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We discuss the finite element approximation of eigenvalue problems associated 
with compact operators. While the main emphasis is on symmetric problems, 
some comments are present for non-self-adjoint operators as well. The topics 
covered include standard Galerkin approximations, non-conforming approx
imations, and approximation of eigenvalue problems in mixed form. Some 
applications of the theory are presented and, in particular, the approxima
tion of the Maxwell eigenvalue problem is discussed in detail. The final part 
tries to introduce the reader to the fascinating setting of differential forms and 
homological techniques with the description of the Hodge-'-Laplace eigenvalue 
problem and its mixed equivalent formulations. Severai examples and numer
ical computations complete the paper, ranging from very basic exercises to 
more significant applications of the developed theory. 
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EIGENVALUE PROBLEMS 3 

1. Introduction 

The aim of this paper is to provide the reader with an overview of the state 
of the art in the numerical analysis of the finite element approximation of 
eigenvalue problems arising from partial differential equations. 

The work consists of four parts, which are ordered according to their 
increasing difficulty. The material is arranged in such a way that it should 
be possible to use it (or part of it) as a reference for a graduate course. 

Part 1 presents several examples and reports on some academic numerical 
computations. The results presented range from a very basic level (such 
as the approximation of the one-dimensional Laplace operator), suited to 
those just starting work in this subject, to more involved examples. In 
particular, we give a comprehensive review of the Galerkin approximation 
of the Laplace eigenvalue problem (also in the presence of a singular domain 
and of non-conforming schemes), of the mixed approximation of the Laplace 
eigenvalue problem (with stable or unstable schemes), and of the Maxwell 
eigenvalue problem. Some of the presented material is new, in particular, the 
numerical results for the one-dimensional mixed Laplacian with the PI - PI 
and the P2 - Po scheme. 

Part 2 contains the main core of the theory concerning the Galerkin ap
proximation of variationally posed eigenvalue problems. With a didactic 
purpose, we included a direct proof of convergence for the eigenvalues and 
eigenfunctions of the Laplace equation approximated with piecewise linear 
elements. By direct proof, we mean a proof which does not make use of the 
abstract spectral approximation theory, but is based on basic properties of 
the Rayleigh quotient. This proof is not new, but particular care has been 
paid to the analysis of the case of multiple eigenfunctions. In Section 9 we 
describe the so-called Babuska-Osborn theory. As an example of application 
we analyse the approximation of the eigensolutions of an elliptic operator. 
Then, we provide another application which involves the non-conforming 
Crouzeix-Raviart element for the approximation of the Laplace eigenvalue 
problem. The results of this section are probably not new, but we could not 
find a reference providing a complete analysis of this form. 

Part 3 is devoted to the approximation theory of eigenvalue problems in 
mixed form. We recall that the natural conditions for the well-posedness 
and stability of source mixed problems (the classical inf-sup conditions) are 
not good hypotheses for convergence of the eigensolutions. It is standard to 
consider two different mixed formulations: problems of the first type (also 
known as (j,0) problems) and of the second type (0, g). The first family is 
used, for instance, when the Stokes system is considered, and an example of 
an application for the second one is the mixed Laplace eigenvalue problem. 
The sufficient and necessary conditions for the convergence of eigenvalues 
and eigenfunctions of either type of mixed problem are discussed. 
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4 D. BOFFI 

Finally, Part 4 deals with the homological techniques which lead to the 
finite element exterior calculus. We recall the Hodge-Laplace eigenvalue 
problem and show the links between this problem in the language of differ
ential forms and standard eigenvalue problems for differential operators. In 
particular, we study the Maxwell eigenvalue problem and discuss the main 
tools for its analysis. 

In a project like this one, it is responsibility of the author to make some 
choices about the material to be included. We acknowledge that we would 
have added some more subjects, but finally we had to trim our original 
plan. In particular, we completely ignored the topic of a posteriori and 
adaptive error analysis for eigenvalue problems. For this active and funda
mental research field the reader is referred to the following papers and to the 
references therein: Hackbusch (1979), Larson (2000), Morin, Nochetto and 
Siebert (2000), Heuveline and Rannacher (2001), Neymeyr (2002), Duran, 
Padra and Rodriguez (2003), Gardini (2004), Carstensen (2008), Giani and 
Graham (2009), Grubisic and Ovall (2009) and Garau, Morin and Zuppa 
(2009). The p and hp version of finite elements is pretty much related to this 
topic: we give some references on this issue in Section 20 for the approxima
tion of Maxwell's eigenvalue problem. Another area that deserves attention 
is the discontinuous Galerkin approximation of eigenvalue problems. We 
refer to the following papers and to the references therein: Hesthaven and 
Warburton (2004), Antonietti, Buffa and Perugia (2006), Buffa and Pe
rugia (2006), Warburton and Embree (2006), Creuse and Nicaise (2006), 
Buffa, Houston and Perugia (2007) and Brenner, Li and Sung (2008). Non
standard approximations, including mimetic schemes (Cangiani, Gardini 
and Manzini 2010), have not been discussed. Another important result we 
did not include deals with the approximation of non-compact operators (De
scloux, Nassif and Rappaz 1978a, 1978b). It is interesting to note that such 
results have often been used for the analysis of the non-conforming approx
imation of compact operators and, in particular, of the approximation of 
Maxwell's eigenvalue problem. 

Throughout this paper we quote in each section the references we need. 
We tried to include all significant references we were aware of, but obviously 
many others have not been included. We apologize for that in advance and 
encourage all readers to inform the author about results that would have 
deserved more discussion. 
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EIGENVALUE PROBLEMS 5 

PART ONE 
Some preliminary examples 

In this section we discuss some numerical results concerning the finite ele
ment approximation of eigenvalue problems arising from partial differential 
equations. The presented examples provide motivation for the rest of this 
survey and will be used for the applications of the developed theory. We 
only consider symmetric eigenvalue problems, so we are looking for real 
eigenvalues. 

2. The one-dimensional Laplace eigenvalue problem 

We start with a very basic and well-known one-dimensional example. Let 0 
be the open intervaljO, 71"[ and consider the problem of finding eigenvalues 
A and eigenfunctions u with u =1= 0 such that 

-u"(X) = AU(X) in 0, 

u(O) = u(7I") = O. 

(2.1a) 

(2.1b) 

It is well known that the eigenvalues are given by the squares of the in
teger numbers A = 1,4,9,16, ... and that the corresponding eigenspaces 
are spanned by the eigenfunctions sin(kx) for k = 1,2,3,4 .... A standard 
finite element approximation of problem (2.1) is obtained by considering a 
suitable variational formulation. Given V = HJ(O), multiplying our equa
tion by v E V, and integrating by parts, yields the following: find A E lR 
and a non-vanishing U E V such that 

fo7r u'(x)v'(x) dx = A fo7r u(x)v(x) dx Vv E V. (2.2) 

A Galerkin approximation of this variational formulation is based on a finite
dimensional subspace Vh = span { CPl, ... , cP N} C V, and consists in looking 
for discrete eigenvalues Ah E lR and non-vanishing eigenfunctions Uh E Vh 
such that 

fo7r u~(x)v'(x) dx = Ah fo7r Uh(X)V(X) dx Vv E Vh. 

It is well known that this gives an algebraic problem of the form 

Ax= AMx, 

where the stiffness matrix A = {aij }f,'j=l is defined as 

aij = fo7r cpj(x)cp~(x) dx 
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6 D. BOFFI 

and the mass matrix M = {mij }i'j=I is 

mij = io7r 
<pj(X)<Pi(X) dx. 

Given a uniform partition of [0,1f] of size h, let Vh be the space of con
tinuous piecewise linear polynomials vanishing at the end-points (standard 
conforming PI finite elements); then the associated matrices read 

for i = j, 
for Ii - jl = 1, 

otherwise, 

{ 
4/6 for i = j, 

mij = h· 1/6 for Ii - jl = 1, 

o otherwise, 

with i, j = 1, ... , N, where the dimension N is the number of internal 
nodes in the interval [0,1f]. It is well known that in this case it is possible 
to compute the explicit eigenmodes: given kEN, the kth eigenspace is 
generated by the interpolant of the continuous solution 

U~k)(ih) = sin(kih), i = 1, ... ,N, (2.3) 

and the corresponding eigenvalue is 

). (k) = (6/h2 ) 1 - cos kh. 
h 2 + coskh 

(2.4) 

It is then immediate to deduce the optimal estimates (as h ----t 0) 

(2.5) 

with u(k)(x) = sin(kx) and ).(k) = k2. 

We would like to make some comments about this first example. Although 
here the picture is very simple and widely known, some of the observations 
generalize to more complicated situations and will follow from the abstract 
theory, which is the main object of this survey. 

First of all, it is worth noticing that, even if not explicitly stated, esti
mates (2.5) depend on k. In particular, the estimate on the eigenvalues can 
be made more precise by observing that 

(2.6) 

This property has a clear physical meaning: since the eigenfunctions present 
more and more oscillations when the frequency increases, an increasingly fine 
mesh is required to keep the approximation error within the same accuracy. 

The second important consequence of (2.4) is that all eigenvalues are 
approximated from above. This behaviour, which is related to the so-called 
min-max property (see Proposition 7.2), can be stated as follows: 

). (k) ::; ). ~k) ::; ). (k) + C (k ) h 2. 
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EIGENVALUE PROBLEMS 7 

The first estimate in (2.5) on the convergence of the eigenfunctions re
quires some additional comments. It is clear that the solution of the alge
braic system arising from (2.2) does not give, in general, the eigenfunctions 
described in (2.3). Since in this simple example all eigenspaces are one
dimensional, we might expect that the numerical solver will provide us with 
multiples of the functions in (2.3). It is evident that if we want to perform 
an automatic error estimation, a first step will be to normalize the com
puted eigenfunctions so that they have the same norm as the continuous 
ones. This, however, is not enough, since there can be a difference in sign, 
so we have to multiply them by ±1 in order for the scalar product with the 
continuous eigenfunctions to be positive. 

Remark 2.1. If the same eigenvalue computation is performed with Vh 
equal to the space of continuous piecewise polynomials of degree at most p 
and vanishing at the end-points (standard conforming Pp finite elements), 
then estimates (2.5) become 

In any case, the order of approximation for the eigenvalues is double with 
respect to the approximation rate of the corresponding eigenfunctions. This 
is the typical behaviour of symmetric eigenvalue problems. 

3. Some numerical results for the two-dimensional Laplace 
eigenvalue problem 

In this section we present some numerical results for the Laplace eigenvalue 
problem in two dimensions. We use different domains and finite elements. 

Given an open Lipschitz domain 0 C ]R2, we are interested in the following 
problem: find eigenvalues A and eigenfunctions u with U # 0 such that 

-b.u(x, y) = AU(X, y) in 0, 

U = 0 on a~. 

(3.1a) 

(3.1b) 

Given V = HJ(O), a variational formulation of (3.1) can be obtained as 
follows: find A E ]R and U E V, with U # 0, such that 

In grad u(x, y) . grad v(x, y) dx dy = Aln u(x, y)v(x, y) dx dy Vv E V. 
A Galerkin approximation based on a finite-dimensional subspace Vh C V 
then reads: find Ah E ]R and Uh E Vh, with Uh # 0, such that 

In grad Uh(X, y). grad v(x, y) dx dy = Ah In Uh(X, y)v(x, y) dx dy Vv E Vh· 
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Figure 3.1. Sequence of unstructured meshes (N = 4,8,16). 

3.1. The Laplace eigenvalue problem on the square: 
continuous piecewise linears 

~ 

Let n be the square ]0,1l'[ X ]0,1l'[. It is well known that the eigenvalues 
of (3.1) are given by Am,n = m 2 + n 2 (with m and n strictly positive in
tegers) and the corresponding eigenfunctions are um,n = sin(mx) sin(ny). 
Throughout this subsection we are going to use continuous piecewise linear 
finite elements on triangles. 

Our first computation involves a standard sequence of regular unstruc
tured meshes, which is shown in Figure 3.1. Table 3.1 lists the first ten 
computed eigenvalues and their rate of convergence towards the exact val
ues. It is evident that the scheme is convergent and that the convergence is 
quadratic. The abstract theory we are going to present will show that the 
eigenfunctions are first-order convergent in V. 

Moreover, from Table 3.1 we can see behaviour similar to that observed in 
the one-dimensional example: all eigenvalues are approximated from above 
and the relative error increases with the rank of the eigenvalues in the 
spectrum (for instance, on the finest mesh, the relative error for the 10th 
eigenvalue is more than eight times the error for the first one). 

This two-dimensional example allows us to make some important com
ments on multiple eigenvalues. If we look, for instance, at the double 
eigenvalue A = 5, we see that there are two distinct discrete eigenvalues 
A~2) < A~3) approximating it. Both eigenvalues are good approximations 
of the exact solution, and on the finest mesh their difference is smaller 
than 10-4 . A natural question concerns the behaviour of the corresponding 
eigenfunctions. The answer to this question is not trivial: indeed, the ex
act eigenspace has dimension equal to 2 and it is spanned by the functions 
Ul,2 = sin x sin(2y) and U2,1 = sin(2x) sin y. On the other hand, since the 
discrete eigenvalues are distinct, the approximating eigenspace consists of 
two separate one-dimensional eigenspaces. In particular, we cannot expect 
an estimate similar to the first one of (2.5) (even after normalization and 
choice of the sign for each discrete eigenfunction), since there is no rea-
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EIGENVALUE PROBLEMS 9 

Table 3.1. Eigenvalues computed on the unstructured mesh sequence. 

Exact I Computed (rate) 

N=4 N=8 N= 16 N=32 N=64 

2 2.2468 2.0463 (2.4) 2.0106 (2.1) 2.0025 (2.1) 2.0006 (2.0) 
5 6.5866 5.2732 (2.5) 5.0638 (2.1) 5.0154 (2.0) 5.0038 (2.0) 
5 6.6230 5.2859 (2.5) 5.0643 (2.2) 5.0156 (2.0) 5.0038 (2.0) 
8 10.2738 8.7064 (1.7) 8.1686 (2.1) 8.0402 (2.1) 8.0099 (2.0) 

10 12.7165 11.0903 (1.3) 10.2550 (2.1) 10.0610 (2.1) 10.0152 (2.0) 
10 14.3630 11.1308 (1.9) 10.2595 (2.1) 10.0622 (2.1) 10.0153 (2.0) 
13 19.7789 14.8941 (1.8) 13.4370 (2.1) 13.1046 (2.1) 13.0258 (2.0) 
13 24.2262 14.9689 (2.5) 13.4435 (2.2) 13.1053 (2.1) 13.0258 (2.0) 
17 34.0569 20.1284 (2.4) 17.7468 (2.1) 17.1771 (2.1) 17.0440 (2.0) 
17 20.2113 17.7528 (2.1) 17.1798 (2.1) 17.0443 (2.0) 

DOF I 9 56 257 1106 4573 

son why, for instance, the eigenspace associated to >..~2) should provide a 
good approximation of U1,2. The right approach to this problem makes use 

of the direct sum of the eigenspaces corresponding to >..~2) and >..~3), that 

is, span{u~2),u~3)}, which does in fact provide a good approximation to the 
two-dimensional eigenspace associated with>" = 5. The definition of such an 
approximation, which relies on the notion of a gap between Hilbert spaces, 
will be made more precise later on. For the moment, we make explicit the 
concept of convergence in this particular situation which can be stated as 
follows: there exist constants 0:1,2 (h), 0:2,1 (h), (31,2 (h) and (32,1 (h) such that 

Ilu1,2 - 0:1,2(h)u~2) - (31,2(h)u~3) Ilv = O(h), 

Ilu2,1- 0:2,1(h)u~2) - (32,1(h)u~3)llv = O(h). 
(3.2) 

It should be clear that the way U1,2 and U2,1 influence the behaviour of u~2) 
and u~3) is mesh-dependent: on the unstructured mesh sequences used for 
our computations, we cannot expect the o:'s and the (3's to stabilize towards 
fixed numbers. In order to demonstrate this phenomenon, we display in 

Figure 3.2 the computed eigenfunctions associated with >..~2) for N = 8, 16, 
and 32. The corresponding plot for the computed eigenfunctions associated 

with >..~3) is shown in Figure 3.3. For the sake of comparison, the exact 
eigenfunctions U1,2 and U2,1 are plotted in Figure 3.4. 
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10 D . BOFFI 

Figure 3.2. Eigenfunction associated with 
A~2) on the unstructured mesh sequence. 

Figure 3.3. Eigenfunction associated with 
A~3 ) on the unstructured mesh sequence. 

05 10 15 25 25 30 05 10 15 20 25 30 

Figure 3.4. Eigenfunctions Ul,2 and U2 ,1' 

Cambridge University Press
978-0-521-29049-4 - Acta Numerica 2010: Volume 19
A. Iserles
Excerpt
More information

www.cambridge.org© in this web service Cambridge University Press

http://www.cambridge.org/9780521290494
http://www.cambridge.org
http://www.cambridge.org

