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Abstract We consider a finite element approximation of a phase field model for the evolu-

tion of voids by surface diffusion in an electrically conducting solid. The phase field equa-

tions are given by the nonlinear degenerate parabolic system

γ
∂u

∂t
− ∇.(b(u)∇[w + αφ]) = 0, w = −γ�u + γ −1� ′(u), ∇.(c(u)∇φ) = 0

subject to an initial condition u0(·) ∈ [−1,1] on u and flux boundary conditions on all

three equations. Here γ ∈ R>0, α ∈ R≥0, � is a non-smooth double well potential, and

c(u) := 1 + u, b(u) := 1 − u2 are degenerate coefficients. On extending existing results for

the simplified two dimensional phase field model, we show stability bounds for our approxi-

mation and prove convergence, and hence existence of a solution to this nonlinear degenerate

parabolic system in three space dimensions. Furthermore, a new iterative scheme for solving

the resulting nonlinear discrete system is introduced and some numerical experiments are

presented.

Keywords Void electromigration · Surface diffusion · Phase field model · Degenerate

Cahn–Hilliard equation · Fourth order degenerate parabolic system · Finite elements ·

Convergence analysis · Multigrid methods

1 Introduction

In the recent paper [9], abbreviated to BNS throughout this paper, the authors proposed and

analysed a fully practical finite element approximation for a phase field model describing
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Fig. 1 A sketch of the domain

� ⊂ R
3

void electromigration. The authors restricted their model and their analysis to two spatial

dimensions. However, the presented phase field model immediately carries over to three

space dimensions, and it is the aim of this paper to extend their finite element approximation

and their analysis to this case. Further, we aim at providing a computational method suitable

for large scale three dimensional problems.

Let the domain � := (−L1,L1) × (−L2,L2) × (−L3,L3) in the shape of a rectangular

prism in R
d , d = 3, represent the interconnect line, with boundary ∂�. At any time t ∈

[0, T ], let the region occupied by the void be �−(t) ⊂⊂ � with boundary Ŵ(t). Then the

electric field in the conducting region, �+(t) := �\�−(t), is E = −∇φ, where the potential

φ at any time t ∈ [0, T ] satisfies

�φ = 0 in �+(t),
∂φ

∂νŴ(t)

= 0 on Ŵ(t), (1.1a)

∂φ

∂ν
= 0 on ∂0�, 2

∂φ

∂ν
+ φ = g± := x1 ± 2 on ∂±

φ �; (1.1b)

νŴ(t) being the unit normal to Ŵ(t) pointing into �−(t). In the above ∂� = ∂0� ∪ ∂φ�,

where ∂0� ∩ ∂φ� = ∅ and

∂φ� = ∂−
φ � ∪ ∂+

φ � with ∂±
φ � := {±L1} × [−L2,L2] × [−L3,L3],

and ν is the outward unit normal to ∂�; see the sketch in Fig. 1. Hence ∂0� is the insulated

boundary of �, whilst the Robin boundary conditions on the ends ∂±
φ � model a uniform

parallel electric field, φ ≈ x1 as L1 → ∞. The motion of the void boundary, Ŵ(t), then

evolves according to the law

V = −�s[α1κ − α2φ] on Ŵ(t), (1.2)

where V is the velocity of Ŵ(t) in the direction of νŴ(t), �s is the surface Laplacian, and κ is

the mean curvature of Ŵ(t) (positive where �−(t) is convex). Here α1 ∈ R>0 and α2 ∈ R≥0

are given parameters depending on the conductor. The first term on the right hand side of

(1.2) is surface diffusion due to interfacial tension, which models atoms moving around the

boundary to positions of large curvature; whereas the second term is surface diffusion due

to the electric field. The void electromigration model is then the coupled system (1.1a,b)

and (1.2). For further details on void electromigration we refer to BNS and the references

therein.

To our knowledge, the only numerical results on void electromigration in three space

dimensions in the current literature can be found in [34], where a direct approximation

of (1.1a,b) and (1.2) is considered. In addition, the authors very recently presented some

numerical simulations for the phase field model considered in this paper in [2]. The method
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in [34] involves the explicit tracking and meshing of the approximate void boundary, which

is given by a two dimensional hypersurface, approximating surface derivatives on it and the

remeshing of the approximation to �+(t) in order to approximate φ. This direct approach

breaks down at singularities, where there is a change in topology of the interface due to

either the break up or the coalescence of voids. In this paper we will consider a phase field

model of the original “sharp interface” void electromigration model (1.1a,b) and (1.2). The

advantage of a phase field method is that the interface is implicitly embedded and is not

tracked explicitly. Moreover, this approach can cope with the voids changing topology. This

represents a clear advantage over current computational methods for the sharp interface

problem, as these are not able to cope with topological changes of the solution. This limits

their use in complex practical situations, where topological changes have to be expected.

See Sect. 5 for several examples.

If α2 = 0, then the law of motion (1.2) simplifies to motion by surface diffusion. This

geometric evolution equation was originally proposed by Mullins, [28], as an evolution law

for a free surface enclosing a solid phase, which changes its shape due to the diffusion of

atoms along the surface. In the current literature, there exist two approaches to approximate

(1.2) with α2 = 0 in three space dimensions. Direct parametric approximations have been

studied in e.g. [3, 11, 26, 27], while level set approaches have been considered in e.g. [15,

33]. To our knowledge, there exist no phase field approximations of surface diffusion in three

space dimensions in the literature. For a recent overview on the approximation of geometric

evolution equations we refer to [16].

In this paper we consider a phase field model that, as the interfacial region’s thickness

goes to zero, describes the desired law of motion (1.2). We introduce the interfacial para-

meter γ ∈ R>0 and the conserved order parameter uγ (·, t) ∈ K := [−1,1] ⊂ R, where at

any time t ∈ [0, T ] uγ (·, t) = −1 denotes the void and uγ (·, t) = +1 denotes the conduc-

tor, while the void boundary is approximated by the uγ (·, t) = 0 contour surface inside the

|uγ (·, t)| < 1 interfacial region. We introduce also the chemical potential wγ (·, t) and the

electric potential φγ (·, t). The sharp interface model, (1.1a,b) and (1.2), is then approxi-

mated by the following nonlinear degenerate parabolic system:

(Pγ ) Find functions uγ : � × [0, T ] → K and wγ , φγ : � × [0, T ] → R such that

γ
∂uγ

∂t
− ∇.(b(uγ )∇[wγ + αφγ ]) = 0 in �T := � × (0, T ], (1.3a)

wγ = −γ�uγ + γ −1� ′(uγ ) in �T , where |uγ | < 1, (1.3b)

uγ (x,0) = u0
γ (x) ∈ K ∀x ∈ �, (1.3c)

∂uγ

∂ν
= b(uγ )

∂[wγ + αφγ ]

∂ν
= 0 on ∂� × (0, T ], (1.3d)

∇.(c(uγ )∇φγ ) = 0 in �T , (1.3e)

c(uγ )
∂φγ

∂ν
= 0 on ∂0� × (0, T ], c(uγ )

∂φγ

∂ν
+ φγ = g± on ∂±

φ � × (0, T ]. (1.3f)

In (1.3a–f), γ > 0 and α ≥ 0 are given constants and

�(s) :=

⎧
⎨
⎩

1

2

(
1 − s2

)
if s ∈ K,

∞ if s �∈ K,
(1.4)
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is an obstacle free energy which restricts uγ (·, ·) ∈ K. In addition, we define the degenerate

diffusion coefficients

c(s) := 1 + s, b(s) := 1 − s2 = c(s)c(−s) ∀s ∈ K. (1.5)

If α = 0, then (1.3a–d) collapses to (Qγ ), the degenerate Cahn–Hilliard equation. Exis-

tence of a solution to (Qγ ), which is a fourth order degenerate parabolic equation for uγ , can

be found in [17]. Moreover, it is shown in [14] by using the techniques of formal asymptotic

expansions that the zero level sets of uγ , the solution to (Qγ ) for a fixed γ > 0, converge as

γ → 0 to an interface, Ŵ(t), evolving according to the geometric motion (1.2) with α1 = π2

16

and α2 = 0. Furthermore, on the zero level sets of uγ the chemical potential wγ tends to

− π
4
κ , where κ is the mean curvature, here defined to be the sum of the two principal cur-

vatures, of the limiting interface Ŵ(t). It is a straightforward matter to extend the technique

of formal asymptotic expansions in [14] for (Qγ ) to (Pγ ) and one obtains that the zero level

sets of uγ , the solution to (Pγ ) for a fixed γ > 0, converge as γ → 0 to an interface, Ŵ(t),

evolving according to the modified motion

V = −
π

4
�s

[
π

4
κ − αφ

]
on Ŵ(t), (1.6)

i.e. (1.2) with α1 = π2

16
and α2 = πα

4
; see [29] for details. Hence the limiting sharp interface

motion of (Pγ ) is the void electromigration model, (1.1a,b) and (1.2), for a suitable choice

of α and on rescaling time. We remark that for both (Pγ ) and (Qγ ) the formal asymptotics

yield that the interface thickness is approximately γπ .

We should stress that the numerical analysis of nonlinear degenerate parabolic equations

of fourth order, e.g. (Pγ ) and (Qγ ), in multiple space dimensions was made feasible only

very recently, when Grün, [22], proved convergence in space dimensions d = 2 and 3 of a

finite element approximation to the thin film equation. E.g. the convergence results for ap-

proximations of degenerate Cahn–Hilliard systems in [4, 6, 7] are all restricted to one space

dimension. However, in BNS the authors adapted the techniques in [6, 7, 22] to propose

and prove convergence of a finite element approximation of (Pγ ) for d = 2. It is the aim

of this paper to extend this analysis to three space dimensions. In doing so, we will prove

for a fixed γ > 0 that the solutions of a finite element approximation of (Pγ ) converge, as

h → 0, to a weak solution of the problem (Pγ ). Of course, given that (Pγ ) is a phase field

model for the original sharp interface problem (1.1a,b) and (1.2), the ultimate goal would be

to show convergence of the discrete solutions to the sharp interface solutions as γ,h → 0.

To our knowledge, the only result in this direction in the literature can be found in [18],

where the authors show such a convergence for the finite element solutions of the nondegen-

erate Cahn–Hilliard equation, i.e. (Qγ ) with b(u) = 1 and a smooth double well potential � ,

to the corresponding sharp interface limit, the so-called Hele–Shaw problem. For the more

complicated degenerate systems (Pγ ) and (Qγ ) this remains an open problem.

We now recall some formal energy estimates from BNS that motivate the convergence

analysis in Sect. 3. As the analysis in this paper is for a fixed γ , for the remainder of this

paper we drop the γ subscripts in (Pγ ) for notational convenience. First, we relate F to c

and G to b by the identities

c(s)F ′′(s) = 1 and b(s)G′′(s) = 1. (1.7)
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Then testing (1.3e) with φ yields that

∫

�

c(u)|∇φ|2 dx +
1

2

∫

∂φ�

φ2 ds ≤
1

2

∫

∂φ�

g2 ds, (1.8)

where g := g± ≡ ±(2 + L1) on ∂±
φ �. Testing (1.3e) with F ′(u) and noting (1.7) and (1.8)

yields that

∣∣∣∣
∫

�

∇φ.∇udx

∣∣∣∣=
∣∣∣∣
∫

�

c(u)∇φ.∇[F ′(u)]dx

∣∣∣∣≤ 2

[∫

∂φ�

g2ds

] 1
2
[∫

∂φ�

[F ′(u)]2ds

] 1
2

. (1.9)

Testing (1.3a) with w and (1.3b) with ∂u
∂t

, combining and noting (1.5) and (1.8) yields that

d

dt

∫

�

[
1

2
γ |∇u|2 + γ −1�(u)

]
dx +

1

2
γ −1

∫

�

b(u)|∇w|2dx

≤
1

2
α2γ −1

∫

�

b(u)|∇φ|2dx ≤ α2γ −1

∫

�

c(u)|∇φ|2dx

≤
1

2
α2γ −1

∫

∂φ�

g2ds. (1.10)

Testing (1.3a) with G′(u) and (1.3b) with −�u, combining and noting (1.7), (1.4) and (1.9)

yields that

γ
d

dt

∫

�

G(u)dx + γ

∫

�

|�u|2dx

≤

∫

�

∇(γ −1u − αφ).∇udx

≤ γ −1

∫

�

|∇u|2dx + 2α

[∫

∂φ�

g2ds

] 1
2
[∫

∂φ�

[F ′(u)]2ds

] 1
2

. (1.11)

From (1.11) and (1.10) one can formally show that u ∈ L2(0, T ;H 2(�)) if u(·,0) ∈ K,

and hence u(·, t) ∈ C0, 1
2 (�) for almost all t ∈ (0, T ). We stress that these estimates are

merely formal, and in particular a regularization procedure is needed to make the derivation

rigorous. But they serve as a motivation for the procedure in the discrete case, where the

analogue to (1.11), see (2.27) below, will play a crucial role in establishing that the limiting

solutions are continuous, see e.g. (3.10d) below. To this end, and following BNS, we will

introduce a finite element approximation of (P) that is consistent with the energy estimates

(1.8)–(1.11).

This paper is organised as follows. In Sect. 2 we formulate a fully practical finite element

approximation of the degenerate system (P) and derive discrete analogues of the energy

estimates (1.8)–(1.11). In Sect. 3 we prove convergence, and hence existence of a solution

to the system (P) in three space dimensions. In Sect. 4 we describe a new iterative scheme

for solving the nonlinear discrete system for the approximations of u and w at each time

level. The method is based on the “Uzawa type” iterative solver in [21], and as it uses

multigrid solvers for the relevant subproblems, it is superior to the standard block “Gauss–

Seidel type” iterative scheme considered in BNS. Finally, in Sect. 5 we present numerous

numerical experiments.
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Notation and Auxiliary Results

For D ⊂ R
d , d = 2, 3, we adopt the standard notation for Sobolev spaces, denoting the norm

of Wm,q(D) (m ∈ N, q ∈ [1,∞]) by ‖ · ‖m,q,D and the semi-norm by | · |m,q,D . We extend

these norms and semi-norms in the natural way to the corresponding spaces of vector and

matrix valued functions. For q = 2, Wm,2(D) will be denoted by Hm(D) with the associated

norm and semi-norm written as, respectively, ‖·‖m,D and | · |m,D . For notational convenience,

we drop the domain subscript on the above norms and semi-norms in the case D ≡ �.

Throughout (·, ·) denotes the standard L2 inner product over �. In addition we define
∫
−η :=

1
m(�)

(η,1) for all η ∈ L1(�).

For later purposes, we recall the following compactness results. Let X, Y and Z be Ba-

nach spaces with a compact embedding X →֒ Y and a continuous embedding Y →֒ Z. Then

the embeddings

{
η ∈ L2(0, T ;X) :

∂η

∂t
∈ L2(0, T ;Z)

}
→֒ L2(0, T ;Y ) (1.12a)

and
{
η ∈ L∞(0, T ;X) :

∂η

∂t
∈ L2(0, T ;Z)

}
→֒ C([0, T ];Y ) (1.12b)

are compact, see [32].

It is convenient to introduce the “inverse Laplacian” operator G : Y → Z such that

(∇[Gz],∇η) = 〈z, η〉 ∀η ∈ H 1(�), (1.13)

where Y := {z ∈ (H 1(�))′ : 〈z,1〉 = 0} and Z := {z ∈ H 1(�) : (z,1) = 0}. Here and

throughout 〈·, ·〉 denotes the duality pairing between (H 1(�))′ and H 1(�).

Throughout C denotes a generic constant independent of h, τ and ε; the mesh and tem-

poral discretization parameters and the regularization parameter. In addition C(a1, . . . , aI )

denotes a constant depending on the arguments {ai}
I
i=1. Furthermore ·(⋆) denotes an expres-

sion with or without the superscript ⋆. Finally, we define for any s ∈ R

[s]− := min{s,0}, [s]+ := max{s,0}, [s]K := max{−1,min{s,1}}. (1.14)

2 Finite Element Approximation

We consider the finite element approximation of (P) under the following assumptions on the

mesh:

(A) Let � be a rectangular prism shaped domain. Let {T h}h>0 be a quasi-uniform fam-

ily of partitionings of � into disjoint open simplices σ with hσ := diam(σ ) and

h := maxσ∈T h hσ , so that � =
⋃

σ∈T h σ . In addition, it is assumed that all simplices

σ ∈ T h are generic right-angled simplices, i.e. that all tetrahedra have two vertices at

which two edges intersect at right angles.

We note that a cube is easily partitioned into such tetrahedra, see e.g. [13, Fig. 2]. We note

furthermore that the right angle constraint on the partitioning is required for our approxima-

tions of b(·) and c(·), see (2.8a,b) and (2.5a,b) below.
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Associated with T h is the finite element space

Sh := {χ ∈ C(�) : χ |σ is linear ∀σ ∈ T
h} ⊂ H 1(�).

We introduce also

Kh := {χ ∈ Sh : |χ | ≤ 1 in �} ⊂ K := {η ∈ H 1(�) : |η| ≤ 1 a.e. in �}.

Let J be the set of nodes of T h and {pj }j∈J the coordinates of these nodes. Let {χj }j∈J

be the standard basis functions for Sh; that is χj ∈ Sh and χj (pi) = δij for all i, j ∈ J . We

introduce πh : C(�) → Sh, the interpolation operator, such that (πhη)(pj ) = η(pj ) for all

j ∈ J . A discrete semi-inner product on C(�) is then defined by

(η1, η2)
h :=

∫

�

πh(η1(x)η2(x))dx =
∑

j∈J

mjη1(pj )η2(pj ), (2.1)

where mj := (1, χj ) > 0. The induced discrete semi-norm is then |η|h := [(η, η)h]
1
2 , where

η ∈ C(�).

On recalling (1.5) and (1.7), we then define functions F and G such that

c(u)∇[F ′(u)] = ∇u and b(u)∇[G′(u)] = ∇u; that is,

F ′′(s) =
1

c(s)
=

1

1 + s
and G′′(s) =

1

b(s)
=

1

c(s)c(−s)
=

1

1 − s2
. (2.2)

We take F,G ∈ C∞(−1,1), such that

F(s) = (1 + s) log

(
1 + s

2

)
+ (1 − s) and G(s) =

1

2
[F(s) + F(−s)]; (2.3)

and, for computational purposes, we replace F,G for any ε ∈ (0,1) by the regularized func-

tions Fε,Gε : R → R such that

Fε(s) :=

{
F(ε − 1) + (s − ε + 1)F ′(ε − 1) + (s−ε+1)2

2
F ′′(ε − 1) s ≤ ε − 1

F(s) s ≥ ε − 1
,

Gε(s) :=
1

2
[Fε(s) + Fε(−s)].

(2.4)

Similarly to the approach in BNS, we introduce �ε : Sh → [L∞(�)]3×3 such that for all

zh ∈ Sh and a.e. in �

�ε(z
h) is symmetric and positive semi-definite, (2.5a)

�ε(z
h)∇πh[F ′

ε(z
h)] = ∇zh. (2.5b)

We now give the construction of �ε , which is the natural extension of the construction

given in BNS for d = 2. Let {ei}
3
i=1 be the orthonormal vectors in R

3, such that the j th

component of ei is δij , i, j = 1 → 3. Given non-zero constants βi , i = 1 → 3; let σ̂ ({βi}
3
i=1)

be the reference open simplex in R
3 with vertices {p̂i}

3
i=0, where p̂0 is the origin and p̂i =

p̂i−1 + βiei , i = 1 → 3. Given a σ ∈ T h with vertices {pji }
3
i=0, such that pj0

is not a right-

angled vertex, then there exists a rotation matrix Rσ and non-zero constants {βi}
3
i=1 such
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that the mapping Rσ : x̂ ∈ R
3 → pj0

+ Rσ x̂ ∈ R
3 maps the vertex p̂i to pji , i = 0 → 3, and

hence σ̂ ≡ σ̂ ({βi}
3
i=1) to σ . For any zh ∈ Sh, we then set

�ε(z
h) |σ := Rσ �̂ε(ẑ

h) |σ̂ RT
σ , (2.6)

where ẑh(x̂) ≡ zh(Rσ x̂) for all x̂ ∈ �̂σ and �̂ε(ẑ
h) |σ̂ is the 3 × 3 diagonal matrix with diag-

onal entries, k = 1 → 3,

[�̂ε(ẑ
h) |σ̂ ]kk :=

⎧
⎨
⎩

ẑh(p̂k)−ẑh(p̂k−1)

F ′
ε(ẑ

h(p̂k))−F ′
ε(ẑ

h(p̂k−1))
≡

zh(pjk
)−zh(pjk−1

)

F ′
ε(z

h(pjk
))−F ′

ε(z
h(pjk−1

))
if zh(pjk ) �= zh(pjk−1

),

1

F ′′
ε (ẑh(p̂k))

≡ 1

F ′′
ε (zh(pjk

))
if zh(pjk ) = zh(pjk−1

).

(2.7)

As RT
σ ≡ R−1

σ , ∇zh ≡ Rσ ∇̂ ẑh, where x ≡ (x1, x2, x3)
T , ∇ ≡ ( ∂

∂x1
, ∂

∂x2
, ∂

∂x3
)T , x̂ ≡ (x̂1, x̂2,

x̂3)
T and ∇̂ ≡ ( ∂

∂x̂1
, ∂

∂x̂2
, ∂

∂x̂3
)T , it easily follows that �ε(z

h) constructed in (2.6) and (2.7)

satisfies (2.5a,b). It is this construction that requires the right angle constraint on the par-

titioning T h. In a similar fashion we introduce �ε : Sh → [L∞(�)]3×3 such that for all

zh ∈ Sh and a.e. in �

�ε(z
h) is symmetric and positive semi-definite, (2.8a)

�ε(z
h)∇πh[G′

ε(z
h)] = ∇zh. (2.8b)

We can directly extend the construction (2.6)–(2.7) for �ε to �ε .

In addition to T h, let 0 = t0 < t1 < · · · < tN−1 < tN = T be a partitioning of [0, T ] into

possibly variable time steps τn := tn − tn−1, n = 1 → N . We set τ := maxn=1→N τn. For any

given ε ∈ (0,1), we then consider the following fully practical finite element approximation

of (P):

(P h,τ
ε ) For n ≥ 1 find {�n

ε ,U
n
ε ,W n

ε } ∈ Sh × Kh × Sh such that

(�ε(U
n−1
ε )∇�n

ε ,∇χ) +

∫

∂φ�

(�n
ε − g)χds = 0 ∀χ ∈ Sh, (2.9a)

γ

(
Un

ε − Un−1
ε

τn

, χ

)h

+ (�ε(U
n−1
ε )∇[W n

ε + α�n
ε ],∇χ) = 0 ∀χ ∈ Sh, (2.9b)

γ (∇Un
ε ,∇[χ − Un

ε ]) ≥ (W n
ε + γ −1Un−1

ε , χ − Un
ε )h ∀χ ∈ Kh, (2.9c)

where g as in (1.8) and U 0
ε ∈ Kh is an approximation of u0 ∈ K , e.g. U 0

ε ≡ πhu0 if u0 ∈

C(�).

Below we recall some well-known results concerning Sh for any σ ∈ T h, χ, zh ∈ Sh,

m ∈ {0,1}, p ∈ [1,∞] and q ∈ (3,∞]:

|χ |1,σ ≤ Ch−1
σ |χ |0,σ ; (2.10)

|χ |m,r,σ ≤ Ch
−3( 1

p − 1
r )

σ |χ |m,p,σ for any r ∈ [p,∞]; (2.11)

|(I − πh)η|m ≤ Ch2−m|η|2 ∀η ∈ H 2(�); (2.12)

|(I − πh)η|m,q ≤ Ch1−m|η|1,q ∀η ∈ W 1,q(�); (2.13)
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∫

σ

χ2dx ≤

∫

σ

πh[χ2]dx ≤ 5

∫

σ

χ2dx; (2.14)

|(χ, zh) − (χ, zh)h| ≤ |(I − πh)(χzh)|0,1 ≤ Ch1+m|χ |m|zh|1. (2.15)

We introduce the “discrete Laplacian” operator �h : Sh → Zh := {zh ∈ Sh : (zh,1) = 0}

such that

(�hzh, χ)h = −(∇zh,∇χ) ∀χ ∈ Sh. (2.16)

We note for future reference, as we have a quasi-uniform family of partitionings and as � is

convex, that for all zh ∈ Sh

|zh|1,s ≤ C|�hzh|0, for any s ∈ (1,6]; (2.17)

see for example [8, Lemma 3.1].

Following BNS, we introduce for all ε ∈ (0,1) the regularized functions cε : K → [ε,2]

and bε : K → [ε(2 − ε),1] defined, on recalling (2.2), (2.4) and (1.14), by

cε(s) := [c(s) − ε]+ + ε =
1

F ′′
ε (s)

≥
1

F ′′(s)
= c(s), (2.18a)

bε(s) := 2
cε(s)cε(−s)

cε(s) + cε(−s)
=

1

G′′
ε(s)

≥
1

G′′(s)
= b(s). (2.18b)

Then the following three lemmas hold, see BNS for their proofs, which immediately

carry over to three space dimensions and the construction (2.6), (2.7).

Lemma 2.1 Let the assumptions (A) hold. Then for any given ε ∈ (0,1) the functions

�ε,�ε : Sh → [L∞(�)]3×3 satisfy for all zh ∈ Kh, ξ ∈ R
3 and for all σ ∈ T h

εξT ξ ≤ min
x∈σ

cε(z
h(x))ξT ξ ≤ ξT �ε(z

h) |σ ξ ≤ max
x∈σ

cε(z
h(x))ξT ξ ≤ 2ξT ξ, (2.19a)

ε(2 − ε)ξT ξ ≤ min
x∈σ

bε(z
h(x))ξT ξ ≤ ξT �ε(z

h) |σ ξ ≤ max
x∈σ

bε(z
h(x))ξT ξ ≤ ξT ξ, (2.19b)

ξT �ε(z
h) |σ ξ ≤ 2ξT �ε(z

h) |σ ξ. (2.19c)

Lemma 2.2 Let the assumptions (A) hold and let ‖ · ‖ denote the spectral norm on

R
3×3. Then for any given ε ∈ (0,1) the functions �ε : Sh → [L∞(�)]3×3 and �ε : Sh →

[L∞(�)]3×3 are such that for all zh ∈ Kh and for all σ ∈ T h

max
x∈σ

‖{�ε(z
h) − cε(z

h)I}(x)‖ ≤ hσ |∇[cε(z
h)]|0,∞,σ ≤ hσ |∇zh |σ |, (2.20a)

max
x∈σ

‖{�ε(z
h) − bε(z

h)I}(x)‖ ≤ hσ |∇[bε(z
h)]|0,∞,σ ≤ 2hσ |∇zh |σ |, (2.20b)

where I is the 3 × 3 identity matrix.

Lemma 2.3 Let the assumptions (A) hold and Un−1
ε ∈ Kh. Then for all ε ∈ (0,1) and for all

h, τn > 0 there exists a solution {�n
ε ,U

n
ε ,W n

ε } to the n-th step of (Ph,τ
ε ) with

∫
−Un

ε =
∫
−Un−1

ε .

{�n
ε ,U

n
ε } is unique. In addition, W n

ε is unique if there exists j ∈ J such that Un
ε (pj ) ∈

(−1,1). Moreover, it holds that

(�ε(U
n−1
ε )∇�n

ε ,∇�n
ε ) +

1

2
|�n

ε |
2
0,∂φ� ≤

1

2
|g|20,∂φ�, (2.21)



J Sci Comput

|(∇�n
ε ,∇Un−1

ε )| ≤ 2|g|0,∂φ�|πh[F ′
ε(U

n−1
ε )]|0,∂φ� (2.22)

and

E(Un
ε ) +

1

2

[
γ |Un

ε − Un−1
ε |21 + γ −1|Un

ε − Un−1
ε |2h

]

+
1

2
γ −1τn|[�ε(U

n−1
ε )]

1
2 ∇W n

ε |20 ≤ E(Un−1
ε ) +

1

2
α2γ −1τn|g|20,∂φ�, (2.23a)

where

E(Un
ε ) :=

1

2
[γ |Un

ε |21 − γ −1|Un
ε |2h]. (2.23b)

Furthermore, it holds that

γ (Gε(U
n
ε ) − Gε(U

n−1
ε ),1)h + γ τn|�

hUn
ε |2h ≤ ε−1γ |Un

ε − Un−1
ε |2h

+ τn(∇W n
ε ,∇[Un

ε − Un−1
ε ]) + τn(∇[γ −1Un

ε − α�n
ε ],∇Un−1

ε ). (2.24)

Remark 2.1 We note that (2.21)–(2.24) are the discrete analogues of the energy estimates

(1.8)–(1.11), respectively.

We can now establish that the approximation (2.9a–c) is unconditionally stable.

Theorem 2.1 Let the assumptions (A) hold and U 0
ε ∈ Kh. Then for all ε ∈ (0,1), h > 0 and

for all time partitions {τn}
N
n=1, the solution {�n

ε ,U
n
ε ,W n

ε }N
n=1 to (Ph,τ

ε ) is such that
∫
−Un

ε =∫
−U 0

ε , n = 1 → N , and

γ max
n=1→N

‖Un
ε ‖2

1 +

N∑

n=1

[
γ |Un

ε − Un−1
ε |21 + γ −1|Un

ε − Un−1
ε |20

]

+ γ −1

N∑

n=1

τn|[�ε(U
n−1
ε )]

1
2 ∇W n

ε |20 ≤ C
[
γ ‖U 0

ε ‖2
1 + γ −1(1 + T |g|20,∂φ�)

]
. (2.25)

In addition

γ

N∑

n=1

τn

∣∣∣∣G
[

Un
ε − Un−1

ε

τn

]∣∣∣∣
2

1

+ γ τ− 1
2

N∑

n=1

|Un
ε − Un−1

ε |20

≤ C
[
γ ‖U 0

ε ‖2
1 + γ −1(1 + T |g|20,∂φ�)

]
(2.26)

and

γ max
n=1→N

(Gε(U
n
ε ),1)h + γ

N∑

n=1

τn|�
hUn

ε |2h

≤ γ (Gε(U
0
ε ),1)h + α2

N∑

n=1

τn|π
h[F ′

ε(U
n−1
ε )]|20,∂φ�

+ C(T )[1 + γ −2 + ε−1τ
1
2 ]
[
γ ‖U 0

ε ‖2
1 + γ −1(1 + T |g|20,∂φ�)

]
. (2.27)
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Proof The proof is the same as for Theorem 2.6 in BNS. We repeat it here for the reader’s

convenience. Summing (2.23a) from n = 1 → k yields for any k ≤ N that

E(U k
ε ) +

1

2

k∑

n=1

[
γ |Un

ε − Un−1
ε |21 + γ −1|Un

ε − Un−1
ε |2h

]

+
1

2
γ −1

k∑

n=1

τn|[�ε(U
n−1
ε )]

1
2 ∇W n

ε |20 ≤ E(U 0
ε ) +

1

2
α2γ −1tk|g|20,∂φ�. (2.28)

The desired result (2.25) then follows from (2.28), (2.23b), (2.1), (2.14) and the fact that

Un
ε ∈ Kh, n = 0 → N .

In order to show (2.26), we introduce the L2 projection Qh : L2(�) → Sh defined by

(Qhη,χ)h = (η,χ) ∀χ ∈ Sh.

Then, from (1.13), (2.9b), (2.19b,c) and assumption (A) we obtain for any η ∈ H 1(�) that

γ

(
∇G

[
Un

ε − Un−1
ε

τn

]
,∇η

)
= γ

(
Un

ε − Un−1
ε

τn

, η

)
= γ

(
Un

ε − Un−1
ε

τn

,Qhη

)h

= −(�ε(U
n−1
ε )∇[W n

ε + α�n
ε ],∇[Qhη])

≤
[
|[�ε(U

n−1
ε )]

1
2 ∇W n

ε |0 + α|[�ε(U
n−1
ε )]

1
2 ∇�n

ε |0

]
|Qhη|1

≤ C
[
|[�ε(U

n−1
ε )]

1
2 ∇W n

ε |0 + α|[�ε(U
n−1
ε )]

1
2 ∇�n

ε |0

]
|η|1.

(2.29)

The first bound in (2.26) then follows from (2.29), (2.21) and (2.25). Moreover, we have

from (1.13) that

N∑

n=1

|Un
ε − Un−1

ε |20 ≤ τ
1
2

[
N∑

n=1

|Un
ε − Un−1

ε |21

] 1
2
[

N∑

n=1

τn

∣∣G[Un−1
ε τn]

∣∣2
1

] 1
2

.

The second bound in (2.26) then follows from the first and (2.25).

Finally, summing (2.24) from n = 1 → k and noting (2.1), (2.14) and (2.19b) yields for

any k ≤ N that

γ (Gε(U
k
ε ),1)h + γ

k∑

n=1

τn|�
hUn

ε |2h ≤ γ (Gε(U
0
ε ),1)h

+

k∑

n=1

[
4ε−1γ |Un

ε − Un−1
ε |20 + ατn|(∇�n

ε ,∇Un−1
ε )|

]
+ γ −1tk max

n=0→k
‖Un

ε ‖2
1

+

[
ε−1

k∑

n=1

τn|[�ε(U
n−1
ε )]

1
2 ∇W n

ε |20

] 1
2
[

k∑

n=1

τn|U
n
ε − Un−1

ε |21

] 1
2

. (2.30)

The desired result (2.27) then follows from (2.30), (2.22), (2.25) and (2.26). �
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Lemma 2.4 Let u0 ∈ K ∩ W 1,p(�), with p > 3, and let the assumptions (A) hold. On

choosing U 0
ε ≡ πhu0 it follows that U 0

ε ∈ Kh is such that for all h > 0

‖U 0
ε ‖2

1 + (Gε(U
0
ε ),1)h ≤ C. (2.31)

Proof The desired result (2.31) follows immediately from (2.13), (2.4) and (2.3). �

Remark 2.2 In Sect. 5, we will also consider computations for the following approximation

to (P).

(̃Ph,τ ) For n ≥ 1 find{�n
ε ,U

n
ε ,W n

ε } ∈ Sh × Kh × Sh such that

(c(Un−1
ε )∇�n

ε ,∇χ) +

∫

∂φ�

(�n
ε − g)χds = 0 ∀χ ∈ Sh, (2.32a)

γ

(
Un

ε − Un−1
ε

τn

, χ

)h

+ (πh[b(Un−1
ε )]∇[W n

ε + α�n
ε ],∇χ) = 0 ∀χ ∈ Sh, (2.32b)

γ (∇Un
ε ,∇[χ − Un

ε ]) ≥ (W n
ε + γ −1Un−1

ε , χ − Un
ε )h ∀χ ∈ Kh. (2.32c)

Note that for α = 0, (2.32b,c) collapses to an approximation of (Q) similar to the one consid-

ered in [5]. Note also that the solutions no longer depend on ε. As (2.32a,b) are now degen-

erate, existence of a solution {�n
ε ,U

n
ε ,W n

ε } to (̃Ph,τ ) does not appear to be trivial. However,

this can easily be established by splitting the nodes into passive and active sets, see e.g.

[6]. Moreover, one can show that Un
ε is unique, �n

ε (pj ) is unique if (c(Un−1
ε ),χj ) > 0 and

W n
ε (pj ) is unique if (πh[b(Un−1

ε )], χj ) > 0. Furthermore, one can establish analogues of

the energy estimates (2.25) and (2.26). Of course, for (̃Ph,τ ) it does not appear possible to

establish an analogue of the key energy estimate (2.27) that will be crucial for the conver-

gence analysis in Sect. 3. The practical advantage of (̃Ph,τ ) is, that now one needs to solve

for �n
ε just in the conductor and interfacial regions, Un−1

ε > −1, and for {Un
ε ,W n

ε } just in

the interfacial region, |Un−1
ε | < 1.

3 Convergence

Let

Uε(t) :=
t − tn−1

τn

Un
ε +

tn − t

τn

Un−1
ε t ∈ [tn−1, tn], n ≥ 1, (3.1a)

U+
ε (t) := Un

ε , U−
ε (t) := Un−1

ε t ∈ (tn−1, tn], n ≥ 1. (3.1b)

We note for future reference that

Uε − U±
ε = (t − t±n )

∂Uε

∂t
t ∈ (tn−1, tn), n ≥ 1, (3.2)

where t+n := tn and t−n := tn−1. We introduce also

τ̄ (t) := τn t ∈ (tn−1, tn], n ≥ 1. (3.3)
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Using the above notation, and introducing analogous notation for W+
ε and �+

ε , (Ph,τ
ε ) can be

restated as: Find {�+
ε ,Uε,W

+
ε } ∈ L∞(0, T ;Sh) × C([0, T ];Kh) × L∞(0, T ;Sh) such that

for all χ ∈ L∞(0, T ;Sh) and zh ∈ L∞(0, T ;Kh)

∫ T

0

(�ε(U
−
ε )∇�+

ε ,∇χ)dt +

∫ T

0

∫

∂φ�

(�+
ε − g)χdsdt = 0, (3.4a)

∫ T

0

[
γ

(
∂Uε

∂t
,χ

)h

+ (�ε(U
−
ε )∇[W+

ε + α�+
ε ],∇χ)

]
dt = 0, (3.4b)

γ

∫ T

0

(∇U+
ε ,∇[zh − U+

ε ])dt ≥

∫ T

0

(W+
ε + γ −1U−

ε , zh − U+
ε )hdt. (3.4c)

Lemma 3.1 Let u0 ∈ K ∩W 1,p(�), p > 3, with
∫
−u0 ∈ (−1,1). Let {T h,U 0

ε , {τn}
N
n=1, ε}h>0

be such that � and {T h}h>0 fulfill assumption (A), ε ∈ (0,1) with ε → 0 as h → 0 and

τn ≤ Cτn−1 ≤ Cε2, n = 2 → N . Then there exist a subsequence of {�+
ε ,Uε,W

+
ε }h, where

{�+
ε ,Uε,W

+
ε } solve (Ph,τ

ε ), and a function

u ∈ L∞(0, T ;K) ∩ H 1(0, T ; (H 1(�))′) (3.5)

with u(·,0) = u0(·) in L2(�) and
∫
−u(·, t) =

∫
−u0 for a.a. t ∈ (0, T ), such that as h → 0

Uε,U
±
ε → u weak-∗ in L∞(0, T ;H 1(�)), (3.6a)

G
∂Uε

∂t
→ G

∂u

∂t
weakly in L2(0, T ;H 1(�)), (3.6b)

Uε,U
±
ε → u strongly in L2(0, T ;Ls(�)), (3.7a)

�ε(U
−
ε ) → b(u)I, �ε(U

−
ε ) → c(u)I strongly in L2(0, T ;Ls(�)), (3.7b)

for all s ∈ [2,6]. If in addition u0 ∈ H 2(�) with ∂u0

∂ν
= 0 on ∂� and

α2

∫ T

0

|πh[F ′
ε(U

−
ε )]|20,∂φ�dt ≤ C, (3.8)

then u in addition to (3.5) satisfies

u ∈ L2(0, T ;H 2(�)) (3.9)

and there exists a subsequence of {�+
ε ,Uε,W

+
ε }h satisfying (3.6a,b), (3.7a,b) and as h → 0

�hUε,�
hU±

ε → �u weakly in L2(�T ), (3.10a)

Uε,U
±
ε → u weakly in L2(0, T ;W 1,s(�)), for any s ∈ [2,6], (3.10b)

Uε,U
±
ε → u strongly in L2(0, T ;C0,β(�)), for any β ∈

(
0,

1

2

)
. (3.10c)

Finally, on extracting a further subsequence, it holds for a.a. t ∈ (0, T ) that

U±
ε (·, t) → u(·, t) strongly in C0,β(�) as h → 0. (3.10d)
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Proof The proof largely follows the proof of Lemma 3.1 in BNS. Noting the definitions

(3.1a,b), (3.3), the bounds in (2.21), (2.25) and (2.26) together with a Poincaré inequality

and (2.31) imply that

‖[�ε(U
−
ε )]

1
2 ∇�+

ε ‖2
L2(�T )

+ ‖�+
ε ‖2

L2(0,T ;L2(∂φ�))
+ ‖U (±)

ε ‖2
L∞(0,T ;H 1(�))

+

∥∥∥∥τ̄
1
2
∂Uε

∂t

∥∥∥∥
2

L2(0,T ;H 1(�))

+ ‖[�ε(U
−
ε )]

1
2 ∇W+

ε ‖2
L2(�T )

+

∥∥∥∥G
∂Uε

∂t

∥∥∥∥
2

L2(0,T ;H 1(�))

+ τ− 1
2

∥∥∥∥τ̄
1
2
∂Uε

∂t

∥∥∥∥
2

L2(�T )

≤ C. (3.11)

Furthermore, it follows from (3.2) and (3.11) that

‖Uε − U±
ε ‖2

L2(0,T ;H 1(�))
≤

∥∥∥∥τ̄
∂Uε

∂t

∥∥∥∥
2

L2(0,T ;H 1(�))

≤ Cτ. (3.12)

Hence, on noting (3.11), (3.12), Uε(·, t) ∈ Kh, and (1.12a) we can choose a subsequence

{�+
ε ,Uε,W

+
ε }h such that the convergence results (3.5), (3.6a,b) and (3.7a) hold. Moreover,

(3.5) and Theorem 2.1 yield, on noting (1.12b) and (2.13) that the subsequence satisfies the

additional initial and integral conditions.

We now consider the first result in (3.7b). It holds that

‖b(u)I − �ε(U
−
ε )‖L2(0,T ;Ls (�)) ≤ ‖b(u) − b(U−

ε )‖L2(0,T ;Ls (�))

+ ‖b(U−
ε ) − bε(U

−
ε )‖L2(0,T ;Ls (�)) + ‖bε(U

−
ε )I − �ε(U

−
ε )‖L2(0,T ;Ls (�)). (3.13)

Noting the Lipschitz continuity of b on K, (2.20b), (2.11) and (3.11), we have that

‖b(u) − b(U−
ε )‖L2(0,T ;Ls (�)) + ‖bε(U

−
ε )I − �ε(U

−
ε )‖L2(0,T ;Ls (�))

≤ 2‖u − U−
ε ‖L2(0,T ;Ls (�)) + Ch( 3

s − 1
2
)‖∇U−

ε ‖L2(�T )

≤ 2‖u − U−
ε ‖L2(0,T ;Ls (�)) + Ch( 3

s − 1
2
). (3.14)

It follows from (2.18b) and (1.5) that

‖b(U−
ε ) − bε(U

−
ε )‖L2(0,T ;Ls (�)) ≤ Cbε(1) ≤ Cε. (3.15)

Combining (3.13), (3.14), (3.15) and noting (3.7a) and our assumptions on ε yields the

desired first result (3.7b). A similar argument to the above yields the second result in (3.7b).

We now prove the results (3.10a–c). It follows from (2.1), (2.14), (2.16), (2.12), our

assumptions on u0 and (2.10) that

|�hU 0
ε |20 = |�h(πhu0)|20 ≤ |�h(πhu0)|2h = −(∇(πhu0),∇(�h(πhu0)))

= −(∇u0,∇(�h(πhu0))) + (∇(I − πh)u0,∇(�h(πhu0)))

≤ |�u0|0|�
h(πhu0)|0 + Ch|u0|2|∇(�h(πhu0))|0 ≤ C|u0|22 ≤ C. (3.16)

Moreover, (2.27), (2.31), (3.16), (2.1), (2.14), (3.1a,b) and our assumptions on {τn}
N
n=1 yield

that

‖�hU (±)
ε ‖L2(�T ) ≤ C. (3.17)



J Sci Comput

From (3.17), (2.16), (2.13), (2.15), (3.11) and (3.6a) we have for any η ∈ L2(0, T ; W 1,q(�)),

q > 3, that

∫ T

0

(�hU (±)
ε , η)dt =

∫ T

0

(�hU (±)
ε , (I − πh)η)dt

+

∫ T

0

[
(�hU (±)

ε ,πhη) − (�hU (±)
ε ,πhη)h

]
dt

+

∫ T

0

(∇U (±)
ε ,∇(I − πh)η)dt −

∫ T

0

(∇U (±)
ε ,∇η)dt

→ −

∫ T

0

(∇u,∇η)dt as h → 0. (3.18)

Combining (3.17), (3.18) and the denseness of L2(0, T ;W 1,q(�)) in L2(�T ) yields (3.10a)

and, in particular, �u ∈ L2(�T ). This together with elliptic regularity, as � is a prism,

and (3.5) proves (3.9). Furthermore, it follows from (3.10a) and (2.17) that (3.10b) holds

on extracting a further subsequence. In addition, the result on Uε in (3.10c) follows from

(3.10b), (3.6b), (1.12a) and the compact embedding W 1,s(�) →֒ C0,β(�).

We now establish (3.10c) for U±
ε , using a technique from [10]. For any β ∈ (0, 1

2
),

s ∈ ( 3
1−β

,6] and any s̄ ∈ ( 3
1−β

, s) it holds on noting the compact embedding W 1,s̄(�) →֒

C0,β(�), (3.12) and (3.10b) that

‖Uε − U±
ε ‖L2(0,T ;C0,β (�))

≤ ‖Uε − U±
ε ‖L2(0,T ;W1,s̄ (�))

≤ ‖Uε − U±
ε ‖

q

L2(0,T ;H 1(�))
‖Uε − U±

ε ‖
1−q

L2(0,T ;W1,s (�))
≤ Cτ

q
2 , (3.19)

where q = 2(s−s̄)

(s−2)s̄
∈ (0,1). Combining (3.19), assumption (ii) and the established result on

Uε in (3.10c) yields the desired result on U±
ε in (3.10c). Finally, the desired result (3.10d)

follows immediately from (3.10c). �

Remark 3.1 We note that the necessary assumption (3.8) trivially holds if α = 0. Moreover,

when α > 0 it holds if e.g. Uε(x, t) = 1 for all x ∈ ∂φ� and t ∈ [0, T ], and this condition held

in all our numerical experiments provided u0 = 1 on ∂φ� and either L1 is chosen sufficiently

large or T is chosen sufficiently small. This can be made rigorous for the approximation

(̃Ph,τ ), see Remark 2.2, as the degeneracy in (2.32b) leads to finite speed of propagation of

the numerical interfacial region; at each time level it can move locally at most one mesh

point, see [6]. We note furthermore that in order to establish the result on U±
ε in (3.10c), we

did not have to assume a uniform time step size. This is an improvement on the result derived

in BNS. The same holds true for our main convergence result, see Theorem 3.1 below.

From (3.11), (2.19a,b), (2.18a,b), (1.5) and (3.10d) we see that we can control ∇�+
ε and

∇W+
ε on the sets where �ε(U

−
ε ) and �ε(U

−
ε ) are bounded below independently of ε, and

hence h, i.e. on the sets where u > −1 and |u| < 1, respectively. It is therefore possible to

prove convergence of the terms �ε(U
−
ε )∇�+

ε , �ε(U
−
ε )∇�+

ε and �ε(U
−
ε )∇W+

ε in (3.4a–c)

to their respective expected limits.
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Lemma 3.2 Let all the assumptions of Lemma 3.1 hold. Then for a.a. t ∈ (0, T ) there exist

functions

φ(·, t) ∈ H 1
loc({u(·, t) > −1}),

w(·, t) ≡ −γ�u(·, t) − γ −1u(·, t) ∈ H 1
loc({|u(·, t)| < 1});

(3.20)

where {u(·, t) > −1} := {x ∈ � : u(x, t) > −1} and {|u(·, t)| < 1} := {x ∈ � : |u(x, t)| < 1}.

Moreover, on assuming that

u(x, t) = 1 ∀x ∈ ∂φ�, for a.a. t ∈ (0, T ), (3.21)

and extracting a further subsequence from the subsequence {�+
ε ,Uε,W

+
ε }h in Lemma 3.1,

it holds as h → 0 that

�+
ε → φ weakly in L2(0, T ;L2(∂φ�)), (3.22a)

�ε(U
−
ε )∇�+

ε → H{u>−1}c(u)∇φ weakly in L2(�T ), (3.22b)

�ε(U
−
ε )∇�+

ε → H{|u|<1}b(u)∇φ weakly in L2(�T ), (3.22c)

�ε(U
−
ε )∇W+

ε → H{|u|<1}b(u)∇w weakly in L2(�T ); (3.22d)

where H{u>−1} and H{|u|<1} are the characteristic functions of the sets {u > −1} := {(x, t) ∈

�T : u(x, t) > −1} and {|u| < 1} := {(x, t) ∈ �T : |u(x, t)| < 1}, respectively.

Proof See the proof of Lemma 3.4 in BNS, which immediately carries over to three space

dimensions. �

Theorem 3.1 Let the assumptions of Lemma 3.2 hold. Then there exists a subsequence of

{�+
ε ,Uε,W

+
ε }h, where {�+

ε ,Uε,W
+
ε } solve (Ph,τ

ε ), and functions {φ,u,w} satisfying (3.5),

(3.9) and (3.20). In addition, as h → 0 the following hold: (3.6a,b), (3.7a,b), (3.10a–d) and

(3.22a–d). Furthermore, we have that {φ,u,w} fulfill u(·,0) = u0(·) in L2(�) and satisfy

for all η ∈ L2(0, T ;H 1(�))

∫

{u>−1}

c(u)∇φ.∇ηdxdt +

∫ T

0

∫

∂φ�

(φ − g)ηdsdt = 0, (3.23a)

γ

∫ T

0

〈
∂u

∂t
, η

〉
dt +

∫

{|u|<1}

b(u)∇ [w + αφ] .∇ηdxdt = 0; (3.23b)

where w(·, t) ≡ −γ�u(·, t) − γ −1u(·, t) on the set {|u(·, t)| < 1} for a.a. t ∈ (0, T ).

Proof The proof is a straightforward adaption of the proof to Theorem 3.6 in BNS to three

space dimensions. As we will later appeal to a density argument, we choose χ ≡ πhη in

(3.4a,b) for a η ∈ H 1(0, T ;H 2(�)) and analyse the subsequent terms. It follows from (2.15),

the embedding H 1(0, T ;X) →֒ C([0, T ];X), (3.11) and (2.12) that

∣∣∣∣∣

∫ T

0

[(
∂Uε

∂t
,πhη

)h

−

(
∂Uε

∂t
,πhη

)]
dt

∣∣∣∣∣
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=

∣∣∣∣∣−
∫ T

0

(
Uε,

∂(πhη)

∂t

)h

dt + (Uε(·, T ),πhη(·, T ))h − (Uε(·,0),πhη(·,0))h

+

∫ T

0

(
Uε,

∂(πhη)

∂t

)
dt − (Uε(·, T ),πhη(·, T )) + (Uε(·,0),πhη(·,0))

∣∣∣∣∣

≤ Ch‖Uε‖L∞(0,T ;L2(�))‖π
hη‖H 1(0,T ;H 1(�)) ≤ Ch‖η‖H 1(0,T ;H 2(�)). (3.24)

Moreover, combining (1.13), (3.11) and (2.12) yields that

∣∣∣∣
∫ T

0

(
∂Uε

∂t
, (I − πh)η

)
dt

∣∣∣∣≤ C‖G
∂Uε

∂t
‖L2(0,T ;H 1(�))‖(I − πh)η‖L2(0,T ;H 1(�))

≤ Ch‖η‖L2(0,T ;H 2(�)). (3.25)

Hence it follows from (3.24), (3.25) and (3.6b) that

∫ T

0

(
∂Uε

∂t
,πhη

)h

dt →

∫ T

0

〈
∂u

∂t
, η

〉
dt as h → 0. (3.26)

In addition, it holds on noting (3.11), g as in (1.8), a trace inequality and (2.12) that

∣∣∣∣∣

∫ T

0

∫

∂φ�

(�+
ε − g)(I − πh)ηdsdt

∣∣∣∣∣

≤
[
‖�+

ε ‖L2(0,T ;L2(∂φ�)) + ‖g‖L2(0,T ;L2(∂φ�))

]
‖(I − πh)η‖L2(0,T ;L2(∂φ�))

≤ C‖(I − πh)η‖L2(0,T ;H 1(�)) ≤ Ch‖η‖L2(0,T ;H 2(�)). (3.27)

In view of (2.19a–c), (3.11) and (2.12) we deduce that

∣∣∣∣
∫ T

0

(�ε(U
−
ε )∇W+

ε ,∇(I − πh)η)dt

∣∣∣∣

≤ ‖�ε(U
−
ε )∇W+

ε ‖L2(�T )‖(I − πh)η‖L2(0,T ;H 1(�))

≤ ‖[�ε(U
−
ε )]

1
2 ∇W+

ε ‖L2(�T )‖(I − πh)η‖L2(0,T ;H 1(�))

≤ Ch‖η‖L2(0,T ;H 2(�)) (3.28a)

and similarly

∣∣∣∣
∫ T

0

(�ε(U
−
ε )∇�+

ε ,∇(I − πh)η)dt

∣∣∣∣+
∣∣∣∣
∫ T

0

(�ε(U
−
ε )∇�+

ε ,∇(I − πh)η)dt

∣∣∣∣

≤ C‖(I − πh)η‖L2(0,T ;H 1(�)) ≤ Ch‖η‖L2(0,T ;H 2(�)). (3.28b)

Combining (3.28a,b) and (3.22b–d) yields that as h → 0

∫ T

0

(�ε(U
−
ε )∇�+

ε ,∇(πhη))dt →

∫

{u>−1}

c(u)∇φ.∇ηdxdt, (3.29a)
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∫ T

0

(�ε(U
−
ε )∇�+

ε ,∇(πhη))dt →

∫

{|u|<1}

b(u)∇φ.∇ηdxdt, (3.29b)

∫ T

0

(�ε(U
−
ε )∇W+

ε ,∇(πhη))dt →

∫

{|u|<1}

b(u)∇w.∇ηdxdt. (3.29c)

Finally, it follows from (3.4a,b), (3.26), (3.27), (3.22a), (3.29a–c) and the denseness of

H 1(0, T ; H 2(�)) in L2(0, T ;H 1(�)) that the desired results (3.23a,b) hold, on recalling

(3.5) and (3.20). �

4 Solution of the Discrete System

We now discuss algorithms for solving the resulting system of algebraic equations for

{�n
ε ,U

n
ε ,W n

ε } arising at each time level from the approximation (Ph,τ
ε ).

As (2.9a) in (Ph,τ
ε ) is independent of {Un

ε ,W n
ε }, we solve it first to obtain �n

ε ; then solve

(2.9b,c) for {Un
ε ,W n

ε }. The solution of (2.9a) is straightforward, as it is a linear equation.

Adopting the obvious notation, the system (2.9b,c) can be rewritten as: Find {Un
ε ,W

n
ε } ∈

KJ × R
J , where J := #J , such that

γMUn
ε + τnA

n−1W n
ε = r (4.1a)

γ (V − Un
ε )

T BUn
ε − (V − Un

ε )
T MW n

ε ≥ (V − Un
ε )

T s ∀V ∈ K
J , (4.1b)

where M,B and An−1 are symmetric J ×J matrices with entries

Mij := (χi, χj )
h, Bij := (∇χi,∇χj ), An−1

ij := (�ε(U
n−1
ε )∇χi,∇χj )

and

r := γMUn−1
ε − ατnA

n−1�n
ε ∈ R

J , s := γ −1MUn−1
ε ∈ R

J .

In this paper, we will consider two solutions methods for the above system of algebraic

equations: a block Gauss–Seidel scheme from BNS and a Uzawa-multigrid method based

on the solver in [21]. However, we note that very recently in [1] the authors proposed a fully

nonlinear multigrid method that can be directly applied to (4.1a,b).

4.1 Block Gauss–Seidel Scheme

We recall the following block “Gauss–Seidel type” iterative method to solve (2.9b,c) from

BNS. On letting An−1 ≡ AD − AL − AT
L , with AL and AD being the lower triangular and

diagonal parts of the matrix An−1, similarly for B , the method can be formulated as follows.

Given {Un,0
ε ,W n,0

ε } ∈ Kh × Sh, for k ≥ 1 find {Un,k
ε ,W n,k

ε } ∈ Kh × Sh such that

γMUn,k
ε + τn(AD − AL)W n,k

ε = r + τnA
T
LW n,k−1

ε (4.2a)

(V − Un,k
ε )T (γ (BD − BL)Un,k

ε − MW n,k
ε ) ≥ (V − Un,k

ε )T (s + γBT
L Un,k−1

ε ) ∀V ∈ K
J .

(4.2b)

It is possible to prove convergence of the iterative method (4.1a,b) to the solution of the

nonlinear system (2.9b,c), see Theorem 4.1 in BNS.
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Remark 4.1 We note that (4.2a,b) can be solved explicitly for j = 1 → J . In particular, let

r̂ := r + τn(ALW n,k
ε +AT

LW n,k−1
ε ) and ŝ := s + γ (BLUn,k

ε +BT
L Un,k−1

ε ). Then, for |An−1
jj | >

0, on recalling (1.14), we set for j = 1 → J

[Un,k
ε ]j =

[
Mjj r̂j + τnA

n−1
jj ŝj

γ [Mjj ]2 + τnγAn−1
jj Bjj

]

K

and [W n,k
ε ]j =

r̂j − γMjj [U
n,k
ε ]j

τnA
n−1
jj

. (4.3)

Remark 4.2 For the approximation (̃Ph,τ ), see Remark 2.2, we have that An−1
jj = 0 for j ∈

Jdeg := {j ∈ J : πh[b(Un−1
ε )] ≡ 0 on supp(χj )}. For those j , one needs to replace (4.3) with

[Un,k
ε ]j = [Un−1

ε ]j and [W n,k
ε ]j can be chosen arbitrarily, where for computational purposes

we set [W n,k
ε ]j = [W n−1

ε ]j .

4.2 Uzawa-Multigrid Algorithm

Uzawa-type algorithms are widely used for the solution of saddle point problems which

arise in the constrained minimization of convex functionals or in the discretization of Stokes

problems, see e.g. [19] for more details. Very recently, a Uzawa-type iterative solver for a

finite element discretization of the Cahn–Hilliard equation with constant mobility, i.e. (Qγ )

with b(s) ≡ 1, has been proposed in [21]. They consider a discrete saddle point problem

that is equivalent to the discrete constrained minimization problem formulation introduced

in [12]. The authors in [21] then propose a preconditioned Uzawa-type algorithm as an

efficient solution method for the introduced saddle point problem. Here we will adopt these

ideas in order to introduce new iterative schemes for the solution of our approximations

(2.9b,c) and (2.32b,c) to the degenerate Cahn–Hilliard equation in (Pγ ).

For a given time step n, a preconditioned Uzawa iteration for the system (4.1a,b) can be

formulated as follows, see e.g. [20].

Given W n,0
ε ∈ Sh, for k ≥ 1 find {Un,k

ε ,W n,k
ε } ∈ Kh × Sh such that

γ (V − Un,k
ε )T BUn,k

ε ≥ (V − Un,k
ε )T s + (V − Un,k

ε )T MW n,k−1
ε ∀V ∈ K

J , (4.4a)

W n,k
ε = W n,k−1

ε + S−1
(
−γMUn,k

ε − τnA
n−1W n,k−1

ε + r
)
; (4.4b)

where S : R
J → R

J is a suitably chosen preconditioner.

We follow [21] for the choice of the preconditioner S. It is motivated by the fact that once

we know the solution Un
ε on the coincidence set

Ĵ (Un
ε ) =

{
j ∈ J :

∣∣∣
[
Un

ε

]
j

∣∣∣= 1
}

,

the problem (4.1a,b) is reduced to a linear system of the form

(
γ B̂(Un

ε ) −M̂(Un
ε )

γM τnA
n−1

)(
Un

ε

W n
ε

)
=

(
ŝ(Un

ε )

r

)
. (4.5)

Here, the matrices B̂ , M̂ and the right hand side ŝ depend only on the coincidence set Ĵ (Un
ε )

and the values of Un
ε on it, and are given by

B̂ij =

{
δij i ∈ Ĵ

Bij else,
M̂ij =

{
0 i ∈ Ĵ

Mij else,
j ∈ J, (4.6a)
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and

ŝi =

{
γ [Un

ε ]i i ∈ Ĵ

si else.
(4.6b)

Applying a Schur complement approach, the system (4.5) can be reduced to S(Un
ε )W

n
ε =

−MB̂(Un
ε )

−1ŝ(Un
ε ) + r , where S(Un

ε ) = MB̂(Un
ε )

−1M̂(Un
ε ) + τnA

n−1 is the Schur comple-

ment of (4.5).

As S(Un
ε ) is unknown in practice, we approximate the solution Un

ε with the solution Un,k
ε

from the first Uzawa step (4.4a), and then use the preconditioner

S = S(Un,k
ε ) = MB̂(Un,k

ε )−1M̂(Un,k
ε ) + τnA

n−1

in the second Uzawa step (4.4b). With this choice of preconditioner, on noting that (4.4a)

implies that γ B̂(Un,k
ε )Un,k

ε − M̂(Un,k
ε )W n,k−1

ε = ŝ(Un,k
ε ), the iteration (4.4a,b) can be equiv-

alently formulated as

γ (V − Un,k
ε )T BUn,k

ε ≥ (V − Un,k
ε )T s + (V − Un,k

ε )T MW n,k−1
ε ∀V ∈ K

J , (4.7a)

W n,k
ε = S(Un,k

ε )−1
(
−MB̂(Un,k

ε )−1ŝ(Un,k
ε ) + r

)
. (4.7b)

We note that apart from the structure of the matrix An−1, our approach (4.7a,b) differs from

the one in [21], in that there a term of the form γ (χi,1)(χj ,1) is added to the matrix B

in order to better control the mass constraint (Un
ε ,1)h = (U 0

ε ,1)h. However, in practice we

observed no disadvantages when using (4.7a,b).

4.2.1 Solution of the Subproblems

As (4.7a) is independent of W n,k
ε , we first solve it to obtain Un,k

ε ; then solve (4.7b) for W n,k
ε .

Solving (4.7a) requires the solution of an elliptic variational inequality with a double obsta-

cle. This can be solved by a projected Gauss–Seidel method (PGS) for obstacle problems,

i.e. a scalar analogue of the block iteration (4.2a,b), or by a monotone multigrid method

(MMG), see [23]. In the second sub-step, (4.7b), of the Uzawa iteration only the coinci-

dence set Ĵ k ≡ Ĵ (Un,k
ε ) and the values of Un,k

ε on Ĵ k are needed in order to compute W n,k
ε .

Hence, we can stop the iteration for (4.7a) after the coincidence set Ĵ k is detected. This

usually requires only a few iterations of either PGS or MMG.

Solving (4.7b) is equivalent to solving the linear system

(
γ B̂(Un,k

ε ) −M̂(Un,k
ε )

γM τnA
n−1

)(
Ũ k

W n,k
ε

)
=

(
ŝ(Un,k

ε )

r

)
(4.8)

with an auxiliary variable Ũ k , which has fixed values Ũ k = Un,k
ε on Ĵ k . Here B̂ , M̂ and ŝ

are defined analogously to (4.6a,b). As (4.8) is linear, it would be desirable to solve it with

a multigrid method. Therefore, we transform (4.8) to the following symmetric system.

(
γ 2B̃ −γ M̂(Un,k

ε )

−γ M̂(Un,k
ε ) −τnA

n−1

)(
Ũ k

W n,k
ε

)
=

(
γ s̃

−r̃

)
. (4.9)
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Here the symmetric matrix B̃ is defined as

B̃ij =

{
δij i ∈ Ĵ k or j ∈ Ĵ k

B̂ij (U
n,k
ε ) else,

while the modified right hand sides r̃ and s̃ are defined as

s̃i =

{
ŝi(U

n,k
ε ) − γ

∑
j∈Ĵ k B̂ij

[
Un,k

ε

]
j

i /∈ Ĵ k

ŝj (U
n,k
ε ) else,

r̃i =

{
ri − γMii

[
Un,k

ε

]
i

i ∈ Ĵ k

ri else.

The system (4.9) can be solved by a multigrid method for linear symmetric saddle point

problems, see e.g. [31], where convergence for a multigrid method employing a Jacobi

smoother is shown. Moreover, the convergence of a large class of block Gauss–Seidel

smoothers for saddle-point problems arising from the discretizations of Stokes and Navier–

Stokes equations has recently been shown in [25]. We solved the system (4.9) by a multigrid

method with block Gauss–Seidel smoother and canonical restriction and prolongation. Our

smoother is the linear analogue of the algorithm (4.2a,b), i.e. the variational inequality (4.2b)

is replaced by an equality. As the restrictions of the diagonal matrix M̂ to the lower grid lev-

els are no longer diagonal, the smoother for the lower grids is appropriately modified. We

note that the symmetric structure of (4.9) is crucial for the convergence of the multigrid

solver.

Remark 4.3 When using the approximation (̃Ph,τ ), the system (4.9) is modified as follows,

as now the matrix An−1 can have zero entries on the diagonal, see Remark 4.2. Therefore,

we will adapt (4.9) slightly, in order to be able to apply a standard smoother in the multigrid

solver. To this end, the first step (4.7a) is modified in such a way, that [Un,k
ε ]i = [Un−1

ε ]i for

all i ∈ Jdeg , recall Remark 4.2. This is a very natural modification, as we know that [Un
ε ]i =

[Un−1
ε ]i for all i ∈ Jdeg . Moreover, on noting Remark 3.1, this ensures that Jdeg ⊂ Ĵ k . This

allows us to equivalently formulate (4.9) as

(
γ 2B̃ −γ M̂

−γ M̂ −τnA
n−1
deg

)(
Ũ k

W̃ k

)
=

(
γ s̃

−r̃deg

)
, (4.10)

with another auxiliary variable W̃ k , which has fixed values [W̃ k]j = [W n−1
ε ]j for j ∈ Jdeg .

Here the matrix An−1
deg is defined as

[An−1
deg ]ij =

{
δij i ∈ Jdeg or j ∈ Jdeg

An−1
ij else.

The modified right-hand side r̃deg is defined as

[̃rdeg]j =

{
τn

[
W n−1

ε

]
j

j ∈ Jdeg

r̃j else,

where we note that An−1
ij = 0 if i ∈ Jdeg or j ∈ Jdeg . The new matrix An−1

deg has only positive

diagonal entries, and so the system (4.10) can be solved in the same way as (4.9), i.e. with

a multigrid solver for linear symmetric saddle point problems with a standard block Gauss–

Seidel smoother. Naturally, we set W n,k
ε := W̃ k .
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Finally, we note that alternatively, one could employ a suitably adapted smoother directly

for the system (4.9), with the matrix An−1 being singular, see e.g. [1].

The full Uzawa-multigrid algorithm for solving (4.1a,b) can then be summarized as fol-

lows.

1. Initialization: Start with the initial guess Un,0
ε = Un−1

ε , set Ĵ 0 = Ĵ (Un,0
ε ) and compute

W n,0
ε by solving the system (4.9) with coincidence set Ĵ 0.

2. Uzawa iterations: for k = 1, . . . do

• Compute the approximate coincidence set Ĵ k = Ĵ (Un,k
ε ), where Un,k

ε is obtained from

(4.7a) by PGS or MMG (here the iterations are terminated as soon as the coincidence

sets for two successive PGS/MMG iterates are the same).

• If Ĵ k = Ĵ k−1 go to step 3.

• Solve the system (4.9) by the multigrid method with block Gauss–Seidel smoother to

obtain W n,k
ε .

• If maxj∈J |[W n,k
ε ]j − [W n,k−1

ε ]j | < tol, with tol being the prescribed tolerance, go to

step 3.

3. Uzawa iterations have converged: Compute Un,k+1
ε up to the desired accuracy from (4.7a)

using W n,k
ε .

4. Set Un
ε = Un,k+1

ε , W n
ε = W n,k

ε .

5 Numerical Results

In order to define the initial shape of the void we introduce the following function. Given

z ∈ R
3, a ∈ R

3 with min{a1, a2, a3} = 1 and R ∈ R>0 we define

v(z, a,R;x) :=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1 r(z, a;x) − R ≤ −
γπ

2

sin

(
r(z, a;x) − R

γ

)
|r(z, a;x) − R| <

γπ

2

1 r(z, a;x) − R ≥
γπ

2
,

(5.1)

where (r(z, a;x) − R) denotes a suitable distance function for a ball with radius R, a prism

with dimensions a1R ×a2R ×a3R, or a cylinder with elliptical base with semi-axis a1R and

a2R, respectively. E.g. r(z, a;x) ≡ rb(z;x) := [
∑3

i=1(xi − zi)
2]

1
2 for a ball and r(z, a;x) ≡

rc(z, a;x) := [
∑2

i=1(
xi−zi

ai
)2]

1
2 for a cylinder. In line with the asymptotics of the phase field

approach, see Sect. 1, the interfacial thickness for v is not less than γπ . For the initial data

u0 to (P) we chose either (i) one void or (ii) two voids; that is,

(i) u0(x) = v(z, a,R;x) or (ii) u0(x) = v(z, a,R;x) + v(z̃, ã, R̃;x) − 1. (5.2)

For the iterative algorithms we set U 0
ε = πhu0 and as initial profile for the chemical po-

tential we set W 0
ε = −γ�hU 0

ε − γ −1U 0
ε , i.e. W 0

ε = M−1(γBU 0
ε − γ −1MU 0

ε). We chose the

tolerance tol = 10−8 as the stopping criterion for both the block Gauss–Seidel and Uzawa

algorithms. For the computation of the second Uzawa substep (4.7b) we used a W -cycle

multigrid with 1 pre-, in- and post-smoothing step. The multigrid iterations for the solution

of (4.7b) were terminated when the tolerance tol was reached in the l2 norm of the residual

on the finest grid.
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Fig. 2 (α = 0) Zero level sets for Uε(x, t), with a cut through the mesh at x3 = 0, at times

t = 0,10−5,5 × 10−5, T = 0.001

Fig. 3 (α = 0) Zero level sets for Uε(x, t), with a cut through the mesh at x3 = 0, at times

t = 0,10−5,5 × 10−5, T = 0.001

Our first computation is for the scheme (Ph,τ
ε ) and shows the evolution of a cube, with side

length R = 0.5, to a ball under motion by surface diffusion, see Fig. 2. The regularization

parameter was chosen as ε = 10−5, with the remaining parameters given by α = 0, γ =
1

6π
, τ = 5 × 10−6, T = 0.001. For this computation we used a fixed uniform triangulation.

It was obtained by partitioning the domain � = (0,1)3 into cubes with side lengths h =
1

64
, with each cube being further subdivided into six generic right-angled tetrahedra, recall

assumption (A). In general, the assumption (A) can only be guaranteed for such uniformly

refined meshes. On the other hand, in practice one would like to employ highly adaptive

triangulations that use a fine mesh along the interface and a coarse mesh away from it.

Unfortunately such triangulations will in general always contain tetrahedra which do not

satisfy assumption (A). Hence the scheme (Ph,τ
ε ) can no longer be used in these situations.

That is why we compared the results in Fig. 2 to results from the same computation on

an adaptive grid for the scheme (̃Ph,τ ). The adaptive mesh was obtained from the mesh

refinement strategy described below with parameters Nf = 64 and Nc = 2. The results in

Fig. 3 are graphically indistinguishable from the results obtained with the scheme (Ph,τ
ε ).

However, since the triangulation is now adaptive and since the scheme (̃Ph,τ ) only needs

to solve for the solution {Un,W n} inside the interfacial region, the latter computation was

approximately 2.7 times faster, where we used the iterative scheme (4.7a,b) in both cases.

That is why for all our subsequent numerical simulations, we used the approximation (̃Ph,τ ).

For the implementation of our schemes, we used the adaptive finite element code Alberta,

see [30], and we adapted the adaptive mesh approach from BNS to three space dimensions.

We implemented a mesh refinement that generated a fine mesh along the interface and a

relatively coarse mesh away from the interface. For the mesh refinement strategy we assume,

for simplicity, that L1 ≥ L2 ≥ L3 and that L1 and L2 are a multiples of L3. We choose two

parameters Nf > Nc and set hf = 2L3

Nf
, hc = 2L3

Nc
. Then we set volf =

h3
f

6
and volc =

h3
c

6
, i.e.

the volumes of a tetrahedron with three right-angled and isosceles faces with side lengths

hf and hc , respectively. We start with an initial partition T 0 consisting of uniform tetrahedra

for which vol(σ ) ≤ volf and fix the parameters δf = tol and δc = tol × 10−2, where tol is

the prescribed tolerance. Then for n ≥ 1 given Un−1
ε and a partition T n−1, a tetrahedron is
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Table 1 Computation times for

different values of h, with

γ = 1
12π

fixed

Nf τ GS Uzawa Ratio

32 1E−05 9 m 40 s 11 m 20 s 0.85

64 4E−06 252 m 146 m 1.72

128 1E−06 14227 m 3460 m 4.11

Table 2 Computational times

for different values of γ γ Nf τ GS Uzawa Ratio

1
3π

32 1E−05 93 m 30 m 3.1
1

6π
64 4E−06 853 m 259 m 3.29

1
12π

128 1E−06 14227 m 3460 m 4.11

marked for refinement if it satisfies

ησ :=
∣∣min

x∈σ
|Un−1

ε (x)| − 1
∣∣> δf .

If a marked tetrahedron’s volume satisfies vol(σ ) ≥ 2volf , it is refined via bisectioning of

its longest edge. An element is marked for coarsening if it satisfies vol(σ ) ≤ 1
2
volc and

ησ < δc . After the initial mesh is obtained, the number of refined or coarsened elements

on the next time levels is quite small. The above procedure ensures that the active nodes are

always in the fine mesh region. Moreover, we observed in practice that on choosing hf ≤ γπ

10

the adapted mesh is guaranteed to have at least 6 mesh points across the interface.

Throughout, we used uniform time stepping with step size τ of the order O(h2) and set

Nc := 1
8
Nf , unless stated otherwise.

5.1 Comparison of Gauss–Seidel and Uzawa-Multigrid Schemes

In this section we compare the two iterative solvers (4.2a,b) and (4.7a,b). In line with the

results obtained in [21], the number of iterations of the Uzawa-Multigrid algorithm was

independent from the mesh size. We used the PGS method for the computation of the first

Uzawa substep since it was faster than the MMG method in all our experiments. On average

it reached convergence of the coincidence set after about 3 iterations. Typically, the outer

Uzawa iterations converged after about 3 steps, even for the first time step n = 1. Note

that this is a better behaviour than reported for the scheme in [21]. The multigrid solver

for the second step (4.10) required 2 to 3 iterations on average per outer Uzawa iteration to

converge. To illustrate the respective performances of the Gauss–Seidel and Uzawa schemes,

we performed an experiment with α = 0, L1 = 1.5, L2 = L3 = 0.5. The experiment is for an

initial 8 × 1 × 1 prism with minor side length R = 0.3, see the first plot in Fig. 5 for the zero

level set of U 0
ε in the case Nf = 128 and γ = 1

12π
. We compared the computational times

for different values of Nf with fixed final time T = 2 × 10−3 and either γ = 1
12π

fixed, see

Table 1, or varying values of γ , see Table 2. One can clearly see that the computations that

used the Uzawa-Multigrid algorithm were several times faster than those with the Gauss–

Seidel scheme and that the speedup factor increased with finer meshes.

For all the remaining computations in this paper, we employ the Uzawa-multigrid

scheme.
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Fig. 4 (α = 0) Zero level sets for Uε(x, t), with a cut through the mesh at x3 = 0, at times

t = 0,0.001,0.005,0.01,0.015, T = 0.06

Fig. 5 (α = 0) Zero level sets for Uε(x, t), with a cut through the mesh at x3 = 0 at times

t = 0,0.0015,0.003,0.00505,0.0051, T = 0.006

5.2 Surface Diffusion

In this section, we report on numerical experiments for the approximation (2.32a–c) with

α = 0. That is, in the limit γ → 0, these computations model motion by surface diffusion,

(1.6) with α = 0. It is well known, that motion by surface diffusion for a compact two

dimensional hypersurface in R
3 can lead to pinch off, a topological change that cannot occur

for a simple curve in two space dimension.

We demonstrate this phenomena with the following two experiments, with the domain

parameters L1 = 1.5, L2 = L3 = 0.5. The first experiment, see Fig. 4, describes the evolu-

tion of a 4 × 1 × 1 prism, with minor side length R = 0.3, to a ball. That is, the zero level set

of Uε undergoes no change of topology. The parameters for the computation were γ = 1
12π

,

T = 0.06, Nf = 128, Nc = 2, τ = 10−6.

However, if the initial prism is chosen sufficiently long, then pinch off occurs. We demon-

strate this with the next experiment. The initial condition is a 8 × 1 × 1 prism with minor
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Fig. 6 (α = 0) Zero level sets for Uε(x, t), with a cut through the mesh at x3 = 0 at times

t = 0,1.5 × 10−4,3.5 × 10−4,4 × 10−4,4.5 × 10−4,10−3

side length R = 0.3, and the other parameters were taken as in the previous example. The

computation leads to a pinch off in finite time, see Fig. 5. A computation for a direct ap-

proximation of the same evolution can be found in [3, Fig. 10], and our results appear to

be in good agreement (after a proper rescaling in time). However, we note that the direct

method in [3] cannot compute beyond the change of topology, something that our phase

field approach can.

In the next example, we show a more complicated surface diffusion flow. The evolution

of a cage-like initial profile, that is made up of twelve 4 × 1 × 1 prisms with minor side

lengths R = 0.15, to a hollow ball undergoes a change in topology, when the six faces

of the cage merge together. From a geometrical point of view, the surface undergoes an

evolution from a genus 5 to two genus 0 surfaces. See Fig. 6 for the results, where we used

the parameters γ = 1
12π

, T = 10−3, τ = 10−6, Nf = 128, Nc = 2, L1 = L2 = L3 = 0.5.

Observe that a computation for a direct approximation of the same evolution is given in

[11, Fig. 15], but once again the direct method employed there cannot compute beyond the

change of topology.

5.3 Void Electromigration

The first electromigration experiment was computed with the following parameters: α =

114π , γ = 1
12π

, L1 = 1, L2 = L3 = 0.5, T = 5 × 10−4, τ = 10−7. The initial profile models

a cylindrical void aligned with the x3-axis and penetrating the conductor material. That is,

we chose the initial profile (5.2)(i), with r = rc in (5.1) and a = (1,1,1)T , R = 0.375,

z = (−0.5,0,0)T . The mesh refinement parameters were Nf = 128, Nc = 16. We note the

excellent agreement between our results in Fig. 7, and the corresponding two dimensional

results in [9, Fig. 2]. Moreover, the results confirm that an initial void that is invariant in the

x3-direction remains invariant throughout, if the electric field does not vary with x3, see also

[34].
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Fig. 7 (α = 114π ) Zero level sets for Uε(x, t), with a cut through the mesh at x3 = 0, at times

t = 0,8 × 10−5,1.2 × 10−4,2 × 10−4,2.4 × 10−4,3.6 × 10−4

Fig. 8 (α = 114π ) Zero level sets for Uε(x, t), with a cut through the mesh at x3 = 0, at times

t = 0,8 × 10−5,1.2 × 10−4,2 × 10−4,2.4 × 10−4,3.6 × 10−4

The next experiment illustrates a fully three dimensional situation. In particular, we

choose the initial void in the shape of a ball, with the initial void boundary given by a

closed compact hypersurface. We understand that the direct method in [34] cannot model

this situation. For our computation we take the same parameters as in the previous simula-

tion and start with a ball-shaped void of radius R = 0.375 centred at z = (−0.5,0,0)T . It

can be seen from the results depicted in Fig. 8, that for the same strength of the electric field,
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Fig. 9 (α = 300π ) Zero level sets for Uε(x, t), with a cut through the mesh at x3 = 0, at times

t = 0,2.5 × 10−5,7.5 × 10−5,1.15 × 10−4,1.2 × 10−4,1.25 × 10−4

Fig. 10 Details of the zero level set of Uε(x, t) for α = 114π , at time t = 3.6 × 10−4 , and for α = 300π , at

time t = 1.25 × 10−4

the void undergoes relatively smaller deformations, compared to the penetrating cylindrical

void in Fig. 7. However, when the strength of the electric field is increased to α = 300π , the

changes in the shape of the void are more dramatic. As can be seen from the results depicted

in Fig. 9, now the void moves faster through the conductor, and it exhibits larger variations

in its geometry. Eventually, this leads to a change in topology, with the void enclosing some

material. For a close comparison, we present the zero level sets of the solution for α = 114π

and α = 300π at times t = 3.6 × 10−4, and t = 1.25 × 10−4, respectively, in Fig. 10.

The last two experiments illustrate the interaction of two voids for two different strengths

of the electric field. The first experiment corresponds to the two dimensional simulations in
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Fig. 11 (α = 64π ) Zero level sets for Uε(x, t), with a cut through the mesh at x3 = 0, at times

t = 0,10−4,2.6 × 10−5,4.2 × 10−5,5.8 × 10−4,7.4 × 10−4

[9, Fig. 8] and [24, Fig. 10]. In particular, the x3 = 0 cut of our initial condition corresponds

exactly to the two dimensional computations there, but here we choose the smaller void to

be not penetrating in the x3 direction. As initial condition we choose (5.2)(ii) with r = rc

and a = (1,1.5,1)T , R = 0.2, z = (−1.1,0,0)T , and r̃ = rb and R̃ = 0.2, z̃ = (−0.5,0,0)T ,

respectively, in (5.1); i.e. a penetrating cylindrical void with elliptic base with a smaller ball-

shaped void in front. The other parameters for the computation were α = 64π , γ = 1
12π

,

L1 = 1.5, L2 = L3 = 0.5, T = 7.4 × 10−4, τ = 10−7, Nf = 128, Nc = 16. The results in

Fig. 11 show that the penetrating void exhibits only very little variation of its geometry in

the x3 direction, while both voids move separately through the conductor. Moreover, the

results differ dramatically from the two dimensional computations in [9, Fig. 8] and [24,

Fig. 10]. This suggests, that for this particular situation a simplified two dimensional model

is not sufficient.
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Fig. 12 (α = 120π ) Zero level sets for Uε(x, t) at times t = 0,7 × 10−5, 1.3 × 10−4, 1.9 × 10−4 ,

2.3 × 10−4 , 2.7 × 10−4

This is further underlined by the final experiment, where we kept all the parameters fixed,

except α = 120π , z̃ = (−0.6,0,0)T and T = 2.7 × 10−4. The evolution for this stronger

electric field leads to topological changes and produces rather complex three dimensional

geometries that vary dramatically in the x3 direction, see Fig. 12. Clearly, in situations like

that a simplified two dimensional model is not able to capture the true character of the

evolution.
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