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FINITE ELEMENT APPROXIMATION OF STEADY FLOWS OF COLLOIDAL
SOLUTIONS

Andrea Bonito1, Vivette Girault2, Diane Guignard3,*,
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Abstract. We consider the mathematical analysis and numerical approximation of a system of non-
linear partial differential equations that arises in models that have relevance to steady isochoric flows of
colloidal suspensions. The symmetric velocity gradient is assumed to be a monotone nonlinear function
of the deviatoric part of the Cauchy stress tensor. We prove the existence of a weak solution to the
problem, and under the additional assumption that the nonlinearity involved in the constitutive rela-
tion is Lipschitz continuous we also prove uniqueness of the weak solution. We then construct mixed
finite element approximations of the system using both conforming and nonconforming finite element
spaces. For both of these we prove the convergence of the method to the unique weak solution of the
problem, and in the case of the conforming method we provide a bound on the error between the
analytical solution and its finite element approximation in terms of the best approximation error from
the finite element spaces. We propose first a Lions–Mercier type iterative method and next a clas-
sical fixed-point algorithm to solve the finite-dimensional problems resulting from the finite element
discretisation of the system of nonlinear partial differential equations under consideration and present
numerical experiments that illustrate the practical performance of the proposed numerical method.
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1. Introduction

The classical incompressible Navier–Stokes constitutive equation and its usual generalisations, the constitutive
relations for the incompressible Stokesian fluid, are explicit expressions for the Cauchy stress in terms of the
symmetric part of the velocity gradient. The Stokesian fluid is defined by the constitutive expression

𝑇 = −𝑝𝐼 + f (𝐷) , (1.1)
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approximation, convergence analysis.
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where 𝑇 is the Cauchy stress,−𝑝𝐼 is the indeterminate part of the stress due to the constraint of incompressibility
and 𝐷 is the symmetric part of the velocity gradient, 𝐷 = 1

2

(︁
∇u + (∇u)𝑡

)︁
. The incompressible Navier–Stokes

fluid is a special sub-class of (1.1) that is linear in the symmetric part of the velocity gradient and is defined
through:

𝑇 = −𝑝𝐼 + 2𝜇𝐷, (1.2)

where 𝜇 is the viscosity of the fluid. Power-law fluids are another popular sub-class of (1.1), the power-law fluid
being defined through the constitutive equation

𝑇 = −𝑝𝐼 + 2𝜇0

(︀
1 + 𝛼tr

(︀
𝐷2
)︀)︀𝑚

𝐷, (1.3)

where 𝜇0 and 𝛼 are positive constants and 𝑚 is a constant; if 𝑚 is zero we recover the Navier–Stokes fluid
model, if it is negative we have a shear-thinning fluid model and if it is positive we have a shear-thickening fluid
model. There are however many fluids that cannot be described by constitutive equations of the form (1.1) but
require “relations”, in the true mathematical sense of the term, between the Cauchy stress and the symmetric
part of the velocity gradient. Implicit constitutive relations that involve higher time derivatives of the stress
and the symmetric part of the velocity gradient have been proposed to describe the response of non-Newtonian
fluids that exhibit viscoelastic response1 (see Burgers [13], Oldroyd [30]); that is fluids that exhibit phenomena
like stress relaxation. However, purely implicit algebraic relationship between the stress and the symmetric part
of the velocity gradient were not considered to describe non-Newtonian fluids until recently. Such models are
critical if one is interested in describing the response of fluids which do not exhibit viscoelasticity but whose
material properties depend on the mean value of the stress and the shear rate, a characteristic exhibited by
many fluids and colloids, as borne out by numerous experiments. Consider for example an incompressible fluid
whose viscosity depends on the mechanical pressure2 (mean value of the stress) and is shear-thinning, whose
constitutive relation takes the form

𝑇 = −𝑝𝐼 + 2𝜇
(︀
𝑝, tr

(︀
𝐷2
)︀)︀

𝐷. (1.4)

Since tr (𝐷) = div (u) = 0,

tr (𝑇 ) = −3𝑝, i.e., 𝑝 = −1
3

tr (𝑇 ) , (1.5)

the above equation takes the form

𝑇 =
1
3

(tr (𝑇 )) 𝐼 + 2𝜇

(︂
−1

3
tr (𝑇 ) , tr

(︀
𝐷2
)︀)︂

𝐷. (1.6)

(The factor 1/3 is related to the number of space dimensions 𝑑 = 3; in two dimensions it would be replaced by
1/2.) The above expression is of the form

f (𝑇 , 𝐷) = 0, (1.7)

which is an implicit relationship between the stress and the symmetric part of the velocity gradient. Rajagopal
[34,35] introduced the implicit relationship of the above form (and also the much more general implicit relation-
ship between the history of the stress and the history of the deformation gradient) to describe materials whose
properties depend upon the pressure and the shear rate. In fact, the properties of all fluids depend upon the
pressure: it is just a matter of how large the variation of the pressure is in order for one to take the variation of
the properties into account. The book by Bridgman [9] entitled “Physics of High Pressures” provides copious
references to the experimental literature before 1931 on the variation of the viscosity of fluids with pressure,

1While the Maxwell fluid (see [28]) is defined through a constitutive relation involving the derivative of the stress, it is not an
implicit model in that the symmetric part of the velocity gradient can be explicitly defined in terms of the stress and the time
derivative of the stress.

2The terminology “pressure” is often misused, especially in nonlinear fluids; see Rajagopal [37] for a detailed discussion.
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and one can find recent references to the experimental literature on the dependence of viscosity on pressure
in Málek and Rajagopal [27]. Stokes [40] recognised that the viscosity of fluids varies with pressure, but in
the case of sufficiently slow flows in channels and pipes he assumed that the viscosity could be considered a
constant. Suffice to say, constitutive relations of the class (1.7) are necessary to describe the response of fluids
whose viscosity depends on the pressure. Also as mentioned earlier, the implicit constitutive relation (1.7) is
useful to describe the behaviour of colloids. Recently, Perlácová and Prǔša [32] (see also Le Roux and Rajagopal
[39]) used an implicit model belonging to a sub-class of (1.7) to describe the response of colloidal solutions as
presented in the experimental work of Boltenhagen et al. [4], Hu et al. [21], Lopez-Diaz et al. [26] among others.
Notice that while one always expresses the incompressible Navier–Stokes fluid by the representation (1.2), it is
perfectly reasonable to describe it as

𝐷 = 𝜙𝐼 +
1

2𝜇
𝑇 , where 𝜙 =

𝑝

2𝜇
· (1.8)

In fact, it is the representation (1.8) that is in keeping with causality as the stress is the cause and the velocity
and hence its gradient is the effect, and this fact cannot be overemphasised. Such a representation would imply
that the Stokes assumption that is often appealed to is incorrect (see Rajagopal [36] for a detailed discussion
of the same). Málek et al. [33] generalised (1.8) to stress power-law fluids, namely constitutive relations of the
form:

𝑇 = −𝑝𝐼 + 𝑇 d,

𝐷 = 𝛾

[︂
1 + 𝛽tr

(︂(︁
𝑇 d
)︁2
)︂]︂𝑛

𝑇 d, (1.9)

where 𝑇 d is the deviatoric part of the Cauchy stress, 𝛾 and 𝛽 are positive constants, and 𝑛 is a constant that
can be positive, negative or zero. The constitutive relation (1.9) is capable of describing phenomena that the
classical power-law models are incapable of describing. For instance, the constitutive models (1.9) can describe
limiting strain rate as well as fluids which allow the possibility of the strain rate initially increasing with stress
and later decreasing with stress; both such responses cannot be described by the classical power-law fluid model
(1.3) (see the discussion in Málek et al. [33] with regard to the difference in the response characteristics of the
stress power-law fluid and the classical power-law fluid). We are interested in a further generalization of the
constitutive relation of the form (1.9) that is appropriate for describing the response of colloidal solutions. This
constitutive relation takes the form:

𝐷 =
{︂

𝛾

[︂
1 + 𝛽tr

(︂(︁
𝑇 d
)︁2
)︂]︂𝑛

+ 𝛼

}︂
𝑇 d, (1.10)

where 𝛼, 𝛽, and 𝛾 are positive constants, 𝑛 is a real number, and 𝑇 d is the deviatoric part of the Cauchy stress.
The shear stress in a fluid undergoing simple shear flow, that is described by the constitutive relation given above,
increases from zero to a maximum, then decreases to a local minimum, and then increases monotonically as the
shear stress increases from zero. As discussed by Le Roux and Rajagopal [39], and Perlácová and Prǔša [32],
many colloids exhibit such behavior. The constitutive relation that we introduce first in (2.10) and next in
(3.1) includes (1.10) as a special sub-class. It can be posed within a Hilbert space setting owing to the presence
of the coefficient 𝛼 in (1.10), but nevertheless, it is a challenging problem as it involves two nonlinearities:
the monotone part in the constitutive relation and the inertial (convective) term. The problem without the
inertial term, see Section 2.2 below, has already been analysed in [5], while the analysis of the steady-state
incompressible Navier–Stokes equations is well-established, see for instance [19, 41]. With both nonlinearities
present in the model, proving the existence of a weak solution, for instance, to the best of our knowledge cannot
be done by simply coupling the techniques used for these two problems, namely the Browder–Minty theorem
and the Galerkin method combined with Brouwer’s fixed point theorem and a weak compactness argument.
More refined arguments are needed; they are crucial to the proofs of Lemmas 3.7 and 3.8 below.
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This work is organised as follows. The notation and the functional-analytic setting are recalled in the next
subsection. In Section 2, both linear and fully nonlinear versions of the formulation are briefly analysed for the
Stokes system, i.e., without the inertial (convective) term. The theoretical analysis of the complete nonlinear
system is carried out in Section 3. The main results of this section are Theorem 3.9 for the existence of a
solution and Proposition 3.10 for the uniqueness of a solution under additional assumptions on the input data.
In Section 4, conforming finite element approximations of these models are proposed and error estimates are
derived. The cases of both simplicial and hexahedral elements are discussed. The analysis of the latter is less
satisfactory as it requires subdivisions consisting of parallelepipeds and suffers from a higher computational cost.
This motivates the introduction of nonconforming approximations in Section 5. In Section 6, two decoupling
algorithms are presented and compared: a Lions–Mercier algorithm adapted to a system with a monotone part
and an elliptic part, and a classical fixed-point algorithm alternating between the approximation of a Navier–
Stokes system and the nonlinear constitutive relation for the stress. Numerical experiments are performed with
conforming finite elements on a square mesh in two dimensions. The theoretically established convergence of
the scheme is confirmed and convergence of both decoupled algorithms is observed.

1.1. Notation and preliminaries

Let Ω ⊂ R𝑑, 𝑑 ∈ {2, 3}, be a bounded, open, simply connected Lipschitz domain. We consider the function
spaces

𝑄 := 𝐿2
0 (Ω) , 𝑉 := 𝐻1

0 (Ω)𝑑 and 𝑀 :=
{︁

𝑆 ∈ 𝐿2 (Ω)𝑑×𝑑
sym : tr (𝑆) = 0

}︁
(1.11)

for the pressure, the velocity, and the deviatoric stress tensor, respectively. As usual,

𝐿2
0 (Ω) =

{︂
𝑞 ∈ 𝐿2 (Ω) :

∫︁
Ω

𝑞 = 0
}︂

,

the zero mean value constraint being introduced to fix the undetermined additive constant in the mechanical
pressure. Here the subscript sym indicates that the 𝑑 × 𝑑 tensors under consideration are assumed to be sym-
metric. Henceforth, the symmetric gradient of the velocity field v (or, briefly, symmetric velocity gradient) will
be denoted by

𝐷 (v) :=
1
2

(︁
∇v + (∇v)𝑡

)︁
(1.12)

and the deviatoric part of a 𝑑× 𝑑 tensor 𝑆 is defined by

𝑆d := 𝑆 − 1
𝑑

tr (𝑆) 𝐼 (1.13)

with 𝐼 the 𝑑× 𝑑 identity tensor; thus the trace of 𝑆d is zero. We denote by 𝒱 the subspace of 𝑉 consisting of
all divergence-free functions contained in 𝑉 ; that is,

𝒱 := {v ∈ 𝑉 : div (v) = 0}. (1.14)

For vector-valued functions v : Ω → R𝑑, we write

‖v‖𝐿2(Ω) := ‖ |v| ‖𝐿2(Ω) and ‖v‖𝐿∞(Ω) := ‖ |v| ‖𝐿∞(Ω)

with | · | signifying the Euclidean norm on R𝑑, while for tensor-valued functions 𝑆 : Ω → R𝑑×𝑑, we define

‖𝑆‖𝐿2(Ω) := ‖ |𝑆| ‖𝐿2(Ω),

where now
|𝑆| :=

√
𝑆 : 𝑆
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is the Frobenius norm of 𝑆. Clearly, 𝑀 is a Hilbert space with this norm. We recall the Poincaré and Korn
inequalities, which are, respectively, the following: there exist positive constants 𝐶𝑃 and 𝐶𝐾 such that

‖𝑣‖𝐿2(Ω) ≤ 𝐶𝑃 ‖∇𝑣‖𝐿2(Ω) ∀ 𝑣 ∈ 𝐻1
0 (Ω) (1.15)

and

‖∇v‖𝐿2(Ω) ≤ 𝐶𝐾‖𝐷 (v) ‖𝐿2(Ω) ∀v ∈ 𝑉. (1.16)

We endow 𝑉 (and 𝒱) with the norm

‖ · ‖𝑉 := ‖𝐷 (·) ‖𝐿2(Ω). (1.17)

Both 𝑉 and 𝒱 are Hilbert spaces with this norm, because ‖ · ‖𝑉 is equivalent to both the 𝐻1 (Ω)𝑑×𝑑 norm and
the 𝐻1 (Ω)𝑑×𝑑 semi-norm, thanks to (1.15), (1.16) and the trivial relation ‖𝐷 (v) ‖𝐿2(Ω) ≤ ‖∇v‖𝐿2(Ω).

2. Stokes system with linear and nonlinear constitutive relations

In this section we study two preliminary model problems without the inertial term; the first one simply
reduces to the Stokes system, while the second model problem involves a monotone nonlinearity treated by the
Browder–Minty approach.

2.1. The Stokes system

Let us consider the problem ⎧⎪⎨⎪⎩
−div (𝑇 ) = f in Ω,

𝐷 (u) = 𝛼𝑇 d in Ω,
div (u) = 0 in Ω,

u = 0 on 𝜕Ω,

(2.1)

where f : Ω → R𝑑 is a prescribed external force, 𝐷 (u) is defined by (1.12), the unknown tensor 𝑇 is symmetric,
and 𝛼 is a given positive constant, the reciprocal of the viscosity coefficient. Here, we assume that f ∈ 𝐿2 (Ω)𝑑

for simplicity, but a similar analysis holds for the general case f ∈ 𝑉 ′ = 𝐻−1 (Ω)𝑑; see for instance Remark 3.3
in Section 3. By decomposing the Cauchy stress 𝑇 as 𝑇 = 𝑇 d + 1

𝑑 tr (𝑇 ) 𝐼 and inserting this in the first equation
of (2.1) we arrive at the following equivalent problem:⎧⎪⎪⎪⎨⎪⎪⎪⎩

−div
(︁
𝑇 d
)︁
− 1

𝑑∇tr (𝑇 ) = f in Ω,

𝐷 (u) = 𝛼𝑇 d in Ω,
div (u) = 0 in Ω,

u = 0 on 𝜕Ω,

(2.2)

which we recognise to be the Stokes system where the mechanical pressure (mean normal stress) is 𝑝 := − 1
𝑑 tr (𝑇 ).

Recalling the spaces 𝑀, 𝑉,𝑄 defined in (1.11) and using the relation

𝐷 (v) : 𝑆 = ∇v : 𝑆,
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which holds3 for any symmetric tensor 𝑆, the weak formulation of problem (2.2) can be written as follows: find
a triple

(︁
𝑇 d,u, 𝑝

)︁
∈ 𝑀 × 𝑉 ×𝑄 such that∫︁

Ω

𝑇 d : 𝐷 (v)−
∫︁

Ω

𝑝 div (v) =
∫︁

Ω

f · v ∀v ∈ 𝑉,

𝛼

∫︁
Ω

𝑇 d : 𝑆 −
∫︁

Ω

𝑆 : 𝐷 (u) = 0 ∀𝑆 ∈ 𝑀,

−
∫︁

Ω

𝑞 div (u) = 0 ∀ 𝑞 ∈ 𝑄.

(2.3)

For any 𝑆 ∈ 𝑀 , v ∈ 𝑉 , and 𝑞 ∈ 𝑄, we set

𝑏1 (𝑆,v) :=
∫︁

Ω

𝑆 : 𝐷 (v) ,

𝑏2 (v, 𝑞) := −
∫︁

Ω

𝑞 div (v) .

As is usual for the Stokes problem, the unknown pressure can be eliminated from (2.3) by restricting the test
functions v to 𝒱. In addition, the variable u can also be eliminated by treating the first line of (2.3) as a
constraint, thus leading to an equivalent (reduced) problem for which the two variables 𝑝 and u are eliminated.
The equivalence is based on the following (inf-sup) conditions

inf
v∈𝒱

sup
𝑆∈𝑀

𝑏1 (𝑆,v)
‖𝑆‖𝐿2(Ω)‖𝐷 (v) ‖𝐿2(Ω)

≥ 1 (2.4)

and

∃𝛽 > 0 : inf
𝑞∈𝑄

sup
v∈𝑉

𝑏2 (v, 𝑞)
‖𝑞‖𝐿2(Ω)‖𝐷 (v) ‖𝐿2(Ω)

≥ inf
𝑞∈𝑄

sup
v∈𝑉

𝑏2 (v, 𝑞)
‖𝑞‖𝐿2(Ω)‖∇v‖𝐿2(Ω)

≥ 𝛽, (2.5)

where we have used that ‖𝐷 (v) ‖𝐿2(Ω) ≤ ‖∇v‖𝐿2(Ω). It is well-known that the spaces 𝑉 and 𝑄 defined in
(1.11) satisfy the inf-sup condition (2.5), see for instance [19], while the relation (2.4) can be easily shown by
observing that, for a given v ∈ 𝒱, we have 𝑅 := 𝐷 (v) ∈ 𝑀 since tr (𝑅) = tr (𝐷 (v)) = div (v) = 0 and 𝐷 (v)
is symmetric. Therefore, 𝑏1 (𝑅,v) = ‖𝐷 (v) ‖2𝐿2(Ω) and thus

sup
𝑆∈𝑀

𝑏1 (𝑆,v)
‖𝑆‖𝐿2(Ω)

≥ 𝑏1 (𝑅,v)
‖𝑅‖𝐿2(Ω)

= ‖𝐷 (v) ‖𝐿2(Ω).

We can then eliminate the incompressibility constraint by seeking u ∈ 𝒱, yielding the (partially reduced)
problem: find

(︁
𝑇 d,u

)︁
∈ 𝑀 × 𝒱 such that ∫︁

Ω

𝑇 d : 𝐷 (v) =
∫︁

Ω

f · v ∀v ∈ 𝒱,

𝛼

∫︁
Ω

𝑇 d : 𝑆 −
∫︁

Ω

𝑆 : 𝐷 (u) = 0 ∀𝑆 ∈ 𝑀.

(2.6)

Clearly, each solution of (2.3) satisfies (2.6). Conversely, it follows from the inf-sup condition (2.5) that for any
solution

(︁
𝑇 d,u

)︁
of (2.6) there exists a unique 𝑝 ∈ 𝑄 such that

(︁
𝑇 d,u, 𝑝

)︁
is the solution of (2.3); see [19].

3For any 𝑅,𝑆 ∈ R𝑑×𝑑, with 𝑆 symmetric, we have that 𝑆 : 𝑅 =
(︁
𝑆+𝑆𝑡

2

)︁
: 𝑅 = 1

2
𝑆 : 𝑅+ 1

2
𝑆𝑡 : 𝑅 = 1

2
𝑆 : 𝑅+ 1

2
𝑆 : 𝑅𝑡 = 𝑆 :

(︁
𝑅+𝑅𝑡

2

)︁
.
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Hence these two problems are equivalent. Furthermore, we can eliminate the unknown u by proceeding as
follows; see [5]. First, we introduce the decomposition 𝑀 = ℳ⊕ℳ⊥ with

ℳ := {𝑆 ∈ 𝑀 : 𝑏1 (𝑆,v) = 0 ∀v ∈ 𝒱} , (2.7)

the kernel of 𝑏1, and

ℳ⊥ :=
{︂

𝑆 ∈ 𝑀 :
∫︁

Ω

𝑆 : 𝑅 = 0 ∀𝑅 ∈ℳ
}︂

its orthogonal complement in 𝑀 , and we write 𝑇 d = 𝑇 d
0 + 𝑇 d

f with 𝑇 d
0 ∈ ℳ and 𝑇 d

f ∈ ℳ⊥. The condition
(2.4) ensures the existence and uniqueness of 𝑇 d

f ∈ℳ⊥ satisfying

𝑏1

(︁
𝑇 d

f ,v
)︁

=
∫︁

Ω

f · v ∀v ∈ 𝒱 and ‖𝑇 d
f ‖𝐿2(Ω) ≤ 𝐶𝑃 𝐶𝐾‖f‖𝐿2(Ω) (2.8)

with 𝐶𝑃 and 𝐶𝐾 the constants in Poincaré’s and Korn’s inequalities (1.15) and (1.16), respectively. We finally
get the (fully reduced) problem: find 𝑇 d

0 ∈ℳ such that

𝛼

∫︁
Ω

𝑇 d
0 : 𝑆 = −𝛼

∫︁
Ω

𝑇 d
f : 𝑆 ∀𝑆 ∈ℳ. (2.9)

The well-posedness of problem (2.9) follows from the Lax–Milgram lemma, while its equivalence to the original
problem (2.3) is guaranteed by (2.4) and (2.5).

Of course, in this simple model with a linear constitutive relation, 𝑇 𝑑
0 = 0 since the right-hand side of (2.9)

vanishes and 𝛼 (·, ·)Ω is an inner product on ℳ. However, the framework developed here will be used in the
sequel in a more general setting.

2.2. Stokes model with a nonlinear constitutive relation

Next, we consider the following Stokes-like system with a nonlinear relation between the stress and the
symmetric velocity gradient:⎧⎪⎪⎪⎨⎪⎪⎪⎩

−div
(︁
𝑇 d
)︁
− 1

𝑑∇tr (𝑇 ) = f in Ω,

𝐷 (u) = 𝛼𝑇 d + 𝛾𝜇
(︁⃒⃒⃒

𝑇 d
⃒⃒⃒)︁

𝑇 d in Ω,

div (u) = 0 in Ω,
u = 0 on 𝜕Ω

(2.10)

with 𝛾 a given positive constant, and where 𝜇 ∈ 𝒞1 ((0, +∞)) ∩ 𝒞0 ([0, +∞)) is a given function satisfying

d
d𝑎

(𝜇 (𝑎) 𝑎) > 0 ∀ 𝑎 ∈ R>0 (2.11)

and
𝜇 (𝑎) > 0 and 𝜇 (𝑎) 𝑎 ≤ 𝐶1 ∀ 𝑎 ∈ R≥0 (2.12)

for some positive constant 𝐶1. Since 𝜇 is continuous on any subinterval of R≥0, the second part of (2.12) implies
that 𝜇 is bounded above and we denote its maximum by 𝜇max,

0 < 𝜇 (𝑎) ≤ 𝜇max ∀ 𝑎 ∈ R≥0. (2.13)

Moreover, proceeding as in the proof of Lemma 4.1 from [12], we deduce from (2.11) and (2.12) that for any
𝑅, 𝑆 ∈ R𝑑×𝑑, the following monotonicity property hold:

(𝜇 (|𝑅|) 𝑅− 𝜇 (|𝑆|) 𝑆) : (𝑅− 𝑆) ≥ 0 (2.14)
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with equality if and only if 𝑅 = 𝑆.
Introducing again 𝑝 := − 1

𝑑 tr (𝑇 ), the weak formulation of problem (2.10) reads as follows: find a triple(︁
𝑇 d,u, 𝑝

)︁
∈ 𝑀 × 𝑉 ×𝑄 such that ∫︁

Ω

𝑇 d : 𝐷 (v)−
∫︁

Ω

𝑝 div (v) =
∫︁

Ω

f · v ∀v ∈ 𝑉,

𝛼

∫︁
Ω

𝑇 d : 𝑆 + 𝛾

∫︁
Ω

𝜇
(︁⃒⃒⃒

𝑇 d
⃒⃒⃒)︁

𝑇 d : 𝑆 −
∫︁

Ω

𝑆 : 𝐷 (u) = 0 ∀𝑆 ∈ 𝑀,

−
∫︁

Ω

𝑞 div (u) = 0 ∀ 𝑞 ∈ 𝑄.

(2.15)

Proceeding exactly as in Section 2.1, we first eliminate the pressure, and we thus deduce that problem (2.15)
is equivalent to the following problem: find

(︁
𝑇 d,u

)︁
∈ 𝑀 × 𝒱 such that∫︁

Ω

𝑇 d : 𝐷 (v) =
∫︁

Ω

f · v ∀v ∈ 𝒱,

𝛼

∫︁
Ω

𝑇 d : 𝑆 + 𝛾

∫︁
Ω

𝜇
(︁⃒⃒⃒

𝑇 d
⃒⃒⃒)︁

𝑇 d : 𝑆 −
∫︁

Ω

𝑆 : 𝐷 (u) = 0 ∀𝑆 ∈ 𝑀,

(2.16)

which is further equivalent to the following problem: find 𝑇 d
0 ∈ℳ such that

𝛼

∫︁
Ω

(︁
𝑇 d

0 + 𝑇 d
f

)︁
: 𝑆 + 𝛾

∫︁
Ω

𝜇
(︁⃒⃒⃒

𝑇 d
0 + 𝑇 d

f

⃒⃒⃒)︁ (︁
𝑇 d

0 + 𝑇 d
f

)︁
: 𝑆 = 0 ∀𝑆 ∈ℳ (2.17)

with 𝑇 d
f ∈ℳ⊥ the solution of (2.8). The Browder–Minty theorem, see for instance [29], guarantees the existence

of a solution to problem (2.17). Indeed, let 𝒜 : 𝑀 → 𝑀 ′ be defined for 𝑅, 𝑆 ∈ 𝑀 by

⟨𝒜 (𝑅) , 𝑆⟩𝑀 := 𝛼

∫︁
Ω

𝑅 : 𝑆 + 𝛾

∫︁
Ω

𝜇 (|𝑅|) 𝑅 : 𝑆, (2.18)

where ⟨·, ·⟩𝑀 denotes the duality pairing between 𝑀 and its dual space, 𝑀 ′. It then easily follows that the
mapping 𝑇 d

0 ↦→ 𝒜
(︁
𝑇 d

0 + 𝑇 d
f

)︁
is bounded, monotone, coercive and hemi-continuous. By the Browder–Minty

theorem these imply surjectivity of 𝒜 and thereby existence of a solution, while its uniqueness follows from the
strict monotonicity of 𝒜.

3. Navier–Stokes with nonlinear constitutive relation

Now, we focus on our problem of interest, where a convective term is added to the first equation of (2.10),
i.e., we consider the problem⎧⎪⎪⎨⎪⎪⎩

(u · ∇) u− div (𝑇 ) = f in Ω,

𝐷 (u) = 𝛼𝑇 d + 𝛾𝜇
(︁⃒⃒⃒

𝑇 d
⃒⃒⃒)︁

𝑇 d in Ω,

div (u) = 0 in Ω,
u = 0 on 𝜕Ω.

(3.1)

We prove a priori estimates, construct a solution, and give sufficient conditions for global uniqueness.
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3.1. Reformulation

By introducing the pressure 𝑝 := − 1
𝑑 tr (𝑇 ), problem (3.1) can be rewritten as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

(u · ∇) u− div
(︁
𝑇 d
)︁

+∇𝑝 = f in Ω,

𝐷 (u) = 𝛼𝑇 d + 𝛾𝜇
(︁⃒⃒⃒

𝑇 d
⃒⃒⃒)︁

𝑇 d in Ω,

div (u) = 0 in Ω,
u = 0 on 𝜕Ω.

(3.2)

In order to bring forth an elliptic term on the left-hand side of the first equation of (3.2), we rewrite the second
equation in (3.2) as

𝑇 d =
1
𝛼

𝐷 (u)− 𝛾

𝛼
𝜇
(︁⃒⃒⃒

𝑇 d
⃒⃒⃒)︁

𝑇 d, (3.3)

and thus by substituting this relation into the first equation of (3.2) we get⎧⎪⎪⎪⎨⎪⎪⎪⎩
(u · ∇) u− 1

𝛼 div (𝐷 (u)) +∇𝑝 = f − 𝛾
𝛼 div

(︁
𝜇
(︁⃒⃒⃒

𝑇 d
⃒⃒⃒)︁

𝑇 d
)︁

in Ω,

𝛼𝑇 d + 𝛾𝜇
(︁⃒⃒⃒

𝑇 d
⃒⃒⃒)︁

𝑇 d = 𝐷 (u) in Ω,

div (u) = 0 in Ω,
u = 0 on 𝜕Ω.

(3.4)

The weak formulation of (3.4) reads: find
(︁
𝑇 d,u, 𝑝

)︁
∈ 𝑀 × 𝑉 ×𝑄 such that∫︁

Ω

[(u · ∇) u] · v +
1
𝛼

∫︁
Ω

𝐷 (u) : 𝐷 (v)−
∫︁

Ω

𝑝 div (v) =
∫︁

Ω

f · v +
𝛾

𝛼

∫︁
Ω

𝜇
(︁⃒⃒⃒

𝑇 d
⃒⃒⃒)︁

𝑇 d : 𝐷 (v) ,

𝛼

∫︁
Ω

𝑇 d : 𝑆 + 𝛾

∫︁
Ω

𝜇
(︁⃒⃒⃒

𝑇 d
⃒⃒⃒)︁

𝑇 d : 𝑆 =
∫︁

Ω

𝐷 (u) : 𝑆,∫︁
Ω

𝑞 div (u) = 0

(3.5)

for all (𝑆,v, 𝑞) ∈ 𝑀 × 𝑉 ×𝑄.
As previously, we eliminate the pressure by restricting the test functions to 𝒱, and we thus obtain the following

equivalent reduced problem: find
(︁
𝑇 d,u

)︁
∈ 𝑀 × 𝒱 such that∫︁

Ω

[(u · ∇) u] · v +
1
𝛼

∫︁
Ω

𝐷 (u) : 𝐷 (v) =
∫︁

Ω

f · v +
𝛾

𝛼

∫︁
Ω

𝜇
(︁⃒⃒⃒

𝑇 d
⃒⃒⃒)︁

𝑇 d : 𝐷 (v) , (3.6)

𝛼

∫︁
Ω

𝑇 d : 𝑆 + 𝛾

∫︁
Ω

𝜇
(︁⃒⃒⃒

𝑇 d
⃒⃒⃒)︁

𝑇 d : 𝑆 =
∫︁

Ω

𝐷 (u) : 𝑆 (3.7)

for all (𝑆,v) ∈ 𝑀 × 𝒱.
Interestingly, (3.6), (3.7) can be further reduced by observing that, given u, (3.7) uniquely determines 𝑇 𝑑

thanks to the Browder–Minty theorem; see the end of Section 2.2. Thus, we define the mapping 𝒢 : 𝒱 → 𝑀 by
u ↦→ 𝑇 d with 𝑇 d ∈ 𝑀 being the unique solution of⟨

𝒜
(︁
𝑇 d
)︁

, 𝑆
⟩

𝑀
=
∫︁

Ω

𝐷 (u) : 𝑆 ∀𝑆 ∈ 𝑀, (3.8)

where we recall that 𝒜 is defined in (2.18). With this mapping, (3.6), (3.7) is equivalent to the following problem:
find u ∈ 𝒱 such that∫︁

Ω

[(u · ∇) u] · v +
1
𝛼

∫︁
Ω

𝐷 (u) : 𝐷 (v) =
∫︁

Ω

f · v +
𝛾

𝛼

∫︁
Ω

𝜇 (|𝒢 (u) |)𝒢 (u) : 𝐷 (v) . (3.9)

Before embarking on the proof of existence of a solution to problem (3.6), (3.7) we establish a series of a
priori estimates under the assumption that a solution exists.
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3.2. A priori estimates

Assuming that problem (3.6), (3.7) has a solution, the following a priori estimates hold for any solution(︁
𝑇 d,u

)︁
∈ 𝑀 × 𝒱.

Lemma 3.1 (First a priori estimates). Let |Ω| denote the measure of Ω. Then,

‖𝐷 (u)‖𝐿2(Ω) ≤ 𝛼𝐶𝑃 𝐶𝐾‖f‖𝐿2(Ω) + 𝛾𝐶1|Ω|
1
2 (3.10)

and ⃦⃦⃦
𝑇 d
⃦⃦⃦

𝐿2(Ω)
≤ 𝐶𝑃 𝐶𝐾‖f‖𝐿2(Ω) +

𝛾

𝛼
𝐶1|Ω|

1
2 (3.11)

with 𝐶𝑃 and 𝐶𝐾 signifying the constants in Poincaré’s and Korn’s inequality, respectively, and 𝐶1 the constant
in (2.12).

Proof. Taking 𝑆 = 𝑇 d in (3.7) yields

𝛼
⃦⃦⃦
𝑇 d
⃦⃦⃦2

𝐿2(Ω)
+ 𝛾

∫︁
Ω

𝜇
(︁⃒⃒⃒

𝑇 d
⃒⃒⃒)︁ ⃒⃒⃒

𝑇 d
⃒⃒⃒2

=
∫︁

Ω

𝐷 (u) : 𝑇 d ≤ ‖𝐷 (u)‖𝐿2(Ω)

⃦⃦⃦
𝑇 d
⃦⃦⃦

𝐿2(Ω)
.

Using then the positivity of 𝜇, see (2.12), we get⃦⃦⃦
𝑇 d
⃦⃦⃦

𝐿2(Ω)
≤ 1

𝛼
‖𝐷 (u)‖𝐿2(Ω) . (3.12)

To obtain a bound for u, we recall the well-known relation∫︁
Ω

[(u · ∇) v] · v = 0 ∀u ∈ 𝒱, ∀v ∈ 𝑉, (3.13)

which is easily obtained by integration by parts, as follows:∫︁
Ω

[(u · ∇) v] · v =
1
2

∫︁
Ω

u · ∇
(︀
|v|2

)︀
= −1

2

∫︁
Ω

div (u) |v|2 = 0.

Therefore, taking v = u in (3.6) and using (2.12) we obtain

1
𝛼
‖𝐷 (u)‖2𝐿2(Ω) =

∫︁
Ω

f · u +
𝛾

𝛼

∫︁
Ω

𝜇
(︁⃒⃒⃒

𝑇 d
⃒⃒⃒)︁

𝑇 d : 𝐷 (u)

≤
(︁
𝐶𝑃 𝐶𝐾‖f‖𝐿2(Ω) +

𝛾

𝛼
𝐶1|Ω|

1
2

)︁
‖𝐷 (u)‖𝐿2(Ω) ,

from which we directly deduce (3.10); (3.11) follows by applying (3.10) to (3.12). �

Lemma 3.2 (Second a priori estimates). Recall that 𝜇max := sup𝑠∈[0,∞) 𝜇 (𝑠). We also have

‖𝐷 (u)‖𝐿2(Ω) ≤ (𝛼 + 𝛾𝜇max) 𝐶𝑃 𝐶𝐾‖f‖𝐿2(Ω) (3.14)

and ⃦⃦⃦
𝑇 d
⃦⃦⃦

𝐿2(Ω)
≤ 1

𝛼
(𝛼 + 𝛾𝜇max) 𝐶𝑃 𝐶𝐾‖f‖𝐿2(Ω). (3.15)

The advantage of the estimates (3.14) and (3.15) is that if f = 0, then we can directly deduce that u = 0
and 𝑇 d = 0 (and consequently 𝑝 = 0).
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Proof. The ingredients of the proof are similar to those used in the proof of Lemma 3.1 and only the derivation
of the bound for 𝐷 (u) is different. First notice that combining (3.6) and (3.7) we have∫︁

Ω

[(u · ∇) u] · v +
∫︁

Ω

𝑇 d : 𝐷 (v) =
∫︁

Ω

f · v ∀v ∈ 𝒱. (3.16)

Taking v = u in (3.16) we then find that∫︁
Ω

𝑇 d : 𝐷 (u) ≤ 𝐶𝑃 𝐶𝐾‖f‖𝐿2(Ω) ‖𝐷 (u)‖𝐿2(Ω) . (3.17)

Notice that 𝑇 d : 𝐷 (u) ≥ 0 a.e. in Ω. Indeed, from (3.7) we have that(︁
𝛼 + 𝛾𝜇

(︁⃒⃒⃒
𝑇 d
⃒⃒⃒)︁)︁

𝑇 d = 𝐷 (u) in 𝑀 ′ (3.18)

and thus (︁
𝛼 + 𝛾𝜇

(︁⃒⃒⃒
𝑇 d
⃒⃒⃒)︁)︁

⏟  ⏞  
>0

𝑇 d : 𝐷 (u) = |𝐷 (u) |2 ≥ 0 a.e. in Ω.

Therefore, taking 𝑆 = 𝐷 (u) in (3.7) and using the upper bound 𝜇max for 𝜇 and the bound (3.17) we have

‖𝐷 (u)‖2𝐿2(Ω) = 𝛼

∫︁
Ω

𝑇 d : 𝐷 (u) + 𝛾

∫︁
Ω

𝜇
(︁⃒⃒⃒

𝑇 d
⃒⃒⃒)︁

𝑇 d : 𝐷 (u)

≤ (𝛼 + 𝛾𝜇max)
∫︁

Ω

𝑇 d : 𝐷 (u)

≤ (𝛼 + 𝛾𝜇max) 𝐶𝑃 𝐶𝐾‖f‖𝐿2(Ω) ‖𝐷 (u)‖𝐿2(Ω) ,

which yields (3.14). Finally, the bound (3.15) for 𝑇 d is obtained by substituting (3.14) in (3.12). �

Remark 3.3. Similar a priori estimates can be derived in the case when f ∈ 𝑉 ′ (with 𝑉 ′ = 𝐻−1 (Ω)𝑑). More
precisely, all occurrences of 𝐶𝑃 𝐶𝐾‖f‖𝐿2(Ω) can be replaced by ‖f‖𝒱′ , where

‖f‖𝒱′ := sup
v∈𝒱

⟨f ,v⟩𝑉
‖v‖𝑉

= sup
v∈𝒱

⟨f ,v⟩𝑉
‖𝐷 (v) ‖𝐿2(Ω)

, (3.19)

and ⟨·, ·⟩𝑉 denotes the duality pairing between 𝑉 ′ and 𝑉 . The same observation holds for all that follows.

Remark 3.4. By a direct argument we can also prove that

‖𝐷 (u)‖𝐿2(Ω) ≤
1
𝛼

(𝛼 + 𝛾𝜇max)2 𝐶𝑃 𝐶𝐾‖f‖𝐿2(Ω). (3.20)

This leads to the same a priori bound (3.15) for 𝑇 d,⃦⃦⃦
𝑇 d
⃦⃦⃦

𝐿2(Ω)
≤ 1

𝛼
(𝛼 + 𝛾𝜇max) 𝐶𝑃 𝐶𝐾‖f‖𝐿2(Ω).

Indeed, the choice 𝑆 = 𝐷 (u) in (3.7) gives directly (without invoking (3.18))

‖𝐷 (u)‖2𝐿2(Ω) = 𝛼

∫︁
Ω

𝑇 d : 𝐷 (u) + 𝛾

∫︁
Ω

𝜇
(︁⃒⃒⃒

𝑇 d
⃒⃒⃒)︁

𝑇 d : 𝐷 (u) ≤ (𝛼 + 𝛾𝜇max)
⃦⃦⃦
𝑇 d
⃦⃦⃦

𝐿2(Ω)
‖𝐷 (u)‖𝐿2(Ω) .

Hence
‖𝐷 (u)‖𝐿2(Ω) ≤ (𝛼 + 𝛾𝜇max)

⃦⃦⃦
𝑇 d
⃦⃦⃦

𝐿2(Ω)
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and
‖𝐷 (u)‖2𝐿2(Ω) ≤ (𝛼 + 𝛾𝜇max)2

⃦⃦⃦
𝑇 d
⃦⃦⃦2

𝐿2(Ω)
.

Then (3.20) follows by substituting the bound

𝛼
⃦⃦⃦
𝑇 d
⃦⃦⃦2

𝐿2(Ω)
≤
∫︁

Ω

𝐷 (u) : 𝑇 d =
∫︁

Ω

f · u ≤ 𝐶𝑃 𝐶𝐾‖f‖𝐿2(Ω) ‖𝐷 (u)‖𝐿2(Ω)

into the preceding inequality. This also yields (3.15).

3.3. Construction of a solution

In this subsection we prove the existence of a solution in a bounded Lipschitz domain without any restrictions
on the data, other than those stated at the beginning of Section 2.2. The first part of the construction is
fairly standard: a suitable sequence of (finite-dimensional) Galerkin approximations to the infinite-dimensional
problem is constructed, followed by Brouwer’s fixed point theorem to prove that each finite-dimensional problem
in the sequence has a solution; uniform a priori estimates, similar to those derived in Lemma 3.1, are established
for the Galerkin solutions, which are then used for passing to the (weak) limit, via a weak compactness argument.
However, because of the combined effect of the nonlinearities, identifying the limit as a solution to the infinite-
dimensional problem requires a more refined argument.

For the sake of clarity, the argument is split into several steps.

Step 1 (Finite-dimensional approximation). Formulation (3.9) lends itself readily to a Galerkin discretisation.
Since the only unknown is u in 𝒱, a separable Hilbert space, we introduce a countably infinite basis {w1,w2, . . .}
of orthonormal functions of 𝒱 with respect to the inner product

(u,v) :=
∫︁

Ω

𝐷 (u) : 𝐷 (v) , (3.21)

whose span is dense in 𝒱. Next, we truncate this basis, i.e., for each 𝑚 ≥ 1 we define

𝒱𝑚 := span{w1, . . . ,w𝑚},

and for u𝑚 ∈ 𝒱𝑚 we denote by û𝑚 ∈ R𝑚 its representation with respect to this basis. Finally, we fix 𝑚 ≥ 1
and consider the following finite-dimensional problem: find u𝑚 ∈ 𝒱𝑚 such that, for all 1 ≤ 𝑗 ≤ 𝑚,∫︁

Ω

[(u𝑚 · ∇) u𝑚] ·w𝑗 +
1
𝛼

∫︁
Ω

𝐷 (u𝑚) : 𝐷 (w𝑗) =
∫︁

Ω

f ·w𝑗 +
𝛾

𝛼

∫︁
Ω

𝜇
(︁⃒⃒⃒

𝑇 d
𝑚

⃒⃒⃒)︁
𝑇 d

𝑚 : 𝐷 (w𝑗) (3.22)

with 𝑇 d
𝑚 := 𝒢 (u𝑚). In other words, 𝑇 d

𝑚 ∈ 𝑀 solves

𝛼

∫︁
Ω

𝑇 d
𝑚 : 𝑆 + 𝛾

∫︁
Ω

𝜇
(︁⃒⃒⃒

𝑇 d
𝑚

⃒⃒⃒)︁
𝑇 d

𝑚 : 𝑆 =
∫︁

Ω

𝐷 (u𝑚) : 𝑆 ∀𝑆 ∈ 𝑀. (3.23)

Problem (3.22), which can be seen as the projection of (3.9) onto 𝒱𝑚, is equivalent to the following: find û𝑚 ∈ R𝑚

such that
F (û𝑚) = 0,

where F = (𝐹1, . . . , 𝐹𝑚)𝑡 : R𝑚 → R𝑚 is the continuous function defined, for 𝑗 = 1, . . . ,𝑚, by

𝐹𝑗 (û𝑚) :=
∫︁

Ω

[(u𝑚 · ∇) u𝑚] ·w𝑗 +
1
𝛼

∫︁
Ω

𝐷 (u𝑚) : 𝐷 (w𝑗)−
∫︁

Ω

f ·w𝑗 −
𝛾

𝛼

∫︁
Ω

𝜇
(︁⃒⃒⃒

𝑇 d
𝑚

⃒⃒⃒)︁
𝑇 d

𝑚 : 𝐷 (w𝑗) .

Step 2 (Existence of a discrete solution). Problem (3.22) is a system of 𝑚 nonlinear equations in 𝑚 unknowns.
The existence of a solution to this problem can be established by the following variant of Brouwer’s fixed point
theorem (see e.g. [17, 19]).
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Lemma 3.5. Let F : R𝑚 → R𝑚 be a continuous function that satisfies

F (x) · x ≥ 0 if |x| = 𝑟

for some 𝑟 > 0. Then, there exists a point x ∈ 𝐵𝑚 (0, 𝑟) := {x ∈ R𝑚 : |x| ≤ 𝑟} such that

F (x) = 0.

Proposition 3.6. Problem (3.22) has at least one solution u𝑚 ∈ 𝒱𝑚 that satisfies the uniform bound

‖𝐷 (u𝑚)‖𝐿2(Ω) ≤ 𝛼𝐶𝑃 𝐶𝐾‖f‖𝐿2(Ω) + 𝛾𝐶1|Ω|
1
2 . (3.24)

Moreover, 𝑇 d
𝑚 = 𝒢 (u𝑚) satisfies the uniform bound⃦⃦⃦

𝑇 d
𝑚

⃦⃦⃦
𝐿2(Ω)

≤ 1
𝛼
‖𝐷 (u𝑚) ‖𝐿2(Ω) ≤ 𝐶𝑃 𝐶𝐾‖f‖𝐿2(Ω) +

𝛾

𝛼
𝐶1|Ω|

1
2 . (3.25)

Proof. We infer from Lemma 3.5 that F has a zero in the ball 𝐵𝑚 (0, 𝑟) with

𝑟 := 𝛼𝐶𝑃 𝐶𝐾‖f‖𝐿2(Ω) + 𝛾𝐶1|Ω|
1
2 .

Indeed, using the antisymmetry property (3.13), which holds because u𝑚 ∈ 𝒱𝑚 ⊂ 𝒱, we get

F (û𝑚) · û𝑚 =
1
𝛼

∫︁
Ω

|𝐷 (u𝑚) |2 −
∫︁

Ω

f · u𝑚 − 𝛾

𝛼

∫︁
Ω

𝜇
(︁⃒⃒⃒

𝑇 d
𝑚

⃒⃒⃒)︁
𝑇 d

𝑚 : 𝐷 (u𝑚)

≥
(︂

1
𝛼
‖𝐷 (u𝑚) ‖𝐿2(Ω) − 𝐶𝑃 𝐶𝐾‖f‖𝐿2(Ω) −

𝛾

𝛼
𝐶1|Ω|

1
2

)︂
‖𝐷 (u𝑚) ‖𝐿2(Ω),

where we have used Poincaré’s and Korn’s inequalities (1.15) and (1.16), respectively, to bound the second term
and the relation (2.12) for the third one. As ‖𝐷 (u𝑚) ‖𝐿2(Ω) = |û𝑚|, we deduce from the last inequality that if
|û𝑚| = 𝑟 with 𝑟 as defined above, then

F (û𝑚) · û𝑚 ≥
(︂

1
𝛼
|û𝑚| − 𝐶𝑃 𝐶𝐾‖f‖𝐿2(Ω) −

𝛾

𝛼
𝐶1|Ω|

1
2

)︂
|û𝑚| = 0.

Thanks to Lemma 3.5, there exists a point û𝑚 ∈ 𝐵𝑚 (0, 𝑟) such that F (û𝑚) = 0, i.e., problem (3.22) has a
solution u𝑚 ∈ 𝒱𝑚 that satisfies the uniform bound (3.24). Finally, it is easily shown that 𝑇 d

𝑚 := 𝒢 (u𝑚) satisfies
the bound (3.25). �

Step 3 (Passage to the limit 𝑚 →∞ and identification of the limit). We consider the sequences (u𝑚)𝑚≥1 and(︁
𝑇 d

𝑚

)︁
𝑚≥1

with u𝑚 ∈ 𝒱𝑚 and 𝑇 d
𝑚 = 𝒢 (u𝑚) ∈ 𝑀 . Thanks to the uniform estimates (3.24) and (3.25) there

exist two subsequences (not relabelled) such that

lim
𝑚→∞

u𝑚 = ū weakly in 𝐻1
0 (Ω)𝑑 (and thus also in 𝒱) ,

lim
𝑚→∞

u𝑚 = ū strongly in 𝐿𝑞 (Ω)𝑑 with 1 ≤ 𝑞 < ∞ if 𝑑 = 2, and 1 ≤ 𝑞 < 6 if 𝑑 = 3,

lim
𝑚→∞

𝑇 d
𝑚 = 𝑇

d weakly in 𝐿2 (Ω)𝑑×𝑑 (and thus also in 𝑀)

for some ū ∈ 𝒱 and 𝑇
d ∈ 𝑀 . Our objective is to show that the pair

(︁
𝑇

d
, ū
)︁
∈ 𝑀 × 𝒱 is a solution to the

problem under consideration by passing to the limit in (3.22), (3.23).
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Passing to the limit in (3.22), (3.23) is however not straightforward because of the lack of strong convergence
of 𝑇 d

𝑚 in 𝑀 . Identifying the pair
(︁
𝑇

d
, ū
)︁
∈ 𝑀 × 𝒱 as a solution will be achieved by means of the following

two lemmas, the first of which (Lem. 3.7) relies on the equations and the strong convergence of the sequence
(u𝑚)𝑚≥1 in 𝐿𝑞 (Ω)𝑑 shown above, and the second lemma (Lem. 3.8) follows from the monotonicity property
(2.14).
The proof, included below, that the pair

(︁
𝑇

d
, ū
)︁

satisfies (3.7) is inspired by the arguments in [11], where a
more general constitutive relation than (3.3) was considered. Specifically, the conclusion of Lemma 3.8 follows
from Lemma 2.4.1 of [11], the hypothesis (2.12) of Lemma 2.4.1 of [11] being fulfilled thanks to Lemma 3.7;
however we provide a proof here that is directly tailored to our problem.

Lemma 3.7. The following limit holds:

lim
𝑚→∞

∫︁
Ω

𝑇 d
𝑚 : 𝐷 (u𝑚) =

∫︁
Ω

𝑇
d : 𝐷 (ū) . (3.26)

Proof. By testing equation (3.23) with 𝑆 = 𝐷 (w𝑗) and substituting into (3.22) we deduce that∫︁
Ω

[(u𝑚 · ∇) u𝑚] ·w𝑗 +
∫︁

Ω

𝑇 d
𝑚 : 𝐷 (w𝑗) =

∫︁
Ω

f ·w𝑗 ∀ 1 ≤ 𝑗 ≤ 𝑚. (3.27)

Multiplying (3.27) by (û𝑚)𝑗 , summing over 𝑗, and applying (3.13), we derive∫︁
Ω

𝑇 d
𝑚 : 𝐷 (u𝑚) =

∫︁
Ω

f · u𝑚. (3.28)

Thus we obtain on the one hand

lim
𝑚→∞

∫︁
Ω

𝑇 d
𝑚 : 𝐷 (u𝑚) = lim

𝑚→∞

∫︁
Ω

f · u𝑚 =
∫︁

Ω

f · ū. (3.29)

On the other hand, letting 𝑚 tend to infinity in (3.27) for fixed 𝑗 and considering the strong convergence of u𝑚,
we infer that ∫︁

Ω

[(ū · ∇) ū] ·w𝑗 +
∫︁

Ω

𝑇
d : 𝐷 (w𝑗) =

∫︁
Ω

f ·w𝑗 ∀ 𝑗 ≥ 1,

and the density of
⋃︀

𝑚≥1 𝒱𝑚 in 𝒱 therefore implies that∫︁
Ω

[(ū · ∇) ū] · v +
∫︁

Ω

𝑇
d : 𝐷 (v) =

∫︁
Ω

f · v ∀v ∈ 𝒱. (3.30)

In view of (3.13), the choice v = ū in (3.30) yields∫︁
Ω

𝑇
d : 𝐷 (ū) =

∫︁
Ω

f · ū, (3.31)

and (3.26) then follows from (3.29) and (3.31). �

Lemma 3.8. We have that
𝑇

d = 𝒢 (ū) . (3.32)

Proof. Let 𝑇
d

:= 𝒢 (ū); since 𝑇 d
𝑚 := 𝒢 (u𝑚), we have by definition

𝛼

∫︁
Ω

(︁
𝑇 d

𝑚 − 𝑇
d
)︁

: 𝑆 + 𝛾

∫︁
Ω

(︁
𝜇
(︁⃒⃒⃒

𝑇 d
𝑚

⃒⃒⃒)︁
𝑇 d

𝑚 − 𝜇
(︁⃒⃒⃒

𝑇
d
⃒⃒⃒)︁

𝑇
d
)︁

: 𝑆 =
∫︁

Ω

(𝐷 (u𝑚 − ū)) : 𝑆
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for all 𝑆 ∈ 𝑀 . Taking then 𝑆 = 𝑇 d
𝑚 − 𝑇

d
and using the monotonicity property (2.14) we get

𝛼

∫︁
Ω

⃒⃒⃒
𝑇 d

𝑚 − 𝑇
d
⃒⃒⃒2
≤
∫︁

Ω

(𝐷 (u𝑚 − ū)) :
(︁
𝑇 d

𝑚 − 𝑇
d
)︁

=
∫︁

Ω

[︁
𝐷 (u𝑚) : 𝑇 d

𝑚 −𝐷 (u𝑚) : 𝑇
d −𝐷 (ū) :

(︁
𝑇 d

𝑚 − 𝑇
d
)︁]︁

.

Finally, we take the limit 𝑚 →∞ of both sides and apply (3.26) to obtain

𝛼 lim
𝑚→∞

∫︁
Ω

⃒⃒⃒
𝑇 d

𝑚 − 𝑇
d
⃒⃒⃒2
≤
∫︁

Ω

[︁
𝐷 (ū) : 𝑇

d −𝐷 (ū) : 𝑇
d −𝐷 (ū) :

(︁
𝑇

d − 𝑇
d
)︁]︁

= 0,

which implies (3.32) as well as the strong convergence in 𝑀 of 𝑇 d
𝑚 to 𝑇

d. �

Theorem 3.9 (Existence of a solution). The pair
(︁
𝑇

d
, ū
)︁
∈ 𝑀 × 𝒱 solves (3.6), (3.7).

Proof. It follows from Lemma 3.8 that on the one hand
(︁
𝑇

d
, ū
)︁

solves (3.7) and on the other hand,

lim
𝑚→∞

𝜇
(︁⃒⃒⃒

𝑇 d
𝑚

⃒⃒⃒)︁
𝑇 d

𝑚 = 𝜇
(︁⃒⃒⃒

𝑇
d
⃒⃒⃒)︁

𝑇
d weakly in 𝑀.

Indeed, passing to the limit in (3.23) gives, for any 𝑆 ∈ 𝑀 ,

lim
𝑚→∞

𝛾

∫︁
Ω

𝜇
(︁⃒⃒⃒

𝑇 d
𝑚

⃒⃒⃒)︁
𝑇 d

𝑚 : 𝑆 = lim
𝑚→∞

(︂∫︁
Ω

𝐷 (u𝑚) : 𝑆 − 𝛼

∫︁
Ω

𝑇 d
𝑚 : 𝑆

)︂
=
∫︁

Ω

𝐷 (ū) : 𝑆 − 𝛼

∫︁
Ω

𝑇
d : 𝑆

= 𝛾

∫︁
Ω

𝜇
(︁⃒⃒⃒

𝑇
d
⃒⃒⃒)︁

𝑇
d : 𝑆.

Therefore, taking the limit as 𝑚 →∞ in (3.22) we get∫︁
Ω

[(ū · ∇) ū] ·w𝑗 +
1
𝛼

∫︁
Ω

𝐷 (ū) : 𝐷 (w𝑗) =
∫︁

Ω

f ·w𝑗 +
𝛾

𝛼

∫︁
Ω

𝜇
(︁⃒⃒⃒

𝑇
d
⃒⃒⃒)︁

𝑇
d : 𝐷 (w𝑗)

for each 𝑗 = 1, 2, . . ., and thus the density of
⋃︀

𝑚≥1 𝒱𝑚 in 𝒱 implies that∫︁
Ω

[(ū · ∇) ū] · v +
1
𝛼

∫︁
Ω

𝐷 (ū) : 𝐷 (v) =
∫︁

Ω

f · v +
𝛾

𝛼

∫︁
Ω

𝜇
(︁⃒⃒⃒

𝑇
d
⃒⃒⃒)︁

𝑇
d : 𝐷 (v) ∀v ∈ 𝒱,

which is precisely (3.6). �

3.4. Global conditional uniqueness

We now prove global uniqueness of the solution under additional assumptions on the function 𝜇 and the input
data. The notion of uniqueness we establish is global and conditional in the sense that it holds under suitable
restrictions on the data, but it is also global because no other solution exists.

Let R𝑑×𝑑
sym,0 denote the space of symmetric 𝑑 × 𝑑 matrices with vanishing trace and let 𝐶𝑆 be the smallest

positive constant in the following Sobolev embedding:

‖v‖𝐿4(Ω) ≤ 𝐶𝑆‖∇v‖𝐿2(Ω) ∀v ∈ 𝑉. (3.33)
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Proposition 3.10 (Uniqueness). Assume that the function 𝑇 d ↦→ 𝜇
(︁⃒⃒⃒

𝑇 d
⃒⃒⃒)︁

𝑇 d is Lipschitz continuous in

R𝑑×𝑑
sym,0, i.e., there exists a positive constant Λ such that⃒⃒⃒

𝜇
(︁⃒⃒⃒

𝑇 d
⃒⃒⃒)︁

𝑇 d − 𝜇
(︁
𝑆d
)︁

𝑆d
⃒⃒⃒
≤ Λ

⃒⃒⃒
𝑇 d − 𝑆d

⃒⃒⃒
∀𝑇 d, 𝑆d ∈ R𝑑×𝑑

sym,0. (3.34)

If the input data satisfy
𝛾

𝛼
Λ + 𝛼2𝐶2

𝑆𝐶𝑃 𝐶4
𝐾‖f‖𝐿2(Ω) + 𝛼𝛾𝐶2

𝑆𝐶3
𝐾𝐶1|Ω|

1
2 < 1 (3.35)

then the solution of problem (3.6), (3.7) is unique.

Proof. We use a variational argument. Suppose that
(︁
𝑇 d

1 ,u1

)︁
,
(︁
𝑇 d

2 ,u2

)︁
∈ 𝑀 ×𝒱 are solutions of (3.6), (3.7).

Let us write 𝛿𝑇 d := 𝑇 d
1 − 𝑇 d

2 and 𝛿u := u1 − u2. Subtracting the equations solved by
(︁
𝑇 d

2 ,u2

)︁
from those

solved by
(︁
𝑇 d

1 ,u1

)︁
we get for all (𝑆,v) ∈ 𝑀 × 𝒱 the following pair of equalities:∫︁

Ω

[(u1 · ∇) u1 − (u2 · ∇) u2] · v +
1
𝛼

∫︁
Ω

𝐷 (𝛿u) : 𝐷 (v) =
𝛾

𝛼

∫︁
Ω

(︁
𝜇
(︁⃒⃒⃒

𝑇 d
1

⃒⃒⃒)︁
𝑇 d

1 − 𝜇
(︁⃒⃒⃒

𝑇 d
2

⃒⃒⃒)︁
𝑇 d

2

)︁
: 𝐷 (v) , (3.36)

𝛼

∫︁
Ω

𝛿𝑇 d : 𝑆 + 𝛾

∫︁
Ω

(︁
𝜇
(︁⃒⃒⃒

𝑇 d
1

⃒⃒⃒)︁
𝑇 d

1 − 𝜇
(︁⃒⃒⃒

𝑇 d
2

⃒⃒⃒)︁
𝑇 d

2

)︁
: 𝑆 =

∫︁
Ω

𝐷 (𝛿u) : 𝑆. (3.37)

The choice 𝑆 = 𝛿𝑇 d in (3.37), thanks to the monotonicity property (2.14), leads to⃦⃦⃦
𝛿𝑇 d

⃦⃦⃦
𝐿2(Ω)

≤ 1
𝛼
‖𝐷 (𝛿u) ‖𝐿2(Ω). (3.38)

Then, by noting that∫︁
Ω

[(u1 · ∇) u1 − (u2 · ∇) u2] · v =
∫︁

Ω

[(𝛿u · ∇) u1] · v +
∫︁

Ω

[(u2 · ∇) 𝛿u] · v,

by testing (3.36) with v = 𝛿u, and recalling (3.13) we obtain

1
𝛼
‖𝐷 (𝛿u)‖2𝐿2(Ω) =

𝛾

𝛼

∫︁
Ω

(︁
𝜇
(︁⃒⃒⃒

𝑇 d
1

⃒⃒⃒)︁
𝑇 d

1 − 𝜇
(︁⃒⃒⃒

𝑇 d
2

⃒⃒⃒)︁
𝑇 d

2

)︁
: 𝐷 (𝛿u)−

∫︁
Ω

[(𝛿u · ∇) u1] · 𝛿u

(3.34)

≤ 𝛾

𝛼
Λ
⃦⃦⃦
𝛿𝑇 d

⃦⃦⃦
𝐿2(Ω)

‖𝐷 (𝛿u) ‖𝐿2(Ω) + ‖𝛿u‖2𝐿4(Ω)‖∇u1‖𝐿2(Ω)

(3.33), (1.16)

≤ 𝛾

𝛼
Λ
⃦⃦⃦
𝛿𝑇 d

⃦⃦⃦
𝐿2(Ω)

‖𝐷 (𝛿u) ‖𝐿2(Ω) + 𝐶2
𝑆𝐶3

𝐾‖𝐷 (u1) ‖𝐿2(Ω)‖𝐷 (𝛿u) ‖2𝐿2(Ω)

(3.38), (3.10)

≤
[︁ 𝛾

𝛼2
Λ + 𝐶2

𝑆𝐶3
𝐾

(︁
𝛼𝐶𝑃 𝐶𝐾‖f‖𝐿2(Ω) + 𝛾𝐶1|Ω|

1
2

)︁]︁
‖𝐷 (𝛿u) ‖2𝐿2(Ω).

The assumption (3.35) on the data guarantees that the factor on the right-hand side of the last inequality is
strictly smaller than 1

𝛼 , thus implying that ‖𝐷 (𝛿u) ‖𝐿2(Ω) = 0, i.e., u1 = u2. Finally, applying this result to
(3.38) yields 𝑇 d

1 = 𝑇 d
2 . �

Remark 3.11. The strategy used in deriving the second a priori estimate stated in Lemma 3.2 leads to
uniqueness when (3.35) is replaced by

𝛾

𝛼
Λ + 𝛼𝐶2

𝑆𝐶𝑃 𝐶4
𝐾 (𝛼 + 𝛾𝜇max) ‖f‖𝐿2(Ω) < 1. (3.39)

In fact both strategies lead to the same condition (3.39); namely, we also get (3.39) by using (3.14) instead of
(3.10) to bound ‖𝐷 (u1) ‖𝐿2(Ω) in the proof of Proposition 3.10.
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Note that both (3.35) and (3.39) hold when 𝛾 and f are sufficiently small.

Remark 3.12. Under the Lipschitz condition (3.34), the proof of (3.20) and (3.15) is valid with 𝜇max replaced
by Λ, and the 𝐿2 (Ω)𝑑 norm of f (multiplied by 𝐶𝑃 𝐶𝐾) replaced by its norm in 𝒱 ′, see Remark 3.3. More
precisely,

‖𝐷 (u)‖𝐿2(Ω) ≤
1
𝛼

(𝛼 + 𝛾Λ)2 ‖f‖𝒱′ , (3.40)⃦⃦⃦
𝑇 d
⃦⃦⃦

𝐿2(Ω)
≤ 1

𝛼
(𝛼 + 𝛾Λ) ‖f‖𝒱′ . (3.41)

3.5. Comparison of the a priori estimates

At this stage, it is useful to compare the a priori estimates derived in the previous subsections. We have

‖𝐷 (u)‖𝐿2(Ω) ≤ 𝐶u := min
{︂

(𝛼 + 𝛾𝜇max) ‖f‖𝒱′ , 𝛼‖f‖𝒱′ + 𝛾𝐶1|Ω|
1
2 ,

1
𝛼

(𝛼 + 𝛾Λ)2 ‖f‖𝒱′
}︂

, (3.42)⃦⃦⃦
𝑇 d
⃦⃦⃦

𝐿2(Ω)
≤ 𝐶𝑇 d := min

{︂
1
𝛼

(𝛼 + 𝛾𝜇max) ‖f‖𝒱′ , ‖f‖𝒱′ +
𝛾

𝛼
𝐶1|Ω|

1
2 ,

1
𝛼

(𝛼 + 𝛾Λ) ‖f‖𝒱′
}︂

, (3.43)

where Λ is replaced by 𝜇max if we do not make the Lipschitz assumption (3.34). For 𝑝 we have

‖𝑝‖𝐿2(Ω) ≤
1
𝛽

(︂
𝐶2

𝑆𝐶2
𝐾𝐶2

u + ‖f‖(𝒱⊥)′ + min
{︂

min
(︂

1,
𝛾𝜇max

𝛼
,
𝛾Λ
𝛼

)︂
𝐶𝑇 d ,

𝛾

𝛼
𝐶1|Ω|

1
2

}︂)︂
,

where 𝒱⊥ denotes the orthogonal complement of 𝒱 in 𝑉 with respect to the inner product (3.21).

Remark 3.13. We can replace 𝐶2
𝑆 by the product 𝐶𝑝𝐶𝑟 of the smallest constants 𝐶𝑝 and 𝐶𝑟 from the Sobolev

embedding of 𝐻1 (Ω)𝑑 into 𝐿𝑝 (Ω)𝑑 and 𝐿𝑟 (Ω)𝑑, respectively, with 𝑝 = 6 and 𝑟 = 3. We could also use the best
constant 𝐶 such that ∫︁

Ω

[(u · ∇) v] ·w ≤ 𝐶‖∇u‖𝐿2(Ω)‖∇v‖𝐿2(Ω)‖∇w‖𝐿2(Ω),

or even ∫︁
Ω

[(u · ∇) v] ·w ≤ 𝐶 ‖𝐷 (u)‖𝐿2(Ω) ‖𝐷 (v) ‖𝐿2(Ω)‖𝐷 (w) ‖𝐿2(Ω).

In the former case, 𝐶 ≤ 𝐶𝑝𝐶𝑟 while in the latter case, 𝐶 ≤ 𝐶3
𝐾𝐶𝑝𝐶𝑟.

4. Conforming finite element approximation

In this section, we study conforming finite element approximations of problem (3.2), where conformity refers
to the discrete velocity space. To facilitate the implementation, it is useful to relax the zero trace restriction on
the discrete tensor space, but this is not quite a nonconformity because the theoretical analysis of the preceding
sections holds without this condition. In particular, the inf-sup condition (2.4) is still valid (supremum over a
larger space).

We start with the numerical analysis of general conforming approximations, including existence of discrete
solutions, convergence, and error estimates, and give specific examples further on.
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4.1. General conforming approximation

As stated above, here 𝑀 = 𝐿2 (Ω)𝑑×𝑑
sym . Up to this modification, we propose to discretise the formulation

derived from (3.2): find
(︁
𝑇 d,u, 𝑝

)︁
∈ 𝑀 × 𝑉 ×𝑄 such that∫︁

Ω

[(u · ∇) u] · v +
∫︁

Ω

𝑇 d : 𝐷 (v) + 𝑏2 (v, 𝑝) =
∫︁

Ω

f · v ∀v ∈ 𝑉,

𝛼

∫︁
Ω

𝑇 d : 𝑆 + 𝛾

∫︁
Ω

𝜇
(︁⃒⃒⃒

𝑇 d
⃒⃒⃒)︁

𝑇 d : 𝑆 =
∫︁

Ω

𝐷 (u) : 𝑆 ∀𝑆 ∈ 𝑀,

𝑏2 (u, 𝑞) = 0 ∀ 𝑞 ∈ 𝑄.

(4.1)

Note that, since div (u) = 0, by taking 𝑆 = 𝐼 the second line of (4.1) implies that the solution 𝑇 d of (4.1)
satisfies tr

(︁
𝑇 d
)︁

= 0 a.e. in Ω, even though this condition was not explicitly imposed on elements of 𝑀 .
Let ℎ > 0 be a discretisation parameter that will tend to zero and, for each ℎ, let 𝑉ℎ ⊂ 𝑉 , 𝑄ℎ ⊂ 𝑄 and

𝑀ℎ ⊂ 𝑀 be three finite-dimensional spaces satisfying the following basic approximation properties, for all
𝑆 ∈ 𝑀 , v ∈ 𝑉 and 𝑞 ∈ 𝑄:

lim
ℎ→0

inf
𝑆ℎ∈𝑀ℎ

‖𝑆ℎ − 𝑆‖𝐿2(Ω) = 0, lim
ℎ→0

inf
vℎ∈𝑉ℎ

‖𝐷 (vℎ − v) ‖𝐿2(Ω) = 0, lim
ℎ→0

inf
𝑞ℎ∈𝑄ℎ

‖𝑞ℎ − 𝑞‖𝐿2(Ω) = 0.

Moreover, let
𝑉ℎ,0 := {vℎ ∈ 𝑉ℎ : 𝑏2 (vℎ, 𝑞ℎ) = 0 ∀ 𝑞ℎ ∈ 𝑄ℎ}. (4.2)

We assume on the one hand that the pair (𝑉ℎ, 𝑄ℎ) is uniformly stable for the divergence, i.e.,

inf
𝑞ℎ∈𝑄ℎ

sup
vℎ∈𝑉ℎ

𝑏2 (vℎ, 𝑞ℎ)
‖𝐷 (vℎ) ‖𝐿2(Ω)‖𝑞ℎ‖𝐿2(Ω)

≥ 𝛽* (4.3)

for some constant 𝛽* > 0, independent of ℎ, and on the other hand that 𝑀ℎ and 𝑉ℎ,0 are compatible in the
sense that

𝐷 (vℎ) ∈ 𝑀ℎ ∀vℎ ∈ 𝑉ℎ,0. (4.4)

Note that the latter assumption may be prohibitive when considering conforming finite elements on quadrilateral
(𝑑 = 2) or hexahedral (𝑑 = 3) meshes, see Section 4.2; this motivates the study of non-conforming finite elements
considered in Section 5. The inf-sup condition (4.3) guarantees that

lim
ℎ→0

inf
vℎ∈𝑉ℎ,0

‖𝐷 (vℎ − u) ‖𝐿2(Ω) = 0. (4.5)

Indeed, (4.3) implies the relation

inf
vℎ,0∈𝑉ℎ,0

‖𝐷 (u− vℎ,0) ‖𝐿2(Ω) ≤
(︂

1 +
𝑐𝑏

𝛽*

)︂
inf

vℎ∈𝑉ℎ

‖𝐷 (u− vℎ) ‖𝐿2(Ω), (4.6)

which can be shown using a standard argument; see for instance [19]. Here, 𝑐𝑏 denotes the continuity constant
of 𝑏2 (·, ·) on 𝑉 ×𝑄.

As the divergence of functions of 𝑉ℎ,0 is not necessarily zero, the antisymmetry property (3.13) does not hold
in the discrete spaces. Since this property is a crucial ingredient in the analysis of our problem, it is standard
(see for instance [19,41]) to introduce the trilinear form 𝑑 : 𝑉 × 𝑉 × 𝑉 → R defined by

𝑑 (u; v,w) :=
1
2

∫︁
Ω

[(u · ∇) v] ·w − 1
2

∫︁
Ω

[(u · ∇) w] · v. (4.7)
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The trilinear form 𝑑 is obviously antisymmetric and it is consistent thanks to the fact that

𝑑 (u; v,w) =
∫︁

Ω

[(u · ∇) v] ·w ∀u ∈ 𝒱, ∀v,w ∈ 𝑉.

Moreover, a standard computation shows that there exists a constant �̂� ≤ min
(︀
𝐶2

𝑆 , 𝐶3𝐶6

)︀
𝐶3

𝐾 such that

𝑑 (u; v,w) ≤ �̂�‖𝐷 (u) ‖𝐿2(Ω)‖𝐷 (v) ‖𝐿2(Ω)‖𝐷 (w) ‖𝐿2(Ω) ∀u,v,w ∈ 𝑉. (4.8)

We then consider the following approximation of problem (4.1): find (𝑇 ℎ,uℎ, 𝑝ℎ) ∈ 𝑀ℎ × 𝑉ℎ ×𝑄ℎ such that

𝑑 (uℎ; uℎ,vℎ) +
∫︁

Ω

𝑇 ℎ : 𝐷 (vℎ) + 𝑏2 (vℎ, 𝑝ℎ) =
∫︁

Ω

f · vℎ ∀vℎ ∈ 𝑉ℎ,

𝛼

∫︁
Ω

𝑇 ℎ : 𝑆ℎ + 𝛾

∫︁
Ω

𝜇 (|𝑇 ℎ|) 𝑇 ℎ : 𝑆ℎ =
∫︁

Ω

𝐷 (uℎ) : 𝑆ℎ ∀𝑆ℎ ∈ 𝑀ℎ,

𝑏2 (uℎ, 𝑞ℎ) = 0 ∀ 𝑞ℎ ∈ 𝑄ℎ.

(4.9)

4.1.1. Existence of a discrete solution

Existence of a solution to problem (4.9) without restrictions on the data is established by Brouwer’s fixed
point theorem, as in Section 3.3. To begin with, for any function v ∈ 𝑉 , we define the discrete analogue of the
mapping 𝒢, see (3.8); namely, 𝒢ℎ (v) ∈ 𝑀ℎ is the unique solution of

𝛼

∫︁
Ω

𝒢ℎ (v) : 𝑆ℎ + 𝛾

∫︁
Ω

𝜇 (|𝒢ℎ (v) |)𝒢ℎ (v) : 𝑆ℎ =
∫︁

Ω

𝐷 (v) : 𝑆ℎ ∀𝑆ℎ ∈ 𝑀ℎ. (4.10)

This finite-dimensional square system has one and only one solution 𝒢ℎ (v) thanks to the properties of the
left-hand side: the first term is elliptic and the second term is monotone. As in Section 3.3, in view of the inf-sup
condition (4.3), problem (4.9) is equivalent to finding uℎ ∈ 𝑉ℎ,0 solution of

𝑑 (uℎ; uℎ,vℎ) +
∫︁

Ω

𝑇 ℎ : 𝐷 (vℎ) =
∫︁

Ω

f · vℎ ∀vℎ ∈ 𝑉ℎ,0, (4.11)

where 𝑇 ℎ := 𝒢ℎ (uℎ). By proceeding as in Proposition 3.6, it is easy to prove that problem (4.11) has at least
one solution uℎ ∈ 𝑉ℎ,0, and by the above equivalence, each solution uℎ determines a pair (𝑇 ℎ, 𝑝ℎ) ∈ 𝑀ℎ×𝑄ℎ so
that (𝑇 ℎ,uℎ, 𝑝ℎ) solves problem (4.9). Moreover, each solution of problem (4.9) satisfies the same estimates as
in (3.10) and (3.11). For the sake of simplicity, since the approximation is conforming, we state them in terms
of the norm of f in 𝐻−1 (Ω)𝑑,

‖𝐷 (uℎ) ‖𝐿2(Ω) ≤ 𝛼‖f‖𝐻−1(Ω) + 𝛾𝐶1|Ω|
1
2 (4.12)

and
‖𝑇 ℎ‖𝐿2(Ω) ≤ ‖f‖𝐻−1(Ω) +

𝛾

𝛼
𝐶1|Ω|

1
2 . (4.13)

Regarding the other a priori bounds, (3.20) and (3.15) are satisfied by uℎ and 𝑇 ℎ and, if (3.34) holds, so are
(3.41) and (3.40), all up to the above norm for f . In contrast, however, we do not have enough information to
claim that (3.14) is valid because it relies on the nonnegativity of 𝑇 ℎ : 𝐷 (uℎ) almost everywhere in Ω; the
integral average is positive but this does not always guarantee pointwise nonnegativity. Thus we replace the
constant 𝐶u of (3.42) by the constant ̃︁𝐶u in the following inequality:

‖𝐷 (uℎ) ‖𝐿2(Ω) ≤ ̃︁𝐶u := min
{︂

1
𝛼

(𝛼 + 𝛾𝜇max)2 ‖f‖𝐻−1(Ω), 𝛼‖f‖𝐻−1(Ω) + 𝛾𝐶1|Ω|
1
2 ,

1
𝛼

(𝛼 + 𝛾Λ)2 ‖f‖𝐻−1(Ω)

}︂
,

(4.14)
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where the last term is included when (3.34) holds. Because 𝐶u ≤ ̃︁𝐶u, we shall use ̃︁𝐶u to bound both u and uℎ

in order to simplify the constants in the computations that will now follow.
Finally, let us establish the convergence of the sequence of discrete solutions in the limit of ℎ → 0. The above

uniform a priori estimates imply that, up to a subsequence of the discretisation parameter ℎ,

lim
ℎ→0

uℎ = ū weakly in 𝐻1
0 (Ω)𝑑

,

lim
ℎ→0

uℎ = ū strongly in 𝐿𝑞 (Ω)𝑑 with 1 ≤ 𝑞 < ∞ if 𝑑 = 2, and 1 ≤ 𝑞 < 6 if 𝑑 = 3,

lim
ℎ→0

𝑇 ℎ = 𝑇 weakly in 𝐿2 (Ω)𝑑×𝑑

for some ū ∈ 𝐻1
0 (Ω)𝑑 and 𝑇 ∈ 𝐿2 (Ω)𝑑×𝑑. Clearly, the symmetry of 𝑇 ℎ implies that of 𝑇 and div (ū) = 0

follows from the fact that uℎ belongs to 𝑉ℎ,0. Then the approximation properties of the discrete spaces and
(4.5) permit to replicate the steps of the proof of Lemma 3.7 and yield

lim
ℎ→0

∫︁
Ω

𝑇 ℎ : 𝐷 (uℎ) =
∫︁

Ω

𝑇 : 𝐷 (ū) . (4.15)

To fully identify the limit, in addition to 𝑇
d

:= 𝒢 (ū), which has trace zero since div (ū) = 0, we introduce the
auxiliary tensor 𝑇 ℎ := 𝒢ℎ (ū). On the one hand

𝛼

∫︁
Ω

(︁
𝑇 ℎ − 𝑇

d
)︁

: 𝑆ℎ + 𝛾

∫︁
Ω

(︁
𝜇
(︁⃒⃒⃒

𝑇 ℎ

⃒⃒⃒)︁
𝑇 ℎ − 𝜇

(︁⃒⃒⃒
𝑇

d
⃒⃒⃒)︁

𝑇
d
)︁

: 𝑆ℎ = 0 ∀𝑆ℎ ∈ 𝑀ℎ,

thus implying that, for all 𝑆ℎ in 𝑀ℎ,

𝛼
⃦⃦⃦
𝑇 ℎ − 𝑇

d
⃦⃦⃦2

𝐿2(Ω)
+ 𝛾

∫︁
Ω

(︁
𝜇
(︁⃒⃒⃒

𝑇 ℎ

⃒⃒⃒)︁
𝑇 ℎ − 𝜇

(︁⃒⃒⃒
𝑇

d
⃒⃒⃒)︁

𝑇
d
)︁

:
(︁
𝑇 ℎ − 𝑇

d
)︁

= 𝛼

∫︁
Ω

(︁
𝑇 ℎ − 𝑇

d
)︁

:
(︁
𝑆ℎ − 𝑇

d
)︁

+ 𝛾

∫︁
Ω

(︁
𝜇
(︁⃒⃒⃒

𝑇 ℎ

⃒⃒⃒)︁
𝑇 ℎ − 𝜇

(︁⃒⃒⃒
𝑇

d
⃒⃒⃒)︁

𝑇
d
)︁

:
(︁
𝑆ℎ − 𝑇

d
)︁

.

Since both 𝑇 ℎ and 𝑇
d

are bounded in 𝑀 uniformly with respect to ℎ, and

‖𝜇
(︁⃒⃒⃒

𝑇 ℎ

⃒⃒⃒)︁
𝑇 ℎ − 𝜇

(︁⃒⃒⃒
𝑇

d
⃒⃒⃒)︁

𝑇
d‖𝐿2(Ω) ≤ 2𝐶1|Ω|

1
2 ,

again a uniform bound, then the approximation properties of 𝑀ℎ and the monotonicity property (2.14) imply
that

lim
ℎ→0

‖𝑇 ℎ − 𝑇
d‖𝐿2(Ω) = 0. (4.16)

On the other hand, the auxiliary tensor 𝑇 ℎ permits us to argue as in the proof of Lemma 3.8. Indeed, the
monotonicity property (2.14) yields

𝛼‖𝑇 ℎ − 𝑇 ℎ‖2𝐿2(Ω) ≤
∫︁

Ω

𝐷 (uℎ) :
(︁
𝑇 ℎ − 𝑇 ℎ

)︁
−
∫︁

Ω

𝐷 (ū) :
(︁
𝑇 ℎ − 𝑇 ℎ

)︁
=
∫︁

Ω

𝐷 (uℎ) : 𝑇 ℎ −
∫︁

Ω

𝐷 (uℎ) : 𝑇 ℎ −
∫︁

Ω

𝐷 (ū) :
(︁
𝑇 ℎ − 𝑇 ℎ

)︁
.

From (4.15) and (4.16), we easily derive that the above right-hand side tends to zero. Hence

lim
ℎ→0

‖𝑇 ℎ − 𝑇 ℎ‖𝐿2(Ω) = 0,
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and then combining this with (4.16) we infer that

lim
ℎ→0

‖𝑇 ℎ − 𝑇
d‖𝐿2(Ω) = 0. (4.17)

Hence uniqueness of the limit implies that 𝑇 = 𝑇
d

= 𝒢 (ū). This, and (4.3), permit to identify the limit as in
Lemma 3.8 and Theorem 3.9, and proves convergence to a weak solution without restrictions on the data. Thus
we have proved the following result.

Theorem 4.1 (Convergence for all data). Under the above approximation properties and compatibility of the
discrete spaces, up to a subsequence,

lim
ℎ→0

uℎ = u weakly in 𝐻1
0 (Ω)𝑑

,

lim
ℎ→0

uℎ = u strongly in 𝐿𝑞 (Ω)𝑑 with 1 ≤ 𝑞 < ∞ if 𝑑 = 2, and 1 ≤ 𝑞 < 6 if 𝑑 = 3,

lim
ℎ→0

𝑇 ℎ = 𝑇 d strongly in 𝐿2 (Ω)𝑑×𝑑
,

lim
ℎ→0

𝑝ℎ = 𝑝 weakly in 𝐿2 (Ω) ,

where
(︁
𝑇 d,u, 𝑝

)︁
is a solution of (3.6), (3.7).

4.1.2. Error estimate

We now prove an a priori error estimate between
(︁
𝑇 d,u, 𝑝

)︁
and (𝑇 ℎ,uℎ, 𝑝ℎ), under the assumption (3.34)

that has not been used so far, and the small data condition (4.18) below. Note that this small data condition
is in fact the same as the uniqueness condition (3.35), upon replacing 𝐶u by ̃︁𝐶u. To simplify the notation and
compress some of the long displayed lines of mathematics, we shall write ‖ · ‖𝑉 , ‖ · ‖𝑀 and ‖ · ‖𝑄 instead of
‖𝐷 (·) ‖𝐿2(Ω) (as a norm on 𝑉 ), ‖ · ‖𝐿2(Ω) (as a norm on 𝑀) and ‖ · ‖𝐿2(Ω) (as a norm on 𝑄), respectively.

Theorem 4.2. In addition to (3.34), let the input data satisfy

𝛾

𝛼
Λ + 𝛼�̂�̃︁𝐶u ≤ 𝜃 < 1, (4.18)

where 0 < 𝜃 < 1 and �̂� is the constant from (4.8). Then, there exists a constant 𝐶 > 0 independent of ℎ such
that the difference between the solution (𝑇 ℎ,uℎ, 𝑝ℎ) of (4.9) and

(︁
𝑇 d,u, 𝑝

)︁
of (4.1) satisfies

‖u− uℎ‖𝑉 +
⃦⃦⃦
𝑇 d − 𝑇 ℎ

⃦⃦⃦
𝑀

+ ‖𝑝− 𝑝ℎ‖𝑄 ≤ 𝐶

[︂
inf

vℎ∈𝑉ℎ

‖u− vℎ‖𝑉 + inf
𝑆ℎ∈𝑀ℎ

⃦⃦⃦
𝑇 d − 𝑆ℎ

⃦⃦⃦
𝑀

+ inf
𝑞ℎ∈𝑄ℎ

‖𝑝− 𝑞ℎ‖𝑄

]︂
.

(4.19)

Proof. Since we are using conforming finite element spaces, taking (𝑆,v, 𝑞) = (𝑆ℎ,vℎ, 𝑞ℎ) in (4.1) and subtract-
ing the equations of (4.9) we easily get

𝑑 (u; u,vℎ)− 𝑑 (uℎ; uℎ,vℎ) +
∫︁

Ω

(︁
𝑇 d − 𝑇 ℎ

)︁
: 𝐷 (vℎ) + 𝑏2 (vℎ, 𝑝− 𝑝ℎ) = 0 ∀vℎ ∈ 𝑉ℎ,

𝛼

∫︁
Ω

(︁
𝑇 d − 𝑇 ℎ

)︁
: 𝑆ℎ + 𝛾

∫︁
Ω

(︁
𝜇
(︁⃒⃒⃒

𝑇 d
⃒⃒⃒)︁

𝑇 d − 𝜇 (|𝑇 ℎ|) 𝑇 ℎ

)︁
: 𝑆ℎ =

∫︁
Ω

𝐷 (u− uℎ) : 𝑆ℎ ∀𝑆ℎ ∈ 𝑀ℎ,

(4.20)
𝑏2 (u− uℎ, 𝑞ℎ) = 0 ∀ 𝑞ℎ ∈ 𝑄ℎ.

The rest of the proof is divided into three steps.
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Step 1 (Error bound for the pressure). By the triangle inequality we have, for any 𝑞ℎ ∈ 𝑄ℎ,

‖𝑝− 𝑝ℎ‖𝑄 ≤ ‖𝑝− 𝑞ℎ‖𝑄 + ‖𝑞ℎ − 𝑝ℎ‖𝑄,

and it therefore suffices to derive a bound on ‖𝑞ℎ − 𝑝ℎ‖𝑄. From the (discrete) inf-sup condition we have

𝛽*‖𝑝ℎ − 𝑞ℎ‖𝑄 ≤ sup
vℎ∈𝑉ℎ

𝑏2 (vℎ, 𝑝ℎ − 𝑞ℎ)
‖vℎ‖𝑉

·

Again, using the first equation of (4.20) we have

𝑏2 (vℎ, 𝑝ℎ − 𝑞ℎ) = 𝑏2 (vℎ, 𝑝ℎ − 𝑝) + 𝑏2 (vℎ, 𝑝− 𝑞ℎ)

= 𝑑 (u; u,vℎ)− 𝑑 (uℎ; uℎ,vℎ) +
∫︁

Ω

(︁
𝑇 d − 𝑇 ℎ

)︁
: 𝐷 (vℎ) + 𝑏2 (vℎ, 𝑝− 𝑞ℎ)

≤
[︁(︁

�̂�‖u‖𝑉 + �̂�‖uℎ‖𝑉

)︁
‖u− uℎ‖𝑉 +

⃦⃦⃦
𝑇 d − 𝑇 ℎ

⃦⃦⃦
𝑀

+ 𝑐𝑏‖𝑝− 𝑞ℎ‖𝑄

]︁
‖vℎ‖𝑉

≤
[︁
2�̂�̃︁𝐶u ‖u− uℎ‖𝑉 +

⃦⃦⃦
𝑇 d − 𝑇 ℎ

⃦⃦⃦
𝑀

+ 𝑐𝑏‖𝑝− 𝑞ℎ‖𝑄

]︁
‖vℎ‖𝑉 ,

where we can take 𝑐𝑏 = 𝐶𝐾 using the relation ‖ div (v) ‖2𝐿2(Ω) + ‖ rot (v) ‖2𝐿2(Ω) = ‖∇v‖2𝐿2(Ω) that holds because

we have homogeneous Dirichlet boundary conditions (otherwise take 𝑐𝑏 =
√

𝑑𝐶𝐾). Thus, we obtain

‖𝑝− 𝑝ℎ‖𝑄 ≤ 2�̂�̃︁𝐶u

𝛽*
‖u− uℎ‖𝑉 +

1
𝛽*

⃦⃦⃦
𝑇 d − 𝑇 ℎ

⃦⃦⃦
𝑀

+
(︂

1 +
𝑐𝑏

𝛽*

)︂
‖𝑝− 𝑞ℎ‖𝑄 (4.21)

for any 𝑞ℎ ∈ 𝑄ℎ.
Step 2 (Error bound for the stress tensor). Again, we start with the triangle inequality; for any 𝑆ℎ ∈ 𝑀ℎ we
have that ⃦⃦⃦

𝑇 d − 𝑇 ℎ

⃦⃦⃦
𝑀
≤
⃦⃦⃦
𝑇 d − 𝑆ℎ

⃦⃦⃦
𝑀

+ ‖𝑆ℎ − 𝑇 ℎ‖𝑀 ,

and we then bound ‖𝑇 ℎ−𝑆ℎ‖𝑀 . Thanks to the monotonicity property (2.14) and the second equation of (4.20),
we have

𝛼‖𝑇 ℎ − 𝑆ℎ‖2𝑀 ≤ 𝛼

∫︁
Ω

|𝑇 ℎ − 𝑆ℎ|2 + 𝛾

∫︁
Ω

(𝜇 (|𝑇 ℎ|) 𝑇 ℎ − 𝜇 (|𝑆ℎ|) 𝑆ℎ) : (𝑇 ℎ − 𝑆ℎ)

= 𝛼

∫︁
Ω

(︁
𝑇 ℎ − 𝑇 d + 𝑇 d − 𝑆ℎ

)︁
: (𝑇 ℎ − 𝑆ℎ) + 𝛾

∫︁
Ω

(𝜇 (|𝑇 ℎ|) 𝑇 ℎ − 𝜇 (|𝑆ℎ|) 𝑆ℎ) : (𝑇 ℎ − 𝑆ℎ)

=
∫︁

Ω

𝐷 (uℎ − u) : (𝑇 ℎ − 𝑆ℎ) + 𝛾

∫︁
Ω

(︁
𝜇
(︁⃒⃒⃒

𝑇 d
⃒⃒⃒)︁

𝑇 d − 𝜇 (|𝑆ℎ|) 𝑆ℎ

)︁
: (𝑇 ℎ − 𝑆ℎ)

+ 𝛼

∫︁
Ω

(︁
𝑇 d − 𝑆ℎ

)︁
: (𝑇 ℎ − 𝑆ℎ)

≤
[︁
‖u− uℎ‖𝑉 + 𝛼

⃦⃦⃦
𝑇 d − 𝑆ℎ

⃦⃦⃦
𝑀

+ 𝛾Λ
⃦⃦⃦
𝑇 d − 𝑆ℎ

⃦⃦⃦
𝑀

]︁
‖𝑇 ℎ − 𝑆ℎ‖𝑀 ,

and thus ⃦⃦⃦
𝑇 d − 𝑇 ℎ

⃦⃦⃦
𝑀
≤ 1

𝛼
‖u− uℎ‖𝑉 +

(︂
2 +

𝛾Λ
𝛼

)︂ ⃦⃦⃦
𝑇 d − 𝑆ℎ

⃦⃦⃦
𝑀

(4.22)

for any 𝑆ℎ ∈ 𝑀ℎ.
Step 3 (Error bound for the velocity). Recalling the definition of 𝑉ℎ,0 in (4.2), let 𝑣ℎ := 𝑣ℎ,0 − 𝑢ℎ ∈ 𝑉ℎ,0 with
𝑣ℎ,0 ∈ 𝑉ℎ,0. We will first show the relation (4.19) by taking the infimum over 𝑉ℎ,0 instead of 𝑉ℎ. As before, we
use the triangle inequality to get

‖u− uℎ‖𝑉 ≤ ‖u− vℎ,0‖𝑉 + ‖vℎ,0 − uℎ‖𝑉 .
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Thanks to the assumption (4.4), we can take 𝑆ℎ = 𝐷 (vℎ) in the second equation of (4.20) yielding∫︁
Ω

𝐷 (u− uℎ) : 𝐷 (vℎ) = 𝛼

∫︁
Ω

(︁
𝑇 d − 𝑇 ℎ

)︁
: 𝐷 (vℎ) + 𝛾

∫︁
Ω

(︁
𝜇
(︁⃒⃒⃒

𝑇 d
⃒⃒⃒)︁

𝑇 d − 𝜇 (|𝑇 ℎ|) 𝑇 ℎ

)︁
: 𝐷 (vℎ) .

Using the first equation of (4.20), we can easily derive the equality

‖vℎ,0 − uℎ‖2𝑉 =
∫︁

Ω

𝐷 (vℎ,0 − uℎ) : 𝐷 (vℎ) =
∫︁

Ω

𝐷 (vℎ,0 − u) : 𝐷 (vℎ)− 𝛼 (𝑑 (u; u,vℎ)− 𝑑 (uℎ; uℎ,vℎ))

− 𝛼𝑏2 (vℎ, 𝑝− 𝑞ℎ) + 𝛾

∫︁
Ω

(︁
𝜇
(︁⃒⃒⃒

𝑇 d
⃒⃒⃒)︁

𝑇 d − 𝜇 (|𝑇 ℎ|) 𝑇 ℎ

)︁
: 𝐷 (vℎ) ,

thanks to the fact that 𝑏2 (vℎ, 𝑞ℎ − 𝑝ℎ) = 0. To bound the convective term, we use

𝑑 (u;u,vℎ)− 𝑑 (uℎ;uℎ,vℎ) = 𝑑 (u− uℎ;u,vℎ) + 𝑑 (uℎ;u− uℎ,vℎ)

= 𝑑
(︀
u− vℎ,0;u,vℎ

)︀
+ 𝑑

(︀
vℎ,0 − uℎ;u,vℎ

)︀
+ 𝑑

(︀
uℎ;u− vℎ,0,vℎ

)︀
+ 𝑑

(︀
uℎ;vℎ,0 − uℎ,vℎ

)︀⏟  ⏞  
=0

≤
[︀
�̂�‖u‖𝑉 ‖u− vℎ,0‖𝑉 + �̂�‖u‖𝑉 ‖vℎ,0 − uℎ‖𝑉 + �̂�‖uℎ‖𝑉 ‖u− vℎ,0‖𝑉

]︀
‖vℎ,0 − uℎ‖𝑉

× ≤
[︁
2�̂�̃︁𝐶u‖u− vℎ,0‖𝑉 + �̂�̃︁𝐶u‖vℎ,0 − uℎ‖𝑉

]︁
‖vℎ,0 − uℎ‖𝑉 ,

from which we get

‖vℎ,0 − uℎ‖𝑉 ≤ ‖u− vℎ,0‖𝑉 + 2𝛼�̂�̃︁𝐶u‖u− vℎ,0‖𝑉

+ 𝛼𝑐𝑏‖𝑝− 𝑞ℎ‖𝑄 + 𝛾Λ
⃦⃦⃦
𝑇 d − 𝑇 ℎ

⃦⃦⃦
𝑀

+ 𝛼�̂�̃︁𝐶u‖vℎ,0 − uℎ‖𝑉 .

Now using (4.22) we arrive at

‖vℎ,0 − uℎ‖𝑉 ≤
(︁

1 + 2𝛼�̂�̃︁𝐶u

)︁
‖u− vℎ,0‖𝑉 + 𝛼𝑐𝑏‖𝑝− 𝑞ℎ‖𝑄 +

𝛾Λ
𝛼
‖u− uℎ‖𝑉

+ 𝛾Λ
(︂

2 +
𝛾Λ
𝛼

)︂
‖𝑇 d − 𝑆ℎ‖𝑀 + 𝛼�̂�̃︁𝐶u‖vℎ,0 − uℎ‖𝑉

≤
(︂

1 + 2𝛼�̂�̃︁𝐶u +
𝛾Λ
𝛼

)︂
‖u− vℎ,0‖𝑉 + 𝛾Λ

(︂
2 +

𝛾Λ
𝛼

)︂
‖𝑇 𝑑 − 𝑆ℎ‖𝑀

+ 𝛼𝑐𝑏‖𝑝− 𝑞ℎ‖𝑄 +
(︂

𝛾Λ
𝛼

+ 𝛼�̂�̃︁𝐶u

)︂
‖vℎ,0 − uℎ‖𝑉 .

Therefore, using the assumption (4.18) on the input data, we obtain

‖vℎ,0 − uℎ‖𝑉 ≤ 1
1− 𝜃

[︂(︂
1 + 2𝛼�̂�̃︁𝐶u +

𝛾Λ
𝛼

)︂
‖u− vℎ,0‖𝑉 + 𝛾Λ

(︂
2 +

𝛾Λ
𝛼

)︂ ⃦⃦⃦
𝑇 d − 𝑆ℎ

⃦⃦⃦
𝑀

+ 𝛼𝑐𝑏‖𝑝− 𝑞ℎ‖𝑄

]︂
and thus

‖u− uℎ‖𝑉 ≤

(︃
1 +

1 + 2𝛼�̂�̃︁𝐶u + 𝛾Λ
𝛼

1− 𝜃

)︃
‖u− vℎ,0‖𝑉 +

𝛾Λ
(︁

2 + 𝛾Λ
𝛼

)︁
1− 𝜃

‖𝑇 d − 𝑆ℎ‖𝑀 +
𝛼𝑐𝑏

1− 𝜃
‖𝑝− 𝑞ℎ‖𝑄 (4.23)

for any vℎ,0 ∈ 𝑉ℎ,0. Finally, combining (4.21)–(4.23) we obtain

‖u− uℎ‖𝑉 +
⃦⃦⃦
𝑇 d − 𝑇 ℎ

⃦⃦⃦
𝑀

+ ‖𝑝− 𝑝ℎ‖𝑄 ≤ 𝑐1 inf
vℎ,0∈𝑉ℎ,0

‖u−vℎ,0‖𝑉 + 𝑐2 inf
𝑆ℎ∈𝑀ℎ

⃦⃦⃦
𝑇 d − 𝑆ℎ

⃦⃦⃦
𝑀

+ 𝑐3 inf
𝑞ℎ∈𝑄ℎ

‖𝑝− 𝑞ℎ‖𝑄
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with

𝑐1 :=

[︃
1 +

2�̂�̃︁𝐶u

𝛽*
+

1
𝛼

(︂
1 +

1
𝛽*

)︂]︃(︃
1 +

1 + 2𝛼�̂�̃︁𝐶u + 𝛾Λ
𝛼

1− 𝜃

)︃
,

𝑐2 :=
(︂

1 +
1
𝛽*

)︂(︂
2 +

𝛾Λ
𝛼

)︂
+

[︃
1 +

2�̂�̃︁𝐶u

𝛽*
+

1
𝛼

(︂
1 +

1
𝛽*

)︂]︃ 𝛾Λ
(︁

2 + 𝛾Λ
𝛼

)︁
1− 𝜃

,

𝑐3 :=
(︂

1 +
𝑐𝑏

𝛽*

)︂
+

[︃
1 +

2�̂�̃︁𝐶u

𝛽*
+

1
𝛼

(︂
1 +

1
𝛽*

)︂]︃(︂
𝛼𝑐𝑏

1− 𝜃

)︂
·

We can then conclude the proof using (4.6). �

4.2. Examples of conforming approximation

From now on, we assume that the boundary of the Lipschitz domain Ω ⊂ R𝑑 is a polygonal line (when 𝑑 = 2)
or a polyhedral surface (when 𝑑 = 3), so that it can be exactly meshed. For each ℎ, let 𝒯ℎ be a conforming
mesh on Ω consisting of elements 𝐸, triangles or quadrilaterals in two dimensions, tetrahedra or hexahedra (all
planar-faced) in three dimensions, conforming in the sense that the mesh has no hanging nodes. As usual, the
diameter of 𝐸 is denoted by ℎ𝐸 ,

ℎ = sup
𝐸∈𝒯ℎ

ℎ𝐸 ,

and 𝜚𝐸 is the diameter of the largest ball inscribed in 𝐸.

4.2.1. The simplicial case

In the case of simplices, the family of meshes 𝒯ℎ is assumed to be regular in the sense of Ciarlet [14]: i.e., it
is assumed that there exists a constant 𝜎 > 0, independent of ℎ, such that

ℎ𝐸

𝜚𝐸
≤ 𝜎 ∀𝐸 ∈ 𝒯ℎ. (4.24)

This condition guarantees that there is an invertible affine mapping ℱ𝐸 that maps the unit reference simplex
onto 𝐸.

For any integer 𝑘 ≥ 0, let P𝑘 denote the space of polynomials in 𝑑 variables of degree at most 𝑘. In each
element 𝐸, the functions will be approximated in the spaces P𝑘. The specific choice of finite element spaces is
dictated by two considerations. First, conditions (4.3) and (4.4) must be satisfied. Next, since the number of
unknowns in (4.9) is large, the degree 𝑘 of the finite element functions should be small. It is well-known that
the lowest degree of conforming approximation of (u, 𝑝) satisfying (4.3), without modification of the bilinear
forms, is the Taylor-Hood P𝑑

2–P1 element, see [3, 19], provided each element has at least one interior vertex. In
view of (4.4), this implies that 𝑇 d is approximated by P𝑑×𝑑

1 . Thus the corresponding finite element spaces are

𝑉ℎ :=
{︁
vℎ ∈ 𝐻1

0 (Ω)𝑑 : vℎ 𝐸 ∈ P𝑑
2 ∀𝐸 ∈ 𝒯ℎ

}︁
,

𝑄ℎ :=
{︀
𝑞ℎ ∈ 𝐻1 (Ω) ∩ 𝐿2

0 (Ω) : 𝑞ℎ 𝐸 ∈ P1 ∀𝐸 ∈ 𝒯ℎ

}︀
,

𝑀ℎ :=
{︁

𝑆ℎ ∈ 𝐿2 (Ω)𝑑×𝑑
sym : 𝑆ℎ 𝐸 ∈ (P1)𝑑×𝑑

sym ∀𝐸 ∈ 𝒯ℎ

}︁
.

It is easy to check that with these spaces on a simplicial mesh, under condition (4.24), problem (4.9) has at
least one solution. Furthermore, if the data satisfy (4.18), then Theorem 4.2 yields

‖𝐷 (u− uℎ) ‖𝐿2(Ω) +
⃦⃦⃦
𝑇 d − 𝑇 ℎ

⃦⃦⃦
𝐿2(Ω)

+ ‖𝑝− 𝑝ℎ‖𝐿2(Ω) ≤ 𝐶 ℎ2, (4.25)
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provided that the solution is sufficiently smooth, namely u ∈ 𝐻3 (Ω)𝑑 ∩ 𝐻1
0 (Ω)𝑑, 𝑇 d ∈ 𝐻2 (Ω)𝑑×𝑑, and 𝑝 ∈

𝐻2 (Ω) ∩ 𝐿2
0 (Ω). Therefore the scheme has order two for an optimal number of degrees of freedom, i.e., this

order of convergence cannot be achieved with fewer degrees of freedom.

4.2.2. The quadrilateral/hexahedral case

The notion of regularity is more complex for quadrilateral and much more complex for hexahedral elements.
In the case of quadrilaterals [19], the family of meshes is regular if the elements are convex and, moreover, the
subtriangles associated to each vertex (there is one per vertex) all satisfy (4.24). In the case of hexahedra with
plane faces, convexity and the validity of (4.24) for the subtetrahedra associated to each vertex are necessary
but not sufficient. This difficulty has been investigated by many authors, see for instance [23, 42]; the most
relevant publication concerning hexahedra with plane faces is however [22], where the minimum of the Jacobian
in the reference cube �̂� is bounded below by the minimum of the coefficients of its Bézier expansion and this
minimum is determined by an efficient algorithm. The details of this are beyond the scope of this work, and we
shall simply assume here that the minimum of these Bézier coefficients is strictly positive and that furthermore,
denoting by 𝒥𝐸 the Jacobian determinant of ℱ𝐸 ,

𝒥𝐸 (x̂) ≥ 𝑐𝜚3
𝐸 ∀ x̂ ∈ �̂� (4.26)

with a constant 𝑐 independent of 𝐸 and ℎ. If these conditions hold, there is an invertible bi-affine mapping ℱ𝐸

in two dimensions or tri-affine in three dimensions that maps the unit reference square or cube onto 𝐸.
We let Q𝑘 be the space of polynomials in 𝑑 variables of degree at most 𝑘 in each variable. In contrast to

the case of simplicial meshes, the space Q𝑘 is not invariant under the composition with ℱ𝐸 , which makes the
compatibility condition (4.4) between 𝐷 (𝑉ℎ) and 𝑀ℎ problematic. To circumvent this issue, we restrict ourselves
to affine maps ℱ𝐸 , thereby allowing subdivisions consisting of parallelograms/parallelepipeds. In addition, the
situation is less satisfactory when a quadrilateral or hexahedral mesh is used, because although the Taylor-Hood
Q𝑑

2–Q1 element satisfies (4.3), the second condition (4.4) does not hold if 𝑇 d is approximated by Q𝑑×𝑑
1 since

the components of the gradient of Q2 functions belong to a space, intermediate between Q2 and Q1, that is
strictly larger than both Q1 and P2. Therefore, in order to satisfy (4.4), the simplest option is to discretise each
component of 𝑇 d by Q2. The corresponding finite element spaces are

𝑉ℎ :=
{︁
vℎ ∈ 𝐻1

0 (Ω)𝑑 : vℎ 𝐸 ∈ Q𝑑
2 ∀𝐸 ∈ 𝒯ℎ

}︁
,

𝑄ℎ :=
{︀
𝑞ℎ ∈ 𝐻1 (Ω) ∩ 𝐿2

0 (Ω) : 𝑞ℎ 𝐸 ∈ Q1 ∀𝐸 ∈ 𝒯ℎ

}︀
,

𝑀ℎ :=
{︁

𝑆ℎ ∈ 𝐿2 (Ω)𝑑×𝑑
sym : 𝑆ℎ 𝐸 ∈ (Q2)𝑑×𝑑

sym ∀𝐸 ∈ 𝒯ℎ

}︁
.

With these spaces and under the above regularity conditions, problem (4.9) has at least one solution and the
error estimate (4.25) holds if the data satisfy (4.18). However, this triple of spaces is no longer optimal, because
the degree two approximation of 𝑇 d now requires far too many degrees of freedom with no gain in accuracy.
For instance, when 𝑑 = 3, its approximation by (Q2)3×3

sym requires 27 × 6 = 162 unknowns inside each element
instead of 8× 6 = 48 unknowns for (Q1)3×3

sym.
The nonconforming finite element approximations discussed in Section 5 do not require an affine mapping

ℱ𝐸 and, by considering P-type approximations on the physical element 𝐸, do not suffer from the computational
cost overhead mentioned above.

5. Nonconforming finite element approximation

The nonconforming approximations developed here will not only allow the use of elements of degree one
for u, but will also lead to locally mass-conserving schemes. Because of the discontinuity of the finite element
functions, the proofs are in some cases more complex; this is true in particular for the proof of the inf-sup
condition for the discrete divergence.
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5.1. The quadrilateral/planar-faced hexahedral case

Here we consider quadrilateral/hexahedral grids 𝒯ℎ with planar faces, satisfying the regularity assumptions
stated in Section 4.2. There is a wide choice of possible approximations with nonconforming finite elements. Here
we propose globally discontinuous velocities in P𝑑

𝑘, 𝑘 ≥ 1, in each cell associated with globally discontinuous
pressures and stresses both of degree at most 𝑘 − 1. Thus we consider 𝑉ℎ ⊂ 𝐿2 (Ω)𝑑, 𝑄ℎ ⊂ 𝐿2

0 (Ω) and 𝑀ℎ ⊂
𝐿2 (Ω)𝑑×𝑑

sym defined by

𝑉ℎ :=
{︁
vℎ ∈ 𝐿2 (Ω)𝑑 : vℎ 𝐸 ∈ P𝑑

𝑘 ∀𝐸 ∈ 𝒯ℎ

}︁
, (5.1)

𝑄ℎ :=
{︀
𝑞ℎ ∈ 𝐿2

0 (Ω) : 𝑞ℎ 𝐸 ∈ P𝑘−1 ∀𝐸 ∈ 𝒯ℎ

}︀
, (5.2)

𝑀ℎ :=
{︁

𝑆ℎ ∈ 𝐿2 (Ω)𝑑×𝑑
sym : 𝑆ℎ 𝐸 ∈ (P𝑘−1)𝑑×𝑑

sym ∀𝐸 ∈ 𝒯ℎ

}︁
. (5.3)

As usual, the full nonconformity of 𝑉ℎ is compensated by adding to the forms consistent jumps and averages
on edges when 𝑑 = 2 or faces when 𝑑 = 3; see for instance [38]. Let Γℎ = Γ𝑖

ℎ ∪ Γ𝑏
ℎ denote the set of all edges

when 𝑑 = 2 or all faces when 𝑑 = 3 with Γ𝑖
ℎ and Γ𝑏

ℎ signifying the set of all interior and the set of all boundary
edges (𝑑 = 2) or faces (𝑑 = 3), respectively. A unit normal vector n𝑒 is attributed to each 𝑒 ∈ Γℎ; its direction
can be freely chosen. Here, the following rule is applied: if 𝑒 ∈ Γ𝑏

ℎ, then n𝑒 = nΩ, the exterior unit normal to
Ω; if 𝑒 ∈ Γ𝑖

ℎ, then n𝑒 points from 𝐸𝑖 to 𝐸𝑗 , where 𝐸𝑖 and 𝐸𝑗 are the two elements of 𝒯ℎ adjacent to 𝑒 and the
number 𝑖 of 𝐸𝑖 is smaller than that of 𝐸𝑗 . The jumps and averages of any function 𝑓 on 𝑒 (smooth enough to
have a trace) are defined by

[𝑓 (𝑥)]𝑒 := 𝑓 (𝑥) 𝐸𝑖
− 𝑓 (𝑥) 𝐸𝑗

, when n𝑒 points from 𝐸𝑖 to 𝐸𝑗 ,

{𝑓 (𝑥)}𝑒 :=
1
2

(︁
𝑓 (𝑥) 𝐸𝑖

+ 𝑓 (𝑥) 𝐸𝑗

)︁
.

When 𝑒 ∈ Γ𝑏
ℎ, the jump and average are defined to coincide with the trace on 𝑒.

The terms involving jumps and averages that are added to each form are not unique; here we make the
following fairly standard choice:∫︁

Ω

𝑆 : 𝐷 (v) ≃ 𝑏1ℎ (𝑆ℎ,vℎ) :=
∑︁

𝐸∈𝒯ℎ

∫︁
𝐸

𝑆ℎ : 𝐷 (vℎ)−
∑︁
𝑒∈Γℎ

∫︁
𝑒

{𝑆ℎ}𝑒n𝑒 · [vℎ]𝑒. (5.4)

The trilinear form 𝑑 is approximated by a centred discretisation, as follows:

𝑑ℎ (uℎ; vℎ,wℎ) :=
∑︁

𝐸∈𝒯ℎ

∫︁
𝐸

[(uℎ · ∇) vℎ] ·wℎ +
1
2

∑︁
𝐸∈𝒯ℎ

∫︁
𝐸

div (uℎ) (vℎ ·wℎ)

− 1
2

∑︁
𝑒∈Γℎ

∫︁
𝑒

[uℎ]𝑒 · n𝑒{vℎ ·wℎ}𝑒 −
∑︁
𝑒∈Γ𝑖

ℎ

∫︁
𝑒

{uℎ}𝑒 · n𝑒[vℎ]𝑒 · {wℎ}𝑒. (5.5)

The divergence form 𝑏2 is approximated by

𝑏2ℎ (vℎ, 𝑞ℎ) := −
∑︁

𝐸∈𝒯ℎ

∫︁
𝐸

𝑞ℎ div (vℎ) +
∑︁
𝑒∈Γℎ

∫︁
𝑒

[vℎ]𝑒 · n𝑒{𝑞ℎ}𝑒. (5.6)

Clearly, the jump terms in (5.4) and (5.6) vanish when vℎ belongs to 𝐻1
0 (Ω)𝑑. Likewise, the jump and diver-

gence terms in (5.5) vanish when uℎ and vℎ belong to 𝐻1
0 (Ω)𝑑 and div (uℎ) = 0. Moreover, equation (5.5) is

constructed so that 𝑑ℎ is antisymmetric,

𝑑ℎ (uℎ; vℎ,wℎ) = −𝑑ℎ (uℎ; wℎ,vℎ) ∀uℎ,vℎ,wℎ ∈ 𝑉ℎ. (5.7)
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Finally, the following positive definite form acts as a penalty to compensate the nonconformity of uℎ:

𝐽ℎ (uℎ,vℎ) :=
∑︁
𝑒∈Γℎ

𝜎𝑒

ℎ𝑒

∫︁
𝑒

[uℎ]𝑒 · [vℎ]𝑒, (5.8)

where ℎ𝑒 is the average of the diameter of the two elements adjacent to 𝑒, if 𝑒 ∈ Γ𝑖
ℎ, or the diameter of the

element adjacent to 𝑒 otherwise. The parameters 𝜎𝑒 > 0 will be chosen below to guarantee stability of the
scheme, see (5.28) and (5.24). This form is also used to define the norm on 𝑉ℎ by

‖vℎ‖𝑉ℎ
:=
(︀
‖𝐷 (vℎ) ‖2ℎ + 𝐽ℎ (vℎ,vℎ)

)︀ 1
2 , (5.9)

where

‖𝐷 (vℎ) ‖ℎ :=

(︃∑︁
𝐸∈𝒯ℎ

‖𝐷 (vℎ) ‖2𝐿2(𝐸)

)︃ 1
2

(5.10)

denotes the associated semi-norm. Also, in view of (5.6), we define the space of discretely divergence-free
functions,

𝑉ℎ,0 := {vℎ ∈ 𝑉ℎ : 𝑏2ℎ (vℎ, 𝑞ℎ) = 0 ∀ 𝑞ℎ ∈ 𝑄ℎ}. (5.11)

The discrete scheme reads: find (𝑇 ℎ,uℎ, 𝑝ℎ) ∈ 𝑀ℎ × 𝑉ℎ ×𝑄ℎ solution of

𝑑ℎ (uℎ; uℎ,vℎ) + 𝑏1ℎ (𝑇 ℎ,vℎ) + 𝑏2ℎ (vℎ, 𝑝ℎ) + 𝐽ℎ (uℎ,vℎ) =
∫︁

Ω

f · vℎ ∀vℎ ∈ 𝑉ℎ,

𝛼

∫︁
Ω

𝑇 ℎ : 𝑆ℎ + 𝛾

∫︁
Ω

𝜇 (|𝑇 ℎ|) 𝑇 ℎ : 𝑆ℎ = 𝑏1ℎ (𝑆ℎ,uℎ) ∀𝑆ℎ ∈ 𝑀ℎ,

𝑏2ℎ (uℎ, 𝑞ℎ) = 0 ∀ 𝑞ℎ ∈ 𝑄ℎ.

(5.12)

As expected, 𝑏2ℎ (vℎ, 1) = 0, and therefore the system (5.12) is unchanged when the zero mean value constraint
is lifted from the functions of 𝑄ℎ.

5.1.1. Properties of the norm and forms

All constants below depend on the regularity of the mesh but are independent of ℎ. In particular, we shall use
𝐶 to denote such generic constant independent of ℎ. In addition, we shall use the following “edge to interior”
inequality. There exists a constant 𝐶, depending only on the dimension 𝑑 and the degree of the polynomials,
such that for all vℎ ∈ 𝑉ℎ, all 𝑒 ∈ Γℎ and any element 𝐸, adjacent to 𝑒,

‖vℎ‖𝐿2(𝑒) ≤ 𝐶

(︂
|𝑒|
|𝐸|

)︂ 1
2

‖vℎ‖𝐿2(𝐸). (5.13)

It is easy to check that (5.9) defines a norm on 𝑉ℎ. Next, the results in [6,7] yield the following consequences of
a discrete Korn inequality:

‖vℎ‖𝐿2(Ω) ≤ 𝐶‖vℎ‖𝑉ℎ
∀vℎ ∈ 𝑉ℎ, (5.14)

and
‖∇ℎvℎ‖𝐿2(Ω) ≤ 𝐶‖vℎ‖𝑉ℎ

∀vℎ ∈ 𝑉ℎ, (5.15)

where ∇ℎvℎ is the broken gradient (i.e., the local gradient in each element). Moreover, by following the work
in [10,20,24], this can be generalised for all finite 𝑝 ≥ 1 when 𝑑 = 2 and all 𝑝 ∈ [1, 6] when 𝑑 = 3, to

‖vℎ‖𝐿𝑝(Ω) ≤ 𝐶 (𝑝) ‖vℎ‖𝑉ℎ
∀vℎ ∈ 𝑉ℎ. (5.16)
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With this norm, the following compactness result holds for any sequence vℎ in 𝑉ℎ, see [2,10,20]: if there exists
a constant 𝐶 independent of ℎ such that

‖vℎ‖𝑉ℎ
≤ 𝐶,

then there exists a function v̄ ∈ 𝐻1
0 (Ω)𝑑 such that for all finite 𝑝 ≥ 1 when 𝑑 = 2 and all 𝑝 ∈ [1, 6) when 𝑑 = 3,

lim
ℎ→0

‖vℎ − v̄‖𝐿𝑝(Ω) = 0. (5.17)

Regarding the forms, a straightforward finite-dimensional argument shows that, for all uℎ,vℎ,wℎ ∈ 𝑉ℎ,⃒⃒⃒⃒
⃒∑︁
𝑒∈Γℎ

∫︁
𝑒

[uℎ]𝑒 · n𝑒{vℎ ·wℎ}𝑒

⃒⃒⃒⃒
⃒ ≤ 𝐶 (𝐽ℎ (uℎ,uℎ))

1
2 ‖vℎ‖𝐿4(Ω)‖wℎ‖𝐿4(Ω), (5.18)⃒⃒⃒⃒

⃒⃒∑︁
𝑒∈Γ𝑖

ℎ

∫︁
𝑒

{uℎ}𝑒 · n𝑒[vℎ]𝑒 · {wℎ}𝑒

⃒⃒⃒⃒
⃒⃒ ≤ 𝐶‖uℎ‖𝐿4(Ω) (𝐽ℎ (vℎ,vℎ))

1
2 ‖wℎ‖𝐿4(Ω). (5.19)

Hence we have, for all uℎ,vℎ,wℎ ∈ 𝑉ℎ,

|𝑑ℎ (uℎ; vℎ,wℎ)| ≤ 𝐶‖uℎ‖𝐿4(Ω) (𝐽ℎ (vℎ,vℎ))
1
2 ‖wℎ‖𝐿4(Ω) +

[︃
‖∇ℎvℎ‖𝐿2(Ω)‖uℎ‖𝐿4(Ω)

+
1
2

⎛⎝(︃∑︁
𝐸∈𝒯ℎ

‖ div (uℎ) ‖2𝐿2(𝐸)

)︃ 1
2

+ 𝐶 (𝐽ℎ (uℎ,uℎ))
1
2

⎞⎠ ‖vℎ‖𝐿4(Ω)

]︃
‖wℎ‖𝐿4(Ω). (5.20)

Similarly,

|𝑏2ℎ (vℎ, 𝑞ℎ)| ≤

⎛⎝(︃∑︁
𝐸∈𝒯ℎ

‖div (vℎ)‖2𝐿2(𝐸)

)︃ 1
2

+ 𝐶 (𝐽ℎ (vℎ,vℎ))
1
2

⎞⎠ ‖𝑞ℎ‖𝐿2(Ω) ∀vℎ ∈ 𝑉ℎ, 𝑞ℎ ∈ 𝑄ℎ, (5.21)

|𝑏1ℎ (𝑆ℎ,vℎ)| ≤
(︁
‖𝐷 (vℎ) ‖ℎ + 𝐶 (𝐽ℎ (vℎ,vℎ))

1
2

)︁
‖𝑆ℎ‖𝐿2(Ω) ∀vℎ ∈ 𝑉ℎ, 𝑆ℎ ∈ 𝑀ℎ. (5.22)

Finally, the inequality below is used in choosing 𝜎𝑒. Its proof is fairly straightforward, but it is included here
for the reader’s convenience.

Proposition 5.1. For any uℎ ∈ 𝑉ℎ, any choice of 𝜎𝑒 > 0 and any real number 𝛿 > 0, we have⃒⃒⃒⃒
⃒∑︁
𝑒∈Γℎ

∫︁
𝑒

{𝐷 (uℎ)}𝑒 n𝑒 · [uℎ]𝑒

⃒⃒⃒⃒
⃒ ≤ 1

2

(︂
1
𝛿
𝐽ℎ (uℎ,uℎ) + 𝛿

𝐶ℎ

min𝑒∈Γℎ
𝜎𝑒
‖𝐷 (uℎ)‖2ℎ

)︂
, (5.23)

where

𝐶ℎ := 2𝑑 𝐶2 max

(︃
max
𝑒∈Γ𝑖

ℎ

(︂
ℎ𝑒 max

𝑗=1,2

|𝑒|
|𝐸𝑗 |

)︂
, max
𝑒∈Γ𝑏

ℎ

(︂
ℎ𝑒
|𝑒|
|𝐸|

)︂)︃
, (5.24)

𝐸1 and 𝐸2 are the elements that share the face 𝑒 ∈ Γ𝑖
ℎ, 𝐸 is the element that has face 𝑒 ∈ Γ𝑏

ℎ, and 𝐶 is the
constant appearing in inequality (5.13) solely depending on 𝑑 and the polynomial degree.

Proof. For a face 𝑒 ∈ Γ𝑖
ℎ, which is shared by elements 𝐸1 and 𝐸2, we have⃒⃒⃒⃒∫︁

𝑒

{𝐷 (uℎ)}𝑒 n𝑒 · [uℎ]𝑒

⃒⃒⃒⃒
≤
(︂

𝜎𝑒

ℎ𝑒

)︂ 1
2

‖[uℎ]𝑒‖𝐿2(𝑒)

(︂
ℎ𝑒

𝜎𝑒

)︂ 1
2 𝐶

2

2∑︁
𝑗=1

(︂
|𝑒|
|𝐸𝑗 |

)︂ 1
2

‖𝐷 (uℎ) ‖𝐿2(𝐸𝑖)
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≤ 1
2

(︂
1
𝛿

𝜎𝑒

ℎ𝑒
‖[uℎ]𝑒‖2𝐿2(𝑒) + 𝛿

ℎ𝑒

2𝜎𝑒
𝐶2 max

𝑗=1,2

|𝑒|
|𝐸𝑗 |

(︁
‖𝐷 (uℎ) ‖2𝐿2(𝐸1)

+ ‖𝐷 (uℎ) ‖2𝐿2(𝐸2)

)︁)︂
.

Similarly, for 𝑒 ∈ Γ𝑏
ℎ, which is the face of an element 𝐸 adjacent to 𝜕Ω, we have⃒⃒⃒⃒∫︁
𝑒

{𝐷 (uℎ)}𝑒n𝑒 · [uℎ]𝑒

⃒⃒⃒⃒
≤ 1

2

(︂
1
𝛿

𝜎𝑒

ℎ𝑒
‖[uℎ]𝑒‖2𝐿2(𝑒) + 𝛿

ℎ𝑒

𝜎𝑒
𝐶2 |𝑒|
|𝐸|

‖𝐷 (uℎ) ‖2𝐿2(𝐸)

)︂
.

By using the last two inequalities in⃒⃒⃒⃒
⃒∑︁
𝑒∈Γℎ

∫︁
𝑒

{𝐷 (uℎ)}𝑒n𝑒 · [uℎ]𝑒

⃒⃒⃒⃒
⃒ ≤ ∑︁

𝑒∈Γℎ

⃒⃒⃒⃒∫︁
𝑒

{𝐷 (uℎ)}𝑒n𝑒 · [uℎ]𝑒

⃒⃒⃒⃒

and splitting the sum on the right-hand side into sums over the disjoint sets Γ𝑏
ℎ and Γ𝑖

ℎ, we have that⃒⃒⃒⃒
⃒∑︁
𝑒∈Γℎ

∫︁
𝑒

{𝐷 (uℎ)}𝑒 n𝑒 · [uℎ]𝑒

⃒⃒⃒⃒
⃒ ≤ 1

2

⎛⎝1
𝛿

∑︁
𝑒∈Γ𝑏

ℎ

𝜎𝑒

ℎ𝑒
‖[uℎ]𝑒‖2𝐿2(𝑒) + 𝛿

∑︁
𝑒∈Γ𝑏

ℎ

ℎ𝑒

𝜎𝑒
𝐶2 |𝑒|
|𝐸|

‖𝐷 (uℎ) ‖2𝐿2(𝐸)

⎞⎠
+

1
2

⎛⎝1
𝛿

∑︁
𝑒∈Γ𝑖

ℎ

𝜎𝑒

ℎ𝑒
‖[uℎ]𝑒‖2𝐿2(𝑒) + 𝛿

∑︁
𝑒∈Γ𝑖

ℎ

ℎ𝑒

2𝜎𝑒
𝐶2 max

𝑗=1,2

|𝑒|
|𝐸𝑗 |

(︁
‖𝐷 (uℎ) ‖2𝐿2(𝐸1)

+ ‖𝐷 (uℎ) ‖2𝐿2(𝐸2)

)︁⎞⎠
with the notational convention that when summing over 𝑒 ∈ Γ𝑏

ℎ the element 𝐸 under the summation sign is
the element adjacent to 𝜕Ω with face 𝑒, and when summing over 𝑒 ∈ Γ𝑖

ℎ the elements 𝐸1 and 𝐸2 under the
summation sign are the ones that share the face 𝑒. Hence,⃒⃒⃒⃒

⃒∑︁
𝑒∈Γℎ

∫︁
𝑒

{𝐷 (uℎ)}𝑒n𝑒 · [uℎ]𝑒

⃒⃒⃒⃒
⃒ ≤ 1

2

⎛⎝1
𝛿
𝐽ℎ (uℎ,uℎ) +

𝛿

min𝑒∈Γ𝑏
ℎ

𝜎𝑒
𝐶2 max

𝑒∈Γ𝑏
ℎ

(︂
ℎ𝑒
|𝑒|
|𝐸|

)︂ ∑︁
𝑒∈Γ𝑏

ℎ

‖𝐷 (uℎ) ‖2𝐿2(𝐸)

⎞⎠
+

1
2

⎛⎝ 𝛿

min𝑒∈Γ𝑖
ℎ

𝜎𝑒
𝐶2max𝑒∈Γ𝑖

ℎ

(︂
ℎ𝑒 max

𝑗=1,2

|𝑒|
|𝐸𝑗 |

)︂ ∑︁
𝑒∈Γ𝑖

ℎ

1
2

(︁
‖𝐷 (uℎ) ‖2𝐿2(𝐸1)

+ ‖𝐷 (uℎ) ‖2𝐿2(𝐸2)

)︁⎞⎠ .

The asserted result (5.23) follows from the last inequality by noting that, for each 𝐸 ∈ 𝒯ℎ, the factor
‖𝐷 (uℎ) ‖2𝐿2(𝐸) appears at most 2𝑑 times. �

Concerning the expression appearing in (5.24) we note that, thanks to the regularity assumption on the
family of meshes, we have that ℎ𝑒

|𝑒|
|𝐸| ≤ 𝐶 and so

𝐶ℎ ≤ 𝐶. (5.25)

5.1.2. First a priori estimates

By testing the first equation of (5.12) with vℎ = uℎ, applying the third equation and the antisymmmetry
(5.7) of 𝑑ℎ, we obtain

𝑏1ℎ (𝑇 ℎ,uℎ) + 𝐽ℎ (uℎ,uℎ) =
∫︁

Ω

f · uℎ.

Next, by testing the second equation of (5.12) with 𝑆ℎ = 𝑇 ℎ and substituting the above equality, we deduce
that

𝛼‖𝑇 ℎ‖2𝐿2(Ω) + 𝐽ℎ (uℎ,uℎ) ≤
∫︁

Ω

f · uℎ.
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Thus, in view of (5.14), we have our first bound:

𝛼‖𝑇 ℎ‖2𝐿2(Ω) + 𝐽ℎ (uℎ,uℎ) ≤ 𝐶‖f‖𝐿2(Ω)‖uℎ‖𝑉ℎ
. (5.26)

A further bound is arrived at by testing the second equation of (5.12) with 𝑆ℎ = 𝐷 (uℎ); hence,

𝛼

∫︁
Ω

𝑇 ℎ : 𝐷 (uℎ) + 𝛾

∫︁
Ω

𝜇 (|𝑇 ℎ|) 𝑇 ℎ : 𝐷 (uℎ) = ‖𝐷 (uℎ) ‖2ℎ −
∑︁
𝑒∈Γℎ

∫︁
𝑒

{𝐷 (uℎ)}𝑒n𝑒 · [uℎ]𝑒.

Then Proposition 5.1 gives, for any 𝛿 > 0,

‖𝐷 (uℎ) ‖2ℎ ≤ 𝛼‖𝑇 ℎ‖𝐿2(Ω)‖𝐷 (uℎ) ‖ℎ + 𝛾𝐶1|Ω|
1
2 ‖𝐷 (uℎ) ‖ℎ +

1
2

(︂
1
𝛿
𝐽ℎ (uℎ,uℎ) + 𝛿

𝐶ℎ

min𝑒∈Γℎ
𝜎𝑒
‖𝐷 (uℎ) ‖2ℎ

)︂
.

(5.27)
We choose 𝛿 = 1 and, upon recalling (5.25), assume that 𝜎𝑒 is chosen so that

min𝑒∈Γℎ
𝜎𝑒 ≥ 𝐶ℎ. (5.28)

Next, by adding 𝐽ℎ (uℎ,uℎ) to both sides of (5.27), applying (5.26) to bound this term, and using the norm of
𝑉ℎ, we infer that

‖uℎ‖2𝑉ℎ
≤ 𝛼‖𝑇 ℎ‖𝐿2(Ω)‖𝐷 (uℎ) ‖ℎ + 𝛾𝐶1|Ω|

1
2 ‖𝐷 (uℎ) ‖ℎ + 𝐶‖f‖𝐿2(Ω)‖uℎ‖𝑉ℎ

+
1
2
‖uℎ‖2𝑉ℎ

and thus
1
2
‖uℎ‖𝑉ℎ

≤ 𝛼‖𝑇 ℎ‖𝐿2(Ω) + 𝛾𝐶1|Ω|
1
2 + 𝐶‖f‖𝐿2(Ω). (5.29)

To close the estimates, we return to (5.26) and get

𝛼‖𝑇 ℎ‖2𝐿2(Ω) + 𝐽ℎ (uℎ,uℎ) ≤ 1
2

(︂
𝛿2‖uℎ‖2𝑉ℎ

+
𝐶2

𝛿2
‖f‖2𝐿2(Ω)

)︂
for any 𝛿2 > 0. Thus

𝛼‖𝑇 ℎ‖𝐿2(Ω) ≤
√

𝛼√
2𝛿2

𝐶‖f‖𝐿2(Ω) +
√

𝛼𝛿2√
2
‖uℎ‖𝑉ℎ

,

and the choice 𝛿2 = 1
8𝛼 yields

𝛼‖𝑇 ℎ‖𝐿2(Ω) ≤ 2𝛼𝐶‖f‖𝐿2(Ω) +
1
4
‖uℎ‖𝑉ℎ

.

Thus, we have shown the following uniform and unconditional bounds:

‖uℎ‖𝑉ℎ
≤ 4𝐶 (1 + 2𝛼) ‖f‖𝐿2(Ω) + 4𝛾𝐶1|Ω|

1
2 , ‖𝑇 ℎ‖𝐿2(Ω) ≤

𝐶

𝛼
(4𝛼 + 1) ‖f‖𝐿2(Ω) +

𝛾

𝛼
𝐶1|Ω|

1
2 . (5.30)

An a priori estimate for the pressure requires an inf-sup condition. This is the subject of the next subsection.

5.1.3. An inf-sup condition

In the nonconforming case considered here, the analogue of (4.3) reads

inf
𝑞ℎ∈𝑄ℎ

sup
vℎ∈𝑉ℎ

𝑏2ℎ (vℎ, 𝑞ℎ)
‖vℎ‖𝑉ℎ

‖𝑞ℎ‖𝐿2(Ω)
≥ 𝛽* (5.31)

with a constant 𝛽* > 0 independent of ℎ. To check this condition, recall Fortin’s lemma; see for instance [19].
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Lemma 5.2. The discrete condition (5.31) holds uniformly with respect to ℎ if, and only if, there exists an
approximation operator Πℎ ∈ ℒ

(︁
𝐻1

0 (Ω)𝑑 ; 𝑉ℎ

)︁
such that, for all v ∈ 𝐻1

0 (Ω)𝑑,

𝑏2ℎ (Πℎ (v)− v, 𝑞ℎ) = 0 ∀ 𝑞ℎ ∈ 𝑄ℎ, (5.32)

and
‖Πℎ (v) ‖𝑉ℎ

≤ 𝐶|v|𝐻1(Ω) (5.33)

with a constant 𝐶 independent of ℎ.

Originally, Fortin’s lemma was stated for discrete functions in subspaces of 𝐻1
0 (Ω)𝑑, but the extension to spaces

of discontinuous functions is straightforward, as long as the form 𝑏2ℎ (·, ·) is consistent with the divergence,
which is the case here.

As the proof of (5.32), (5.33) is fairly technical, we restrict the discussion to the first order case, i.e., 𝑘 = 1,
in hexahedra. The quadrilateral case is much simpler.

5.1.4. The inf-sup condition in planar-faced hexahedra for 𝑘 = 1

The construction of a suitable operator Πℎ is usually done by correcting a good approximation operator 𝑅ℎ.
For instance, we can use the 𝐿2 projection onto the space of polynomials of degree one defined locally in each
element, so that 𝑅ℎ (v) belongs to 𝑉ℎ and satisfies optimal approximation properties; see for instance [8]. Then
𝑅ℎ (v) is corrected by constructing cℎ ∈ 𝑉ℎ such that

𝑏2ℎ (cℎ, 𝑞ℎ) = 𝑏2ℎ (𝑅ℎ (v)− v, 𝑞ℎ) ∀ 𝑞ℎ ∈ 𝑄ℎ. (5.34)

By expanding 𝑏2ℎ and denoting by 𝑞𝐸 the value of 𝑞ℎ in 𝐸, (5.34) reads

−
∑︁

𝐸∈𝒯ℎ

𝑞𝐸

∫︁
𝐸

div (cℎ) +
∑︁
𝑒∈Γℎ

∫︁
𝑒

[cℎ]𝑒 · n𝑒{𝑞ℎ}𝑒 = −
∑︁

𝐸∈𝒯ℎ

𝑞𝐸

∫︁
𝐸

div (𝑅ℎ (v)− v) +
∑︁
𝑒∈Γℎ

∫︁
𝑒

[𝑅ℎ (v)− v]𝑒 · n𝑒{𝑞ℎ}𝑒.

Green’s formula in each element yields

−
∑︁

𝐸∈𝒯ℎ

𝑞𝐸

∫︁
𝜕𝐸

cℎ ·n𝐸 +
∑︁
𝑒∈Γℎ

∫︁
𝑒

[cℎ]𝑒 ·n𝑒{𝑞ℎ}𝑒 = −
∑︁

𝐸∈𝒯ℎ

𝑞𝐸

∫︁
𝜕𝐸

(𝑅ℎ (v)− v) ·n𝐸 +
∑︁
𝑒∈Γℎ

∫︁
𝑒

[𝑅ℎ (v)−v]𝑒 ·n𝑒{𝑞ℎ}𝑒

(5.35)
with n𝐸 the unit exterior normal to 𝐸. Consider now an interior face 𝑒 shared by 𝐸1 and 𝐸2, so that n𝑒 is
interior to 𝐸2; the contribution of 𝑒 to the left-hand side of (5.35) is

−𝑞𝐸1

∫︁
𝑒

cℎ 𝐸1 · n𝑒 + 𝑞𝐸2

∫︁
𝑒

cℎ 𝐸2 · n𝑒 +
∫︁

𝑒

1
2

(𝑞𝐸1 + 𝑞𝐸2) (cℎ 𝐸1 − cℎ 𝐸2) · n𝑒 = −
∫︁

𝑒

[𝑞ℎ]𝑒{cℎ}𝑒 · n𝑒

with a similar contribution to the right-hand side. Notice also that the contribution of a boundary face 𝑒 ∈ Γ𝑏
ℎ

is equal to zero on both sides of (5.35). Therefore a sufficient condition for (5.35) is that∫︁
𝑒

cℎ 𝐸 · n𝑒 =
∫︁

𝑒

(𝑅ℎ (v)− v) 𝐸 · n𝑒. (5.36)

We will thus construct cℎ ∈ 𝑉ℎ by imposing (5.36) for each element 𝐸 ∈ 𝒯ℎ and each face 𝑒 ∈ 𝜕𝐸. To simplify
the notation, we will write from now on cℎ and (𝑅ℎ (v)− v) instead of cℎ 𝐸 and (𝑅ℎ (v)− v) 𝐸 , respectively.

Let 𝐸 be an arbitrary hexahedral element of 𝒯ℎ with faces 𝑒𝑖, centre of face b𝑖, and exterior unit normal
n𝑖, 1 ≤ 𝑖 ≤ 6. To be specific, let a𝑖, 𝑖 = 1, 2, 3, 4, be the vertices of 𝑒1, a𝑖, 𝑖 = 1, 3, 5, 6, the vertices of 𝑒2, a𝑖,
𝑖 = 1, 2, 5, 7, the vertices of 𝑒3, a𝑖, 𝑖 = 5, 6, 7, 8, the vertices of 𝑒4, a𝑖, 𝑖 = 2, 4, 7, 8, the vertices of 𝑒5, and a𝑖,
𝑖 = 3, 4, 6, 8, the vertices of 𝑒6. The ordering of the nodes is illustrated in Figure 1. Note that for 𝑖 = 1, 2, 3,
𝑒𝑖+3 is the face opposite to 𝑒𝑖, opposite in the sense that its intersection with 𝑒𝑖 is empty.
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Figure 1. Some notation for the “reference” element �̂�.

Without loss of generality, we assume that the vertex a1 is located at the origin and that the face 𝑒1 lies
on the 𝑥3 = 0 plane. Indeed, this situation can be obtained via a rigid motion (translation plus rotation),
which preserves all normal vectors. Therefore, the normal to the face 𝑒1 is parallel to the 𝑥3 axis. Now, the
idea is to transform 𝐸 onto a “reference” element �̂� by an affine mapping ℱ𝐸 so that the subtetrahedron 𝑆1

of 𝐸 based on 𝑒1 and containing the origin a1 is mapped onto the unit tetrahedron 𝑆1. More precisely, as 𝑒2

and 𝑒3 are both adjacent to 𝑒1, 𝑆1 is the subtetrahedron with vertices a1, a2, a3, and a5, and 𝑆1 has vertices
â1 = (0, 0, 0), â2 = (0, 1, 0), â3 = (1, 0, 0), â5 = (0, 0, 1), see Figure 1 for an illustration and some notation.
This transformation and notation will be used till the end of this subsection. It stems from the regularity of the
family of triangulations that there exists a constant 𝑀 , independent of 𝐸 and ℎ, such that

diameter
(︁
�̂�
)︁
≤ 𝑀. (5.37)

The affine mapping ℱ𝐸 has the expression

x = ℱ𝐸 (x̂) = 𝐵x̂,

where the constant term is zero since a1 is the origin, and the matrix 𝐵 is nonsingular; its columns are
respectively a3 =

(︀
𝑎1
3, 𝑎

2
3, 0
)︀𝑡, a2 =

(︀
𝑎1
2, 𝑎

2
2, 0
)︀𝑡 and a5 =

(︀
𝑎1
5, 𝑎

2
5, 𝑎

3
5

)︀𝑡. The image of the remaining vertices of 𝐸

are â𝑖 = ℱ−1
𝐸 (a𝑖), 𝑖 = 4, 6, 7, 8. As ℱ𝐸 is an affine transformation, it transforms faces onto faces, edges onto

edges, and vertices onto vertices. Thus, since a4 is in the plane 𝑥3 = 0, then â4 is in the plane �̂�3 = 0. Likewise,
â6 is in the plane �̂�2 = 0, â7 in the plane �̂�1 = 0, and â8 in the plane determined by â4, â2, â7, as well as the
plane determined by â7, â5, â6, and the plane determined by â6, â3, â4, hence in the intersection of these three
planes. Therefore �̂� is located in the first octant of R3. Let n̂𝑖 denote the unit exterior normal vector to 𝑒𝑖. It
is related to n𝑖 by the general formula

n̂𝑖 =
𝐵𝑡n𝑖

|𝐵𝑡n𝑖|
· (5.38)

The advantage of having 𝑒1 on the plane 𝑥3 = 0 is that n̂1 = n1 = (0, 0,−1)𝑡. We also have n̂2 = (0,−1, 0)𝑡,
and n̂3 = (−1, 0, 0)𝑡. Thus

|�̂�3
1| = |�̂�2

2| = |�̂�1
3| = 1, (5.39)

and the regularity of the family 𝒯ℎ implies that there exists a constant 𝜈0, independent of ℎ and 𝐸, such that

|�̂�3
4|, |�̂�2

5|, |�̂�1
6| ≥ 𝜈0. (5.40)
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With this transformation, and after cancelling |det𝐵| on both sides, (5.36) reads locally∫︁
𝑒

ĉℎ ·
(︀
𝐵𝑡
)︀−1

n̂𝑒 =
∫︁

𝑒

(︁̂︁𝑅ℎ (v̂)− v̂
)︁
·
(︀
𝐵𝑡
)︀−1

n̂𝑒,

where the hat denotes composition with ℱ𝐸 . Thus, by performing the change of variable

d̂ℎ = 𝐵−1ĉℎ

and defining the face moment

𝑚𝑒 (𝑓) :=
1
|𝑒|

∫︁
𝑒

𝑓,

equation (5.36) is equivalent to

𝑚𝑒𝑖

(︁
d̂ℎ

)︁
· n̂𝑖 = 𝑔𝑖 :=

1
|𝑒𝑖|

∫︁
𝑒𝑖

𝐵−1
(︁̂︁𝑅ℎ (v̂)− v̂

)︁
· n̂𝑖, 1 ≤ 𝑖 ≤ 6. (5.41)

This is a linear system of six equations in twelve unknowns, the coefficients of d̂ℎ. Therefore, we can freely
choose six coefficients and we have the following existence lemma.

Lemma 5.3. There exists exactly one polynomial vector d̂ℎ =
(︁
𝑑1, 𝑑2, 𝑑3

)︁𝑡

that satisfies (5.41) and the follow-
ing six conditions:

𝑚𝑒1

(︁
𝑑1

)︁
= 𝑚𝑒5

(︁
𝑑1

)︁
= 𝑚𝑒1

(︁
𝑑2

)︁
= 𝑚𝑒6

(︁
𝑑2

)︁
= 𝑚𝑒5

(︁
𝑑3

)︁
= 𝑚𝑒6

(︁
𝑑3

)︁
= 0. (5.42)

Proof. Once the six conditions (5.42) are prescribed, we are left with a square linear system of six equations in
six unknowns. Therefore it suffices to prove that the only solution of the corresponding homogeneous system is
the zero solution. To begin with, we consider the lines 𝑖 = 5 and 𝑖 = 6 in (5.41). In view of (5.39) and (5.40),
the strategy for the choice (5.42) is to set to zero the coefficients of �̂�2

6 and �̂�3
6 and those of �̂�1

5 and �̂�3
5, i.e.,

prescribe 𝑚𝑒5

(︁
𝑑1

)︁
= 𝑚𝑒6

(︁
𝑑2

)︁
= 𝑚𝑒5

(︁
𝑑3

)︁
= 𝑚𝑒6

(︁
𝑑3

)︁
= 0. With this assumption, the lines 𝑖 = 6 and 𝑖 = 5

reduce respectively to
𝑚𝑒6

(︁
𝑑1

)︁
= 0, 𝑚𝑒5

(︁
𝑑2

)︁
= 0. (5.43)

Next, we consider the line 𝑖 = 1. As �̂�3
1 = −1 is the only nonzero component, it reduces to

𝑚𝑒1

(︁
𝑑3

)︁
= 0. (5.44)

Similarly, when 𝑖 = 2 and 𝑖 = 3 we have, respectively

𝑚𝑒2

(︁
𝑑2

)︁
= 0, 𝑚𝑒3

(︁
𝑑1

)︁
= 0. (5.45)

Collecting these results and the two extra assumptions 𝑚𝑒1

(︁
𝑑1

)︁
= 𝑚𝑒1

(︁
𝑑2

)︁
= 0 in (5.42), we find that

𝑚𝑒1

(︁
𝑑1

)︁
= 𝑚𝑒5

(︁
𝑑1

)︁
= 𝑚𝑒6

(︁
𝑑1

)︁
= 𝑚𝑒3

(︁
𝑑1

)︁
= 0,

𝑚𝑒1

(︁
𝑑2

)︁
= 𝑚𝑒5

(︁
𝑑2

)︁
= 𝑚𝑒6

(︁
𝑑2

)︁
= 𝑚𝑒2

(︁
𝑑2

)︁
= 0.

The three faces 𝑒1, 𝑒5, 𝑒6 share the vertex â4, and the regularity of the hexahedron implies that the three vectors
along the segments [â4, â3], [â4, â8], and [â4, â2] is a set of three linearly independent vectors of R3. Then the
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regularity of the hexahedron implies that a polynomial of degree one is uniquely determined by its moments on
the four faces 𝑒1, 𝑒5, 𝑒6, 𝑒𝑖 for any 𝑖 in the set {2, 3, 4}. Hence, as 𝑑1 (respectively, 𝑑2) is a polynomial of degree
one, the first set (respectively, second set) of equalities and the regularity of the hexahedron imply that 𝑑1 = 0,
respectively, 𝑑2 = 0. When 𝑖 = 4, this leads to 𝑚𝑒4

(︁
𝑑3

)︁
= 0. Consequently,

𝑚𝑒1

(︁
𝑑3

)︁
= 𝑚𝑒5

(︁
𝑑3

)︁
= 𝑚𝑒6

(︁
𝑑3

)︁
= 𝑚𝑒4

(︁
𝑑3

)︁
= 0,

and 𝑑3 = 0. Thus d̂ℎ = 0 and the system has a unique solution. �

Let 𝑀 �̂� be the 6× 6 matrix of the system (5.41) under the restriction (5.42). It stems from Lemma 5.3 that
𝑀 �̂� is nonsingular. Furthermore, the regularity of the hexahedron implies that 𝑀 �̂� is a continuous function
of �̂�, thus continuous in a compact set of R3. Hence the norm of its inverse is bounded by a constant 𝐶,
independent of �̂�, ⃒⃒⃒

𝑀−1

�̂�

⃒⃒⃒
≤ 𝐶. (5.46)

The stability of the correction follows now easily.

Lemma 5.4. There exists a constant 𝐶, independent of ℎ and 𝐸, such that for all 𝐸 in 𝒯ℎ and all 𝑒 in Γℎ,

‖cℎ‖𝐿2(𝐸) ≤ 𝐶 ℎ𝐸 |v|𝐻1(𝐸), |cℎ|𝐻1(𝐸) ≤ 𝐶|v|𝐻1(𝐸),

(︂
𝜎𝑒

ℎ𝑒

)︂ 1
2

‖[cℎ]𝑒‖𝐿2(𝑒) ≤ 𝐶
(︀
|v|𝐻1(𝐸1) + |v|𝐻1(𝐸2)

)︀
,

(5.47)
where 𝐸1 and 𝐸2 are the two elements sharing 𝑒, when 𝑒 is an interior face, and the sum is reduced to one
term, namely the element 𝐸 adjacent to 𝑒, when 𝑒 is a boundary face.

Proof. The notation 𝐶 below refers to different constants that are all independent of ℎ and 𝐸. Recalling (5.41),
(5.37) and the transformation from 𝑆1 onto 𝑆1, we observe that, for any 𝑖,

|𝑔𝑖| ≤
𝐶

𝜚𝑆1

⃦⃦⃦̂︁𝑅ℎ (v̂)− v̂
⃦⃦⃦

𝐿1(𝑒𝑖)
≤ 𝐶

𝜚𝑆1

⃦⃦⃦̂︁𝑅ℎ (v̂)− v̂
⃦⃦⃦

𝐿2(𝑒𝑖)
.

By a trace inequality in �̂� and the approximation property of ̂︁𝑅ℎ in �̂�, we have

6∑︁
𝑖=1

⃦⃦⃦̂︁𝑅ℎ (v̂)− v̂
⃦⃦⃦

𝐿2(𝑒𝑖)
≤ 𝐶

⃦⃦⃦̂︁𝑅ℎ (v̂)− v̂
⃦⃦⃦

𝐻1(�̂�)
≤ 𝐶|v̂|𝐻1(�̂�).

Then, by reverting to 𝐸,
6∑︁

𝑖=1

⃦⃦⃦̂︁𝑅ℎ (v̂)− v̂
⃦⃦⃦

𝐿2(𝑒𝑖)
≤ 𝐶

ℎ𝑆1

|𝐸| 12
|v|𝐻1(𝐸).

In view of (5.46) and the regularity of the family 𝒯ℎ, the above relations lead to the following bound on d̂ℎ:

‖d̂ℎ‖𝐿∞(�̂�) ≤
𝐶

|𝐸| 12
ℎ𝑆1

𝜚𝑆1

|v|𝐻1(𝐸) ≤
𝐶

|𝐸| 12
|v|𝐻1(𝐸);

with ĉℎ = 𝐵d̂ℎ, this yields

‖cℎ‖𝐿∞(𝐸) = ‖ĉℎ‖𝐿∞(�̂�) ≤ 𝐶
ℎ𝑆1

|𝐸| 12
|v|𝐻1(𝐸). (5.48)
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Since ℎ𝑆1 < ℎ𝐸 , we immediately deduce from (5.48) the first two inequalities in (5.47). Finally, the third
inequality follows from (5.48) and(︂

𝜎𝑒

ℎ𝑒

)︂ 1
2

‖cℎ‖𝐿2(𝑒) ≤
(︂

𝜎𝑒

ℎ𝑒

)︂ 1
2

|𝑒| 12 ‖cℎ‖𝐿∞(𝐸).

That completes the proof of the lemma. �

As a consequence of Lemma 5.4 we have the following bounds:

‖cℎ‖𝐿2(Ω) ≤ 𝐶 ℎ |v|𝐻1(Ω), ‖cℎ‖𝑉ℎ
≤ 𝐶|v|𝐻1(Ω). (5.49)

Finally, since the construction of Lemma 5.3 yields a unique correction, it is easy to check that the mapping
v ↦→ cℎ defines a linear operator from 𝑉ℎ into itself, i.e., cℎ = cℎ (v).

On the other hand, we infer from standard approximation properties of 𝑅ℎ and the regularity of the mesh,
that

‖v −𝑅ℎ (v) ‖𝐿2(𝐸) ≤ 𝐶 ℎ𝐸 |v|𝐻1(𝐸), |𝑅ℎ (v) |𝐻1(𝐸) ≤ 𝐶|v|𝐻1(𝐸),(︂
𝜎𝑒

ℎ𝑒

)︂ 1
2

‖[𝑅ℎ (v)]𝑒‖𝐿2(𝑒) ≤ 𝐶
(︀
|v|𝐻1(𝐸1) + |v|𝐻1(𝐸2)

)︀ (5.50)

and
‖v −𝑅ℎ (v) ‖𝐿2(Ω) ≤ 𝐶 ℎ |v|𝐻1(Ω), ‖𝑅ℎ (v) ‖𝑉ℎ

≤ 𝐶|v|𝐻1(Ω). (5.51)

Thus Πℎ (v) = 𝑅ℎ (v)− cℎ (v) satisfies the conditions (5.32) and (5.33) of Lemma 5.2. This proves the inf-sup
condition as stated in the next theorem.

Theorem 5.5. Let the family of hexahedra 𝒯ℎ be regular in the sense defined above. Then the form 𝑏2ℎ defined
in (5.6) with the pair spaces 𝑉ℎ and 𝑄ℎ for 𝑘 = 1, see (5.1) and (5.2), satisfies the inf-sup condition (5.31) with
a constant 𝛽* > 0 independent of ℎ.

5.1.5. A bound on the pressure

As usual, the inf-sup condition (5.31) yields a bound on the pressure. Indeed, it follows from the first equation
of (5.12) together with (5.22), (5.20), (5.15) and (5.16) that

|𝑏2ℎ (vℎ, 𝑝ℎ) | ≤ 𝐶
(︀
‖𝑇 ℎ‖𝐿2(Ω) + ‖uℎ‖𝑉ℎ

+ ‖uℎ‖2𝑉ℎ
+ ‖f‖𝐿2(Ω)

)︀
‖vℎ‖𝑉ℎ

.

Then (5.30) implies, with a constant 𝐶 independent of ℎ (but depending on 𝛼), that

|𝑏2ℎ (vℎ, 𝑝ℎ) | ≤ 𝐶 ‖vℎ‖𝑉ℎ
∀vℎ ∈ 𝑉ℎ.

With the inf-sup condition (5.31), this implies that

‖𝑝ℎ‖𝐿2(Ω) ≤ 𝐶 (5.52)

for another constant 𝐶 independent of ℎ.

5.1.6. Existence and convergence

The proof of existence of a solution of (5.12) is the same as in the conforming case. Recall that the case
of interest is 𝑘 = 1, which is assumed for the remainder of this subsection, but all of what follows can be
straightforwardly extended to a general polynomial degree 𝑘 ≥ 1 as long as the inf-sup condition (5.31) holds.
First, the problem is reduced to one equation by testing the first equation of (5.12) with vℎ ∈ 𝑉ℎ,0 and by
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observing that the second equation determines for each uℎ ∈ 𝑉ℎ a unique 𝑇 ℎ in 𝑀ℎ. This is expressed by
writing 𝑇 ℎ = 𝒢ℎ,𝐷𝐺 (uℎ). Then, equation (5.12) is equivalent to finding a uℎ ∈ 𝑉ℎ,0 such that

𝑑ℎ (uℎ; uℎ,vℎ) + 𝑏1ℎ (𝒢ℎ,𝐷𝐺 (uℎ) ,vℎ) + 𝐽ℎ (uℎ,vℎ) =
∫︁

Ω

f · vℎ ∀vℎ ∈ 𝑉ℎ,0. (5.53)

By means of the a priori estimates (5.30), existence of a solution is deduced by Brouwer’s fixed point theorem.
Regarding convergence, the a priori estimates (5.30) and (5.52) together with (5.17) imply that there exist

functions 𝑇 ∈ 𝐿2 (Ω)𝑑×𝑑
sym , ū ∈ 𝐻1

0 (Ω)𝑑, and 𝑝 ∈ 𝐿2
0 (Ω) such that, up to subsequences,

lim
ℎ→0

‖uℎ − ū‖𝐿𝑞(Ω) = 0 with 1 ≤ 𝑞 < ∞ if 𝑑 = 2, and 1 ≤ 𝑞 < 6 if 𝑑 = 3,

lim
ℎ→0

𝑇 ℎ = 𝑇 weakly in 𝐿2 (Ω)𝑑×𝑑
,

and
lim
ℎ→0

𝑝ℎ = 𝑝 weakly in 𝐿2 (Ω) .

However, in order to pass to the limit in the equations of the scheme, following [16], we need to introduce
discrete differential operators related to distributional differential operators. These are 𝐺sym

ℎ (vℎ) ∈ 𝑀ℎ and
𝐺div

ℎ (vℎ) ∈ Θℎ, defined for all vℎ ∈ 𝑉ℎ by, respectively,∫︁
Ω

𝐺sym
ℎ (vℎ) : 𝑅ℎ = 𝑏1ℎ (𝑅ℎ,vℎ) =

∑︁
𝐸∈𝒯ℎ

∫︁
𝐸

𝐷 (vℎ) : 𝑅ℎ −
∑︁
𝑒∈Γℎ

∫︁
𝑒

[vℎ]𝑒 · {𝑅ℎ}𝑒n𝑒 ∀𝑅ℎ ∈ 𝑀ℎ, (5.54)∫︁
Ω

𝐺div
ℎ (vℎ) 𝑟ℎ = 𝑏2ℎ (vℎ, 𝑟ℎ) = −

∑︁
𝐸∈𝒯ℎ

∫︁
𝐸

𝑟ℎ div (vℎ) +
∑︁
𝑒∈Γℎ

∫︁
𝑒

[vℎ]𝑒 · n𝑒{𝑟ℎ}𝑒 ∀ 𝑟ℎ ∈ Θℎ, (5.55)

where
Θℎ = {𝜃ℎ ∈ 𝐿2 (Ω) : 𝜃ℎ 𝐸 ∈ P1 ∀𝐸 ∈ 𝒯ℎ}.

The polynomial degree one in this space is convenient for proving the convergence of the nonlinear term; see
(5.62). The straightforward scaling argument used in proving Proposition 5.1 shows that

‖𝐺sym
ℎ (vℎ)‖

𝐿2(Ω)
≤ 𝐶 ‖vℎ‖𝑉ℎ

∀vℎ ∈ 𝑉ℎ, (5.56)

and

‖𝐺div
ℎ (vℎ) ‖𝐿2(Ω) ≤

(︃∑︁
𝐸∈𝒯ℎ

‖ div (vℎ) ‖2𝐿2(𝐸)

)︃ 1
2

+ 𝐶 𝐽ℎ (vℎ,vℎ)
1
2 ,

and thus by (5.15)
‖𝐺div

ℎ (vℎ) ‖𝐿2(Ω) ≤ 𝐶‖vℎ‖𝑉ℎ
∀vℎ ∈ 𝑉ℎ (5.57)

with different constants 𝐶 independent of ℎ. At the same time, this gives existence of these two operators. The
next proposition relates 𝐺sym

ℎ (uℎ) and 𝐷 (ū). The proof is an easy extension of that written in [16], but we
include it below for the reader’s convenience.

Proposition 5.6. Up to a subsequence, we have

lim
ℎ→0

𝐺sym
ℎ (uℎ) = 𝐷 (ū) weakly in 𝐿2 (Ω)𝑑×𝑑

. (5.58)
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Proof. On the one hand, the bounds (5.56) and (5.30) imply that there exists a function w̄ ∈ 𝐿2 (Ω)𝑑×𝑑
sym such

that, up to a subsequence,
lim
ℎ→0

𝐺sym
ℎ (uℎ) = w̄ weakly in 𝐿2 (Ω)𝑑×𝑑

. (5.59)

On the other hand, take any tensor 𝐹 in 𝐻1 (Ω)𝑑×𝑑
sym and let 𝑃 0

ℎ (𝐹 ) be its orthogonal 𝐿2 (Ω)𝑑×𝑑 projection on
constants in each 𝐸. We have⃒⃒⃒⃒∫︁

Ω

𝐺sym
ℎ (uℎ) :

(︀
𝐹 − 𝑃 0

ℎ (𝐹 )
)︀⃒⃒⃒⃒
≤ 𝐶‖uℎ‖𝑉ℎ

‖𝐹 − 𝑃 0
ℎ (𝐹 ) ‖𝐿2(Ω),

that tends to zero with ℎ. Therefore, the definition (5.54) of 𝐺sym
ℎ (uℎ) implies that

lim
ℎ→0

∫︁
Ω

𝐺sym
ℎ (uℎ) : 𝐹 = lim

ℎ→0
𝑏1ℎ

(︀
𝑃 0

ℎ (𝐹 ) ,uℎ

)︀
= lim

ℎ→0

(︀
𝑏1ℎ

(︀
𝑃 0

ℎ (𝐹 )− 𝐹 ,uℎ

)︀
+ 𝑏1ℎ (𝐹 ,uℎ)

)︀
and a straightforward argument yields that the first term tends to zero. Hence

lim
ℎ→0

∫︁
Ω

𝐺sym
ℎ (uℎ) : 𝐹 = lim

ℎ→0
𝑏1ℎ (𝐹 ,uℎ) ∀𝐹 ∈ 𝐻1 (Ω)𝑑×𝑑

sym .

Now, an application of Green’s formula in each 𝐸 gives

𝑏1ℎ (𝐹 ,uℎ) = −
∑︁

𝐸∈𝒯ℎ

∫︁
𝐸

uℎ · div (𝐹 ) .

Therefore
lim
ℎ→0

∫︁
Ω

𝐺sym
ℎ (uℎ) : 𝐹 = −

∫︁
Ω

ū · div (𝐹 ) =
∫︁

Ω

𝐷 (ū) : 𝐹 ∀𝐹 ∈ 𝐻1
0 (Ω)𝑑×𝑑

sym .

A comparison with (5.59) and uniqueness of the limit yield

𝐷 (ū) = w̄,

thus proving (5.58). �

Remark 5.7. The fact that ū belongs to 𝐻1
0 (Ω)𝑑 is an easy consequence of the above proof.

A similar argument to the one in Proposition 5.6 gives that

lim
ℎ→0

𝐺div
ℎ (uℎ) = div (ū) weakly in 𝐿2 (Ω) . (5.60)

Hence, by passing to the limit in the last equation of (5.12), we immediately deduce that div (ū) = 0; thus ū
belongs to 𝒱 and satisfies the third equation of (4.1).

In the next theorem, these results are used to show that the limit satisfies the remaining equations of (4.1).

Theorem 5.8. Let the family of hexahedra 𝒯ℎ be regular in the sense defined above. Then the triple
(︀
𝑇 , ū, 𝑝

)︀
solves (4.1).

Proof. The proof proceeds in two steps.

Step 1. Let us start with the first equation of (5.12). Take a function v ∈ 𝒟 (Ω)𝑑 and let vℎ ∈ 𝑉ℎ be the
𝐿2 (Ω)𝑑 orthogonal projection of v on P𝑑

1 in each element. It is easy to check that

lim
ℎ→0

𝐺sym
ℎ (vℎ) = 𝐷 (v) strongly in 𝐿2 (Ω)𝑑×𝑑

.
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Therefore the weak convergence of 𝑇 ℎ and the definition of 𝐺sym
ℎ (vℎ) imply that

lim
ℎ→0

𝑏1ℎ (𝑇 ℎ,vℎ) =
∫︁

Ω

𝐷 (v) : 𝑇 .

Similarly,

lim
ℎ→0

𝑏2ℎ (vℎ, 𝑝ℎ) = −
∫︁

Ω

𝑝 div (v) .

Also
lim
ℎ→0

𝐽ℎ (uℎ,vℎ) = 0.

As the right-hand side tends to
∫︀
Ω

f · v, it remains to examine 𝑑ℎ (uℎ; uℎ,vℎ). Recall that

𝑑ℎ (uℎ; uℎ,vℎ) =
∑︁

𝐸∈𝒯ℎ

∫︁
𝐸

[(uℎ · ∇) uℎ] · vℎ −
1
2
𝑏2ℎ (uℎ,uℎ · vℎ)−

∑︁
𝑒∈Γ𝑖

ℎ

∫︁
𝑒

{uℎ}𝑒 · n𝑒[uℎ]𝑒 · {vℎ}𝑒.

Thanks to the antisymmetry of 𝑑ℎ, we have

𝑑ℎ (uℎ; uℎ,vℎ) = −
∑︁

𝐸∈𝒯ℎ

∫︁
𝐸

[(uℎ · ∇) vℎ] · uℎ +
1
2
𝑏2ℎ (uℎ,uℎ · vℎ) +

∑︁
𝑒∈Γ𝑖

ℎ

∫︁
𝑒

{uℎ}𝑒 · n𝑒[vℎ]𝑒 · {uℎ}𝑒. (5.61)

For the first term, the strong convergence of uℎ in 𝐿4 (Ω)𝑑 and the strong convergence of the broken gradient
∇ℎvℎ in 𝐿2 (Ω)𝑑×𝑑 imply that

− lim
ℎ→0

∑︁
𝐸∈𝒯ℎ

∫︁
𝐸

[(uℎ · ∇) vℎ] · uℎ = −
∫︁

Ω

[(ū · ∇) v] · ū =
∫︁

Ω

[(ū · ∇) ū] · v,

since ū ∈ 𝒱. For the second term, take any piecewise constant approximation v̄ℎ of v. Then

𝑏2ℎ (uℎ,uℎ · vℎ) = 𝑏2ℎ (uℎ,uℎ · (vℎ − v̄ℎ)) + 𝑏2ℎ (uℎ,uℎ · v̄ℎ) .

The boundedness of uℎ in 𝑉ℎ and the convergence to zero of vℎ− v̄ℎ in 𝐿∞ (Ω)𝑑 imply that the first term tends
to zero. For the second term, we deduce from the definition of 𝐺div

ℎ (uℎ) that

𝑏2ℎ (uℎ,uℎ · v̄ℎ) =
∫︁

Ω

𝐺div
ℎ (uℎ) (uℎ · v̄ℎ) . (5.62)

As div (ū) = 0, 𝐺div
ℎ (uℎ) tends to zero weakly in 𝐿2 (Ω). Then the strong convergence of uℎ in 𝐿2 (Ω)𝑑 and

that of v̄ℎ in 𝐿∞ (Ω)𝑑 show that this second term tends to zero. It remains to examine the last term of (5.61).
Here we use the fact that, for any v ∈ 𝑊 2,∞ (Ω)𝑑,

‖vℎ − v‖𝐿∞(𝑒) ≤ 𝐶ℎ2
𝑒|v|𝑊 2,∞(Ω).

This, with the boundedness of uℎ in 𝑉ℎ, gives that this last term tends to zero. Thus, we conclude that

lim
ℎ→0

𝑑ℎ (uℎ; uℎ,vℎ) =
∫︁

Ω

[(ū · ∇) ū] · v ∀v ∈ 𝑊 2,∞ (Ω)𝑑 ∩𝐻1
0 (Ω)𝑑

.

The conclusion of these limits and a density argument is that the triple
(︀
𝑇 , ū, 𝑝

)︀
satisfies the first equation of

(4.1) ∫︁
Ω

[(ū · ∇) ū] · v +
∫︁

Ω

𝑇 : 𝐷 (v)−
∫︁

Ω

𝑝 div (v) =
∫︁

Ω

f · v ∀v ∈ 𝐻1
0 (Ω)𝑑

. (5.63)
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Step 2. The argument for recovering the constitutive relation 𝑇 = 𝒢 (ū) is close to that for the conforming
case, up to some changes. On the one hand, we observe that

lim
ℎ→0

(𝑏1ℎ (𝑇 ℎ,uℎ) + 𝐽ℎ (uℎ,uℎ)) =
∫︁

Ω

f · ū

and, since 𝐽ℎ (uℎ,uℎ) is positive and bounded, this implies that

lim
ℎ→0

𝑏1ℎ (𝑇 ℎ,uℎ) ≤
∫︁

Ω

f · ū.

On the other hand, we infer from (5.63) that∫︁
Ω

𝑇 : 𝐷 (ū) =
∫︁

Ω

f · ū.

Hence
lim
ℎ→0

𝑏1ℎ (𝑇 ℎ,uℎ) ≤
∫︁

Ω

𝐷 (ū) : 𝑇 . (5.64)

Next, we set
𝑇

d
= 𝒢 (ū)

and define 𝑇 ℎ = 𝒢ℎ,𝐷𝐺 (ū), i.e.,

𝛼

∫︁
Ω

𝑇 ℎ : 𝑆ℎ + 𝛾

∫︁
Ω

𝜇
(︁⃒⃒⃒

𝑇 ℎ

⃒⃒⃒)︁
𝑇 ℎ : 𝑆ℎ = 𝑏1ℎ (𝑆ℎ, ū) =

∫︁
Ω

𝐷 (ū) : 𝑆ℎ ∀𝑆ℎ ∈ 𝑀ℎ,

where the second equality holds thanks to the fact that ū belongs to 𝐻1
0 (Ω). The fact that div (ū) = 0 implies

that the trace of 𝑇
d

is zero and justifies the above superscript. Therefore

𝛼

∫︁
Ω

(︁
𝑇 ℎ − 𝑇

d
)︁

: 𝑆ℎ + 𝛾

∫︁
Ω

(︁
𝜇
(︁⃒⃒⃒

𝑇 ℎ

⃒⃒⃒)︁
𝑇 ℎ − 𝜇

(︁⃒⃒⃒
𝑇

d
⃒⃒⃒)︁

𝑇
d
)︁

: 𝑆ℎ = 0 ∀𝑆ℎ ∈ 𝑀ℎ,

and, as in the conforming case, we conclude that

lim
ℎ→0

⃦⃦⃦
𝑇 ℎ − 𝑇

d
⃦⃦⃦

𝐿2(Ω)
= 0. (5.65)

Finally, the difference between the equations satisfied by 𝑇 ℎ and 𝑇 ℎ yields

𝛼

∫︁
Ω

(︁
𝑇 ℎ − 𝑇 ℎ

)︁
: 𝑆ℎ + 𝛾

∫︁
Ω

(︁
𝜇 (|𝑇 ℎ|) 𝑇 ℎ − 𝜇

(︁⃒⃒⃒
𝑇 ℎ

⃒⃒⃒)︁
𝑇 ℎ

)︁
: 𝑆ℎ = 𝑏1ℎ (𝑆ℎ,uℎ)−

∫︁
Ω

𝐷 (ū) : 𝑆ℎ ∀𝑆ℎ ∈ 𝑀ℎ.

By testing this equation with 𝑆ℎ = 𝑇 ℎ − 𝑇 ℎ and using the monotonicity property (2.14), we deduce that

𝛼
⃦⃦⃦
𝑇 ℎ − 𝑇 ℎ

⃦⃦⃦2

𝐿2(Ω)
≤ 𝑏1ℎ (𝑇 ℎ,uℎ)− 𝑏1ℎ

(︁
𝑇 ℎ,uℎ

)︁
−
∫︁

Ω

𝐷 (ū) :
(︁
𝑇 ℎ − 𝑇 ℎ

)︁
. (5.66)

However, by (5.54),

𝑏1ℎ

(︁
𝑇 ℎ,uℎ

)︁
=
∫︁

Ω

𝐺sym
ℎ (uℎ) : 𝑇 ℎ,

and it follows from Proposition 5.6 and (5.65) that

lim
ℎ→0

𝑏1ℎ

(︁
𝑇 ℎ,uℎ

)︁
=
∫︁

Ω

𝐷 (ū) : 𝑇
d
.
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Then, by passing to the limit in (5.66), we obtain in view of (5.64) the inequality

𝛼 lim
ℎ→0

‖𝑇 ℎ − 𝑇 ℎ‖2𝐿2(Ω) ≤
∫︁

Ω

𝐷 (ū) : 𝑇 −
∫︁

Ω

𝐷 (ū) : 𝑇
d −

∫︁
Ω

𝐷 (ū) :
(︁
𝑇 − 𝑇

d
)︁

= 0,

whence
lim
ℎ→0

‖𝑇 ℎ − 𝑇 ℎ‖𝐿2(Ω) = 0,

and uniqueness of the limit yields

𝑇 = 𝑇
d

= 𝒢 (ū) .

This proves that
(︀
𝑇 , ū

)︀
satisfies the second equation of (4.1). �

5.2. The tetrahedral case

Here we study briefly two examples of finite element discretisations on tetrahedral meshes, the triangular case
being simpler. Many of the details are skipped because they follow closely those in the previous subsection. The
family of meshes 𝒯ℎ is assumed to be regular as in (4.24). Let us start with the same spaces 𝑉ℎ, 𝑄ℎ, and 𝑀ℎ

defined on 𝒯ℎ by (5.1), (5.2), and (5.3), respectively, and the same bilinear forms 𝑏1ℎ (𝑆ℎ,vℎ), 𝑑ℎ (uℎ; vℎ,wℎ),
and 𝑏2ℎ (vℎ, 𝑞ℎ) defined by (5.4), (5.5), and (5.6), respectively. Then the scheme is again given by (5.12) and,
under assumption (4.24), all proofs from the previous subsections are valid in this case, except possibly the proof
of the inf-sup condition. In fact, Theorem 5.5 holds with a much simpler proof. Indeed, take any tetrahedron
𝐸. Recalling that the case of interest is 𝑘 = 1, a polynomial of P1 is uniquely determined in 𝐸 by its values at
the centre points b𝑒 of its four faces 𝑒. Then, instead of (5.36), we can use the sufficient condition

cℎ (b𝑒) 𝐸 =
1
|𝑒|

∫︁
𝑒

(𝑅ℎ (v)− v) 𝐸 ∀𝐸 ∈ 𝒯ℎ, ∀ 𝑒 ∈ 𝜕𝐸, (5.67)

and this defines uniquely the correction cℎ. Furthermore, thanks to (4.24), the stability of this correction follows
from the fact that 𝐸 is the image of the unit tetrahedron �̂� by an invertible affine mapping whose matrix satisfies
the same properties as the matrix 𝐵 used above. Thus the conclusion of Theorem 5.5 is valid in this case.

As a second example, it would be tempting to use the Crouzeix–Raviart element of degree one on tetrahedra;
see [15]. This would be possible if the analysis did not invoke Korn’s inequality (with respect to the broken
symmetric gradient), because it is not satisfied by the Crouzeix–Raviart element; cf. [18]. Thus, the simplest
way to bypass this difficulty is to introduce the jump penalty term 𝐽ℎ (uℎ,vℎ) defined in (5.8). Let us describe
this discretisation. Again, we suppose that (4.24) holds. The discrete spaces 𝑄ℎ and 𝑀ℎ are the same, with
𝑘 = 1, as in (5.2) and (5.3), respectively. However, instead of 𝑉ℎ, we now use the space 𝑉 𝐶𝑅

ℎ whose elements
are also piecewise polynomials of degree one in each element, but in contrast with (5.1), they are continuous
at the centre points of all interior faces 𝑒 ∈ Γ𝑖

ℎ, and are set to zero at the centre points of all boundary faces
𝑒 ∈ Γ𝑏

ℎ. Thanks to this pointwise continuity and boundary condition, the scheme now involves the following
bilinear/trilinear forms, compare with (5.4)–(5.6):∫︁

Ω

𝐷 (v) : 𝑆 ≃ 𝑏𝐶𝑅
1ℎ (𝑆ℎ,vℎ) :=

∑︁
𝐸∈𝒯ℎ

∫︁
𝐸

𝐷 (vℎ) : 𝑆ℎ, (5.68)

𝑑𝐶𝑅
ℎ (uℎ; vℎ,wℎ) :=

1
2

[︃ ∑︁
𝐸∈𝒯ℎ

∫︁
𝐸

[(uℎ · ∇) vℎ] ·wℎ −
∑︁

𝐸∈𝒯ℎ

∫︁
𝐸

[(uℎ · ∇) wℎ] · vℎ

]︃
, (5.69)

𝑏𝐶𝑅
2ℎ (vℎ, 𝑞ℎ) := −

∑︁
𝐸∈𝒯ℎ

∫︁
𝐸

𝑞ℎ div (vℎ) . (5.70)
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With these new forms, analogously to (5.12), the finite element approximation of the problem reads as follows:
find a triple (𝑇 ℎ,uℎ, 𝑝ℎ) ∈ 𝑀ℎ × 𝑉 𝐶𝑅

ℎ ×𝑄ℎ such that

𝑑𝐶𝑅
ℎ (uℎ; uℎ,vℎ) + 𝑏𝐶𝑅

1ℎ (𝑇 ℎ,vℎ) + 𝑏𝐶𝑅
2ℎ (vℎ, 𝑝ℎ) + 𝐽ℎ (uℎ,vℎ) =

∫︁
Ω

f · vℎ ∀vℎ ∈ 𝑉 𝐶𝑅
ℎ ,

𝛼

∫︁
Ω

𝑇 ℎ : 𝑆ℎ + 𝛾

∫︁
Ω

𝜇 (|𝑇 ℎ|) 𝑇 ℎ : 𝑆ℎ = 𝑏𝐶𝑅
1ℎ (𝑆ℎ,uℎ) ∀𝑆ℎ ∈ 𝑀ℎ,

𝑏𝐶𝑅
2ℎ (uℎ, 𝑞ℎ) = 0 ∀ 𝑞ℎ ∈ 𝑄ℎ.

(5.71)

Note that 𝑏𝐶𝑅
1ℎ (𝑆ℎ,vℎ) coincides with 𝑏1ℎ (𝑆ℎ,vℎ) and 𝑏𝐶𝑅

2ℎ (vℎ, 𝑞ℎ) coincides with 𝑏2ℎ (vℎ, 𝑞ℎ) because the
additional face terms vanish for elements of the space 𝑉 𝐶𝑅

ℎ . This is not necessarily the case with 𝑑𝐶𝑅
ℎ and 𝑑ℎ,

but 𝑑𝐶𝑅
ℎ is obviously antisymmetric and is simpler. Although the norm of the broken gradient is a norm on

𝑉 𝐶𝑅
ℎ , the mapping vℎ ↦→ ‖𝐷 (vℎ) ‖ℎ is not a norm on 𝑉 𝐶𝑅

ℎ . According to Brenner [6,7], we have instead (5.14)
and (5.15). That is why we use again the norm ‖vℎ‖𝑉ℎ

defined in (5.9) and keep the term 𝐽ℎ (uℎ,vℎ) in the first
line of (5.71). Note however that the parameters 𝜎𝑒 need not be tuned by Proposition 5.1 since there are no
surface terms in 𝑏𝐶𝑅

1ℎ (𝑇 ℎ,vℎ); thus it suffices for instance to take 𝜎𝑒 = 1 for each face 𝑒. Moreover, the analysis
used for the general discontinuous elements substantially simplifies here. First, as there are no surface terms
in the bilinear forms, the bounds are simpler. Next, the operator Πℎ satisfying the statement of Lemma 5.2 is
constructed directly by setting, for v in 𝐻1

0 (Ω)𝑑,

Πℎ (v) (b𝑒) 𝐸 =
1
|𝑒|

∫︁
𝑒

v ∀𝐸 ∈ 𝒯ℎ, ∀ 𝑒 ∈ 𝜕𝐸, (5.72)

see [15]. Clearly, as v ∈ 𝐻1
0 (Ω)𝑑, (5.72) defines a piecewise polynomial function of degree one in 𝑉 𝐶𝑅

ℎ . Finally,
convergence of the scheme is derived without the discrete differential operators 𝐺sym

ℎ and 𝐺div
ℎ . Indeed, property

(5.17) can be extended as is asserted in the proposition.

Proposition 5.9. Let the family 𝒯ℎ satisfy (4.24). If vℎ is a sequence in 𝑉 𝐶𝑅
ℎ such that

‖vℎ‖𝑉ℎ
≤ 𝐶

with a constant 𝐶 independent of ℎ, then there exists a function v̄ ∈ 𝐻1
0 (Ω)𝑑 satisfying (5.17) and

lim
ℎ→0

𝐷ℎ (vℎ) = 𝐷 (v̄) weakly in 𝐿2 (Ω)𝑑×𝑑
, (5.73)

where 𝐷ℎ stands for the broken symmetric gradient.

The proof, contained in [15], relies on the fact that the integral average of the jump [vℎ]𝑒 vanishes on any
face 𝑒 and hence, for any tensor 𝐹 in 𝐻1 (Ω)𝑑×𝑑,∫︁

𝑒

𝐹n𝑒 · [vℎ]𝑒 =
∫︁

𝑒

(𝐹 −𝐶) n𝑒 · [vℎ]𝑒 ∀𝐶 ∈ R𝑑×𝑑.

Thus, there is no need for 𝐺sym
ℎ ; the same is true for 𝐺div

ℎ . This permits to pass directly to the limit in (5.71).

6. Numerical illustrations

We introduce two decoupled iterative algorithms. The first one is based on a Lions–Mercier decoupling
strategy while the second one is a fixed point algorithm. All the algorithms are implemented using the deall.ii
library [1]. For simplicity, we focus on conforming finite element approximations for which an a priori error
estimate has been derived in Section 4.1.2. Performing numerical experiments in the case of the nonconforming
approximation scheme will be the subject of future work.

The general setup is the following:
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– Dirichlet boundary conditions are imposed on the entire domain boundary (not necessarily homogeneous);
– A sequence of uniformly refined meshes with square elements of diameter ℎ =

√
2/2𝑛, 𝑛 = 2, . . . , 6 (level of

refinement) are considered for the mesh refinement analysis;
– The finite element spaces 𝑀ℎ, 𝑉ℎ, and 𝑄ℎ consist, respectively, of discontinuous piecewise polynomials of

degree 2, continuous piecewise polynomials of degree 2, and continuous piecewise polynomials of degree 1
(see Sect. 4.2.2).

Following [5], we replace the constitutive relation

𝛼𝑇 𝑑 + 𝛾𝜇
(︁⃒⃒⃒

𝑇 𝑑
⃒⃒⃒)︁

𝑇 𝑑 −𝐷 (u) = 0

by

𝛼𝑇 𝑑 + 𝛾𝜇
(︁⃒⃒⃒

𝑇 𝑑
⃒⃒⃒)︁

𝑇 𝑑 −𝐷 (u) = g

to design an exact solution. Then, given 𝑇 𝑑, u and 𝑝, we compute the corresponding right-hand sides g and f
(forcing term), where we recall that

f = (u · ∇) u− 1
𝛼

div (𝐷 (u)) +∇𝑝 +
𝛾

𝛼
div
(︁
𝜇
(︁⃒⃒⃒

𝑇 𝑑
⃒⃒⃒)︁

𝑇 𝑑
)︁

.

Finally, we choose 𝜇 (𝑠) = 1√
1+𝑠2 which corresponds to (1.10) with 𝛽 = 1 and 𝑛 = −1/2.

6.1. Lions–Mercier decoupled iterative algorithm

We present here an iterative algorithm to compute approximately the solution to problem (3.5), which is
based on the formulation (3.4): find (𝑇 ℎ,uℎ, 𝑝ℎ) ∈ 𝑀ℎ × 𝑉ℎ ×𝑄ℎ such that

𝑑 (uℎ; uℎ,vℎ) +
1
𝛼

∫︁
Ω

𝐷 (uℎ) : 𝐷 (vℎ)−
∫︁

Ω

𝑝ℎ div (vℎ) =
∫︁

Ω

f · vℎ +
𝛾

𝛼

∫︁
Ω

𝜇 (|𝑇 ℎ|) 𝑇 ℎ : 𝐷 (vℎ) ,

𝛼

∫︁
Ω

𝑇 ℎ : 𝑆ℎ + 𝛾

∫︁
Ω

𝜇 (|𝑇 ℎ|) 𝑇 ℎ : 𝑆ℎ =
∫︁

Ω

𝐷 (uℎ) : 𝑆ℎ,∫︁
Ω

𝑞ℎ div (uℎ) = 0

(6.1)

for all (𝑆ℎ,vℎ, 𝑞ℎ) ∈ 𝑀ℎ × 𝑉ℎ × 𝑄ℎ, where 𝑑 : 𝑉 × 𝑉 × 𝑉 → R is defined in (4.7). Note that problem (6.1) is
equivalent to problem (4.9) analysed in Section 4.

To compute the solution to problem (6.1), we propose a decoupled algorithm based on a Lions–Mercier
splitting algorithm [25] (alternating-direction method of the Peaceman–Rachford type [31]) applied to the
unknown 𝑇 ℎ. Following the discussion in Section 7 of [5], the algorithm reads, for a pseudo-time step 𝜏 > 0:

Initialisation: find
(︁
𝑇

(0)
ℎ ,u(0)

ℎ , 𝑝
(0)
ℎ

)︁
∈ 𝑀ℎ × 𝑉ℎ ×𝑄ℎ such that

𝑑
(︁
u(0)

ℎ ; u(0)
ℎ ,vℎ

)︁
+

1
𝛼

∫︁
Ω

𝐷
(︁
u(0)

ℎ

)︁
: 𝐷 (vℎ)−

∫︁
Ω

𝑝
(0)
ℎ div (vℎ) =

∫︁
Ω

f · vℎ ∀vℎ ∈ 𝑉ℎ,

𝛼

∫︁
Ω

𝑇
(0)
ℎ : 𝑆ℎ =

∫︁
Ω

𝐷
(︁
u(0)

ℎ

)︁
: 𝑆ℎ ∀𝑆ℎ ∈ 𝑀ℎ,∫︁

Ω

𝑞ℎ div
(︁
u(0)

ℎ

)︁
= 0 ∀ 𝑞ℎ ∈ 𝑄ℎ.

(6.2)

Then, for 𝑘 = 0, 1, . . . , perform the following two steps:
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Step 1. Find 𝑇
(𝑘+ 1

2 )
ℎ ∈ 𝑀ℎ such that

1
𝜏

∫︁
Ω

(︂
𝑇

(𝑘+ 1
2 )

ℎ − 𝑇
(𝑘)
ℎ

)︂
: 𝑆ℎ + 𝛾

∫︁
Ω

𝜇

(︂⃒⃒⃒⃒
𝑇

(𝑘+ 1
2 )

ℎ

⃒⃒⃒⃒)︂
𝑇

(𝑘+ 1
2 )

ℎ : 𝑆ℎ

=
∫︁

Ω

𝐷
(︁
u(𝑘)

ℎ

)︁
: 𝑆ℎ − 𝛼

∫︁
Ω

𝑇
(𝑘)
ℎ : 𝑆ℎ ∀𝑆ℎ ∈ 𝑀ℎ.

Step 2. Find
(︁
𝑇

(𝑘+1)
ℎ ,u(𝑘+1)

ℎ , 𝑝
(𝑘+1)
ℎ

)︁
∈ 𝑀ℎ × 𝑉ℎ ×𝑄ℎ such that

𝑑
(︁
u(𝑘+1)

ℎ ; u(𝑘+1)
ℎ ,vℎ

)︁
+

1
𝛼

∫︁
Ω

𝐷
(︁
u(𝑘+1)

ℎ

)︁
: 𝐷 (vℎ)−

∫︁
Ω

𝑝
(𝑘+1)
ℎ div (vℎ)

=
∫︁

Ω

f · vℎ +
𝛾

𝛼

∫︁
Ω

𝜇

(︂⃒⃒⃒⃒
𝑇

(𝑘+ 1
2 )

ℎ

⃒⃒⃒⃒)︂
𝑇

(𝑘+ 1
2 )

ℎ : 𝐷 (vℎ) ,

1
𝜏

∫︁
Ω

(︂
𝑇

(𝑘+1)
ℎ − 𝑇

(𝑘+ 1
2 )

ℎ

)︂
: 𝑆ℎ + 𝛼

∫︁
Ω

𝑇
(𝑘+1)
ℎ : 𝑆ℎ =

∫︁
Ω

𝐷
(︁
u(𝑘+1)

ℎ

)︁
: 𝑆ℎ − 𝛾

∫︁
Ω

𝜇

(︂⃒⃒⃒⃒
𝑇

(𝑘+ 1
2 )

ℎ

⃒⃒⃒⃒)︂
𝑇

(𝑘+ 1
2 )

ℎ : 𝑆ℎ,∫︁
Ω

𝑞ℎ div
(︁
u(𝑘+1)

ℎ

)︁
= 0 (6.3)

for all (𝑆ℎ,vℎ, 𝑞ℎ) ∈ 𝑀ℎ × 𝑉ℎ ×𝑄ℎ.

The solution to (6.2) is obtained by first determining u(0)
ℎ and 𝑝

(0)
ℎ as the solution to a standard steady-state

Navier–Stokes equation (first and third equations in (6.2)) and then by setting 𝑇
(0)
ℎ = 1

𝛼𝐷
(︁
u(0)

ℎ

)︁
. Similarly, the

solution to problem (6.3) can be obtained by first solving the first and third equations for u(𝑘+1)
ℎ and 𝑝

(𝑘+1)
ℎ and

then solving the second equation for 𝑇
(𝑘+1)
ℎ . A standard argument shows that the above algorithm generates

uniformly bounded sequences. Thus they converge up to subsequences. However, the identification of a unique
limit for the entire sequence is currently unclear.

Regarding the implementation, we make the following comments:

– Stopping criterion: for the main loop (Lions–Mercier algorithm), the stopping criterion is⃦⃦⃦
𝑇

(𝑘+1)
ℎ − 𝑇

(𝑘)
ℎ

⃦⃦⃦
𝐿2(Ω)

+
⃦⃦⃦
∇
(︁
u(𝑘+1)

ℎ − u(𝑘)
ℎ

)︁⃦⃦⃦
𝐿2(Ω)

+
⃦⃦⃦
𝑝
(𝑘+1)
ℎ − 𝑝

(𝑘)
ℎ

⃦⃦⃦
𝐿2(Ω)⃦⃦⃦

𝑇
(𝑘+1)
ℎ

⃦⃦⃦
𝐿2(Ω)

+
⃦⃦⃦
∇u(𝑘+1)

ℎ

⃦⃦⃦
𝐿2(Ω)

+
⃦⃦⃦
𝑝
(𝑘+1)
ℎ

⃦⃦⃦
𝐿2(Ω)

≤ 10−5; (6.4)

– Initialisation: we solve the Navier–Stokes system associated to problem (6.2) using Newton’s method (the
iterates are indexed by 𝑚) until the following stopping criterion is met:⃦⃦⃦

∇
(︁
u(𝑚+1)

ℎ − u(𝑚)
ℎ

)︁⃦⃦⃦
𝐿2(Ω)

+
⃦⃦⃦
𝑝
(𝑚+1)
ℎ − 𝑝

(𝑚)
ℎ

⃦⃦⃦
𝐿2(Ω)⃦⃦⃦

∇u(𝑚+1)
ℎ

⃦⃦⃦
𝐿2(Ω)

+
⃦⃦⃦
𝑝
(𝑚+1)
ℎ

⃦⃦⃦
𝐿2(Ω)

≤ 10−6.

As an initial guess, we take the solution of the associated Stokes system without the convective term.
The solution to each saddle-point system of the form(︂

𝐴 𝐵𝑇

𝐵 0

)︂(︂
U
P

)︂
=
(︂

F
G

)︂
is obtained using a Schur complement formulation

𝐵𝐴−1𝐵𝑇 P = 𝐵𝐴−1F−G, 𝐴U = F−𝐵𝑇 P.
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To solve for P, we use the conjugate gradient algorithm in the case of the Stokes problem and GMRES for
the (linearised) Navier–Stokes problems. In both cases, the pressure mass matrix is used as preconditioner
and the tolerance for the iterative algorithms is set to 10−6‖𝐵𝐴−1F−G‖ℓ2 . A direct method is advocated
for every occurrence of 𝐴−1 and also to obtain 𝑇

(0)
ℎ .

– Step 1 (monotone part): 𝑇
(𝑘+ 1

2 )
ℎ is the zero of the functional

𝐹 (𝑇 ℎ) := 𝑇 ℎ + 𝜏𝛾𝜇 (|𝑇 ℎ|) 𝑇 ℎ − 𝜏𝐷
(︁
u(𝑘)

ℎ

)︁
− (1− 𝛼𝜏) 𝑇

(𝑘)
ℎ .

Recall that discontinuous piecewise polynomial approximations are used for the stress and so 𝑇 ℎ is deter-
mined locally on each element 𝐸 ∈ 𝒯ℎ as the solution to∫︁

𝐸

𝐹 (𝑇 ℎ) : 𝑆ℎ = 0 ∀𝑆ℎ ∈ Q2.

We again employ Newton’s method starting with 𝑇
(0)
ℎ = 𝑇

(𝑘)
ℎ 𝐸

and use the stopping criterion⃦⃦⃦
𝐹
(︁
𝑇

(𝑚)
ℎ

)︁⃦⃦⃦
𝐿2(𝐸)

≤ 10−6

√︀
|𝐸|√︀
|Ω|

so that the global residual is less than 10−6. Note that in this case, it might happen that no iteration is

needed (e.g. when 𝛾 = 0), in which case 𝑇
(𝑘+ 1

2 )
ℎ 𝐸

= 𝑇
(𝑘)
ℎ 𝐸

.

– Step 2 : this step is similar to the initialisation step except that we take
(︁
u(𝑘)

ℎ , 𝑝
(𝑘)
ℎ

)︁
as our initial guess for

Newton’s method for solving the finite element approximation of the Navier–Stokes system.

6.1.1. Case 1: smooth solution

We consider the case Ω = (0, 1)2 and

𝑇 𝑑 =

(︃
cos(2𝜋𝑥)−cos(2𝜋𝑦)

4 0
0 cos(2𝜋𝑦)−cos(2𝜋𝑥)

4

)︃
, u =

(︂
− cos (𝜋𝑥) sin (𝜋𝑦)

sin (𝜋𝑥) cos (𝜋𝑦)

)︂
, 𝑝 = −cos (2𝜋𝑥) + cos (2𝜋𝑦)

4
·

Note that 𝑇 𝑑 is the deviatoric part of 𝑇 defined by

𝑇 =

(︃
cos(2𝜋𝑥)

2 0
0 cos(2𝜋𝑦)

2

)︃
,

and in particular it has vanishing trace. We observe that u is divergence-free. Moreover, the pressure satisfies
𝑝 = − 1

2 tr (𝑇 ) and has zero mean. We report in Table 1 the error for each component of the solution for the case
𝛼 = 1 and 𝛾 = 0, while Table 2 contains the results for 𝛼 = 𝛾 = 1. Note that we use the 𝐻1 semi-norm for the
velocity and not the (equivalent) 𝐿2 (Ω)2×2 norm of the symmetric gradient.

We observe in Table 2 that all three errors are 𝒪
(︀
ℎ2
)︀
. The deterioration of the convergence rate we observe

for 𝑇 𝑑 and 𝑝 in Table 2 is due to the stopping criterion. Indeed, if we use 10−6 instead of 10−5 in the stopping
criterion (6.4) for the main loop, then for ℎ = 0.044 (𝑛 = 5) we need 250 iterations and we get⃦⃦⃦
𝑇 𝑑 − 𝑇 ℎ

⃦⃦⃦
𝐿2(Ω)

= 4.66898× 10−4, ‖u− uℎ‖𝐿2(Ω) = 1.13118× 10−3 and ‖𝑝− 𝑝ℎ‖𝐿2(Ω) = 3.62581× 10−4,

compare with the fourth row of Table 2.
We give in Tables 3–5 the results obtained when a larger pseudo-time step is used.
We see that the larger the pseudo-time step, the fewer the number of iterations. Moreover, for all cases

𝜏 = 0.05, 𝜏 = 0.1 and 𝜏 = 0.5, there is no deterioration of the convergence rate in contrast to what we observed
in Table 2 (due to the stopping criterion).
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Table 1. Case 1, 𝛼 = 1, 𝛾 = 0, 𝛿 = 10−5, 𝜏 = 0.01.

𝑛 ℎ
⃦⃦
𝑇 𝑑 − 𝑇 ℎ

⃦⃦
𝐿2(Ω)

‖∇ (u− uℎ) ‖𝐿2(Ω) ‖𝑝− 𝑝ℎ‖𝐿2(Ω) Iter

2 0.354 6.04199× 10−2 7.51266× 10−2 3.02263× 10−2 1
3 0.177 1.44750× 10−2 1.82293× 10−2 6.18331× 10−3 1
4 0.088 3.58096× 10−3 4.52460× 10−3 1.46371× 10−3 1
5 0.044 8.92901× 10−4 1.12913× 10−3 3.60874× 10−4 1
6 0.022 2.23079× 10−4 2.82155× 10−4 8.99041× 10−5 1

Table 2. Case 1, 𝛼 = 𝛾 = 1, 𝛿 = 10−5, 𝜏 = 0.01.

𝑛 ℎ
⃦⃦
𝑇 𝑑 − 𝑇 ℎ

⃦⃦
𝐿2(Ω)

‖∇ (u− uℎ) ‖𝐿2(Ω) ‖𝑝− 𝑝ℎ‖𝐿2(Ω) Iter

2 0.354 3.57579× 10−2 8.21275× 10−2 3.01953× 10−2 183
3 0.177 7.78829× 10−3 1.86706× 10−2 6.18695× 10−3 182
4 0.088 2.00882× 10−3 4.55378× 10−3 1.50017× 10−3 182
5 0.044 8.86597× 10−4 1.13687× 10−3 4.91418× 10−4 182
6 0.022 7.66438× 10−4 3.05389× 10−4 3.45733× 10−4 182

Table 3. Case 1, 𝛼 = 𝛾 = 1, 𝛿 = 10−5, 𝜏 = 0.05.

𝑛 ℎ
⃦⃦
𝑇 𝑑 − 𝑇 ℎ

⃦⃦
𝐿2(Ω)

‖∇ (u− uℎ) ‖𝐿2(Ω) ‖𝑝− 𝑝ℎ‖𝐿2(Ω) Iter

2 0.354 3.57161× 10−2 8.21200× 10−2 3.02043× 10−2 47
3 0.177 7.74372× 10−3 1.86697× 10−2 6.18194× 10−3 47
4 0.088 1.86276× 10−3 4.55240× 10−3 1.46465× 10−3 47
5 0.044 4.77556× 10−4 1.13167× 10−3 3.65463× 10−4 47
6 0.022 1.72916× 10−4 2.85469× 10−4 1.06995× 10−4 47

Table 4. Case 1, 𝛼 = 𝛾 = 1, 𝛿 = 10−5, 𝜏 = 0.1.

𝑛 ℎ
⃦⃦
𝑇 𝑑 − 𝑇 ℎ

⃦⃦
𝐿2(Ω)

‖∇ (u− uℎ) ‖𝐿2(Ω) ‖𝑝− 𝑝ℎ‖𝐿2(Ω) Iter

2 0.354 3.57060× 10−2 8.21133× 10−2 3.02054× 10−2 26
3 0.177 7.74150× 10−3 1.86693× 10−2 6.18213× 10−3 26
4 0.088 1.85887× 10−3 4.55234× 10−3 1.46384× 10−3 26
5 0.044 4.63124× 10−4 1.13153× 10−3 3.61829× 10−4 26
6 0.022 1.27963× 10−4 2.84928× 10−4 9.37426× 10−5 26

6.1.2. Case 2: non-smooth velocity

We consider now the 𝐿-shaped domain Ω = (−1, 1)2 ∖ [0, 1)2; we take 𝑇 𝑑 and 𝑝 as above, but here

u =

(︃
𝑦
(︀
𝑥2 + 𝑦2

)︀ 1
3

−𝑥
(︀
𝑥2 + 𝑦2

)︀ 1
3

)︃
,

which is divergence-free. The results when 𝛼 = 1 and 𝛾 = 0 are given in Table 6 while Tables 7 and 8 contain
the results for the case 𝛼 = 𝛾 = 1 with 𝜏 = 0.01 and 𝜏 = 0.5, respectively.
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Table 5. Case 1, 𝛼 = 𝛾 = 1, 𝛿 = 10−5, 𝜏 = 0.5.

𝑛 ℎ
⃦⃦
𝑇 𝑑 − 𝑇 ℎ

⃦⃦
𝐿2(Ω)

‖∇ (u− uℎ) ‖𝐿2(Ω) ‖𝑝− 𝑝ℎ‖𝐿2(Ω) Iter

2 0.354 3.57028× 10−2 8.21057× 10−2 3.02063× 10−2 10
3 0.177 7.73342× 10−3 1.86606× 10−2 6.18238× 10−3 7
4 0.088 1.85742× 10−3 4.55172× 10−3 1.46368× 10−3 7
5 0.044 4.59753× 10−4 1.13121× 10−3 3.60876× 10−4 7
6 0.022 1.15437× 10−4 2.83829× 10−4 8.99203× 10−5 7

Table 6. Case 2, 𝛼 = 1, 𝛾 = 0, 𝛿 = 10−5, 𝜏 = 0.5.

𝑛 ℎ
⃦⃦
𝑇 𝑑 − 𝑇 ℎ

⃦⃦
𝐿2(Ω)

‖∇ (u− uℎ) ‖𝐿2(Ω) ‖𝑝− 𝑝ℎ‖𝐿2(Ω) Iter

2 0.354 3.65187× 10−2 3.80529× 10−2 5.22497× 10−2 1
3 0.177 5.61550× 10−3 6.85310× 10−3 1.07102× 10−2 1
4 0.088 1.32332× 10−3 1.86233× 10−3 2.53671× 10−3 1
5 0.044 3.95496× 10−4 5.79343× 10−4 6.25652× 10−4 1
6 0.022 1.24435× 10−4 1.83765× 10−4 1.55951× 10−4 1

Table 7. Case 2, 𝛼 = 𝛾 = 1, 𝛿 = 10−5, 𝜏 = 0.01.

𝑛 ℎ
⃦⃦
𝑇 𝑑 − 𝑇 ℎ

⃦⃦
𝐿2(Ω)

‖∇ (u− uℎ) ‖𝐿2(Ω) ‖𝑝− 𝑝ℎ‖𝐿2(Ω) Iter

2 0.354 3.51269× 10−2 6.79039× 10−2 5.22609× 10−2 198
3 0.177 4.65311× 10−3 9.59150× 10−3 1.07129× 10−2 198
4 0.088 1.10623× 10−3 2.04375× 10−3 2.55916× 10−3 198
5 0.044 7.88026× 10−4 6.03974× 10−4 7.14457× 10−4 198
6 0.022 7.63053× 10−4 2.28218× 10−4 3.79151× 10−4 198

Table 8. Case 2, 𝛼 = 𝛾 = 1, 𝛿 = 10−5, 𝜏 = 0.5.

𝑛 ℎ
⃦⃦
𝑇 𝑑 − 𝑇 ℎ

⃦⃦
𝐿2(Ω)

‖∇ (u− uℎ) ‖𝐿2(Ω) ‖𝑝− 𝑝ℎ‖𝐿2(Ω) Iter

2 0.354 3.50999× 10−2 6.78690× 10−2 5.22585× 10−2 11
3 0.177 4.56878× 10−3 9.56288× 10−3 1.07075× 10−2 8
4 0.088 8.00090× 10−4 2.03639× 10−3 2.53571× 10−3 7
5 0.044 2.08125× 10−4 5.91247× 10−4 6.25280× 10−4 7
6 0.022 6.85220× 10−5 1.92531× 10−4 1.55842× 10−4 7
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Table 9. Case 1, 𝛼 = 𝛾 = 1, 𝛿 = 10−5.

𝑛 ℎ
⃦⃦
𝑇 𝑑 − 𝑇 ℎ

⃦⃦
𝐿2(Ω)

‖∇ (u− uℎ) ‖𝐿2(Ω) ‖𝑝− 𝑝ℎ‖𝐿2(Ω) Iter

2 0.354 3.57082× 10−2 8.21052× 10−2 3.02063× 10−2 10
3 0.177 7.73745× 10−3 1.86629× 10−2 6.18241× 10−3 8
4 0.088 1.85777× 10−3 4.55234× 10−3 1.46369× 10−3 8
5 0.044 4.60268× 10−4 1.13344× 10−3 3.60885× 10−4 8
6 0.022 1.17442× 10−4 2.92590× 10−4 8.99455× 10−5 8

Table 10. Time (in seconds) needed to meet the stopping criteria (6.4) for the Lions–Mercier
type algorithm (setup of Tab. 5) and the algorithm of Section 6.2.

Lions–Mercier, 𝜏 = 0.5 Alt. Algo
ℎ Iter CPU time [s] Wall time [s] Iter CPU time [s] Wall time [s]

0.354 10 10.33 14.76 10 7.30 10.22
0.177 7 32.56 39.92 8 25.57 32.70
0.088 7 134.28 162.05 8 94.76 111.77
0.044 7 474.41 565.44 8 364.79 414.95
0.022 7 1542.63 1695.55 8 1307.07 1539.07

6.2. A fixed-point algorithm

Instead of the Lions–Mercier type algorithm introduced in Section 6.1, we explore the following fixed-point
strategy.

Initialisation:
(︁
𝑇

(0)
ℎ ,u(0)

ℎ , 𝑝
(0)
ℎ

)︁
= 0.

Then for 𝑘 = 0, 1, . . ., do the following two steps.

Step 1 : find
(︁
u(𝑘+1)

ℎ , 𝑝
(𝑘+1)
ℎ

)︁
∈ 𝑉ℎ ×𝑄ℎ such that

𝑑
(︁
u(𝑘+1)

ℎ ; u(𝑘+1)
ℎ ,vℎ

)︁
+

1
𝛼

∫︁
Ω

𝐷
(︁
u(𝑘+1)

ℎ

)︁
: 𝐷 (vℎ)−

∫︁
Ω

𝑝
(𝑘+1)
ℎ div (vℎ)

=
∫︁

Ω

f · vℎ +
𝛾

𝛼

∫︁
Ω

𝜇
(︁⃒⃒⃒

𝑇
(𝑘)
ℎ

⃒⃒⃒)︁
𝑇

(𝑘)
ℎ : 𝐷 (vℎ) ,∫︁

Ω

𝑞ℎ div
(︁
u(𝑘+1)

ℎ

)︁
= 0

for all (uℎ, 𝑞ℎ) ∈ 𝑉ℎ ×𝑄ℎ.

Step 2 : find 𝑇
(𝑘+1)
ℎ ∈ 𝑀ℎ such that

𝛼

∫︁
Ω

𝑇
(𝑘+1)
ℎ : 𝑆ℎ + 𝛾

∫︁
Ω

𝜇
(︁⃒⃒⃒

𝑇
(𝑘+1)
ℎ

⃒⃒⃒)︁
𝑇

(𝑘+1)
ℎ : 𝑆ℎ =

∫︁
Ω

𝐷
(︁
u(𝑘+1)

ℎ

)︁
: 𝑆ℎ ∀𝑆ℎ ∈ 𝑀ℎ.

It is easy to show that this algorithm produces uniformly bounded sequences.
The solvers used for these two steps are similar to those described in Section 6.1. In particular, we take(︁

u(𝑘)
ℎ , 𝑝

(𝑘)
ℎ

)︁
as initial guess for Newton’s method for the finite element approximation of the Navier–Stokes

system, except when 𝑘 = 0, in which case we use the solution of the associated Stokes problem.
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The results obtained using the stopping criterion (6.4) are given in Table 9. There are similar to those obtained
in Table 5.

Concerning the computational cost when similar results are obtained, i.e., when 𝜏 = 0.5 for the Lions–Mercier
type algorithm, we note that the latter requires the solution of one more equation per iteration, namely the
linear equation for 𝑇

(𝑘+1)
ℎ in Step 2. The running time of both algorithms is reported in Table 10.
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