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Abstract. We consider a fully practical finite element approximation of the Cahn–Hilliard
equation with degenerate mobility

∂u

∂t
= ∇.( b(u)∇(−γ∆u + Ψ′(u))),

where b(·) ≥ 0 is a diffusional mobility and Ψ(·) is a homogeneous free energy. In addition to
showing well posedness and stability bounds for our approximation, we prove convergence in one
space dimension. Furthermore, an iterative scheme for solving the resulting nonlinear discrete system
is analyzed. We also discuss how our approximation has to be modified in order to be applicable to
a logarithmic homogeneous free energy. Finally, some numerical experiments are presented.
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1. Introduction. The Cahn–Hilliard equation

∂u
∂t = ∇.( b(u)∇(−γ∆u + Ψ′(u))), x ∈ Ω, t > 0,

was introduced to model spinodal decomposition and coarsening phenomena (Ostwald
ripening) in binary alloys (cf. [10] and [12]). The quantity u is defined to be the
difference of the local concentrations cA, cB ∈ [0, 1] of the two components A and B
of the alloy and hence u is restricted to lie in the interval [−1, 1]. The theory of Cahn
and Hilliard is based on a Ginzburg–Landau free energy of the form

E(u) :=

∫

Ω

(
γ
2 |∇u|2 + Ψ(u)

)
dx, γ > 0.

The first term in the free energy penalizes large gradients and was introduced in
the theory of phase transitions to model capillary effects. The second term is the
homogeneous free energy, which contains a term describing the entropy of mixing and
a term taking into account the interaction between the two components. A mean field
model leads to the potential

Ψ(u) :=
θ

2

[
(1 + u) ln

[
1 + u

2

]
+ (1 − u) ln

[
1 − u

2

]]
+ F 0(u),(1.1)

where θ is the absolute temperature and F 0 is a smooth function on the interval
[−1, 1]. A typical example is F 0(u) := θc

2 (1− u2), giving rise to a double well form of
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Ψ if θ < θc. But there are other reasonable choices of Ψ. If the temperature is below
the critical temperature θc and the quench is shallow, i.e., 0 ≪ θ < θc, one could take,
e.g.,

Ψ(u) := (u2 − a2)2, a ∈ R.

This has the advantage of being smooth, but the disadvantage that physically non-
admissible values with |u| > 1 can be attained during the evolution. For low temper-
atures, an obstacle potential of the form

Ψ(u) :=

{
1
2

(
1 − u2

)
if |u| ≤ 1,

∞ if |u| > 1
(1.2)

was suggested in [9]. This is formally the limit of the logarithmic potential, (1.1),
with F 0(u) := 1

2 (1 − u2) in the deep quench limit θ → 0. The general feature is that
below a certain critical temperature precisely two global minima of Ψ exist. As these
minima are interpreted as phases, the potential Ψ is said to support two phases. If one
minimizes E(·) subject to the integral constraint −

∫
Ω
u = ū ∈ R, where ū lies between

the two minima of Ψ, then the minimizer umin, roughly speaking, will give rise to
the following structure. The function umin divides the domain Ω into three sets. On
two of these sets umin will be close to the minima of Ψ, whereas the third will be
an interfacial regime of thickness approximately proportional to

√
γ dividing the two

phases. Generically the minima are realized as large time limits of the Cahn–Hilliard
evolution with constant mobility.

To obtain the Cahn–Hilliard equation one introduces a chemical potential w as
the variational derivative of E ,

w :=
δE
δu

= −γ∆u + Ψ′(u),

and defines a flux,

J := −b(u)∇w.

Here b(·) is the nonnegative diffusional mobility, and in most of the literature on the
Cahn–Hilliard equation b was assumed to be constant. But in the original derivation
of the equation a u-dependent mobility appeared ([10] and [24]), and in fact with
the diffusion in the interfacial region enhanced and hence stronger than in the pure
phases. This enhanced interfacial diffusion is, in particular, observed in experiments
at low temperatures.

It was suggested by many authors to take a mobility of the form b(u) := 1 − u2;
but the main feature a mobility should have is that it is zero in the pure component,
i.e., when u = ±1, and the mobility should be positive for |u| < 1. Having defined the
flux the Cahn–Hilliard equation now follows from the equation ∂u

∂t +∇·J = 0, which
is a consequence of mass conservation. The system is completed by taking initial
conditions and the natural and no-flux boundary conditions ∂u

∂ν = J ·ν = 0 on ∂Ω,
where ν is normal to ∂Ω.

It is the aim of this work to develop an efficient numerical method for the Cahn–
Hilliard equation with degenerate mobility. Besides the case in which the homoge-
neous free energy is smooth we want to be able to handle the cases of a logarithmic
free energy and of an obstacle potential. In the following we briefly describe what
is known for the Cahn–Hilliard equation with a concentration dependent mobility.
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For an overview on the vast literature on the Cahn–Hilliard equation with constant
mobility we refer to [17] and [26]. Existence results for the Cahn–Hilliard equation
with degenerate mobility were obtained in [27] in one space dimension and in [19]
for space dimensions larger than one (see also [22] and [20]). One main feature of
these results is the fact that solutions with initial data where |u0(·)| ≤ 1 have the
property that |u(·, t)| ≤ 1 for all later times t. This physically reasonable result is
true for all potentials Ψ and a degenerate mobility but cannot be guaranteed if one
takes Ψ(u) = (u2−a2)2 and a constant mobility. We remark that so far no uniqueness
result for the Cahn–Hilliard equation with degenerate mobility is known.

An important result which gave insight into the qualitative behavior of solutions
to the Cahn–Hilliard equation with degenerate mobility was established in [11] (see
also [21]). They used the technique of formal asymptotic expansions to show that
with the scaling γ = ε2, t → ε2t and in the deep quench limit θ → 0, one can identify
a limit as ε → 0, which is a geometric motion for the interface known as motion by
surface diffusion (cf. [13]). We remark that as ε → 0 the interface thickness, which is
approximately proportional to

√
γ, tends to zero and the interfacial region becomes

a sharp interface. The limiting motion is an evolution law for hypersurfaces and it
reads as

V = −π2

16 ∆S κ,

where V is the normal velocity, ∆S is the surface Laplacian, and κ is the mean
curvature of the interface. This is a purely local geometric motion for the interface
and is in contrast to the Mullins–Sekerka evolution, which is obtained with a constant
mobility. In the latter case, two interfaces which are a distance away from each other
are coupled through bulk terms. Whereas in the case of motion by surface diffusion,
two such interfaces would evolve independently of each other as long as they do not
intersect; for example, a collection of spheres which do not intersect each other are
stationary. On the level of the Cahn–Hilliard equation with degenerate mobility this
property would correspond to a pinning effect (see [23], which reports on pinning
effects in spinodal decomposition of polymer mixtures). Also let us mention that the
time scale in the asymptotics of [11] is slower than the time scale which was used in
the asymptotics for a constant mobility. One should bear in mind these results when
studying the numerical simulations presented in section 5.

There are a number of papers on the Cahn–Hilliard equation with constant mo-
bility from the numerical analysis point of view. We refer to [17] for an overview.
Most numerical approaches are based on a splitting method, which uses the chemical
potential w as an unknown function and hence only requires continuous finite element
approximations for {u,w} (see [18]). To our knowledge there has been no numerical
analysis for the Cahn–Hilliard equation with a degenerate mobility. However, in [4] an
error bound is proved for a fully practical piecewise linear finite element approxima-
tion of the Cahn–Hilliard equation with a logarithmic free energy and a nondegenerate
concentration dependent mobility; see also [3] and [5] for extensions to the multicom-
ponent case and the deep quench limit. Although the numerical approximation in
the above papers is well defined for a degenerate mobility, the authors were not able
to prove stability bounds and hence convergence of this approximation. The case of
a degenerate mobility with its possible lack of uniqueness requires a more delicate
approximation.

In what follows we state precisely the problem we wish to approximate numerically
and we make some general assumptions. Let Ω be a bounded domain in R

d, d ≤ 3,
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with a Lipschitz boundary ∂Ω. We consider the initial boundary value problem for
the Cahn–Hilliard equation:

(P) Find u(x, t) such that

∂u

∂t
= ∇.( b(u)∇(−γ∆u + Ψ′(u))) in ΩT := Ω × (0, T ),(1.3a)

u(x, 0) = u0(x) ∀ x ∈ Ω,(1.3b)

∂u

∂ν
= b(u)

∂

∂ν
(−γ∆u + Ψ′(u)) = 0 on ∂Ω × (0, T ),(1.3c)

where ν is normal to ∂Ω and γ is a positive constant. The diffusional mobility b ∈
C([−1, 1]) is assumed to satisfy

b(−1) = b(1) = 0 and b(s) > 0 ∀ s ∈ (−1, 1).(1.4)

The free energy Ψ ∈ C([−1, 1]) is such that

Ψ(s) := ψ1(s) + ψ2(s) + θc
2 (1 − s2),(1.5)

where θc is a nonnegative constant and ψ1 ∈ C1((−1, 1)) and ψ2 ∈ C1([−1, 1]) are
convex and concave, respectively. Clearly the third term can be absorbed into ψ2(·);
however, for later purposes we decompose Ψ(·) into this form. Obviously all examples
for Ψ given above can be written in the form (1.5). In particular the double obstacle
potential, (1.2), corresponds to the case ψ1 ≡ ψ2 ≡ 0 and θc = 1 or ψ1 ≡ 0, ψ2(s) =
1−s2

2 and θc = 0. We point out that in the case of a degenerate mobility, the obstacle
in the potential (1.2) is not needed to describe the motion in the deep quench limit.
In particular, as was shown in [19], the evolution with respect to the potential (1.2)
is given by an equation instead of a variational inequality.

In [6] we considered a fully practical finite element approximation of the fourth
order nonlinear degenerate parabolic equation (1.3a–c) with Ψ(·) ≡ 0 and b(u) := |u|p
for any given p ∈ (0,∞). Such problems arise in lubrication approximations of thin
viscous films and have been studied extensively in the mathematics literature in recent
years. A key feature of this problem is that there is no uniqueness result. In addition
to establishing well posedness of our finite element approximation for all d ≤ 3, we
proved convergence in one space dimension to solutions using the very weak solution
concept introduced in [8] for this problem. This basically states that u is a solution if

∫ T

0

〈∂u∂t , η〉dt−
∫

{|u|>0}
b(u)∇∆u∇η dxdt = 0 ∀ η ∈ L2(0, T ;H1(Ω)).

The restriction of convergence to one space dimension is due to the fact that our
a priori bounds on the finite element approximation only guarantee in the case of
d = 1 uniform boundedness and equicontinuity of the approximate solutions, which is
necessary to be able to pass to the limit in the discrete problem. For similar reasons,
the results of [8] were restricted to one space dimension. In this paper we extend the
techniques in [6] to the Cahn–Hilliard equation with degenerate mobility, (1.3a–c).

This paper is organized as follows. In section 2 we formulate a fully practical finite
element approximation, (Ph,∆t), of problem (P) in the case of ψ1, ψ2 ∈ C1([−1, 1]).
This obviously excludes the choice of Ψ as the logarithmic potential, (1.1). This
discretization is based on introducing the chemical potential w and writing the fourth
order parabolic equation as a system of equations

∂u
∂t = ∇.(b(u)∇w) in ΩT , −γ∆u + Ψ′(u) = w,(1.6)
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where the second equation holds on the set { |u| < 1 }; and as b(−1) = b(1) = 0, see
(1.4), then w is only required in this region. Unfortunately, a naive finite element
approximation of problem (P) does not a priori guarantee that the discrete solution
fulfills |u| ≤ 1. Therefore we impose the physically reasonable property |u| ≤ 1 as a
constraint. This leads to a variational inequality which has to be solved at each time
step. We prove well posedness and stability bounds for our approximation, (Ph,∆t),
of (P) for space dimensions 1, 2, and 3 and show convergence in one space dimension.
In section 3 we introduce and prove convergence of an iterative scheme, based on the
abstract splitting approach in [25], for solving the nonlinear discrete system arising in
(Ph,∆t) at each time level. In section 4, we introduce a variation of the approximation
(Ph,∆t), studied in section 2, to cope with the choice of a logarithmic free energy.
Furthermore, we extend the results of sections 2 and 3 to this case. Finally, in section
5 we report on some numerical experiments.

Notation and auxiliary results. We have adopted the standard notation for
Sobolev spaces, denoting the norm of Wm,p(Ω) (m ∈ N, p ∈ [1,∞]) by ‖ · ‖m,p and
the seminorm by | · |m,p. For p = 2, Wm,2(Ω) will be denoted by Hm(Ω) with the
associated norm and seminorm written, respectively, as ‖ · ‖m and | · |m. Throughout,
(·, ·) denotes the standard L2 inner product over Ω and 〈·, ·〉 denotes the duality pairing

between
(
H1(Ω)

)′
and H1(Ω).

For later purposes, we recall the following well-known Sobolev interpolation re-
sults, e.g., see [1]: Let p ∈ [1,∞], m ≥ 1,

r ∈





[p,∞] if m− d
p > 0,

[p,∞) if m− d
p = 0,

[p,− d
m−(d/p) ] if m− d

p < 0,

and µ = d
m

(
1
p − 1

r

)
. Then there is a constant C depending only on Ω, p, r,m such

that for all v ∈ Wm,p(Ω) the inequality

‖v‖0,r ≤ C‖v‖1−µ
0,p ‖v‖µm,p(1.7)

holds. It is convenient to introduce the “inverse Laplacian” operator G : F → V such
that

(∇Gv,∇η) = 〈v, η〉 ∀ η ∈ H1(Ω),(1.8)

where F :=
{
v ∈ (H1(Ω))′ : 〈v, 1〉 = 0

}
and V := {v ∈ H1(Ω) : (v, 1) = 0}. The well

posedness of G follows from the Lax–Milgram theorem and the Poincaré inequality

|η|0,p ≤ C(|η|1,p + |(η, 1)|) ∀ η ∈ W 1,p(Ω) and p ∈ [1,∞].(1.9)

One can define a norm on F by

‖v‖−1 := |Gv|1 ≡ 〈v,Gv〉 1
2 ∀ v ∈ F .(1.10)

We note also for future reference that using a Young’s inequality yields for all α > 0
that

〈v, η〉 = (∇Gv,∇η) ≤ ‖v‖−1|η|1 ≤ 1
2α‖v‖2

−1 + α
2 |η|21 ∀ v ∈ F , η ∈ H1(Ω).(1.11)

Throughout C denotes a generic constant independent of h and ∆t, the mesh and
temporal discretization parameters. In addition C(a1, . . . , aI) denotes a constant
depending on the nonnegative parameters {ai}Ii=1, such that for all C1 > 0 there
exists a C2 > 0 such that C(a1, . . . , aI) ≤ C2 if ai ≤ C1 for i = 1 → I.
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2. Finite element approximation. We consider the finite element approxi-
mation of (P) under the following assumptions on the meshes.

(A) Let Ω be a polyhedral domain. Let {T h}h>0 be a quasi-uniform family of
partitionings of Ω into disjoint open simplices κ with hκ := diam(κ) and
h := maxκ∈T h hκ, so that Ω = ∪κ∈T hκ.

Associated with T h is the finite element space

Sh := {χ ∈ C(Ω) : χ |κ is linear ∀ κ ∈ T h} ⊂ H1(Ω).

We also introduce

Kh := {χ ∈ Sh : −1 ≤ χ ≤ 1 in Ω}.

Let J be the set of nodes of T h and {xj}j∈J the coordinates of these nodes. Let
{χj}j∈J be the standard basis functions for Sh; that is, χj ∈ Kh and χj(xi) = δij
for all i, j ∈ J . We introduce πh : C(Ω) → Sh, the interpolation operator, such that
πhη(xj) = η(xj) for all j ∈ J . A discrete semi-inner product on C(Ω) is defined by

(η1, η2)
h :=

∫

Ω

πh(η1(x) η2(x)) dx ≡
∑

j∈J

βj η1(xj) η2(xj),(2.1)

where βj := (1, χj). The induced seminorm is then | · |h := [(· , ·)h]
1
2 . We introduce

the L2 projection Qh : L2(Ω) → Sh and the more practical Q̂h : L2(Ω) → Sh defined
by

(Qhη, χ) = (Q̂hη, χ)h = (η, χ) ∀ χ ∈ Sh.(2.2)

Given N , a positive integer, let ∆t := T/N denote the time step and tn := n∆t,
n = 1 → N . Assuming that ψ1, ψ2 ∈ C1([−1, 1]), we consider the following fully
practical finite element approximation of (P):

(Ph,∆t) For n ≥ 1, find {Un,Wn} ∈ Kh × Sh such that

(
Un−Un−1

∆t , χ
)h

+
(
b(Un−1)∇Wn,∇χ

)
= 0 ∀ χ ∈ Sh,(2.3a)

γ(∇Un,∇(χ− Un)) + (ψ′
1(U

n) − θcU
n, χ− Un)h

≥ (Wn − ψ′
2(U

n−1), χ− Un)h ∀ χ ∈ Kh,(2.3b)

where U0 ∈ Kh is an approximation of u0 ∈ K := {η ∈ H1(Ω) : −1 ≤ η ≤ 1
almost everywhere (a.e.) in Ω}, e.g., U0 ≡ πhu0 (if d = 1) or Q̂hu0. As we motivated
in the introduction the variational inequality (2.3b) is introduced because we wish
to impose the physically reasonable property |Un| ≤ 1, which is not automatically
guaranteed by a straightforward discretization of (P). It follows immediately from
(2.3b) that for n ≥ 1 and for all j ∈ J , either |Un(xj)| = 1 or |Un(xj)| < 1 and
γ(∇Un,∇χj) + (ψ′

1(U
n) − θcU

n, χj)
h = (Wn − ψ′

2(U
n−1), χj)

h.
Hence (2.3b) approximates −γ∆u + Ψ′(u) = w in the region |u| < 1 as required;

see (1.6). We note that for a general degenerate mobility b(·) satisfying (1.4), (2.3a)
is not fully practical as it assumes that

∫
κ
b(Un−1) dx can be calculated exactly. Ob-

viously, one could consider using numerical integration on this term; e.g., replace (·, ·)
by (·, ·)h in (2.3a). However, for ease of exposition and as the model case b(s) := 1−s2

can be easily dealt with, we consider (2.3a) in its present form.
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Below we recall some well-known results concerning Sh.

|χ|m,p2
≤ Ch−d( 1

p1
− 1

p2
)|χ|m,p1

∀ χ ∈ Sh, 1 ≤ p1 ≤ p2 ≤ ∞, m = 0 or 1;(2.4)

|χ|1,p ≤ Ch−1|χ|0,p ∀ χ ∈ Sh, 1 ≤ p ≤ ∞;(2.5)

lim
h→0

‖(I − πh)η‖0,∞ = 0 ∀ η ∈ C(Ω);(2.6)

|(I −Qh)η|0 + h|(I −Qh)η|1 ≤ Chm|η|m ∀ η ∈ Hm(Ω), m = 1 or 2;(2.7)

|χ|20 ≤ |χ|2h ≤ (d + 2)|χ|20 ∀ χ ∈ Sh;(2.8)

|(vh, χ)h − (vh, χ)| ≤ Ch1+m‖vh‖m‖χ‖1 ∀ vh, χ ∈ Sh, m = 0 or 1;(2.9)

and if d = 1

|(I − πh)η|m,r ≤ Ch1−m|η|1,r ∀ η ∈ W 1,r(Ω), m = 0 or 1, any r ∈ [1,∞];(2.10)

lim
h→0

‖(I − πh)η‖1 = 0 ∀ η ∈ H1(Ω).(2.11)

If d = 1, then a simple consequence of (2.9) and (2.10) is that

|(v, η)h − (v, η)| ≤ |(πhv, πhη)h − (πhv, πhη)| + |((I − πh)v, πhη)| + |(v, (I − πh)η)|
≤ C

[
|(I − πh)v|0 + h|v|0

]
‖η‖1 ∀ v ∈ C(Ω), ∀ η ∈ H1(Ω).

(2.12)

Comparing Q̂hη with Qhη and noting (2.9), (2.5), and (2.7) yields that

|(I − Q̂h)η|0 + h|(I − Q̂h)η|1 ≤ Ch|η|1 ∀ η ∈ H1(Ω).(2.13)

It follows from (2.2) that

(Q̂hη)(xj) ≡
(η, χj)

(1, χj)
∀ j ∈ J =⇒ ‖Q̂hη‖0,∞ ≤ ‖η‖0,∞ ∀ η ∈ L∞(Ω).(2.14)

Similarly to (1.8), we introduce the operator Ĝh : Fh → V h such that

(∇Ĝhv,∇χ) = (v, χ)h ∀ χ ∈ Sh,(2.15)

where V h := {vh ∈ Sh : (vh, 1) = 0} and Fh := {v ∈ C(Ω) : (v, 1)h = 0}. Similarly
to (1.11), we have for all α > 0 that

(v, χ)h ≡ (∇Ĝhv,∇χ) ≤ |Ĝhv|1|χ|1 ≤ 1
2α |Ĝhv|21 + α

2 |χ|21 ∀ v ∈ Fh, χ ∈ Sh.(2.16)

We now follow the approach taken in [6]. To establish the existence of a solution
{Un,Wn}Nn=1 to (Ph,∆t), we must introduce some notation. In particular we define
sets V h(Un−1) in which we seek the update Un−Un−1. Given qh ∈ Kh with

∫
− qh :=

1
|Ω| (q

h, 1) ∈ (−1, 1), we define a set of passive nodes J0(q
h) ⊂ J by

j ∈ J0(q
h) ⇐⇒ (b(qh), χj) = 0 ⇐⇒ b(qh) ≡ 0 on supp(χj).(2.17)

All other nodes we call active nodes and they can be uniquely partitioned so that
J+(qh) := J \ J0(q

h) ≡ ⋃M
m=1 Im(qh), M ≥ 1, where Im(qh), m = 1 → M , are

mutually disjoint and maximally connected in the following sense: Im(qh) is said
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to be connected if for all j, k ∈ Im(qh), there exist {κℓ}Lℓ=1 ⊆ T h, not necessarily
distinct, such that

(a) xj ∈ κ1, xk ∈ κL,
(b) κℓ ∩ κℓ+1 6= ∅, ℓ = 1 → L− 1,
(c) b(qh) 6≡ 0 on κℓ, ℓ = 1 → L.

(2.18)

Im(qh) is said to be maximally connected if there is no other connected subset of
J+(qh), which contains Im(qh). Clearly J+(qh) is nonempty, since if (b(qh), χj) = 0
∀ j ∈ J then b(qh) ≡ 0, and since qh ∈ Sh it follows that qh ≡ 1 or −1 which
contradicts the assumption that

∫
− qh ∈ (−1, 1). We then set

V h(qh) := { vh ∈ Sh : vh(xj) = 0 ∀ j ∈ J0(q
h) and (vh,Ξm(qh))h = 0, m = 1 → M },

(2.19)

where for m = 1 → M

Ξm(qh) :=
∑

j∈Im(qh)

χj .(2.20)

The space V h(qh) consists of all those vh ∈ Sh which are orthogonal, with respect to
the (·, ·)h inner product, to χj , for all j ∈ J0(q

h), and to Ξm(qh), m = 1 → M . We
note that for all qh ∈ Kh, V h(qh) ⊆ V h and that |qh| < 1 =⇒ V h(qh) ≡ V h. Another
immediate consequence of the above definitions is that on any κ ∈ T h either

b(qh) ≡ 0 or Ξm⋆
(qh) ≡ 1 for some m⋆ and Ξm(qh) ≡ 0 for m 6= m⋆.(2.21)

For later reference we state that any vh ∈ Sh can be written as

vh ≡
∑

j∈J

vh(xj)χj ≡ vh +
∑

j∈J0(qh)

vh(xj)χj +
M∑

m=1

[
−
∫

Ωm(qh)

vh

]
Ξm(qh),(2.22a)

where Ωm(qh) := {∪κ∈T hκ : Ξm(qh)(x) = 1 ∀ x ∈ κ },

−
∫

Ωm(qh)

vh :=
(vh,Ξm(qh))h

(1,Ξm(qh))
, and

(2.22b)

vh :=
M∑

m=1

∑

j∈Im(qh)

[
vh(xj) −−

∫

Ωm(qh)

vh

]
χj ∈ V h(qh)

is the projection with respect to the (·, ·)h scalar product of vh onto V h(qh). We
remark that

∫
− Ωm(qh)v

h is not the standard mean value on the set Ωm(qh).

In order to express Wn in terms of Un and Un−1 we introduce for all qh ∈ Kh

with
∫
− qh ∈ (−1, 1) the discrete anisotropic Green’s operator Ĝh

qh : V h(qh) → V h(qh)
such that

(b(qh)∇Ĝh
qhv

h,∇χ) = (vh, χ)h ∀ χ ∈ Sh.(2.23)

To show the well posedness of Ĝh
qh , we first note that choosing χ ≡ χj , j ∈ J0(q

h),

in (2.23) leads to both sides vanishing on noting (2.17) and (2.19). Similarly, choos-
ing χ ≡ Ξm(qh), m = 1 → M , in (2.23) leads to both sides vanishing on noting
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(2.21) and (2.19). Therefore for well posedness, it remains to prove uniqueness as
V h(qh) has finite dimension. If there exist two solutions Zi ∈ V h(qh), i = 1, 2, with
(b(qh)∇Zi,∇χ) = (vh, χ)h for all χ ∈ Sh, then Z := Z1 − Z2 ∈ V h(qh) satisfies, on
noting (2.21),

bmin(qh)
M∑

m=1

∫

Ωm(qh)

|∇Z|2 dx ≤
M∑

m=1

∫

Ωm(qh)

b(qh)|∇Z|2 dx ≡
∫

Ω

b(qh)|∇Z|2 dx = 0,

(2.24a)

where Ω(qh) :=
⋃M

m=1 Ωm(qh) and

bmin(qh) := min
κ⊂Ω(qh)

1

|κ|

∫

κ

b(qh) dx.(2.24b)

Hence it follows that Z is constant on each Ωm(qh). However as Z ∈ V h(qh), it follows
that Z ≡ 0. Thus Ĝh

qh is well posed.

For later purposes we note from (2.23) and Young’s inequality that, similarly to
(2.16), for any α > 0,

|v̂h|2h ≤ 1
2α |b(qh)∇Ĝh

qh v̂
h|20 + α

2 |v̂h|21 ∀ v̂h ∈ V h(qh).(2.25)

Theorem 2.1. Let Ω and T h be such that assumption (A) holds and let U0 ∈ Kh

with
∫
− U0 ∈ (−1, 1). In addition let b and Ψ fulfill the assumptions stated above. Then

for all ∆t > 0 there exists a solution {Un,Wn}Nn=1 to (Ph,∆t).
If θ2

cbmax∆t < 4γ, where bmax ≥ maxn=1→N bn−1
max and bn−1

max := ‖b(Un−1)‖0,∞,
then {Un}Nn=1 is unique. Furthermore, the following stability bounds hold:

max
n=1→N

‖Un‖2
1 + (∆t)2

N∑

n=1

|Un−Un−1

∆t |21 + ∆t
N∑

n=1

|[b(Un−1)]
1
2∇Wn|20

+ ∆t
N∑

n=1

[bn−1
max ]−1|Ĝh[U

n−Un−1

∆t ]|21 ≤ C
[
|U0|21 + 1

]
.(2.26)

In addition Wn is unique on Ωm(Un−1) if |Un(xj)| < 1 for some j ∈ Im(Un−1),
m = 1 → M , n = 1 → N .

Proof. It follows from (2.3a) and (2.23) that for n ≥ 1, given Un−1 ∈ Kh, we seek
Un ∈ Kh(Un−1), where

Kh(Un−1) := {χ ∈ Kh : χ− Un−1 ∈ V h(Un−1) }.(2.27)

In addition a solution Wn in (2.3a), (2.3b) can be expressed in terms of Un as (cf.
(2.23) and (2.22a,b))

Wn ≡ −Ĝh
Un−1 [U

n−Un−1

∆t ] +
∑

j∈J0(Un−1)

µn
j χj +

M∑

m=1

λn
mΞm(Un−1),(2.28)

where {µn
j }j∈J0(Un−1) and {λn

m}Mm=1 are constants. Hence (Ph,∆t) can be restated as

the following: For n ≥ 1, find Un ∈ Kh(Un−1) and constant Lagrange multipliers
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{µn
j }j∈J0(Un−1), {λn

m}Mm=1 such that

γ(∇Un,∇(χ− Un)) +
(
Ĝh
Un−1 [U

n−Un−1

∆t ] + ψ′
1(U

n) − θcU
n, χ− Un

)h

≥




∑

j∈J0(Un−1)

µn
j χj +

M∑

m=1

λn
mΞm(Un−1) − ψ′

2(U
n−1), χ− Un




h

∀ χ ∈ Kh.(2.29)

It follows from (2.29), (2.27), and (2.19) that Un ∈ Kh(Un−1) is such that

γ(∇Un,∇(v̂h − Un)) + (Ĝh
Un−1 [U

n−Un−1

∆t ] + ψ′
1(U

n) − θcU
n, v̂h − Un)h

≥ −(ψ′
2(U

n−1), v̂h − Un)h ∀ v̂h ∈ Kh(Un−1).(2.30)

We note that (2.30) is the Euler–Lagrange variational inequality of the minimization
problem

min
v̂h∈Kh(Un−1)

Eh(v̂h) :=
{
γ|v̂h|21 + 1

∆t |[b(Un−1)]
1
2∇Ĝh

Un−1(v̂h − Un−1)|20

+(2ψ1(v̂
h) − θc(v̂

h)2 + 2ψ′
2(U

n−1)v̂h, 1)h
}
.

As we minimize Eh(·) on the compact set Kh(Un−1), we have existence of a solution to
(2.30). Existence of the Lagrange multipliers {µn

j }j∈J0(Un−1) and {λn
m}Mm=1, for fixed

n, follows from standard optimization theory; e.g., see [15]. Therefore, on noting
(2.28), we have existence of a solution {Un,Wn}Nn=1 to (Ph,∆t).

For fixed n ≥ 1, if (2.29) has two solutions {Un,i, {µn,i
j }j∈J0(Un−1), {λn,i

m }Mm=1 },
i = 1, 2, then it follows from (2.30), the convexity of ψ1(·), and (2.25) that U

n
:=

Un,1 − Un,2 ∈ V h(Un−1) satisfies

γ|Un|21 + 1
∆t |[b(Un−1)]

1
2∇Ĝh

Un−1U
n|20

≤ γ|Un|21 + 1
∆t |[b(Un−1)]

1
2∇Ĝh

Un−1U
n|20 + (ψ′

1(U
n,1) − ψ′

1(U
n,2), U

n
)

≤ θc|U
n|2h ≤ 1

∆t |[b(Un−1)]
1
2∇Ĝh

Un−1U
n|20 +

θ2
cb

n−1
max∆t
4 |Un|21.

Therefore the uniqueness of Un follows from (1.9) and
∫
− Un =

∫
− U0 under the stated

restriction on ∆t. If |Un(xj)| < 1 for some j ∈ Im(Un−1), then (1 − (Un(xj))
2)

Ξm(Un−1(xj)) > 0 and choosing χ ≡ Un ± δ πh[(1 − (Un)2) Ξm(Un−1)] 6≡ 0 in (2.29)
for δ > 0 sufficiently small yields uniqueness of the Lagrange multiplier λn

m. Hence
the desired uniqueness result on Wn follows from noting (2.28).

We now prove the stability bound (2.26). For fixed n ≥ 1 choosing χ ≡ Wn in
(2.3a), χ ≡ Un−1 in (2.3b), and combining yields that

γ
2 |Un|21 + γ

2 |Un − Un−1|21 − γ
2 |Un−1|21 + (Ψ(Un), 1)h − (Ψ(Un−1), 1)h

− θc
2 |Un − Un−1|2h + ∆t|[b(Un−1)]

1
2∇Wn|20

≤ γ(∇Un,∇(Un − Un−1)) + (ψ′
1(U

n) + ψ′
2(U

n−1), Un − Un−1)h

+∆t|[b(Un−1)]
1
2∇Wn|20 − θc(U

n, Un − Un−1)h ≤ 0,(2.31)

where we have noted the identity

2s(s− r) = s2 − r2 + (s− r)2 ∀ r, s ∈ R,(2.32)
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and the convexity and concavity of ψ1 and ψ2, respectively. Choosing χ ≡ ∆t(Un −
Un−1) in (2.3a) and applying a Young’s inequality, similarly to (2.25), with α = 3γ

2θc
and noting the stated restriction on ∆t, it follows from (2.31) that

γ
2 |Un|21 + γ

8 |Un − Un−1|21 − γ
2 |Un−1|21

+(Ψ(Un), 1)h − (Ψ(Un−1), 1)h + 2
3∆t|[b(Un−1)]

1
2∇Wn|20 ≤ 0.(2.33)

Summing from n = 1 → m, for m = 1 → N , and noting the properties of ψi

(i = 1, 2), (1.9), and
∫
− Un =

∫
− U0 yields the first three bounds in (2.26). Choosing

χ ≡ Ĝh(U
n−Un−1

∆t ) in (2.3a) and noting (2.15) yields for n ≥ 1 that

|Ĝh[U
n−Un−1

∆t ]|21 = (U
n−Un−1

∆t , Ĝh[U
n−Un−1

∆t ])h = −(b(Un−1)∇Wn,∇Ĝh[U
n−Un−1

∆t ])

≤ |[b(Un−1)]∇Wn|20 ≤ bn−1
max |[b(Un−1)]

1
2∇Wn|20.(2.34)

Summing (2.34) from n = 1 → N and noting the third bound in (2.26) yields the
desired fourth bound in (2.26).

Remark. (i) Given a convex function ψ1 ∈ C([−, 1, 1]), a concave function ψ ∈
C([−1, 1]) and α ∈ R

+, the free energy Ψ(s) := ψ1(s)+ψ(s)+ α
2 (1−s2) can be written

in the form (1.5) with either (a) ψ2(·) ≡ ψ(·) and θc = α or (b) ψ2(·) ≡ ψ(·)+ α
2 (1−s2)

and θc = 0. We see from Theorem 2.1 that a time step restriction is required for the
well posedness of (Ph,∆t) in case (a) but not in case (b).

(ii) As can be seen from (2.33) the finite element approximation has the property
that γ

2 |U |21 + (Ψ(U), 1)h is a Lyapunov function for the discrete evolution.
Let

U(t) := t−tn−1

∆t Un + tn−t
∆t Un−1, t ∈ [tn−1, tn], n ≥ 1,(2.35a)

and

U+(t) := Un, U−(t) := Un−1, t ∈ (tn−1, tn], n ≥ 1.(2.35b)

We note for future reference that

U − U± = (t− t±n )∂U∂t , t ∈ (tn−1, tn), n ≥ 1,(2.36)

where t+n := tn and t−n := tn−1. Using the above notation and introducing analogous
notation for W , (2.3a,b) can be restated as the following.

Find {U, W} ∈ H1(0, T ;Kh) × L2(0, T ;Sh) such that

∫ T

0

[ (
∂U
∂t , χ

)h
+
(
b(U−)∇W+,∇χ

) ]
dt = 0 ∀ χ ∈ L2(0, T ;Sh),(2.37a)

∫ T

0

[
γ(∇U+,∇(χ− U+)) + (ψ′

1(U
+) + ψ′

2(U
−) − θcU

+, χ− U+)h
]

dt

≥
∫ T

0

(W+, χ− U+)h dt ∀ χ ∈ L2(0, T ;Kh).(2.37b)

Theorem 2.2. Let d = 1 and u0 ∈ K with
∫
− u0 ∈ (−1, 1). Let {T h, U0,∆t}h>0

be such that
(i) U0 ∈ Kh and U0 → u0 in H1(Ω) as h → 0,
(ii) Ω and {T h}h>0 fulfill assumption (A),
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(iii) ∆t → 0 as h → 0.
Then there exists a subsequence of {U,W}h and a function u ∈ L∞(0, T ;K) ∩

H1(0, T ; (H1(Ω))′) ∩ C
1
2
, 1
8

x,t (ΩT ) and a w ∈ L2
loc({|u| < 1}) with ∂w

∂x ∈ L2
loc({|u| < 1})

such that as h → 0,

U, U± → u uniformly on ΩT ,(2.38)

U, U± → u weakly in L2(0, T ;H1(Ω)),(2.39)

W+ → w, ∂W+

∂x → ∂w
∂x weakly in L2

loc({|u| < 1}),(2.40)

where {|u| < 1} := {(x, t) ∈ ΩT : −1 < u(x, t) < 1 }.
Furthermore, u and w fulfill u(·, 0) = u0(·) and

∫ T

0

〈∂u∂t , η〉dt +

∫

{|u|<1}
b(u)∂w∂x

∂η
∂x dxdt = 0 ∀ η ∈ L2(0, T ;H1(Ω)),(2.41a)

w = −γ ∂2u
∂x2 + Ψ′(u) on the set {|u| < 1}.(2.41b)

Proof. Without loss of generality we assume that θ2
c‖b‖0,∞∆t < 4γ and that h is

sufficiently small. We note that the assumption (i) implies that
∫
− U0 ∈ (−1, 1) for

h sufficiently small. Hence the definition (2.35a,b), the first three bounds in (2.26),
(2.10), and (1.9) together with the fact that V h(qh) ⊆ V h imply

‖U‖2
L∞(0,T ;H1(Ω)) + ∆t ‖U‖2

H1(0,T ;H1(Ω)) +
∥∥∥[b(U−)]

1
2
∂W+

∂x

∥∥∥
2

L2(ΩT )
≤ C.(2.42)

Furthermore, we deduce from (2.36) and (2.42) that

‖U − U±‖2
L2(0,T ;H1(Ω)) ≤ (∆t)2‖∂U

∂t ‖2
L2(0,T ;H1(Ω)) ≤ C ∆t.(2.43)

In the next step we show that the discrete solutions U are uniformly Hölder
continuous. The first bound in (2.42) gives via a standard imbedding result

|U(y2, t) − U(y1, t)| ≤ C |y2 − y1|
1
2 ∀ y1, y2 ∈ Ω, ∀ t ≥ 0.(2.44)

In addition it follows from (1.7), (2.8), (2.16), (2.42), and (2.26) that

‖U(·, tb) − U(·, ta)‖0,∞ ≤ C ‖U(·, tb) − U(·, ta)‖
1
2

0 ‖U(·, tb) − U(·, ta)‖
1
2

1

≤ C |Ĝh (U(·, tb) − U(·, ta)) |
1
4

1 ‖U(·, tb) − U(·, ta)‖
3
4

1

≤ C

∣∣∣∣ Ĝh

[ ∫ tb

ta

∂U
∂t (·, t) dt

] ∣∣∣∣

1
4

1

(
2 ‖U‖L∞(0,T ;H1(Ω))

) 3
4

≤ C

∣∣∣∣
∫ tb

ta

Ĝh ∂U
∂t (·, t) dt

∣∣∣∣

1
4

1

≤ C(tb − ta)
1
8

(∫ tb

ta

∣∣∣Ĝh ∂U
∂t

∣∣∣
2

1
dt

) 1
8

≤ C(tb − ta)
1
8 ∀ tb ≥ ta ≥ 0.(2.45)

An immediate consequence of (2.45) is that

‖U − U±‖L∞(ΩT ) ≤ C(∆t)
1
8 .(2.46)

Now (2.42), (2.44), and (2.45) imply that the C
1
2
, 1
8

x,t (ΩT ) norm of U is bounded inde-
pendently of h, ∆t, and T . Hence, under the stated assumptions on ∆t, every sequence
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{U}h is uniformly bounded and equicontinuous on ΩT for any T > 0. Therefore by
the Arzelà–Ascoli theorem there exists a subsequence such that

U → u ∈ C
1
2
, 1
8

x,t (ΩT ) uniformly on ΩT as h → 0(2.47)

and |u| ≤ 1. Moreover (2.42) implies that this same subsequence is such that

U → u weakly in L2(0, T ;H1(Ω)) as h → 0.(2.48)

For any η ∈ H1(0, T ;H1(Ω)) we choose χ ≡ πhη in (2.37a) and now analyze the
subsequent terms. First, we have that

∫ T

0

(
∂U
∂t , π

hη
)h

dt

= −
∫ T

0

(
U, ∂(πhη)

∂t

)h

dt +
(
U(·, T ), πhη(·, T )

)h −
(
U(·, 0), πhη(·, 0)

)h
.(2.49)

Next we conclude using the regularity of η, (2.12), and (2.47) that

∫ T

0

(
U, ∂(πhη)

∂t

)h

dt →
∫ T

0

(
u, ∂η

∂t

)
dt as h → 0 for all η as above.(2.50)

In view of (2.42) we deduce that

∣∣∣∣
∫

ΩT

b(U−)∂W
+

∂x
∂
∂x (I − πh)η dxdt

∣∣∣∣

≤ ‖[b(U−)]
1
2 ‖L∞(ΩT ) ‖[b(U−)]

1
2
∂W+

∂x ‖L2(ΩT ) ‖(I − πh)η‖L2(0,T ;H1(Ω))

≤ C‖(I − πh)η‖L2(0,T ;H1(Ω)).(2.51)

We now show the compactness of {W+}h on compact subsets of {|u| < 1}. For any
δ > 0, we set

D+
δ := { (x, t) ∈ ΩT : |u(x, t)| < 1 − δ } and D+

δ (t) := {x ∈ Ω : |u(x, t)| < 1 − δ }.
(2.52)

For a fixed δ > 0, it follows from (2.47) and (2.46) that there exists an h0(δ) ∈ R
+

such that for all h ≤ h0(δ)

1 − 2δ ≤ |U±(x, t)| ≤ 1 ∀ (x, t) 6∈ D+
δ

and |U±(x, t)| ≤ 1 − 1
8δ ∀ (x, t) ∈ D+

δ
4

.(2.53)

On noting (2.53) and (2.42) we have that

∣∣∣∣∣

∫

ΩT \D+

δ

b(U−)∂W
+

∂x
∂η
∂x dxdt

∣∣∣∣∣

≤ ‖[b(U−)]
1
2 ‖L∞(ΩT \D+

δ
) ‖[b(U−)]

1
2
∂W+

∂x ‖L2(ΩT ) ‖η‖L2(0,T ;H1(Ω))

≤ C[Bmax(2δ)]
1
2 ‖η‖L2(0,T ;H1(Ω)) ∀ η ∈ L2(0, T ;H1(Ω)), ∀ h ≤ h0(δ),

(2.54)
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and

Bmin( δ8 )

∫

D+

δ
2

|∂W+

∂x |2 dxdt ≤
∫

D+

δ
2

b(U−)|∂W+

∂x |2 dxdt ≤ C ∀ h ≤ h0(δ),

(2.55)
where

Bmax(δ) := max
1−δ≤|z|≤1

b(z) and Bmin(δ) := min
|z|≤1−δ

b(z).

In what follows we want to relate W+ to U+ and U− on the sets D+
δ . From (2.53)

we have that for all h ≤ h0(δ) and for almost every (a.e.) t ∈ (0, T )

χ(·, t) ≡ U+(·, t) ± 1
8δ

ηh(·, t)
‖ηh(·, t)‖0,∞

∈ Kh

∀ ηh ∈ L2(0, T ;Sh) with supp(ηh) ⊂ D+
δ
4

.(2.56)

Choosing such χ in (2.37b) yields for all h ≤ h0(δ) that

∫ T

0

[
γ(∂U

+

∂x , ∂ηh

∂x ) + (ψ′
1(U

+) + ψ′
2(U

−) − θcU
+, ηh)h

]
dt =

∫ T

0

(W+, ηh)h dt

∀ ηh ∈ L2(0, T ;Sh) with supp(ηh) ⊂ D+
δ
4

.(2.57)

Next we derive a bound of W+ locally on the set {|u| < 1}. For any t ∈ [0, T ], we
choose a cut-off function θδ(·, t) ∈ C∞

0 (D+
δ
2

(t)) such that

θδ(·, t) ≡ 1 on D+
δ (t), 0 ≤ θδ(·, t) ≤ 1, | ∂

∂xθδ(·, t)| ≤ Cδ−2.(2.58)

This last property can be achieved since for y1, y2 ∈ Ω such that |u(y1, t)| ≥ 1 − 1
2δ

and |u(y2, t)| ≤ 1− δ we have from (2.47) that 1
2δ ≤ |u(y2, t)−u(y1, t)| ≤ C|y2 −y1|

1
2 .

It follows from (2.14) and (2.58) that there exists an h1(δ) ≤ h0(δ) such that

supp(Q̂h(θ2
δ W

+)) ⊂ D+
δ
4

∀ h ≤ h1(δ).(2.59)

It follows from (2.2), (2.59), (2.57), (2.13), the continuity properties of ψi (i = 1, 2),
|U | ≤ 1, and (2.58) that for all h ≤ h1(δ)

∫

ΩT

θ2
δ (W+)2 dxdt =

∫ T

0

(W+, Q̂h(θ2
δ W

+))h dt

=

∫ T

0

[
γ(∂U

+

∂x , ∂
∂x (Q̂h(θ2

δ W
+))) + (ψ′

1(U
+) + ψ′

2(U
−) − θcU

+, Q̂h(θ2
δ W

+))h
]

dt

≤ C‖U+‖L2(0,T ;H1(Ω)) ‖ ∂
∂x (θ2

δ W
+)‖L2(ΩT ) + C‖θδW+‖L2(ΩT )

≤ C(δ−1) (‖U+‖L2(0,T ;H1(Ω)) + 1)

[
‖∂W+

∂x ‖L2(D+

δ
2

) + ‖θδ W+‖L2(ΩT )

]
.

(2.60)

Applying Young’s inequality then gives

∫

ΩT

θ2
δ (W+)2 dxdt ≤ C(δ−1)

[
1 + ‖U+‖2

L2(0,T ;H1(Ω)) + ‖∂W+

∂x ‖2
L2(D+

δ
2

)

]
.(2.61)
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Therefore combining (2.55), (2.61), and (2.42) we have that

‖W+‖L2(0,T ;H1(D+

δ
(t))) ≤ C(δ−1)[Bmin( δ8 )]−1 ≤ C(δ−1) ∀ h ≤ h1(δ).(2.62)

The last estimate implies the existence of a subsequence and a w∈L2(0, T ;H1(D+
δ (t)))

such that

W+ → w, ∂W+

∂x → ∂w
∂x weakly in L2(D+

δ ) as h → 0.(2.63)

Next noting the uniform continuity of b, (2.55), and (2.38) we conclude that
∣∣∣∣∣

∫

D+

δ

[b(U−) − b(u)]∂W
+

∂x
∂η
∂x dxdt

∣∣∣∣∣

≤ ‖b(u) − b(U−)‖L∞(ΩT ) ‖∂W+

∂x ‖L2(D+

δ
) ‖η‖L2(0,T ;H1(Ω))

≤ C

[Bmin( δ8 )]
1
2

‖b(u) − b(U−)‖L∞(ΩT ) ‖η‖L2(0,T ;H1(Ω))(2.64)

will converge to 0 as h → 0.
Combining (2.51), (2.64), and (2.63) and noting (2.11), (2.47), and (2.46) yields

that
∫

D+

δ

b(U−)∂W
+

∂x
∂
∂x (πhη) dxdt →

∫

D+

δ

b(u)∂w∂x
∂η
∂x dxdt as h → 0

∀ η ∈ L2(0, T ;H1(Ω)).(2.65)

Moreover, by (2.11), (2.48), and (2.43) we have that

∫ T

0

(∂U
+

∂x , ∂
∂x (πhη)) dt →

∫ T

0

(∂u∂x ,
∂η
∂x ) dt as h → 0 ∀ η ∈ L2(0, T ;H1(Ω)).(2.66)

Using (2.1), (2.10), and (2.62) we deduce that
∣∣∣∣∣

∫ T

0

[
(W+, πhη)h − (W+, η)

]
dt

∣∣∣∣∣ ≡
∣∣∣∣
∫

ΩT

(I − πh)(W+ η) dxdt

∣∣∣∣

≤ Ch

∫

ΩT

| ∂
∂x (W+ η)|dxdt

≤ Ch ‖W+‖L2(0,T ;H1(D+

δ
(t))) ‖η‖L2(0,T ;H1(Ω))

≤ C(δ−1)h ‖η‖L2(0,T ;H1(Ω))

∀ η ∈ L2(0, T ;H1(Ω)) with supp(η) ⊂ D+
δ .(2.67)

Noting that ψ1 ∈ C1([−1, 1]) and using (2.1), (2.10), (2.38), (2.12), and (2.6) yields
that

∣∣∣∣∣

∫ T

0

[
(ψ′

1(U
+), πhη)h − (ψ′

1(u), η)
]

dt

∣∣∣∣∣

≤
∫ T

0

∣∣(ψ′
1(U

+) − ψ′
1(u), πhη)h

∣∣ dt +

∫ T

0

∣∣(ψ′
1(u), πhη)h − (ψ′

1(u), η)
∣∣ dt

→ 0 as h → 0 ∀ η ∈ L2(0, T ;H1(Ω)).(2.68)
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Using a similar argument for the remaining terms and combining (2.67), (2.63),
and (2.68) implies that

∫ T

0

(W+ − ψ′
1(U

+) − ψ′
2(U

−) + θcU
+, πhη)h dt →

∫ T

0

(w − Ψ′(u), η) dt

as h → 0 ∀ η ∈ L2(0, T ;H1(Ω)) with supp(η) ⊂ D+
δ .(2.69)

Combining (2.66) and (2.69) and noting (2.57) yields that

∫

D+

δ

[
γ ∂u

∂x
∂η
∂x + (Ψ′(u) − w) η

]
dxdt = 0

∀ η ∈ L2(0, T ;H1(Ω)) with supp(η) ⊂ D+
δ .(2.70)

This uniquely defines w in terms of u on the set D+
δ . Repeating (2.65) for all δ > 0

and noting (2.54), Bmax(δ) → 0 as δ → 0 and (2.11) yield that

∫

ΩT

b(U−)∂W
+

∂x
∂
∂x (πhη) dxdt →

∫

D+

0

b(u)∂w∂x
∂η
∂x dxdt as h → 0

∀ η ∈ L2(0, T ;H1(Ω)).(2.71)

Combining (2.37a), (2.49), (2.50), (2.71) and arguing similarly as in (2.68) by using
(2.38), (2.12), (2.6), and assumption (i) we conclude that for all η ∈ H1(0, T ;H1(Ω))

(u(·, T ), η(·, T )) − (u0(·), η(·, 0)) −
∫ T

0

(u, ∂η
∂t ) dt +

∫

D+

0

b(u)∂w∂x
∂η
∂x dxdt = 0.(2.72)

The fact that
{
b(U−)∂W

+

∂x

}

h>0
is uniformly bounded in L2(ΩT ) implies that

b(u)∂w∂x ∈ L2(D+
0 ) and hence we conclude from (2.72) that u ∈ H1(0, T ; (H1(Ω))′).

Therefore combining the above results, repeating (2.70) for all δ > 0 yields that u ∈
L∞(0, T ;H1(Ω)) ∩ H1(0, T ; (H1(Ω))′) ∩ C

1
2
, 1
8

x,t (ΩT ) and w ∈ L2
loc(D

+
0 ), with ∂w

∂x ∈
L2
loc(D

+
0 ), are such that u(·, 0) = u0(·) and

∫ T

0

〈
∂u
∂t , η

〉
dt +

∫

D+

0

b(u)∂w∂x
∂η
∂x dxdt = 0 ∀ η ∈ L2(0, T ;H1(Ω)),(2.73a)

∫

D+

0

[
γ ∂u

∂x
∂η
∂x + (Ψ′(u) − w) η

]
dxdt = 0

∀ η ∈ L2(0, T ;H1(Ω)) with supp(η) ⊂ D+
0 .(2.73b)

Hence we have established the desired result (2.41a,b).
Remark. Theorem 2.2 also establishes existence of a solution to problem (P) and

yields the result of [27], where existence is proved in one space dimension, (see also
[19]). In addition we note that we assumed only continuity of the mobility b. All other
existence results for degenerate parabolic equations of fourth order in the literature
require at least Hölder regularity for b.

3. Solution of the discrete variational inequality. We now consider an
algorithm for solving the variational inequality at each time level in (Ph,∆t). This
is based on the general splitting algorithm of [25]; see also [16] and [2] where this
algorithm has been applied to solve (Ph,∆t) with constant mobility.
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For n fixed, multiplying (2.3b) by µ > 0, a “relaxation” parameter, adding
(Un, χ − Un)h to both sides, and rearranging on noting (2.3a) and (2.29), it follows
that {Un,Wn} ∈ Kh × Sh satisfy

(Un + µψ′
1(U

n), χ− Un)
h ≥ (Zn, χ− Un)h ∀ χ ∈ Kh,(3.1a)

(
Un − Un−1

∆t
, χ

)h

+ bn−1(∇Wn,∇χ) = ([bn−1 − b(Un−1)]∇Wn,∇χ) ∀ χ ∈ Sh,

(3.1b)

where Zn ∈ Sh is such that

(Zn, χ)h := (Un, χ)h − µ
[
γ(∇Un,∇χ) + (ψ′

2(U
n−1) − θcU

n −Wn, χ)h
]

∀ χ ∈ Sh

(3.1c)

and bn−1 is chosen such that bn−1 ∈ [bn−1
max , bmax] with bn−1

max and bmax as defined in
Theorem 2.1. We introduce Xn ∈ Sh such that

(Xn, χ)h := (Un, χ)h + µ
[
γ(∇Un,∇χ) + (ψ′

2(U
n−1) − θcU

n −Wn, χ)h
]

∀ χ ∈ Sh

(3.1d)

and note that Xn = 2Un − Zn. We use this as a basis for constructing our iterative
procedure: For n ≥ 1 set {Un,0,Wn,0} ≡ {Un−1,Wn−1} ∈ Kh × Sh, where W 0 ∈ Sh

is arbitrary if n = 1.
For k ≥ 0 we define Zn,k ∈ Sh such that for all χ ∈ Sh

(Zn,k, χ)h = (Un,k, χ)h−µ
[
γ(∇Un,k,∇χ) + (ψ′

2(U
n−1) − θcU

n,k −Wn,k, χ)h
]
.

(3.2a)

Then find Un,k+ 1
2 ∈ Kh such that

Un,k+ 1
2 (xj) = Un−1(xj) if j ∈ J0(U

n−1),

(Un,k+ 1
2 (xj) + µψ′

1(U
n,k+ 1

2 (xj)) − Zn,k(xj))(r − Un,k+ 1
2 (xj)) ≥ 0

∀ r ∈ [−1, 1] if j ∈ J+(Un−1),(3.2b)

and find {Un,k+1,Wn,k+1} ∈ Sh × Sh such that

(
Un,k+1 − Un−1

∆t
, χ

)h

+ bn−1(∇Wn,k+1,∇χ) = ([bn−1 − b(Un−1)]∇Wn,k,∇χ)

∀ χ ∈ Sh,(3.2c)

(Un,k+1, χ)h + µ
[
γ(∇Un,k+1,∇χ) + (ψ′

2(U
n−1) − θcU

n,k+1 −Wn,k+1, χ)h
]

= (Xn,k+1, χ)h ∀ χ ∈ Sh,(3.2d)

where Xn,k+1 := 2Un,k+ 1
2 − Zn,k. For j ∈ J+(Un−1) existence and uniqueness

of Un,k+ 1
2 (xj) in the variational inequality (3.2b) follows from the monotonicity of

ψ′
1(·).

It remains to show that (3.2c) and (3.2d) possess a unique solution {Un,k+1,
Wn,k+1} ∈ Sh × Sh. Let An,k ∈ V h be such that

(An,k, χ)h = (b(Un−1)∇Wn,k,∇χ) ∀ χ ∈ Sh.(3.3)
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It then follows from (3.2c), (2.15), and (3.2d) with χ ≡ 1 that

Wn,k+1 = (I −
∫
− )Wn,k − [bn−1]−1Ĝh(U

n,k+1−Un−1

∆t + An,k)

+
∫
− ( 1

µ (Un,k+1 −Xn,k+1) + πhψ′
2(U

n−1) − θcU
n,k+1).(3.4)

Therefore (3.2c,d) may be written equivalently as follows: find Un,k+1 ∈ Sh
m := {vh ∈

Sh :
∫
− vh =

∫
− U0} such that

(Un,k+1, (I −
∫
− )χ)h

+µ
[
γ(∇Un,k+1,∇χ) +

(
[bn−1]−1Ĝh

[
Un,k+1−Un−1

∆t

]
− θc(I −

∫
− )Un,k+1, χ

)h]

= (Xn,k+1 + µ(Wn,k − ψ′
2(U

n−1) − [bn−1]−1ĜhAn,k), (I −
∫
− )χ)h ∀ χ ∈ Sh.

(3.5)

Existence of Un,k+1 ∈ Sh
m satisfying (3.5) follows, noting (2.16) and the time step

restriction θ2
cb

n−1∆t < 4γ, since this is the Euler–Lagrange equation of the minimiza-
tion problem

min
χ∈Sh

m

{
|χ|2h + µ

[
γ|χ|21 + 1

bn−1∆t |∇Ĝh(χ− Un−1)|20 − θc|χ|2h
]

−2(Xn,k+1 + µ(Wn,k − ψ′
2(U

n−1) − [bn−1]−1ĜhAn,k), χ)h
}
.

Uniqueness of Un,k+1 follows in a similar way to that of Un. Finally, Wn,k+1 is
uniquely defined by (3.4). Hence the iterative procedure (3.2a–d) is well defined.

Theorem 3.1. Let 3θ2
cb

n−1∆t < 4γ. Then for all µ ∈ R
+ and {Un,0,Wn,0} ∈

Sh × Sh the sequence {Un,k,Wn,k}k≥0 generated by the algorithm (3.2a–d) satisfies

Un,k → Un and

∫

Ω

b(Un−1)|∇(Wn,k+1 −Wn)|2 dx → 0 as k → ∞.(3.6)

In addition, if ψ′
1(·) is strictly monotone then Un,k+ 1

2 → Un as k → ∞.
Proof. It follows from (3.1c), (3.1d), (3.2a), (3.2d), and by the definition of Xn,k+1

that for k ≥ 0

Un = 1
2 (Xn +Zn), Un,k = 1

2 (Xn,k +Zn,k), Un,k+ 1
2 = 1

2 (Xn,k+1 +Zn,k).(3.7)

As Un,k+1, Un ∈ Sh
m, it follows from (3.2d), (3.1d), and (3.7) that

γ|Un,k+1 − Un|21 − θc|Un,k+1 − Un|2h − (Wn,k+1 −Wn, Un,k+1 − Un)h

= 1
4µ (Xn,k+1 −Xn − Zn,k+1 + Zn, Xn,k+1 −Xn + Zn,k+1 − Zn)h

= 1
4µ (|Xn,k+1 −Xn|2h − |Zn,k+1 − Zn|2h).(3.8)

Choosing χ ≡ Un,k+ 1
2 in (3.1a) and for j ∈ J+(Un−1) choosing χ ≡ Un(xj) in

(3.2b), multiplying by βj on recalling (2.1), and summing over j yields, on noting

that Un(xj) = Un,k+ 1
2 (xj) for j ∈ J0(U

n−1),

|Un,k+ 1
2 −Un|2h+µ(ψ′

1(U
n,k+ 1

2 )−ψ′
1(U

n), Un,k+ 1
2 −Un)h ≤ (Zn,k−Zn, Un,k+ 1

2 −Un)h.
(3.9)
Combining (3.9) and (3.7) yields that
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4µ(ψ′
1(U

n,k+ 1
2 )− ψ′

1(U
n), Un,k+ 1

2 −Un)h + |Xn,k+1 −Xn|2h ≤ |Zn,k −Zn|2h.(3.10)

Using (3.2c), (3.1b), and (2.32) it follows that

−(Wn,k+1 −Wn, Un,k+1 − Un)h

= −(Wn,k+1 −Wn, Un,k+1 − Un−1)h − (Wn,k+1 −Wn, Un−1 − Un)h

= ∆t|[b(Un−1)]
1
2∇(Wn,k+1 −Wn)|20

+∆t([bn−1 − b(Un−1)]∇(Wn,k+1 −Wn,k),∇(Wn,k+1 −Wn))

= ∆t|[b(Un−1)]
1
2∇(Wn,k+1 −Wn)|20 + ∆t

2

[
|[bn−1 − b(Un−1)]

1
2∇(Wn,k+1 −Wn)|20

−|[bn−1 − b(Un−1)]
1
2∇(Wn,k −Wn)|20 + |[bn−1 − b(Un−1)]

1
2∇(Wn,k+1 −Wn,k)|20

]
.

(3.11)

Similarly to (3.11) and using Young’s inequality we have that for any δ ∈ (0, 1)

θc|Un,k+1 − Un|2h = θc(U
n,k+1 − Un−1, Un,k+1 − Un)h + θc(U

n−1 − Un, Un,k+1 − Un)h

= −θc∆t(b(Un−1)∇(Wn,k+1 −Wn),∇(Un,k+1 − Un))

−θc∆t([bn−1 − b(Un−1)]∇(Wn,k+1 −Wn,k),∇(Un,k+1 − Un))

≤ θ2
cb

n−1∆t
4

(
2 + 1

1−δ

)
|Un,k+1 − Un|21 + ∆t

2 |[bn−1 − b(Un−1)]
1
2∇(Wn,k+1 −Wn,k)|20

+(1 − δ)∆t|[b(Un−1)]
1
2∇(Wn,k+1 −Wn)|20.

(3.12)

Combining (3.8), (3.10), (3.11), (3.12), and rearranging yields that
(
γ − θ2

cb
n−1∆t
4

(
2 + 1

1−δ

))
|Un,k+1 − Un|21

+ 1
4µ |Zn,k+1 − Zn|2h + ∆t

2 |[bn−1 − b(Un−1)]
1
2∇(Wn,k+1 −Wn)|20

+δ∆t|[b(Un−1)]
1
2∇(Wn,k+1 −Wn)|20 + (ψ′

1(U
n,k+ 1

2 ) − ψ′
1(U

n), Un,k+ 1
2 − Un)h

≤ 1
4µ |Zn,k − Zn|2h + ∆t

2 |[bn−1 − b(Un−1)]
1
2∇(Wn,k −Wn)|20.

(3.13)

Therefore noting the monotonicity of ψ′
1(·) and the restriction on ∆t we have that

for δ sufficiently small { 1
4µ |Zn,k −Zn|2h + ∆t

2 |[bn−1 − b(Un−1)]
1
2∇(Wn,k −Wn)|20}k≥0

is a decreasing sequence which is bounded below and so has a limit. Therefore the
desired results (3.6) follow from this and (3.13).

Remark. We see from (3.2a–d) and (3.5) that at each iteration one needs to solve
only (i) a fixed linear system with constant coefficients and (ii) a nonlinear equation
at each mesh point. On a uniform mesh (i) can be solved efficiently using a discrete
cosine transform; see [9, section 5], where a similar problem is solved.

4. Logarithmic free energy. In this section we modify our approximation
(Ph,∆t) and the results in the previous two sections to cope with the logarithmic
free energy, that is

ψ1(s) := θ
2

[
(1 + s) ln[1+s

2 ] + (1 − s) ln[1−s
2 ]

]
.(4.1)

Here we have the additional difficulty that Ψ′(·) (see (1.5)) is not uniformly bounded
on (−1, 1) with ψ′

1(±1) = ±∞.



THE CAHN–HILLIARD EQUATION WITH DEGENERATE MOBILITY 305

Our modified approximation is the following.

(P̃
h,∆t

) For n ≥ 1, find {Un,Wn} ∈ Sh × Sh such that

(
Un−Un−1

∆t , χ
)h

+
(
b(Un−1)∇Wn,∇χ

)
= 0 ∀ χ ∈ Sh,(4.2a)

γ(∇Un,∇χ) + (ψ′
1(U

n) − θcU
n, χ)h = (Wn − ψ′

2(U
n−1), χ)h ∀ χ ∈ Ṽ h(Un−1),

(4.2b)

where U0 ∈ Kh is an approximation of u0 and for qh ∈ Kh we define

Ṽ h(qh) :=
{
vh ∈ Sh : vh(xj) = 0 ∀ j ∈ J0(q

h)
}
.(4.3)

Clearly (4.2b) implies that |Un(xj)| < 1 for all j ∈ J+(Un−1). Moreover, we will show

that (P̃h,∆t) has the property that ‖U0‖0,∞ < 1 implies ‖Un‖0,∞ < 1 for all n ≥ 1.
We prove well posedness of this approximation via the regularization

ψ1,ε(s) :=





θ
2 (1 + s) ln

[
1+s
2

]
+ θ

4ε (1 − s)2 + θ
2 (1 − s) ln

[
ε
2

]
− θε

4 if s ≥ 1 − ε,
ψ1(s) if |s| ≤ 1 − ε,
θ
2 (1 − s) ln

[
1−s
2

]
+ θ

4ε (1 + s)2 + θ
2 (1 + s) ln

[
ε
2

]
− θε

4 if s ≤ −1 + ε.
(4.4)
Let us emphasize that we introduce ψ1,ε only to prove well posedness of problem

(P̃h,∆t). In practice we solve (P̃h,∆t) directly. We note that ψ1,ε(s) ≤ ψ1(s) for all
|s| ≤ 1 and define Ψ1,ε(s) := ψ1,ε(s)+

θc
2 (1−s2) for all s ∈ R. The monotone function

ψ′
1,ε(s) =





θ
2 (1 + ln(1 + s)) − θ

2ε (1 − s) − θ
2 ln ε if s ≥ 1 − ε,

ψ′
1(s) if |s| ≤ 1 − ε,

− θ
2 (1 + ln(1 − s)) + θ

2ε (1 + s) + θ
2 ln ε if s ≤ −1 + ε,

(4.5)

and the function Ψ′
1,ε satisfy the following properties:

• For all r, s ∈ R, on noting (2.32),

Ψ′
1,ε(s)(r − s) = ψ′

1,ε(s)(r − s) − θcs(r − s) ≤ ψ1,ε(r) − ψ1,ε(s) + θcs(s− r)

= Ψ1,ε(r) − Ψ1,ε(s) + θc
2 (r − s)2.(4.6)

• For ε ≤ 1 and for all r, s ∈ R,

(ψ′
1,ε(r) − ψ′

1,ε(s))
2 ≤ ‖ψ′′

1,ε‖0,∞(ψ′
1,ε(r) − ψ′

1,ε(s))(r − s)

≤ θ
ε (ψ′

1,ε(r) − ψ′
1,ε(s))(r − s).(4.7)

It is a simple matter to show that Ψ1,ε is bounded below for ε sufficiently small; e.g.,
if ε ≤ ε0 := θ/(8θc), then

Ψ1,ε(s) ≥ θ
8ε

(
[s− 1]2+ + [−1 − s]2+

)
− θc ≥ −θc ∀ s ∈ R,(4.8)

where [·]+ := max{·, 0}; see [4] for details. In addition we introduce the concave

preserving extension ψ̃2 ∈ C1(R) of ψ2 ∈ C1([−1, 1]),

ψ̃2(s) :=





ψ2(1) + (s− 1)ψ′
2(1) if s ≥ 1,

ψ2(s) if |s| ≤ 1,
ψ2(−1) + (s + 1)ψ′

2(−1) if s ≤ −1,
(4.9)
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and then define

Ψε(s) := Ψ1,ε(s) + ψ̃2(s) ∀ s ∈ R.(4.10)

It follows immediately from (4.8) and (4.9) that Ψε is bounded below; e.g., if ε ≤ ε0

then

Ψε(s) ≥ θ
16ε

(
[s− 1]2+ + [−1 − s]2+

)
− C ≥ −C ∀ s ∈ R.(4.11)

Finally, we need a further restriction on the mesh in order to prove well posedness
of (P̃h,∆t). We modify our assumption (A) to

(Ã) In addition to the assumption (A), we assume for all h > 0 that T h is an acute
partitioning; that is, for (i) d = 2, the angle of any triangle does not exceed
π
2 , and (ii) d = 3, the angle between any two faces of the same tetrahedron
does not exceed π

2 .
This acuteness assumption yields that

∫

κ

∇χi · ∇χj dx ≤ 0, i 6= j, ∀ κ ∈ T h.(4.12)

In addition it follows from (4.7) and (Ã) that for all ε ≤ 1 and for all κ ∈ T h

∫

κ

|∇πh[ψ′
1,ε(χ)]|2 dx ≤ ψ′′

1,ε(sup
x∈κ

|χ(x)|)
∫

κ

∇χ · ∇πh[ψ′
1,ε(χ)] dx

≤ θ
ε

∫

κ

∇χ · ∇πh[ψ′
1,ε(χ)] dx ∀ χ ∈ Sh;(4.13)

see, e.g., [14].

Theorem 4.1. Let Ω and T h be such that assumption (Ã) holds and let U0 ∈ Kh

with
∫
− U0 ∈ (−1, 1). Then for all ∆t > 0 such that θ2

cbmax∆t < 4γ, there exists a

solution {Un,Wn}Nn=1 to (P̃h,∆t). Moreover, {Un}Nn=1 is unique and the stability
bounds (2.26) hold. In addition Wn is unique on Ω(Un−1), n = 1 → N .

Proof. Given Un−1 ∈ Kh with |Un−1|1 ≤ C, we prove existence of {Un,Wn}
solving (4.2a–b) by introducing a regularized version, as follows.

Find {Un
ε ,W

n
ε } ∈ Sh × Sh such that

(
Un

ε −Un−1

∆t , χ
)h

+
(
b(Un−1)∇Wn

ε ,∇χ
)

= 0 ∀ χ ∈ Sh,(4.14a)

γ(∇Un
ε ,∇χ) + (Ψ′

1,ε(U
n
ε ), χ)h = (Wn

ε − ψ′
2(U

n−1), χ)h ∀ χ ∈ Ṽ h(Un−1).(4.14b)

Similarly to (2.28) we have that

Wn
ε ≡ −Ĝh

Un−1

[
Un

ε −Un−1

∆t

]
+

∑

j∈J0(Un−1)

µn
j,εχj +

M∑

m=1

λn
m,εΞm(Un−1).(4.15)

Existence of {Un
ε ,W

n
ε }, uniqueness of Un

ε , and uniqueness of Wn
ε on Ωm(Un−1),

m = 1 → M , follows as for {Un,Wn} in the proof of Theorem 2.1 under the stated
time step restriction. Similarly to (2.33), on noting the convexity of ψ1,ε, the concavity

of ψ̃2, and the assumptions on Un−1, we have that Un
ε − Un−1 ∈ Ṽ h(Un−1) is such

that

γ
2 |Un

ε |21 + γ
8 |Un

ε − Un−1|21 + (Ψε(U
n
ε ), 1)h + 2

3∆t|[b(Un−1)]
1
2∇Wn

ε |20
≤ (Ψε(U

n−1), 1)h + γ
2 |Un−1|21 ≤ C.(4.16)
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From (4.16) and (4.11) we deduce that

|[Un
ε − 1]+|2h + |[−Un

ε − 1]+|2h ≤ Cε.(4.17)

Hence it follows from (4.17), (2.8), and (2.4) that

‖[Un
ε − 1]+‖0,∞ + ‖[−Un

ε − 1]+‖0,∞ ≤ Ch− d
2 ε

1
2(4.18a)

and from (4.4) and (4.18a) that

‖ψ1,ε(U
n
ε )‖0,∞ ≤ max{ 1, ψ1,ε(‖Un

ε ‖0,∞) } ≤ C(h−1).(4.18b)

The next part of the proof is now concerned with establishing an ε independent
bound on |Ψ′

1,ε(U
n
ε )Ξm(Un−1)|h. Due to the logarithmic term in Ψ1 this then implies

that the ε → 0 limits of subsequences of Un
ε are less than one in magnitude on the

set J+(Un−1). Using a Poincaré type inequality on Ωm(Un−1) it follows similarly to
(2.24a) by noting (2.22b) and (4.16) that

|[(I −−
∫

Ωm(Un−1)
)Wn

ε ] Ξm(Un−1)|2h

≤ C(h−1)

∫

Ωm(Un−1)

|∇Wn
ε |2 dx

≤ C(h−1) [bmin(Un−1)]−1

∫

Ωm(Un−1)

b(Un−1)|∇Wn
ε |2 dx

≤ C(h−1) [bmin(Un−1)]−1(∆t)−1.(4.19)

We now bound −
∫

Ωm(Un−1)
Wn

ε . Choosing χ ≡ Ξm(Un−1) in (4.14b) yields that

(Wn
ε ,Ξm(Un−1))h = (Ψ′

1,ε(U
n
ε ),Ξm(Un−1))h + τε,m,(4.20)

where τε,m := γ(∇Un
ε ,∇[Ξm(Un−1)]) + (ψ′

2(U
n−1),Ξm(Un−1))h. It is convenient to

introduce the set Υm(Un−1) := supp{Ξm(Un−1)} \ Ωm(Un−1), and noting (4.16) we
have that

|(∇Un
ε ,∇[Ξm(Un−1)])| =

∣∣∣∣∣

∫

Υm(Un−1)

∇Un
ε · ∇[Ξm(Un−1)] dx

∣∣∣∣∣

≤ |Υm(Un−1)| 12 ‖∇[Ξm(Un−1)]‖0,∞ |Un
ε |1 ≤ Ch−1.(4.21)

Noting that Un−1 ∈ Kh, ψ′
2 ∈ C([−1, 1]), and (4.21), it follows that

|τε,m| ≤ C[1 + h−1].(4.22)

Similarly to (4.21), we have on noting (2.4), (1.9), and (4.16) that

(∇Un
ε ,∇[πh([(I −−

∫
Ωm(Un−1)

)Un
ε ] Ξm(Un−1))])

=

∫

Ωm(Un−1)

|∇Un
ε |2 dx +

∫

Υm(Un−1)

∇Un
ε · ∇[πh([(I −−

∫
Ωm(Un−1)

)Un
ε ] Ξm(Un−1))] dx

≤ |Un
ε |21 + C|Un

ε |1|Υm(Un−1)| 12 ‖∇[Ξm(Un−1)]‖0,∞ ‖Un
ε ‖0,∞

≤ C[1 + h−1]‖Un
ε ‖2

1 ≤ C(h−1).

(4.23)
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Now choosing χ ≡ πh([(I − −
∫

Ωm(Un−1)
)Un

ε ] Ξm(Un−1)) in (4.14b) it follows on

noting (4.6), ψ2 ∈ C1([−1, 1]), Un−1 ∈ Kh, (4.23), (4.17), the remark after (4.4),
(4.8), and (4.19) that for all λ ∈ [−1, 1]

(Ψ′
1,ε(U

n
ε ) Ξm(Un−1), λ−−

∫
Ωm(Un−1)

Un
ε )h

= (Ψ′
1,ε(U

n
ε ) Ξm(Un−1), λ− Un

ε )h

+(Wn
ε − ψ′

2(U
n−1), [(I −−

∫
Ωm(Un−1)

)Un
ε ] Ξm(Un−1))h

−γ(∇Un
ε ,∇[πh([(I −−

∫
Ωm(Un−1)

)Un
ε ] Ξm(Un−1))])

≤ (Ψ1,ε(λ) − Ψ1,ε(U
n
ε ),Ξm(Un−1))h + θc

2 |Un
ε − λ|2h

+|[(I −−
∫

Ωm(Un−1)
)Wn

ε ] Ξm(Un−1)|2h + C[ 1 + |Un
ε |2h + C(h−1) ]

≤ C([bmin(Un−1)]−1, h−1, (∆t)−1).(4.24)

Here and below we have used the notation C(a1, . . . , aI) defined at the end of section 1.
Hence choosing λ = ±1 in (4.24) and noting that −

∫
Ωm(Un−1)

Un
ε = −

∫
Ωm(Un−1)

Un−1 ∈
(−1, 1), we deduce that

|(Ψ′
1,ε(U

n
ε ),Ξm(Un−1))h| ≤ C([bmin(Un−1)]−1, h−1, (∆t)−1).(4.25)

We note that the constant on the right-hand side depends on −
∫

Ωm(Un−1)
Un−1 but is

independent of ε. Furthermore, combining (4.20), (4.25), and (4.22) it follows that

|(Wn
ε ,Ξm(Un−1))h| ≤ C([bmin(Un−1)]−1, h−1, (∆t)−1).(4.26)

Hence combining (4.19) and (4.26) yields that

|Wn
ε Ξm(Un−1)|h ≤ C([bmin(Un−1)]−1, h−1, (∆t)−1).(4.27)

Choosing χ ≡ πh[Ψ′
1,ε(U

n
ε ) Ξm(Un−1)] ∈ Ṽ h(Un−1) in (4.14b) and rearranging

yields that

γ

∫

Ωm(Un−1)

∇Un
ε · ∇πh[ψ′

1,ε(U
n
ε )] dx + |Ψ′

1,ε(U
n
ε ) Ξm(Un−1)|2h

= −γ

∫

Υm(Un−1)

∇Un
ε · ∇πh[ψ′

1,ε(U
n
ε ) Ξm(Un−1)] dx + γ θc(∇Un

ε ,∇πh[Un
ε Ξm(Un−1)])

+ (Wn
ε − ψ′

2(U
n−1),Ψ′

1,ε(U
n
ε ) Ξm(Un−1))h.(4.28)

We now estimate the terms on the right-hand side of (4.28). For any simplex κ ⊂
Υm(Un−1) with vertices {x̃j}d+1

j=1 ⊂ {xj}j∈J and corresponding basis functions {χ̃j}d+1
j=1

⊂ {χj}j∈J , we have on noting (4.12), (4.6), and (4.18b) that

−
∫

κ

∇Un
ε .∇πh[ψ′

1,ε(U
n
ε ) Ξm(Un−1)] dx

= −
d+1∑

i,j=1

Un
ε (x̃i)ψ

′
1,ε(U

n
ε (x̃j)) Ξm(Un−1)(x̃j)

∫

κ

∇χ̃i · ∇χ̃j dx

= −
d+1∑

i,j=1

[Un
ε (x̃i) − Un

ε (x̃j)]ψ
′
1,ε(U

n
ε (x̃j)) Ξm(Un−1)(x̃j)

∫

κ

∇χ̃i · ∇χ̃j dx
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≤ −
d+1∑

i,j=1

[ψ1,ε(U
n
ε (x̃i)) − ψ1,ε(U

n
ε (x̃j))] Ξm(Un−1)(x̃j)

∫

κ

∇χ̃i · ∇χ̃j dx

≤ C(h−1).(4.29)

Hence, by summing (4.29) over all κ ⊂ Υm(Un−1), we deduce that

−
∫

Υm(Un−1)

∇Un
ε · ∇πh[ψ′

1,ε(U
n
ε ) Ξm(Un−1)] dx ≤ C(h−1).(4.30)

Similarly to (4.23), we have that

(∇Un
ε ,∇πh[Un

ε Ξm(Un−1)]) ≤ C(h−1).(4.31)

It follows from (4.28), on noting (4.13), (4.30), (4.31), a Young’s inequality, (4.27),
Un−1 ∈ Kh, and ψ′

2 ∈ C([−1, 1]), that

|Ψ′
1,ε(U

n
ε ) Ξm(Un−1)|h ≤ C([bmin(Un−1)]−1, h−1, (∆t)−1).(4.32)

It follows from (4.16), the fact that (Un
ε , 1)h = (Un−1, 1)h, (1.9), and (4.17) that

there exists Un ∈ Kh and a subsequence {Un
ε′} such that Un

ε′ → Un as ε′ → 0. As

Un
ε − Un−1 ∈ Ṽ h(Un−1), it follows that Un − Un−1 ∈ Ṽ h(Un−1). It follows from

(4.32) and the above that there exists φn ∈ Sh and a subsequence {Un
ε′} such that

πh[Ψ′
1,ε′(U

n
ε′)] → φn − θcU

n on Ω(Un−1) as ε′ → 0. Since Ψ′
1,ε′(U

n
ε′(xj)) is uniformly

bounded in ε, noting (4.7) and using that for all s ∈ R [ψ′
1,ε]

−1(s) → [ψ′
1]

−1(s) as
ε → 0, we have that Un(xj) = [ψ′

1]
−1(φn(xj)) and therefore φn(xj) = ψ′

1(U
n(xj)) for

all j ∈ J+(Un−1). Hence we have that

|Ψ′
1(U

n) Ξm(Un−1)|2h ≤ C([bmin(Un−1)]−1, h−1, (∆t)−1),(4.33)

which immediately implies that |Un(xj)| < 1 for all j ∈ J+(Un−1). Finally, it follows
from (4.27) that there exists Wn ∈ Sh and a subsequence {Wn

ε′} such that Wn
ε′ → Wn

on Ω(Un−1) as ε′ → 0. Hence we may pass to the limit ε′ → 0 in (4.14a,b), on noting

(2.21), to prove existence of a solution {Un,Wn}Nn=1 to (P̃h,∆t).
The uniqueness result follows as in Theorem 2.1 on noting that |Un(xj)| < 1 for

all j ∈ J+(Un−1). The stability bounds (2.26) follow as in Theorem 2.1 by choosing

χ ≡ Wn ∈ Sh in (4.2a) and χ ≡ Un − Un−1 ∈ Ṽ h(Un−1) in (4.2b).

Adopting the notation (2.35a,b) for the solution {Un,Wn}Nn=1 of (P̃h,∆t), we have
the analogue of Theorem 2.2.

Theorem 4.2. Let the assumptions of Theorem 2.2 hold with (A) replaced by

(Ã), and now in particular with ψ1 assumed to be of the logarithmic form (4.1). Then

there exists a subsequence of solutions {U,W}h of problem (P̃h,∆t) and a function

u ∈ L∞(0, T ;K) ∩ H1(0, T ; (H1(Ω))′) ∩ C
1
2
, 1
8

x,t (ΩT ) and a w ∈ L2
loc({|u| < 1}) with

∂w
∂x ∈ L2

loc({|u| < 1}) such that as h → 0, (2.38)–(2.40) and (2.41a,b) hold.
Proof. The proof is the same as that of Theorem 2.2 with the following minor

changes. We mention only the modifications caused by the presence of the logarithmic
free energy which implies that Ψ′ becomes unbounded. Clearly the inequality, the test
function χ−U+, and Kh in (2.37b) are replaced by equality, χ, and Ṽ h, respectively.
Although (2.56) is redundant, (2.57) still holds on noting the above and (2.53). It
follows from (2.59) and (2.53) that C‖θδW+‖L2(ΩT ) on the right-hand side of the



310 JOHN W. BARRETT, JAMES F. BLOWEY, AND HARALD GARCKE

first inequality in (2.60) is replaced by C(δ−1)‖θδW+‖L2(ΩT ) with the final bound of
(2.60) remaining the same. Clearly (2.68) remains true for all η ∈ L2(0, T ;H1(Ω))
with supp(η) ⊂ D+

δ on noting the technique used in (2.67). Hence (2.70) remains
true.

Finally, we modify the iterative algorithm in section 3 to solve the nonlinear
algebraic system for {Un,Wn} arising in (P̃h,∆t). We have that {Un,Wn} ∈ Sh×Sh

satisfy

(Un + µψ′
1(U

n), χ)h = (Zn, χ)h ∀ χ ∈ Ṽ h(Un−1),

Un(xj) = Un−1(xj) ∀ j ∈ J0(U
n−1)(4.34)

in place of (3.1a) with (3.1b–d) remaining the same. Hence we modify our iterative

procedure (3.2a–d) by replacing (3.2b) by the following: Find Un,k+ 1
2 ∈ Sh such that

Un,k+ 1
2 (xj) = Un−1(xj) if j ∈ J0(U

n−1),

Un,k+ 1
2 (xj) + µψ′

1(U
n,k+ 1

2 (xj)) = Zn,k(xj) if j ∈ J+(Un−1)(4.35)

and keeping (3.2a,c,d) the same. For j ∈ J+(Un−1) existence and uniqueness of

Un,k+ 1
2 (xj) follows from the monotonicity of ψ′

1(·). Hence this modified iterative
procedure is well defined.

Theorem 4.3. Let 3θ2
cb

n−1∆t < 4γ. Then for all µ ∈ R
+ and {Un,0,Wn,0} ∈

Sh × Sh the sequence {Un,k,Wn,k}k≥0 generated by the modified algorithm, (3.2a–d)
with (3.2b) replaced by (4.35), satisfies

Un,k, Un,k+ 1
2 → Un and

∫

Ω

b(Un−1)|∇(Wn,k+1 −Wn)|2 dx → 0 as k → ∞.

(4.36)

Proof. The proof is just a simple modification of the proof of Theorem 3.1 to
take into account the changes (4.34) and (4.35) to (3.1a) and (3.2b), respectively. We
introduce the following modification of the discrete semi-inner product, (2.1):

(η1, η2)
h
J+(Un−1) :=

∑

j∈J+(Un−1)

βj η1(xj) η2(xj) ∀ η1, η2 ∈ C(Ω(Un−1)).(4.37)

The only changes to the proof of Theorem 3.1 are the following: (· , ·)h on the left-hand
sides of (3.9), (3.10), and (3.13) is replaced by (· , ·)hJ+(Un−1). The right-hand side of

(3.9) remains the same as Un,k+ 1
2 (xj) = Un−1(xj) = Un(xj) for all j ∈ J0(U

n−1).
Hence we obtain the desired convergence (4.36).

5. Numerical experiments. In this section we report on some numerical re-
sults with the intention of demonstrating the practicability of our method as well as
showing that in the case of a degenerate mobility a quite different qualitative behavior
is observed when compared to results obtained with constant mobility.

In order to avoid numerical difficulties we introduced approximative analogues of
the sets Im(qh) denoted by Îm(qh), which were defined by replacing (c) in (2.18) by
(ĉ) b(qh) > tol1 := 10−6 at a vertex of κl, l = 1 → L. In addition, for each n we
adopted the following stopping criterion for (3.2a–d): If ‖Un,k⋆ − Un,k⋆−1‖0,∞ < tol

with tol = 10−7 then we set {Un,Wn} ≡ {Un,k⋆
,Wn,k⋆}, where U

n,k⋆ ∈ Kh was
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defined by

U
n,k⋆

j :=

{
max{−1,min{Un,k⋆

j , 1}} if j ∈ Ĵ+(Un−1) := ∪M
m=1Îm(Un−1),

Un−1
j if j ∈ Ĵ0(U

n−1) := J \ Ĵ+(Un−1),
(5.1)

if ψ′
1 was not strictly monotone and {Un,Wn} ≡ {Un,k⋆− 1

2 ,Wn,k⋆} otherwise. Fi-
nally, we chose, from experimental evidence, the “relaxation” parameter µ ∝ h in
(3.2a–d) in order to improve its convergence.

All computations were performed in double precision on a Sparc 20. The program
was written in Fortran 77 using the NAG subroutine C06HBF for calculating the
discrete cosine transform used in solving (3.5).

5.1. One space dimension. The computations were performed on a uniform
partitioning of Ω = (0, 1) with mesh points xj = (j − 1)h, j = 1 → #J , where
h = 1/(#J − 1). We note that the integral on the right-hand side of (3.3) can be
evaluated exactly using Simpson’s rule if b(·) is quadratic.

Experiment 1. One characteristic feature of the discretizations (Ph,∆t) and

(P̃h,∆t) is that

Un−1(xj−1) = Un−1(xj) = Un−1(xj+1) = ±1 =⇒ j ∈ J0(U
n−1) and Un(xj) = ±1,

(5.2)

so that the free boundaries ∂{|Un| = 1} can advance at most one mesh point locally
from one time level to the next. This implies that over a time interval of length T
the free boundary can advance by at most a distance of h

∆tT . To be able to track a
free boundary which moves with a finite but a priori unknown speed, one needs to
choose ∆t and h such that h

∆t → ∞. For a nonuniform mesh the above requirement

on h and ∆t has to be replaced by
min

κ∈T h hκ

∆t → ∞. If we choose the time step too

large, e.g., if h
∆t → 0, we obtain the existence of a solution in the limit as h,∆t → 0

which would not spread at all for all initial data u0 ∈ K. Similar results hold for the
degenerate equation

ut + (upuxxx)x = 0 in ΩT , ux = upuxxx = 0 on ∂Ω × (0, T );

(cf. Lemma 5.1 in [7] and [6]).
As data we took γ = 0.01, ψ1 ≡ ψ2 ≡ 0, and θc = 1, i.e., the deep quench limit,

b(u) := 1 − u2, and

u0(x) =

{
cos

(
x− 1

2√
γ

)
− 1 if |x− 1

2 | ≤
π
√
γ

2 ,

−1 otherwise.

We note that u0 6∈ C1([0, 1]) may be considered to be a stationary solution of (P) on

noting (2.41a,b), since −γ ∂2u0

∂x2 −u0 = 1 for |u0| < 1. We performed two separate sets

of experiments, one with ∆t = 40.96h2 and h = 2−6−l, the other with ∆t = 0.08h
1
2

and h = 2−6−2l, both for l = 0, 1, 2, 3, and 4. In both cases we took bmax = bn−1 = 1.
Note that the time step restriction of Theorem 3.1, and hence Theorem 2.1, holds. We
see in Figure 5.1 when ∆t = 40.96h2 that our numerical solution in the limit h → 0
appears to spread to the stationary C1([0, 1]) solution:

{
1
π

[
1 + cos

(
x− 1

2√
γ

)]
− 1 if |x− 1

2 | ≤ π
√
γ,

−1 otherwise.
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Fig. 5.1. U(x, 0.2) plotted against x with ∆t = 40.96h2 and ∆t = 0.08h
1
2 for several values of h.

In contrast, when ∆t = 0.08h
1
2 the solutions with #J = 65 and 256 are more or less

identical to the above. However, for h sufficiently small the region ∂{|u(·, t)| = 1}
cannot advance sufficiently fast to capture the apparent former solution. It certainly
appears that the limit h → 0 yields that u0 is a stationary solution. This numerical
experiment also appears to indicate that as posed (P) does not have a unique solution.
In this context we refer to [19], where existence of a solution is proved with the
property that u ∈ L2(0, T ;H2(Ω)) for arbitrary initial data u0 ∈ H1(Ω). Since
u0 /∈ H2(Ω) this means that u0 as initial data would lead to a nonstationary solution.
We conjecture that we compute the solutions constructed in [19] if we take our time
step small enough.

Experiment 2. In the second experiment we took ψ2 ≡ 0 and θc = 1 as in the
previous experiment, but we varied ψ1. For the initial data we took

u0(x) =





1 if 0 ≤ x ≤ 1
3 − 1

20 ,

20( 1
3 − x) if |x− 1

3 | ≤ 1
20 ,

−20|x− 41
50 | if |x− 41

50 | ≤ 1
20 ,

−1 otherwise,

with γ = 10−3, h = 0.005, and ∆t = 10h2.
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Fig. 5.2. U(x, t) plotted against x at different times, where Ψ is given by (1.2) and (1.1) with

θ = 0.3 for constant and degenerate mobility.
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In Figure 5.2 the graphs are arranged as follows: the first two rows are for Ψ as
given in the previous experiment (the deep quench limit (1.2)), and the last two rows
are for ψ1(u) = 3

20

[
(1 + u) ln

[
1+u

2

]
+ (1 − u) ln

[
1−u

2

]]
; the second and third rows

are for b(u) ≡ 1 (constant mobility) and the first and fourth are for b(u) := 1 − u2

(degenerate mobility). In all cases we took bmax = bn−1 = 1 and note that the time
step restriction of Theorem 3.1, and hence Theorem 2.1, holds. We make the following
remarks:

• The algorithm (3.2a–d) with bmax ≡ b ≡ 1 is precisely that described in [2]
to solve (Ph,∆t) for n fixed and constant mobility.

• To ensure that our computations were not dependent on h we repeated the
experiment with h = 0.0025 and obtained graphically indistinguishable pic-
tures.

• For constant mobility, regardless of which Ψ we take the second “bump” gets
drawn out to the left rather quickly. This is due to the fact that the mobility
is positive in the pure phases, i.e., at points where u is close to the minima
of Ψ.

• With b(u) := 1 − u2 and Ψ given by the double obstacle potential (1.2)
the second “bump” does not lose “mass.” However for the logarithmic Ψ, we
observe diffusion through the bulk although the time scale is greatly increased;
see [11]. As in the case of the constant mobility the final profile is given by one
transition layer. We remark that the minima for the logarithmic potential Ψ
are less than one in magnitude. For θ converging to zero the minima converge
to ±1. This implies that the diffusion through the bulk becomes smaller and
smaller at low temperatures. Also we note that |U | < 1 in the last two rows
of Figure 5.2 (the case of the logarithmic potential).

5.2. Two space dimensions.

Experiment 3. We performed two numerical experiments in two spatial dimen-
sions with Ω = (0, 1) × (0, 1). In the first experiment we took degenerate mobility,
b(u) := 1 − u2. In the second experiment we took exactly the same data, but now
with constant mobility, b(u) ≡ 1.

We took a uniform mesh consisting of squares e of length h = 1/256, each of
which was then subdivided into two triangles by its northeast diagonal. We used the
following discrete semi-inner product on C(Ω),

(χ1, χ2)
h
⋆ :=

∫

Ω

Πh(χ1(x)χ2(x)) dx,(5.3)

in place of (2.1). Here Πh is the piecewise continuous bilinear interpolant on Ω which
is affine linear for x1 (or x2) fixed and interpolates at the vertices on each square e.
Using (5.3) instead of (2.1) only changes the algorithm at the corners of the square
Ω and has the advantage that one can then solve (3.5) using “the discrete cosine
transform”; see [9]. We note that similarly to (2.8), the induced norm from (5.3) on
Sh is equivalent to the standard L2 norm. Therefore it is easy to adapt the proofs
to show that Theorems 2.1, 3.1, and 4.1 in this paper remain true with this choice of
discrete semi-inner product.

We took Ψ to be the deep quench limit (1.2) with the splitting ψ1(u) ≡ 0, ψ2(u) :=
1
2 (1 − u2), and θc = 0 (this allows us to take an arbitrarily large time step), γ =
3.2 × 10−4, ∆t = 1.6 × 10−3 and we relaxed our stopping criterion to be tol = 10−6.
Once again we took bn−1 = 1.
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Fig. 5.3. U(·, t) plotted for t = 0.04, 0.08, 0.12, 0.20, 0.24, 0.44, 0.48, and 2.76 when b(u) :=
1 − u2 and Ψ is given by (1.2).
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Fig. 5.4. U(·, t) plotted for t = 0, 0.04, 0.08, 0.16, 0.24, and 0.64 when b(u) ≡ 1 and Ψ is given

by (1.2).

For the above choices of b, An,k satisfying (3.3) can be evaluated exactly by
sampling at the midpoints of the sides over each triangle κ. The initial data were
taken to be U0 = −0.4 ± δh, where δh ∈ Sh with ‖δh‖0,∞ ≤ 0.05. In Figures 5.3 and
5.4 we plot a grey scale grid plot of U(·, t) at several times. The pictures are arranged
in a matrix format with time increasing to the right in rows then down columns. The
grey scale ranges from −0.9 to 0.9 in steps of 0.2 with pure black/white representing
values larger/smaller than 0.9/−0.9. We note that there are approximately 10 mesh
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points across each interface. The final numerical solution plotted in Figure 5.3 is a
stationary numerical solution, that is, the stopping criterion for the iterative procedure
is satisfied in a single step from one time level to the next. However, the final picture
in Figure 5.4 is not stationary.

In Figure 5.3, the case of degenerate mobility, after the early stages there is very
little interaction of regions which do not intersect and the evolution takes place locally
where the local mass is preserved. The final frame yields a numerical stationary solu-
tion consisting of many circles which do not intersect; this corresponds to a pinning
effect reported in [23] for spinodal decomposition of polymer mixtures. In Figure 5.4,
the case of constant mobility, we start with U0(·) ≡ U(·, 0.04) from the first exper-
iment. In contrast, there is evolution and growth of regions which do not intersect
(see Figure 5.4); moreover, circles which coexist are not stationary since there is a
coupling through bulk terms.
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