-Galerkin. Let {<pj}f be the eigen-

functions of A . We first seek u" e <9*„ — span[<7Ji, ... , <p„] satisfying

u1 + Aun= Í K(t - s)P„Bu"(s)ds + P„f{t)   in Si, fori>0,

(13) un = 0   ondSi, t>0,

un(0) = Pnu0   in Si.

Here, P„ denotes the L2 projection into <5% . By standard arguments, cf., e.g.,

Linz [8], this system of ordinary integro-differential equations has a solution
un€ffl([0, 7Tjn?F2((0, 71).

We shall next derive a priori estimates for u" . We first show that, indepen-

dently of n,

(2.4) UT\\^WP2dtj     + UT \\uft\f dtj      <CTMß<y

for some p = p(a) > 1,
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FINITE ELEMENT APPROXIMATION 591

where

Mß>y = Mß,y(u0,f) = \\uo\\ß + \\f(0)\\ß-2 + sup(s>\\ft(s)\\ß_2).
s<t

Differentiating (2.3), we find that v" = u" satisfies

< + Avn = K(t)P„BPnu0

+ / K(t-s)P„Bvn(s)ds + Pnft(t)   in Si,  f >0,
Jo

(2.5) vn = 0   on dSi,     t>0,

vn(0) = - APnUo + P„f(0)   in Si.

We now define wJ = w"'J, j > 1, inductively by

wj+Awl =K(t)PnBPnu0 + Pnft(t)   in Si,  r>0,

wl =0,    ondSi, t>0,

wl(0) = -APnu0 + Pnf(0),

and then, for j >2,

wj+Awj= [ K(t-s)PnBwj-l(s)ds=Wj-i(t)   inSi, t>0,
Jo

wJ= 0   ondSi, t >0,

ii>J'(0) = 0   in Si.

Setting zJ= vn - J2J¡=X wl > we nn£l f°r J ^ 1

z{ + AzJ = / K(t - s)PnB(zj + wj)(s) ds
Jo

(2.6) = [ K(t- s)P„Bzj(s)ds + gj   in Si,  t > 0,
Jo

zJ= 0   ondSi, t >0,

z'(0) = 0   inQ.

We shall show below that, for any j > 1 and ô with 2 <d < ß, there is a

constant Cj = Cj(a, S) such that

(2.7) \\wJ(t)\\s < Cjrl+{ß-S)/2+u-m-a)MPtr

Assuming this for a moment, we conclude first that

(2.8) (/   \\wJ\\%dt J     <CjtTMß!y   forsomep> 1, j> 1.
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592 C. CHEN, V. THOMÉE, AND L. B. WAHLBIN

In order to bound z>, we first note that by (2.7)

||*i = |/ K(t-s)PnBwJ(s)ds
\\Jo

<C [ (t- s)-as-l+^-^{l-^dsMß y < CMß y   if   7(1 -a) > 1.
Jo

We now multiply (2.6) by 2Azj(t) and integrate to obtain

rT

\\Al'2zj(T)\\2 + 2 [   \\AzJ\\2dt
Jo

<C [   f(t-s)-a\\zJ(s)\\2\\zJ(t)\\2dsdt + C [   \\zJ\\2dsMß
Jo  Jo Jo0   Jo Jo

Hence, using Lemma 2 with e suitably chosen for the double integral, and the

Cauchy-Schwarz inequality for the last term, we have

2 /   \\zj\\22dt<CM¡ y+ [  \\zJ\\ldt + C í (T-tya [ \\zJ(s)\\22dsdt.
Jo '      Jo Jo Jo

Moving the second term on the right over to the left and using Lemma 1, we

conclude that

i   \\zJ\\2dt<CTM2y   for7(1 -a) > 1.
JO

In particular, the estimate for u" in (2.4) follows from this and (2.8).

It remains to show (2.7). For this purpose we first recall that the semigroup

E(t) generated by -A satisfies, for <fi e Hß with cp = 0 on dSi if p. > \ ,

(2.9) WE^cpll^CrC'-^WW,,    0<fi <v, p< 2.5.

(For p > 2.5, further boundary conditions have to be imposed on <p.)  We

have the representation

wl = - E(t)AP„u0 + E(t)Pnf(0) + / E(t-s)K(s)P„Bu0ds
Jo

+ [ E(t-s)Pnf(s)ds,
Jo

so that for S < ß (which we may clearly assume less than 2.5),

\\w% < Crl+^-^2(\\u0\\ß + 11/(0)11^2)

+ C [ (t - 5)-'+(/»-<5)/Va ds\\u0\\ß
Jo

+ C f(t - s)-^-0V2s-?(sy\\ft(s)\\ß-2) ds
Jo

<crl+(ß-äv2Mß,y.

We now proceed with a proof of (2.7) by induction for 7 > 2 and assume the
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result holds for 7 - 1. We note that then, for 2 < ô < ß,

WJ-Ht)\\s-2 < C f(t-s)-a\\wJ-l(s)\\sds
Jo

<Cy-i   /'\t - s)-°s-W-i)P+U-W-°) ds Mß y
Jo

Thus, by (2.9), if e < ô < ß, we obtain

\\wj(t)\\e = 11/ E(t-s)WJ-l(s)ds
\\J0 e

<C,_, fit-srW-Ms-W-QPHJ-W-^dsM. y
Jo

which completes the proof of (2.7), and thus of the estimate for the first term

in (2.4). Clearly, we then also have ||m"(í)||2 < C, and it follows easily from

(2.5) that the bound for unn in (2.4) is satisfied, and hence also that

(2.10) \\un(t)\\2 + \\unt(t)\\  <C   forO<t<T.

We next proceed with a limiting argument. Writing (1.1) in weak form, we
have

(unt , <pm) + A(un ,<ßm)= [ K{t -s)B(u", (¡>m)ds + {f{t), <f>m)   for m<n,
Jo

un(0) = Pnu0.

By (2.10), a subsequence u" converges weak* in Loo(0, T; H2), and we re-

fer to that limit as u. By (2.4) we may also assume that a (further) subse-

quence u" converges weakly in Lp(0,T;H2). Since u" converges to ut in
the distribution sense, the weak limit is ut also in Lp(0, T; H2). In particular,

u, € Lp(0, T;H2). Similarly, by (2.4) again, unu — u„ in Lp(0, T;L2). By

(2.10) we may further assume that (u" , <f>m), A(u" , (pm), and B(un , (bm) all

converge weak * in Loo(0, T), and the limits are (ut, </>m), A(u, tpm), and

B(u, (pm), respectively. Hence, for any y G Li(0, T) and m > 0,

f     (ut(t), <pm) + A(u(t), <t>m)

- [ K{t- s)B(u(s), <pm) ds - {fit), M
Jo

y/(t)dt = 0.

Since (ut, </>m) and (utl, </>m) both belong to Li(0, T), we have that (ut, tpm)

is actually continuous on [0,T]. One similarly sees that A(u,(bm) and B(u, <f>m)

are continuous. Hence, using the density of the <f>m , one obtains the weak form

of (1.1). Since u e L,(0, T; H2 n H¿) and ut € Lx(0, T; H2 n H¿) , we
have actually u e W([0, T] ;H2C\H¿). Similarly, ut € ^([0, T] ; L2), and one
concludes that (1.1) holds as an equation in W([0, T] ; L2).

This completes the proof of the theorem.   D
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To see that, in general, u,t blows up as t —> 0, consider the problem

ut + Au= / (t-s)~aAu(s)ds   in Si, fori>0,
Jo

u = 0   on dSi, for t >0,

u(0) = <p   in Si,

where <¡> is an eigenfunction of A corresponding to the eigenvalue X. Setting

u(x, t) = 4>(x)y(t), we have for the scalar function y

y' + Xy = X [ (t-s)~ay(s)ds   fori>0,
Jo

y(0) = i,

and hence

y"(t) = Xra - Xy'(t) + X [ (t - s)~ay'(s) ds.
Jo

Since y' € ^([0, T]), we conclude that, for this particular function, (cf. also

Miller and Feldstein [11])

\\utl\\~Xra   as/^0.

3. Discretization in space

In this section we shall derive the error estimate (1.5) stated in the introduc-

tion for the semidiscrete method (1.4).
For the analysis we introduce, following [1], the Ritz-Volterra projection Vh

defined for an appropriately smooth function u by

(3.1) A{{Vhu-u){t),X)= f K(t-s)B((Vhu-u)(s),x)ds,    V^e5A, t > 0.
Jo

We have the following error estimate:

Lemma 3. We have for the Ritz-Volterra projection

\\(Vhu-u)(t)\\ + h\\(VhU-u)(t)h

<C/*2SUP||M(5)||2<C/*2{||M0||2+   /   \\Ut\\2ds).
s<t I JO J

Proof. Let W = Vhu and p = W - u. We begin with an 7/1 estimate, and

introduce also the standard Ritz projection Rh defined by

A(Rhu-u,x) = 0,    VxeSh.

We recall that (see Ciarlet [2, (18.3) and (19.13)]), under the assumption (1.3),

\\Rnu - u\\ + h\\Rhu - i/||i < Ch2\\u\\2.

We have, using the definition of W, that, with c > 0,

c\\(W - Rhu)(t)\\2 <A(W-Rhu,W- Rhu) = A(p,W- Rhu)(t)

= [ K(t- s)B(p(s), (W - Rhu)(t)) ds
Jo

rl

10

<C||(^-ÄAM)(0||l   f(t-s)-a\\p(s)\\Xds
Jo
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and hence

\\p(t)h < C f(t - s)-°\\p{s)hds + \\{R„u - u)(t)\\x.
Jo

Lemma 1 now implies

\\p(t)\\x < CTsup\\(Rhu - u)(s)\\x < CThsup \\u(s)\\2.
s<t s<t

We next turn to the L2 estimate, which will be derived by a duality argument,

thus using

\\p(t)\\= sup(p(t),cf)).
11011=1

For each such 4> > we let ¥ De the solution of

Ay/ = (b   inSi,        y/ = 0   ondSi,

and recall that

(3.2) IH|2<C||0|| = C

Then, for ^ € 5/,,

(p(t), <p) = A(p, y/) = A(p, ip-x) + A(p,x)-

Here,

A(P,X)= ! K(t-s)B(p(s),x)ds
Jo

= í K(t-s)B(p(s),x-¥)ds+ Í K(t-s)(p(s),B*y/)ds,
Jo Jo

and hence, with x = RhV » using (3.2),

(p(t), <l>) < Csup \\p(s)\\x\\Rhw -wh + C f(t - sra\\p(s)\\ ds \\y,\\2
s<t JO

< C ih2 sup ||m(j)||2 + f\t - s)-a\\p(s)\\ ds) .
I       s<t Jo J

Thus,

11/7(011 < Ch2 sup ||m(í)||2 + C I {t - s)-a\\p{s)\\ds,
s<t Jo

which by Lemma 1 completes the proof of Lemma 3.   D

We shall also need the following estimate for the time derivative of the error

in the Ritz-Volterra projection.

Lemma 4. Under the assumptions of Lemma 3 we have, for p = Vhu-u,

j (\\Pt\\ + h\\pth) ds < Ch2 ¡\\u0\\2 + I  ||wr||2¿sj.

Proof. Writing (3.1) in the form

A(p(t), X) = f K(s)B(p(t -s),X)ds,    VX e Sh ,
Jo
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we obtain by differentiation

(3.3) A(pt(t), x) = K(t)B(p(0), x) + [ K(s)B(pt(t - s), X) ds.
Jo

We begin with the //' estimate. We have, for W = Vhu,

c\\Wt - Rhut\\\ < A(Wt - Rhut, Wt - Rhut)

= A(pt, Wt - Rhut) = K(t)B(p(0), Wt - RhUt)

+ / K(t-s)B(pt(s),Wt-Rhut)ds.
Jo

Hence,

[Wt-Rhut)(t)h < Cra\\p(0)h + C f(t-s)-a\\pt(s)\\xds
Jo

or

\\Pt(t)h < Cra\\p(0)\\x + \\{R„ut - ut)(t)\\x + C f\t - sYa\\pt(s)\\x ds
Jo

< Ch{ra\\u0\\2 + \\ut(t)\\2} + C f (t-s)-a\\p,{s)hds.
Jo

Thus by Lemma 1,

IMOIIi < Ch |rQ||Mo||2 + ||«,(i)||2 + j\t - s)-a\\ut(s)\\2 ds} ,

and finally

/ ||/>/||,</í<Ca(||mo||2+ / \\ut\\2ds + ¡  f(s-x)-a\\ut(x)\\2dxds\
Jo y Jo Jo Jo )

<Cä|||M0||2 + ^   ||M/||2rfí}.

We now turn to the L2 bound and write, with the notation of Lemma 3 and

using (3.3),

(p,(t), (f>) = A(p,(t), y/)

= A(pt(t),y/-x)+ [ K(t-s)[B(pt(t),y/-x) + (p,(s),B*y/)]ds
Jo

+ K(t)[B(p(0),y/-x) + (p(0),B*y/)].

With an appropriate choice of x we obtain that

\\Pt(t)\\ < Ch {lIMOIIi + ¡\t -s)-a\\Pt(s)\\x ds} + c/*2ra||Mo||2

+ c f\t-s)-a\\pt{s)\\ds,
JO

from which we conclude by Lemma 1 that

\\Pt(t)\\ < Ch {lIMOIIi + fit - s)-a\\Pt(s)\\xds} + Ch2r«\\u0\\2.
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After integration and using the H{ estimate already derived we have

f \\pt\\ ds < Ch f \\Pt(s)\\xds + Ch2\\uo\\2 < Ch2 |||«o||2 + J \\ut{s)\\2ds} ,

which thus completes the proof.   D

Theorem 2. Assume that «oa is chosen so that

II«o* -"oil < Ch2\\u0\\2.

Then for each T > 0 there is a constant Cj such that for the solutions o/(l.l)

and (1.4)

\\uh(t) - u(t)\\ < CTh2 i\\u0\\2 + I ||Mf||2</jJ    fort<T.

Proof. In a standard fashion we write

Uh - u = (un - Vhu) + (Vhu - u) = 6 + p.

Lemma 3 immediately gives the desired estimate for p, so it remains to bound

6.
We have directly from our definitions

(dt, x) + A{6 ,x)= f K(t - s)B(6(s) ,x)ds + (pt, X),    ^XeSh,

and hence, setting x = G,

,8)<C [
Jo

~M\2 + A(e,d)<c I (t-s)-a\\e(s)\\x\\d(t)hds + \\Pt\\\\e\\.
2dt

By integration this yields

rT

\\6(T)\\2+[   \\d\\2dt
Jo

<c\\\e(0)\\2+ f i\t-s)-^d(s)\\x\\d(t)\\xdsdt + c [T\\Pt\\\\e\\dt
Jo   Jo Jo10   Jo Jo

Using Lemma 2 with a suitable choice of e for the double integral, we thus

have

\\d(T)\\2+ [T\\d\\2dt
Jo

< c hd(0)\\2 + £ \\Pt\\ \\e\\ dt + J\t - t)~a f \\8(s)\\2 dsdtl.

By Lemma 1, therefore, we obtain the bound

l|0(r)||2 + £\\e\\2dt<cTl||0(O)||2 + j*\\Pt\\\\e\\dt\ ,

whence, using also Lemma 4, and noting that Vh (0) = Rh ,

l|0(r)||<cJ||i?(O)|| + jf\\pt\\d\

< CT I \\uoh - Rhuo\\ + h2 I ||wolb + /   ||"f II2 ds J \ .
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In view of our choice of «/,o this completes the proof of the desired estimate

for 6 , and thus of the theorem.   D

4. The completely discrete scheme

In this section we shall consider the completely discrete method (1.7).

In the next lemma we estimate a time-discrete Li(0, T; L2{Si)) type norm

of the quadrature error

en{4>) = YK"-Mti) - I   K{tn-s)cp{s)ds,
j=o Jo

where Kj is defined by (1.6).

Lemma 5. For each T>0 there is a constant Cj such that, if <frteLx{0,T;L2),
then

k Y W£n(4>)\\ <CTk i" \\<pt(s)\\ ds   for Nk < T.
Jon=\

Proof. By the definition of the Kj we have

*n{4>) = Y f'" W» - SKWj) - ^ dS >
7=0 JtJ

so that by (1.2), for each x e Si,

MM < Y r+l 1^» -^1 r+' \<t>M)\dods
j=0 J'j J'J

< CYßa,n-j /      \<pt(o)\do,
j=o Jh

where

(4.1) paJ= f s-ads = (l-arl{tj-a-tljl?).
Jtj-i

By integration in x and use of Minkowski's inequality this yields

\\en(<p)\\<cYf*«,»-j f+l Ht\\ds.
j=0 Jt>

Hence, by interchanging the orders of summation we find

/V .V—1       N i T

Y¥n(4>)\\<CY     É   ßa.n-j  [J+'\\<Pt\\ds<CT   Í  N\\cpt\\ds,
n=\ 7=0   »=7+1 JlJ J°

since

Y H*.n-j= fN~Js-ads<CT = (l-a)-lTl-a.

This completes the proof.   D

The following two lemmas are discrete analogues of Lemmas 1 and 2, and

are proved similarly to these.
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Lemma 6. Let paj be defined by (4.1) and assume that y„ > 0 and satisfies

n-\

yn<b„ + ßYPa,n-jyj   forn>0,

7=0

where bn > 0, ß > 0. Then for each T > 0 there is a constant Cj such that

n-l

yn<bn + CTYtl<*."-JbJ   f°r nk - T-
7=0

Lemma 7. Let K e Li(0, T), and let k¡ be defined by (1.6).   Then for each
e > 0 there is a constant Ce = CE(\\K\\L^0iT)) such that

N    n-l

7 ,   7 ,Kn-jfjfn
«=1   ;=0

N-l n-l

CT-<eYfn2 + CeY\K»-»\Efj
n=l n=0 7=0

The following error estimate is our main result of this section. Its proof will

require the inverse estimate

(4.2) \\xh<Ch-x\\x\\,    V*eSA.

Theorem 3. Assume that Sh satisfies (4.2) and that m0a is chosen so that

(4.3) ||"o*-"oll < A2||w0||2-

Thenfor each T > 0 there is a constant Cj such that for the solutions of '(1.7)

and (1.1)

lit/" - "(Mil < Cr(/*2 + fc) |||M0||2 + y "(HkiiII + ||wt||2)</í}    /^ t < T.

Proof. With Vf, the Ritz-Volterra projection introduced in (3.1), we write

U" - u(tn) = (Un - Vhu(tn)) + (Vhu(t„) - u(tn)) = 6" + p".

The term p" is estimated as desired by Lemma 3.  For 6" we have by our

definitions
n-l

(4.4) (dt6n , x) + A(6" ,X) = Y Kn-JB(9J - X) + (T„ , X),

7=0

where

- ^ /"'-
(tb, X) = (ut-dtVhu", x) + YKn-jB(VhUJ, X)- /   K(tn-s)B(Vhu(s),x)ds.

T~k Jo
7=0 J°

Defining Bh : Hi -* Sh by*o

(Bh<p,x) = B(cp,x),     V^e^A,

we may write

t„ = unt -d,Vhun + en(BhVhu).

We shall show by an energy argument that

(4.5) 110*11 <Cr(||0o|| + /c¿||T„||]     for Nk < T.
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Assuming this for a moment, we then write x„ = Y?i=x T« > where

x\ = unt-dtun,

x2n=dt(u"-Vhun) = -dtpn,

xl = en(Bhu),

x4„ = sn(Bhp).

We have at once

A JL r<- rf"
kYH\\<CkY        \\utt\\ds = Ck       \\utt\\ds,

n=l n=lJt-> J°

and, by Lemma 4,

^ JL r'* r'x
*X>5ll<E/    \\Pt\\ds =      \\Pt\\ds

n=\ n=\Jt«-i J°

< ch2 ̂ 12+fN\\ut\\2dSy

To estimate x\ , we note that when u is smooth, Bhu = PhBu and hence,

by Lemma 5,

N ft i

k Y llT«H <Ck i" \\PhBut\\ ds<Ck [" \\u,\\2 ds.
n=i Jo Jo

Using the inverse assumption (4.2), we have

(Bhp, X) = B(p,x) < C\\ph\\x\\i < Ch-'WphWxW,

so that

\\BhP\\<Ch-x\\p\\x.

Hence, for x* , we have by Lemmas 5 and 4,

kY\K\\<CTk T \\BhPt\\ds
n=l J°

< CTkh~l J " \\pt\\x ds < CTk i\\uoh + J " \\Uth ds\ .

Inserted into (4.5), these estimates show

110*11 < CT\\uoh - *a"o|| + CT(h2 + k) |||M0||2 + jf \\\utt\\ + ||w(||2) ds} .

In view of (4.3) this completes the proof.

It remains to show (4.5). For this we choose x = 8" m (4.4), which yields

¿Wll2 + ^||ô,0"||2 + A(6" ,6") = Y Kn-jB(6J, 6") + (xn , 6"),
7=0

whence

9t\\o"\\2 + \\en\\2x < c^.^-iie'-yaii + c||t„|| \\en\\,
7=0
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and, after summation,

N N    n-\

\\dN\\2 + kY\\n2i<\\e0\\2 + CkYY^n-j\\eJh\\9n\\x
n=l n=\   7=0

N

+ CkY\\*n\\\\0T
n=l

Using Lemma 7 with K(t) = Ct~a, we may conclude

N N

\\eN\\2+kY mi? < iiö°ii2 + ck y im im
n=l n=l

N-l I    n-l

+ CYPc,N-n[kYW\
n=0 \    7=0

In combination with Lemma 6, applied to v¿v = k 2^=1 ||0J||2, this shows

||0"||2 < CT h|0°||2 + kY IM 1101J     for Nk < T,

from which (4.5) follows.
This completes the proof.   D
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