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Abstract. Linear Galerkin finite element discretizations of the Laplace operator produce non-
positive stiffness coefficients for internal element edges of two-dimensional Delaunay triangulations.
This property, also called the positive transmissibility (PT) condition, is a prerequisite for the ex-
istence of an M -matrix and ensures that nonphysical local extrema are not present in the solution.
For tetrahedral elements, it has already been shown that the linear Galerkin approach does not
in general satisfy the PT condition. We propose a modification of the three-dimensional Galerkin
scheme that, if a Delaunay triangulation is used, satisfies the PT condition for internal edges and, if
further conditions on the boundary are specified, yields an M -matrix. The proposed approach can
also be extended to the general diffusion operator with nonconstant or anisotropic coefficients.
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1. Introduction. Finite element schemes are commonly used in the solution of
second-order partial differential equations (PDEs) arising from many practical ap-
plications such as, for example, heat transfer, groundwater flow and contamination,
petroleum reservoir simulation, and Navier–Stokes equations. The discretization of
the diffusion operator of the PDE is often carried out by means of the Galerkin
approach. It is well known that the use of the Galerkin formulation on triangular
elements with linear (C0) basis functions leads, in some cases, to wrong solutions that
do not satisfy the maximum principle (local extrema occur inside the domain) [9].
This problem has been linked with the fact that the system matrix resulting from the
discretization is not an M -matrix [5]. The existence of an M -matrix implies that the
so-called PT condition [14, 12] is satisfied. This fact guarantees that the discrete flux
between two nodes is in the opposite direction of the dependent variable gradient.

For Laplace equation in two dimensions, a sufficient condition for nonpositive
Galerkin off-diagonal stiffness coefficients is that the triangulation be made of acute
or right-angled triangles [6]. In general it can be shown that if the triangulation
is Delaunay, the linear Galerkin stiffness coefficient satisfies the PT condition for
all nodal pairs representing internal element edges (edges not lying on the domain
boundary) [5]. If, furthermore, no circumcenters of boundary elements lie outside the
domain, then the PT condition is guaranteed over the entire domain. Under these
hypotheses, and if at least one Dirichlet boundary condition is imposed, the linear
Galerkin approach on triangles leads to an M -matrix.

In three space dimensions, tetrahedral elements are the natural extensions of tri-
angles. However, it was shown in [9], via a counterexample, that the linear Galerkin
approach for the Laplace operator does not always satisfy the PT condition even on

∗Received by the editors August 22, 1995; accepted for publication (in revised form) August 19,
1996; published electronically April 16, 1998.

http://www.siam.org/journals/sisc/19-4/29071.html
†Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate, University of Padua, via

Belzoni 7, Padova, Italy (putti@dmsa.unipd.it, cordes@dmsa.unipd.it). The work of the first author
was partially supported by EC contract AVI-73. The work of the second author was supported by
EERO.

1154



TETRAHEDRAL FINITE ELEMENTS FOR DIFFUSION OPERATOR 1155

internal edges of a Delaunay mesh and thus cannot guarantee an M -matrix. The
reason for this behavior can be better understood by looking at the physical inter-
pretation of the stiffness coefficient. In both two and three dimensions, the linear
Galerkin stiffness coefficient can be alternatively expressed as the flux of the basis
function gradient across the boundary of a specific nodal control volume. We will
prove that these control volumes, in a two-dimensional Delaunay triangulation, can
be identified by the Voronoi mesh restricted to the domain of definition of the PDE
and are characterized by having cell boundaries orthogonal to the element edges and
vertices on the circumcenters of the triangles. In three dimensions, we will show that
the Galerkin subdomains may be interpreted as control volumes having vertices not
on the circumcenters but on the gravity centers of the tetrahedra. Thus, they cannot
take the shape of Voronoi cells, except in regular tetrahedra, for which circumcenters
and gravity centers coincide.

In this paper, we propose a modification of the Galerkin approach by defining
the vertices of the control volumes as being the circumcenters and not the gravity
centers [2, 3]. For the Laplace operator, we will prove that this approach, called or-
thogonal subdomain collocation (OSC), satisfies the PT condition for internal element
edges of a three-dimensional Delaunay triangulation and, under suitable conditions
on the boundary, yields an M -matrix.

In the next sections, we will use the following definitions and properties of Delau-

nay triangulations and Voronoi diagrams. A Delaunay triangulation in R
d

is defined
by the condition that the circumsphere of each triangle contains no other nodes in
its interior [8]. Its dual is the Voronoi diagram, also called Voronoi mesh or set of
Thiessen polyhedra [4], which can be defined as follows [13]: let Pi, 1 ≤ i ≤ n, be

a set of points in Ω ⊂ R
d
, and let Ω be the convex hull of all the Pi. We assume

that Ω coincides with the domain of definition of the diffusion equation. Denote by
H(Pi, Pj), i 6= j, the closed half space containing Pi, bounded by the bisecting hy-
perplane of the segment PiPj . The Voronoi cell (or Thiessen polyhedron), Vi, of Pi

is defined as the intersection of all H(Pi, Pj), j 6= i. The Voronoi mesh is then the

set of all Vi, 1 ≤ i ≤ n. In other words, the interior of the Voronoi cell
◦

Vi is the set

of points s ∈ R
d

characterized by having a smaller distance from Pi than from any
other point Pj . A Voronoi diagram satisfies the following properties [13, 1]:

(P1)

n
⋃

i=1

Vi = R
d
,

◦

Vi

⋂ ◦

Vj= ∅;

(P2) the Voronoi cell Vi of each point Pi takes the shape of a convex d-dimensional
polyhedron; Vi is unbounded if Pi lies on ∂Ω (the boundary of Ω), bounded
otherwise;

(P3) if PiPj is an edge of a Delaunay triangulation then the intersection of Vi and Vj

is nonempty and takes the shape of a convex (d−1)-dimensional polyhedron,
orthogonal to PiPj in the midpoint; this polyhedron is unbounded if PiPj lies
on ∂Ω, bounded otherwise;

(P4) the vertices of the Voronoi cells are the circumcenters of the Delaunay sim-
plices.

An example of a two-dimensional Delaunay triangulation with the corresponding
Voronoi cell Vj is shown in Figure 1. Note that the Thiessen polygons can be in-
terpreted as nodal control volumes for a finite element mesh.
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j

Fig. 1. Two-dimensional Delaunay triangulation and corresponding Voronoi cell Vj (Thiessen
polygon).

In the next two sections we will focus on discretization schemes for the Laplace
operator

Lu = ∇ · ∇u(1)

considered as an element of a more general elliptic equation defined on a general convex
domain Ω, with given boundary conditions on ∂Ω. Extensions of the discretization
methods for the general diffusion operator with a possibly nonconstant conductivity
tensor D,

L1u = ∇ ·D∇u(2)

will be addressed in the last section.

2. Galerkin stiffness coefficients in two and three dimensions. The el-
emental Galerkin stiffness coefficient for Laplace equation (1) can be generally ex-
pressed as

se,Gij =

∫

e

∇Ni · ∇NjdA,(3)

where Ni is the basis function and A is the area (volume) of element e. The global

Galerkin stiffness coefficient is obtained by summation of se,Gij over all elements:

sij =
∑

e

se,Gij .
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Denoting by L the number of nodes in element e, it is well known that the global
stiffness coefficients satisfy the property [15]:

L
∑

j=1

se,Gij = 0.(4)

2.1. Two spatial dimensions. Let T be a triangle with vertices i, j, and k
(Figure 2). Define the edge vector rij as the vector connecting node i with node j,
oriented from i to j. Let nj be the unit vector normal to edge rik, opposite to node
j, and pointing toward j.

By definition, Nj is a linear function with value one on node j and zero on nodes
i and k. The gradient of Nj is therefore a constant vector orthogonal to rik with
length 1/|rqj | and can be written as

∇Nj =
nj

| rqj |
=

rqj

rqj · rqj
.(5)

Substituting this expression in (3) and noting that the area of T is given by A =
| rln || rqj |, we obtain

∫

e

∇Ni · ∇NjdE = ∇Ni ·
nj

| rqj |
A = ∇Ni · nj | rln |.

The right-hand side of this equation can be interpreted as the flux of ∇Ni across
segment ln. By the Gauss theorem, this flux can be evaluated as a line integral over
any path Γ connecting the edge midpoints l and n; that is,

∇Ni · nj | rln | =

∫

Γ

∇Ni · dn.

We have therefore proved the following theorem.
Theorem 2.1. Let T be a triangle with vertices i, j, and k, and let Ni and Nj be

the linear basis functions associated with nodes i and j, respectively. Then the (ij)th
elemental Galerkin stiffness coefficient for equation (1) is given by

se,Gij =

∫

Γ

∇Ni · dn,(6)

where Γ is the boundary of the nodal control volume of j.
This well-known result (see, e.g., [10]) gives rise to the interpretation of the ele-

mental Galerkin stiffness coefficient as the flux of the basis function gradient across
the element nodal control volume. Using simple geometry, we can express se,Gij as in
the following theorem.

Theorem 2.2. For the triangle of Theorem 2.1, the elemental Galerkin stiffness
coefficient between i and j is given by

se,Gij =



















−
| rnc |
| rij |

if the angle in k is < π
2 ,

+
| rnc |
| rij |

if the angle in k is > π
2 ,

0 if the angle in k is = π
2 .

(7)
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Fig. 2. Triangular finite element and the corresponding nodal control volumes.

Proof. Choosing Γ as the Thiessen polygon boundary lcn in equation (6) and
using (5) we obtain

se,Gij =
rpi

rpi · rpi
·

(
∫

nc

dnl +

∫

cl

dnn

)

.

The second integral of this equation gives a null contribution because rpi ⊥ nn. The
first integral can be evaluated as | rnc |nl. Since

∫

nc
dnl = −

∫

cn
dnl, its sign changes

when the angle in k is > π
2 (in this case point c lies outside T ). Furthermore, if

the angle in k is π
2 then c and n coincide. The proof is completed by noting that

nl = rij/| rij | and that rpi · rij = −rpi · rpi.
The global stiffness coefficient for an interior edge is evaluated as the sum of the

elemental stiffness coefficients of two adjacent triangles. From equation (7) it is easy
to see that the absolute value of the global stiffness coefficient is equal to the length of
the Voronoi cell boundary orthogonal to the common edge (the segment connecting
the circumcenters of the two elements), divided by the length of the common edge.
The sign has to be found by looking at two adjacent triangles. If the elemental stiff-
ness coefficients of both triangles are negative (e.g., self-centered triangles), then their
sum is also negative. For a Delaunay triangulation, if the elemental stiffness coeffi-
cient of one of the triangles is positive, the other must be negative. With reference
to Figure 3, let T1 be a non-self-centered triangle. Then sT1,G

ij = +| rmc1 |/| rij |,
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Fig. 3. Triangular elements in a Delaunay mesh.

while sT2,G
ij = −| rmc2 |/| rij |. Property (P3) ensures that | rc1c2 | exists and that

| rmc2 | ≥ | rmc1 |. Thus we have the following theorem.

Theorem 2.3. In a two-dimensional Delaunay triangulation the global Galerkin
stiffness coefficient corresponding to an interior element edge is nonpositive and equal
to

sGij = −
| rc1c2 |

| rij |
.

This result shows that the PT condition is always satisfied for interior edges
of Delaunay meshes. The global stiffness coefficient for an element edge lying on
the boundary coincides with the elemental stiffness coefficient and therefore can be
positive. However, we can state the following theorem.

Theorem 2.4. Let T be a two-dimensional Delaunay triangulation of a convex
domain Ω. If T satisfies the property that no circumcenters of boundary elements lie
outside Ω, and if at least one Dirichlet boundary condition is imposed, then the linear
Galerkin finite element method for the discretization of the Laplace operator leads to
an M -matrix.

Proof. An M -matrix S has the properties that sij ≤ 0, sii > 0, and S−1 ≥ 0 [11].
If the domain is convex and the circumcenters of all the boundary triangles lie inside
the domain, then Theorem 2.2 guarantees that sGij is nonpositive. From equation (3),

it follows directly that sGii > 0, since the area of any triangle in a Delaunay mesh is
positive. Finally, the existence of at least one Dirichlet boundary condition implies
that the stiffness matrix S is nonsingular.
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If there are boundary elements that do not satisfy the conditions of the previ-
ous theorem, it is always possible to change the discretization by defining additional
boundary nodes [5].

Remark 2.5. Theorem 2.3 suggests that the Galerkin stiffness equation for the
generic node j can be interpreted as a “mass” balance equation on the Voronoi cell
of j. Since the union of all the Voronoi cells covers the whole domain Ω, the Galerkin
stiffness matrix represents the “mass” balance equation for the entire Ω.

2.2. Three spatial dimensions. As demonstrated by [9], a straight extension
of the two-dimensional Galerkin approach to tetrahedra does not lead to a scheme that
generally satisfies the PT condition. A better understanding of the linear Galerkin
approach can be obtained by analyzing the expression of the stiffness coefficient for
the tetrahedron of Figure 4. The four tetrahedron faces can be identified by their
normal “area” vectors A, directed into the element, given by

Ai =
1

2
rjl × rjk, Aj =

1

2
rkl × rki,

(8)
Ak =

1

2
ril × rij , Al =

1

2
rij × rik,

where | Aj | is the area of face ikl opposite to node j and so on. The gradient of the
linear basis function Nj is parallel to vector Aj and can be expressed as

∇Nj =
Aj

3V
,(9)

where V is the element volume calculated as

V =
1

3
Aj · rij .(10)

Inserting equation (9) into (3), we obtain

se,Gij = ∇Ni ·
Aj

3
.(11)

Thus, se,Gij can be interpreted as the flux of ∇Ni across a face parallel to the tetra-
hedron face opposite to node j but having one third of the area. Note that this face
intersects the element edges ji, jk, and jl not at the midpoints but at a relative
distance of

√

1/3 from node j. The nodal volume individuated by this face cannot be
considered as a subdomain as it overlaps with the other nodal volumes of the tetrahe-
dron. Equivalent but nonoverlapping subdomains can be determined by the six faces
whose vertices are the six edge midpoints and the gravity centers of the tetrahedron
and its four triangular faces. An example of these subdomains is given in Figure 4. As
a consequence, Theorem 2.1 can be directly extended to tetrahedral elements when Γ
is the boundary of such a nodal subdomain.

For a regular tetrahedron, the centers of gravity of both the tetrahedron and its
boundary faces coincide with the respective circumcenters. Then, the six subdomain
boundary faces are orthogonal to the element edges and the subdomains correspond
to the elemental restrictions of the Voronoi cells. For an irregular tetrahedron there is
no such correspondence. As a result, the linear Galerkin stiffness coefficient in three
dimensions cannot be defined using the Voronoi mesh, as was done in two dimensions.
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Fig. 4. Nodal subdomains in a tetrahedral element.

3. The OSC coefficients. The results of the previous section suggest to mod-
ify the linear Galerkin stiffness coefficient by using circumcenters instead of gravity
centers as vertices of the corresponding subdomains. This implies the definition of
the stiffness coefficient as in equation (6), with the domain of integration Γ being the
boundary of the elemental restriction of the Voronoi cell. Thus, this new approach
is not based on the Galerkin scheme but rather on a more natural, in this context,
subdomain collocation method [15]. The orthogonality of the subdomain faces to the
element edges gives rise to the name OSC [2, 3].

The general expression for the OSC elemental stiffness coefficient is derived with-
out loss of generality by focusing on the tetrahedron of Figure 4. Denote by F e

ij , F
e
kj ,

and F e
lj the areas of the three faces perpendicular in the midpoint to the element

edges ij, kj, and lj, respectively. The flux of the basis function gradient ∇Ni across
the Thiessen polyhedron boundary of node j in element e gives the OSC elemental
stiffness coefficient that can be expressed as

se,OSC
ij = ∇Ni ·

(

F e
ij

rij

|rij |
+ F e

kj

rkj

|rkj |
+ F e

lj

rlj

|rlj |

)

.(12)

Note that this equation constitutes a modification of equation (11) corresponding to
the different subdomain geometry. Since ∇Ni is orthogonal to vectors rkj and rlj ,

the last two terms in (12) disappear and only F e
ij contributes to se,OSC

ij . Using (9)
and (10), and since rij = −rji, we obtain

se,OSC
ij = −

F e
ij

|rij |
.(13)
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This result is a direct extension of Theorem 2.2 to three dimensions, where now the
sign is implicitly contained in F e

ij .
The control volume face with area F e

ij has the following points as vertices: A, the
edge midpoint; C, the circumcenter of the triangular face ijk; E, the circumcenter
of the tetrahedron; and D, the circumcenter of triangle ijl. The calculation of F e

ij

proceeds by evaluating the areas of the two triangles ACE and ADE. These can be
expressed via the cross products 1

2rAC × rCE and 1
2rDE × rAD, respectively. The

two resulting vectors are parallel to rij , so the area of the face is obtained by scalar
multiplication with the unit vector in this direction:

F e
ij =

1

2
(rAC × rCE + rDE × rAD) ·

rij

| rij |
.(14)

Vector rAC is orthogonal to rij and, since it lies on the plane spanned by nodes
i, j, and k, also to Al. Its expression can therefore be written as

rAC = λrij ×Al,(15)

where λ is a scalar factor introduced because the length of rAC is unknown. This
length is defined by the identity

1

2
rij + rAC =

1

2
rik + rBC .

Since rBC is orthogonal to rik, it can be eliminated by scalar multiplying both sides
of the last equation by rik. Solving for λ and using the expression for Al in (8) yields
the sought expression for rAC :

rAC =
rik · rjk
4Al ·Al

Al × rij .(16)

Vector rAD is obtained in the same way:

rAD =
ril · rjl

4Ak ·Ak

rij ×Ak.(17)

Vector rCE , being the intersection of the elemental restriction of the Thiessen
polyhedra of nodes i, j, and k, is orthogonal to face ijk and can be written as

rCE = γAl,(18)

where again γ is a scalar factor introduced because the length of rCE is unknown. As
before, consider the identity

rAC + rCE = rAD + rDE .(19)

Using equations (16), (17), and (18), after scalar multiplication by rAD, γ can be
explicitly evaluated from equation (19). The expression for rCE is then obtained,
after substitution of equations (8) and (10), as

rCE =
Al

6V

[

ril · rjl + rik · rjk
Ak ·Al

Al ·Al

]

.(20)

Accordingly, the expression for rDE is

rDE =
Ak

6V

[

rik · rjk + ril · rjl
Ak ·Al

Ak ·Ak

]

.(21)
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Inserting equations (14), (16), (17), (20), and (21) into (13) and repeating this proce-
dure for the other element edges, the off-diagonal elements of the OSC stiffness matrix
are obtained. Their expression is

se,OSC
ij = −

1

48V

[

2(rik · rjk)(ril · rjl) + Ak ·Al

(

(rik · rjk)
2

Al ·Al

+
(ril · rjl)

2

Ak ·Ak

)]

,

se,OSC
ik = −

1

48V

[

2(rij · rkj)(ril · rkl) + Aj ·Al

(

(rij · rkj)
2

Al ·Al

+
(ril · rkl)

2

Aj ·Aj

)]

,

se,OSC
il = −

1

48V

[

2(rij · rlj)(rik · rlk) + Aj ·Ak

(

(rij · rlj)
2

Ak ·Ak

+
(rik · rlk)

2

Aj ·Aj

)]

,

se,OSC
jk = −

1

48V

[

2(rji · rki)(rjl · rkl) + Ai ·Al

(

(rji · rki)
2

Al ·Al

+
(rjl · rkl)

2

Ai ·Ai

)]

,

se,OSC
jl = −

1

48V

[

2(rji · rli)(rjk · rlk) + Ai ·Ak

(

(rji · rli)
2

Ak ·Ak

+
(rjk · rlk)

2

Ai ·Ai

)]

,

se,OSC
kl = −

1

48V

[

2(rki · rli)(rkj · rlj) + Ai ·Aj

(

(rki · rli)
2

Aj ·Aj

+
(rkj · rlj)

2

Ai ·Ai

)]

.

The diagonal coefficients are calculated using equation (4).
The global stiffness coefficient sOSC

ij is given by the sum of all elemental contri-
butions, and therefore it contains the sum of all area contributions Fij =

∑

e F
e
ij . For

an internal element edge ij, Fij is the area of the entire Voronoi cell face orthogonal
to ij. Obviously, Fij is nonnegative, since the Voronoi cell face is, by property (P3),
bounded and convex. Thus we can state the following theorem.

Theorem 3.1. In a three-dimensional Delaunay triangulation the global OSC
stiffness coefficient corresponding to an interior element edge is nonpositive and equal
to

sOSC
ij = −

Fij

| rij |
,

where Fij is the area of the Voronoi cell boundary orthogonal to edge ij.
If edge ij lies on the boundary, the corresponding Voronoi cell face is unbounded,

and we cannot conclude that Fij is nonnegative. However, we can give a sufficient
condition for the nonnegativity of Fij in the following theorem.

Theorem 3.2. Let T be a three-dimensional Delaunay triangulation of a convex
domain Ω. If T satisfies the property that no circumcenters of boundary elements
and corresponding boundary faces lie outside Ω, and if at least one Dirichlet boundary
condition is imposed, then the OSC approach for the discretization of the Laplace
operator leads to an M -matrix.

Proof. What we need to prove is that, for a boundary edge, sOSC
ij is negative or

zero. The other parts of the theorem follow directly from previous results.
Denote by I the intersection of the domain with the Voronoi cell boundary orthog-

onal to ij. If no circumcenters of boundary tetrahedra and corresponding boundary
faces lie outside Ω, then Fij gives, by construction, the area of I. Since the domain
and the Voronoi face are convex, so is I, and therefore Fij ≥ 0.

Circumcenters of tetrahedra or circumcenters of boundary faces that lie outside Ω
do not belong to I. However, they are considered in the calculation of the Fij , which
may, in this case, become negative. As in the two-dimensional case, circumcenters
outside the domain can be avoided by defining additional boundary nodes.
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Fig. 5. Delaunay triangulation used by Letniowski [9].

4. Numerical examples.

4.1. Letniowski’s example with OSC. The OSC approach is first tested on
the example that was proposed by [9] to prove that the Galerkin approach cannot
guarantee a final M -matrix. This example uses the following six points in space:

A = ( −2, −2, 0.5 ),
B = ( 0, −2, 0.1 ),
C = ( −2, 0, 0.1 ),
D = ( 0, 0.1, 0 ),
E = ( −2, −2, −0.25 ),
F = ( −2, −2, 1.5 ).

There are three possible triangulations of these six points: the first uses AD and BC
as internal edges, the second contains only AD, the third contains only BC. The
first is the Delaunay triangulation and leads to the five tetrahedra ABDF , ACDF ,
ABCE, BCDE, and ABCD (Figure 5). For all three discretizations, the global
Galerkin stiffness coefficient corresponding to the interior connections are positive. In
particular, the results for the Delaunay mesh are

sGAD = 2.208,(22)

sGBC = 3.695.

(As an aside, note that, in Letniowski’s paper, the absolute value of sGBC is different
from sGBC in equation (22); we suppose that the contribution of element ABCD was
forgotten.)

Applying the OSC approach to the same five tetrahedra, the global stiffness co-
efficients for the two inner connections become negative:
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Fig. 6. Domain and triangulation used in test case 2.

sOSC
AD = −0.003287,

sOSC
BC = −0.021680,

thus satisfying the PT condition.

4.2. Numerical behavior of OSC. A second example is used to test the prac-
tical applicability and the properties of the OSC scheme. The domain and the trian-
gulation employed is schematically shown in Figure 6. The size of the domain is (in
dimensionless units) 4 × 5 × 1. Zero Dirichlet boundary conditions are imposed on
the shaded area, while all other nodes have no-flow conditions, except the Neumann
node (node 5), where a unit source is present.

The mesh shown in Figure 6 has 60 nodes and 120 tetrahedra. From it, four
other grid levels are defined by halving each time the sides of the cubic elements. The
grids thus defined have 297, 1785, 12,177, and 89,505 nodes, and 960, 7680, 61,440,
and 491,520 tetrahedra, for levels 2 to 5, respectively. The tetrahedra are always
generated as indicated in the figure [7]. This ensures that the resulting triangulation
is Delaunay.

Table 1

Comparison of the OSC and Galerkin solutions for test case 2 on grid level 4.

1 2 3 4
6 7 8 9

Galerkin 0.80885 0.85928 1.0301 1.4587
0.80982 0.85996 1.0289 1.3826

OSC 0.80936 0.85968 1.0309 1.4615
0.80935 0.85959 1.0284 1.3832

In Table 1 we report the values of the OSC and Galerkin solution for level 4 at the
nodes indicated in Figure 6. According to the flow field imposed, the local gradients
should always point toward the Neumann node and therefore should never point
downward. From the values in the table we see that the OSC results are consistent
with this observation, while the Galerkin ones are not, although the errors are small.
These unphysical gradient directions are not restricted to the boundary face of nodes
1-5-10-6 but can be found in a large part of the domain. The Galerkin system matrix
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Fig. 7. Numerical convergence of Galerkin and OSC.

at grid level 4 has 20,736 positive off-diagonal coefficients (2 per each interior cubic
element), while the off-diagonal OSC stiffness coefficients are always nonpositive.

The convergence properties of the OSC approach are evaluated by comparison
with the convergence behavior of the Galerkin technique. As the solution to this
problem has no simple analytical expression, the Galerkin solution at level 5 is consid-
ered as a surrogate analytical solution. The error vectors for both OSC and Galerkin
can be defined by taking the difference between the numerical solutions at levels 1
to 4 and the surrogate analytical solution. Note that the presence of a Neumann
node introduces a point where the theoretical solution tends to infinity. In this and
neighboring nodes, the convergence of the numerical procedures does not reach the
asymptotic regime within the five grid refinements. Therefore, the values at nodes 4,
5, 10, and 11 (Figure 6) are neglected, and the error is calculated on the basis of the
other 56 nodes of grid level 1. The `2 norms (|err|) of the OSC and Galerkin errors
thus obtained are plotted, in a semilogarithmic scale in Figure 7. The plot shows that
the behavior of the two schemes is similar and that both schemes tend to the same
solution with a quadratic rate of convergence.

The computational efficiency of OSC is similar to that of Galerkin. In the sim-
ulation on the finest level, the Galerkin approach was approximately 5% faster than
OSC (411 versus 430 seconds on an IBM RS/6000-560) with OSC being slower in the
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assembly phase but slightly faster in the solution phase. This last result is explained
by noting that the existence of an M -matrix enhances the convergence properties of
the preconditioned conjugate gradient scheme that was used in the solution of the
linear system.

5. The general diffusion operator. In this section the OSC approach is ap-
plied to the general diffusion operator (2) with a possibly nonconstant tensor D. The-
orems 2.3 and 2.4 (referring to two-dimensional Galerkin) and Theorems 3.1 and 3.2
(referring to OSC) cannot be extended to a general tensor D. However, it is possible
to identify cases where two-dimensional Galerkin and OSC lead to M -matrices [2].

We first consider a variable isotropic D. The tensor in this case reduces to a scalar
factor d, which is usually discretized as an elementwise constant function. Positive
stiffness coefficients may occur only at interfaces where the elemental d varies (material
interfaces). For example, let d(1) and d(2) be the diffusivities of the two elements shown
in Figure 3. If d(1) > d(2) then the global Galerkin stiffness coefficient given by

sGij = −
d(2)| rmc2 | − d(1)| rmc1 |

|rij |

can become positive. These cases do not occur if each of the subsets of the do-
main where d is constant satisfies the conditions of Theorems 2.4 and 3.2 for two-
dimensional Galerkin and OSC, respectively. Otherwise, additional nodes at material
interfaces can be introduced, as is done for domain boundaries.

In the case of an anisotropic tensor D, we consider without loss of generality
a diagonal tensor with coefficients dx, dy, and dz. In the Galerkin approach D is
introduced in the scalar product of the two basis function gradients. In OSC, the
replacement of ∇Ni by D∇Ni in equation (12) leads to a vector that is not in general
orthogonal to edges rkj and rlj . To ensure the orthogonality, the original problem is
transformed into its isotropic equivalent by distorting the frame of reference [5], i.e.,
by applying to the nodal coordinates of the element the matrix

V =





√

d/dx 0 0

0
√

d/dy 0

0 0
√

d/dz



 ,

where d = 3

√

dxdydz is the scalar diffusivity in the distorted system.
If D is constant over the whole domain, distortion can be applied before the

Delaunay triangulation is generated. Then Theorems 2.4 and 3.2 hold. If D is variable,
an M -matrix is guaranteed only if in each of the subsets of the domain where D is
constant the distorted mesh satisfies the conditions of Theorems 2.4 or 3.2.

6. Conclusions. It is well known that it is always possible to find suitable two-
dimensional Delaunay triangulations for which the linear Galerkin approach for the
discretization of the Laplace operator leads to an M -matrix. However, this cannot
be done using tetrahedral meshes. From the interpretation of the Galerkin scheme
as a subdomain collocation method, we show that in two dimensions the subdomain
faces are orthogonal to the element edges, while this orthogonality is missing in three
dimensions (except in the case of a regular tetrahedron). We propose a new method,
called OSC, that extends the two-dimensional approach to tetrahedra by keeping
the subdomain faces orthogonal to the element edges. Thus, by applying OSC the
known properties of the two-dimensional Galerkin scheme can be extended to three
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dimensions. In particular, we can prove that under conditions similar to those required
in the two-dimensional case the OSC matrix becomes an M -matrix. In a numerical
test typical for example of groundwater flow modeling, it is shown that the OSC
scheme always preserves the physical correspondence between fluxes and gradients,
while the three-dimensional Galerkin approach does not. Finally, we discuss the
conditions under which the OSC discretization of a general diffusion operator leads
to an M -matrix.
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