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FINITE ELEMENT APPROXIMATION OF THE LINEAR
STOCHASTIC WAVE EQUATION WITH ADDITIVE NOISE

MIHALY KOVACS!, STIG LARSSON':2, AND FARDIN SAEDPANAH

ABSTRACT. Semidiscrete finite element approximation of the linear stochas-
tic wave equation with additive noise is studied in a semigroup framework.
Optimal error estimates for the deterministic problem are obtained under
minimal regularity assumptions. These are used to prove strong convergence
estimates for the stochastic problem. The theory presented here applies to
multi-dimensional domains and spatially correlated noise. Numerical exam-
ples illustrate the theory.

1. INTRODUCTION

We study the finite element approximation of the linear stochastic wave equation
driven by additive noise,

da — Audt = dW in D x (0, 00),
(1.1) u=0 in D x (0, 00),
U(',O) = Uo, U(,O) =g in D,

where D C R?, d = 1,2,3, is a bounded convex polygonal domain with boundary
0D, and {W (t)}+>0 is a Lo(D)-valued Wiener process on a filtered probability space
(Q, F,P,{Fi}+>0) with respect to the normal filtration {F;}¢>0. We let ug, v be
Fo-measurable random variables.

For introduction to the stochastic wave equation and its applications we refer to
[, [6], [14], [16], [Z3] and the references therein.

The stochastic heat equation and its numerical approximation has been exten-
sively researched in the literature, see, for example, [6], [T1], [I2, [T3], [23], [25],
[26], and the references therein. The numerical analysis of the stochastic wave
equation is less studied, see [15], [I8], [20], [24] for existing results. In particular,
these works do not deal with multiple dimensions or correlated noise. This is the
purpose of the present work.

We use the semigroup framework of [I6] in which the weak solution of ([ITJ) is
represented as a stochastic convolution

u(t) = /0 A2 gin((t — s)AL/2) AW (s),
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where, for simplicity, we have set the initial values ug = vg = 0. Here A = —A with
D(A) = H*(D) N HY (D), and v(t) = A~'/?sin(tA/?)f is the solution of

t+Av=0, t>0,

v(0) =0, v(0)=f.

We show that, if ) denotes the covariance operator of W, and if
(1.3) [AB=D2Q2 |y < oo,

for some 8 > 0, then we have spatial regularity of order f3,

(1.2)

1/2 B
(E(”u(t)”ilﬁ)) S Ctl/?”A(ﬁ 1)/2Q1/2”HS;

where H? = D(AP/?). In particular, if Tr(Q) = ||Q'/?||35 < oo (spatially correlated
noise), then we may take 8 = 1. On the other hand if ) = I (uncorrelated noise),
then 8 < 1—d/2, that is, 8 < 1/2, d = 1. See Section B for details.

We discretize (T)) in the spatial variables with a standard piecewise linear finite
element method, and we show strong convergence estimates in various norms. For
example,

(L) (B(lunt) - u(t)||2))1/2 < CORSPAPIPQ 2 lys, B (0,3,

where again ug = v9 = 0 and wup(t) is the approximate solution with maximal
meshsize h, see Theorem Bl

As a comparison, we recall from [25] that for the stochastic heat equation we
have

1/2 _
(B(lu@l3,)) " < CIAC=D2Q 2 s, §>0,

(B(lun() - u(t)ll2))1/2 < CHIAPV2QY s, B € [0,2].

Here the order of regularity coincides with the order of convergence.
The main tools for the proof of ([[A) are the Ité-isometry [ZH) and error esti-
mates for the deterministic problem (CZ) with minimal regularity assumptions,

(1.5) llon(®) = v(@)l < CEOR*||F]] 7=,

llon(t) — (@Il < ClIfll -1
and, hence by interpolation, see Corollary B3]

lon(t) =0l < COR5P||fllgs, B €[0,3]

As mentioned above, when we specialize to Q@ = I, d =1, we have § < 1/2 and
thus the order of strong convergence is O(h®), a < 1/3. This is the same order as
in [I8], where spatial semi-discretization of the nonlinear stochastic wave equation
with a standard difference scheme of uniform meshsize h is considered for d = 1
and with space-time white noise (@ = I). We note that the order of convergence
is less than the order of regularity, which is 8 < 1/2. However, it is known that in
(@3, || f|l 72 can not be replaced by || f|| z2—. for any € > 0, see [19] and Remark £
below. Therefore, O(h%), a < 1/3, is the best that one can expect. This explains
the discrepancy in the convergence behavior between the heat and wave equations.

In [24] the leap-frog scheme is applied to the nonlinear stochastic wave equation
in the unbounded domain D = R, and a strong convergence rate O(h'/?) is proved.
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The proofs in both [I8 and [24] are based on representation of the exact and
approximate solutions by means of Green’s functions. The difference in convergence
rate between the two is explained by the fact that in R the Green’s functions for the
wave equation and the leap-frog scheme coincide at mesh points, see Remark
for more details.

In summary we may say that we extend the results of [I8] to the finite element
method in multiple dimensions and correlated noise. But we only consider the
linear equation with additive noise. We also explain the discrepancy between [I8]
and [24]. We plan to address the nonlinear equation diu—Au dt = f(u) dt+g(u) dW
in future work.

The paper is organized as follows. In Section [ some preliminaries are provided
and a rigorous meaning to the infinite dimensional Wiener process {W(t)}:>o and
the stochastic integral are given together with the definition of a weak solution
of (1). Existence, uniqueness, and regularity of weak solutions are discussed in
Section Bl In Section H the finite element method for the deterministic problem is
formulated and analyzed. The results obtained here are used in Section Bl to derive
strong convergence estimates for finite element approximation of the stochastic
equation ([CI). Finally, numerical experiments are presented in Section B in order
to illustrate the theory.

2. PRELIMINARIES

Throughout the paper we use -’ to denote the time derivative ’%’, and C to
denote a generic positive constant, not necessarily the same at different occurrences.
We refer to [16] and [I7] for more details on stochastic integration and for some
concepts that we cannot explain here.

Let (U, (- )U) and (H ,(5) H) be separable Hilbert spaces with corresponding
norms ||- ||y and ||-||z. We suppress the subscripts when it causes no confusion. Let
L(U, H) denote the space of bounded linear operators from U to H, and £L2(U, H)
the space of Hilbert-Schmidt operators, endowed with norm || - ||z, &). That is,
T € Lo(U,H) if T € L(U, H) and

oo
||T||2£2 U,H) = ITexl|F < oo,
(U,H)
k=1

where {e;}72, is an arbitrary ON-basis in U. If H = U we write L(U) = L(U,U)
and HS = Lo(U,U). It is well known that if S € L(U) and T € Lo(U, H), then
TS € L5(U, H) and we have the norm inequality

(2.1) TS| o,y < T cow,mn IS llcw)-

Let (Q,F,P) be a probability space. We define Ly(2, H) to be the space of
H-valued square integrable random variables with norm

1/2
lollz.,m) = (ol = ( /Q lo(@)Ilf dP(w))

where E stands for expected value. Let @ € L(U) be a selfadjoint, positive semi-
definite operator, with Tr(Q) < oo, where Tr(Q) denotes the trace of ). We say
that {W(t)}+>0 is a U-valued Q- Wiener process with respect to {F;}i>o if

(i) W(0) =0,

(ii) W has continuous trajectories (almost surely),
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(iii) W has independent increments,
(iv) W(t)—W(s), 0 < s <t, is a U-valued Gaussian random variable with zero
mean and covariance operator (t — s)@,
and
(v) {W(t)}s>0 is adapted to {F;}i>0; that is, W (t) is F; measurable for all
t>0;
(vi) the random variable W (t)—W (s) is independent of F; for all fixed s € [0, t].
It is known, see, e.g., [I], Section 2.1], that for a given Q-Wiener process satisfy-
ing (i)—(iv) one can always find a normal filtration {F;}>o so that (v)—(vi) holds.
Furthermore, W (t) has the orthogonal expansion

(2.2) Z 128 (t)e;,

where {(7;,€;)}72, are the eigenpairs of () with orthonormal eigenvectors, and
{Bj}32, is a sequence of real-valued mutually independent standard Brownian mo-
tions. We note that the series in [Z2) converges in Ly(Q,U), since for ¢ > 0, we
have

I 0. 0.0y = B( HZ Ve 0|) = LB 0)’
j=1

:tZW:tTr(Q) < 00
j=1

We need only a special case of the It6 integral where the integrand is determin-
istic. If a function ® : [0, 00) — L(U, H) is strongly measurable and

t
(2.4) / 18 ()QY/2 125 ds < oo,

(2.3)

then the stochastic integral fo dW( ) is well defined and Itd’s isometry,

e B [ewawe|] = [ o0 g s

holds.

More generally, if Q € L(U) is a selfadjoint, positive semidefinite operator with
eigenpairs {(7;,e;)}32;, but not trace class, that is, Tr(Q)) = oo, then the series
Z2) does not converge in L2(Q,U). However, it converges in a suitably chosen
(usually larger) Hilbert space and the stochastic integral fo s) dW(s) can still be
defined and the isometry (Z3) holds, as long as ([Z4) is satlsﬁed In this case W is
called a cylindrical Wiener process. In particular, we may have Q = I (the identity
operator).

Next we consider the abstract stochastic differential equation

(2.6) dX(t) = AX($)dt + BAW(t), t>0; X(0) = Xo,

and assume that

(al) A: D(A) C H — H is the generator of a strongly continuous semigroup
(Co-semigroup) of bounded linear operators {E(t)}:>0 on H,

(a2) B e L(U,H),

(a3) Xo is an Fp-measurable H-valued random variable.



FEM FOR THE STOCHASTIC WAVE EQUATION 5

An H-valued predictable process { X (t) }+>0 is called a weak solution of Z8), if the
trajectories of X are P-a.s. Bochner integrable and, for all y € D(A*) and all ¢ > 0,

t t
@D (XOm) = o+ [ (XA ds+ [ (BaW().0). Pas

3. ABSTRACT FRAMEWORK AND REGULARITY

As in the introduction, let A = —A be the Laplace operator with D(A) =
H?(D)NH{ (D) and let U = L2(D) with the usual inner product (-,-) and norm ||-||.
In order to describe the spatial regularity of functions we introduce the following
spaces and norms. Let

. e 1/2 .
B =DA%, [olla = 420l = (X (0.09?) . a€R ven”,
j=1

where {(A;,#;)}72; are the eigenpairs of A with orthonormal eigenvectors. Then
H* C HP for a > B. Tt is known that H® = U, H' = H}(D), H? = H*(D)NH} (D)
with equivalent norms and that H~# can be identified with the dual space (H?)*
for > 0, see [22]. We note that the inner product in H' is ()1 =(V-, V). We
also introduce

3.1) H:=H*x H*™", |[Joll[2:= lolla + lloallozy, @ €R,

and set H = H® = H° x H~! with corresponding norm |||-|||= [|||||o-
Next we write ([I)) as an abstract stochastic differential equation ([ZH). To this
end, we put u; = u, us = % and note that [CI)) is formally

ui| _ 0 I (50 0
e =[x o] ] e+ 7] o
We therefore define

S B A

H:=H'=H"xH', U:=H°,
with

Z2

D(A):{a:eH:sz [_Axl

]EH:HOle}zleHleO.

Here A is regarded as an operator H' — H~!. The operator A is the generator of
a strongly continuous semigroup (Cop-semigroup) E(t) = e*4 on H and

C(t) A—1/28(t)
—AY25(t) cw |’
where C(t) = cos(tA'/?) and S(t) = sin(tA'/?) are the so-called cosine and sine
operators. For example, using {(};, ¢;)}32,, the eigenpairs of A, we have

(3.2) E(t) = = [

o0
A28t = AV 2sin(tAY )0 = 3 A sin(tA) %) (v, )85
j=1
We also note that B € L(U,H) and we let Xy be an Fy-measurable H-valued
random variable to fulfill the assumptions (al)-(a3). We assume that W is a Q-
Wiener process or a cylindrical Wiener process on U. Now (L)) is set in the form
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([Z38), which is given a rigorous meaning by the weak formulation (7). Next we
consider the existence, uniqueness, and regularity of the weak solution. Recall that
we write HS = L2 (U, U) for the Hilbert-Schmidt operators on U.

Theorem 3.1. With the above definitions and if [|[A®—1/2Q1/2?||us < oo for some
B > 0, then ZH) has a unique weak solution, which is given by the variation of
constants formula,

t
(3.3) X(t) = E(t)Xo +/ E(t—s)BdW(s), t>0.
0
Moreover,
(34)  IXOllza@ae) < O(IXollLagms) + 22IAC2Q 1 lug), > 0.

Proof. To prove that (B3) is the unique weak solution it is enough to show that,
for fixed t,

t
(3.5) /0 ||E(s)BQ1/2H2£2(U7H) ds < oo,

see [I6, Theorem 5.4]. Indeed, with {e;}?,, an arbitrary ON-basis in U, and for
any 3 > 0, we have

BB as= [ S|||Bs)B@ 26| a
/0” (5)BQ ”zzz(U,Hﬁ) 3_/0 ;m (5)BQ ekmﬁ °
eS)
= [ S sl + e e o
k=1

t .
= [ A5 QY2 g + AT 20Q 2 g ds
< 2[|ACVRQH? s,

where, for the last inequality, we used the fact that the A commutes with C(s), S(s)
and () together with the boundedness of the cosine and the sine operators in U.
With g = 0, this implies (@), and therefore it implies existence and uniqueness
of the weak solution. Finally, (83) follows from B3), the boundedness of E(t) in
H? | the It6 isometry ([Z3H), and (EH):

IXOIZ, 0,m9)

< 2(IEO Kol 0, + | [ B G- 0)Baw ()

2
LQ(Q,HB))
t
<2150l o) + [ IE6BQ g0, )
O

Remark 3.2. The parameter § in the condition ||[AB—D/2Q/?||gs < oo quantifies
the spatial correlation of the noise. We highlight three special cases.

e If ( is of trace class, then 8 = 1, because ||Q*/?||%s = Tr(Q) < oo.
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e If ) = I, which corresponds to space-time white noise, then we have
[[AB=D/2||gs < oo if and only if d = 1 and 8 < 1/2. Indeed, the eigenvalues
of A behave asymptotically like A; ~ §*/? so that

AV = 37 N 3 O,
Jj=1 j=1

and the series converges if and only if 8 <1 —d/2, thatis,d=1, 8 < 1/2.
o Similarly, if Q = A™%, s >0, then f <1+ s—d/2.

Thus, in order to have a positive order of regularity in multiple dimensions (d > 1)
we need correlated noise.

4. THE FINITE ELEMENT METHOD FOR THE DETERMINISTIC PROBLEM

In this section we first study the spatially semidiscrete finite element method for
the deterministic linear wave equation,
i—Au=f in D x (0,00),
(4.1) u=0 on 9D x (0, 00)
u(-,0) =wug, 4(-,0)=wv9 inD,

where D € R?, d = 1,2,3, is a bounded convex polygonal domain with boundary
0D. Then we specialize to the homogeneous equation and derive error estimates
which will used to prove strong convergence of the finite element approximation of
the stochastic equation.

4.1. Error estimates for the non-homogeneous problem. Let {7,} be a reg-
ular family of triangulations of D with hx = diam(K), h = maxgeT, hk, and
denote by Vj, the space of piecewise linear continuous functions with respect to 7
which vanish on 8D. Hence, V}, C H}(D) = H'.

The assumption that D is convex and polygonal guarantees that the triangula-
tions can be exacly fitted to 9D and that we have the elliptic regularity ||v||z2(p) <
C||Av|| for v € D(A). We can now quote basic results from the theory of finite
elements. We use the norms || - ||s = || - || .-

For the orthogonal projectors Pp, : H® — Vi, Ry : H' — Vj, defined by

(PhU7X) = (U7X)7 (VRhU,VX) = (VU, VX); VX € Vha
we have the following error estimates:
(42) ||(Rh - I)UHT‘ < Chs_r”””& r= 07 ]-7 § = 1727 (S Hs:

(4.3) (Pr — Doll» < Ch*"|Jolls, 7=-1,0,s=1,2, veH".
If {7} is a quasi-uniform family, then P, is bounded in H?,

(4.4) |Prolls < Clvlls, ve H'.

Then we have also

(4.5) |(Pr — Dol <CR*Yv|ls, s=1,2, ve H.

Remark 4.1. We note that the assumption of quasi-uniformity for the validity of
EZ) can be relaxed, see [, [5], and [7].
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We define a discrete variant of the norm || - ||4:

[vnllna = 1A *onll, on € Vi, a €R,
where Ay, : Vi, — Vj, is the discrete Laplace operator defined by
(Ah'l}h,X) = (VvthX)J VX S Vh-

It is clear that ||vpll1,n = ||[Von|| = [|vnllx and
(4.6) IPrfll-1n < lIfll-1, feHT
follows from the calculation
1
_1 A, 2Py f, )
”Ahzrphf”: sup |( h hf Uh)| = sup |(f h Uh)|
unEVh [lonll oneVn  lonll
= sup |(f7 )| = sup |(f7wh)|
WhEVA ||A2wh|| wneVi |[whll
(f;w)
< sup WOy

wern ol

With u; = u, us = @, the weak form of (@) reads: find u, (¢), uz(t) € H', such
that

(Vu1 (t), Vvl) - (VU2( ) Vvl) = 0

(4.7 (2(t),v2) + (Vur(t), Vo) = (f(t),v

ul(O) = Uo, UQ(O) = 9-

Y1, v9 EHI, t>0,

2),

The semidiscrete analogue of (@) is then to find up 1(t), up,2(t) € V4 such that

(Vg1 (t), Vx1) — (Vup,a(t), Vxi) =0,
(4.8) (an,2(t), x2) + (Vun(t), Vxa) = (f(t), x2),
up,1(0) = uno, up,1(0) = v,

Vx1,X2 € Vi, t >0,

with initial values up,0,vn,0 € Vi.
In our error analysis we will use the stability of the slightly more general problem
of finding up,1(t), un,2(t) € V4 such that
(Vin,1(t), Vx1) — (Vunz(t), Vxi) = (VA (), Vxa),
(4.9) (Un,2(t), x2) + (Vun,1(t), Vxz) = (f2(), x2),

up,1(0) = upo, up,1(0) = vho,

Vx1,x2 € Vi, t >0,

We set x; = Afup;, i =1,2, a € R, in J) and conclude in a standard way that

lluna@)lln,at1 + llun2()]lha < C{
(4.10) t t
+ [ IR @lnarr ds+ [ [Paa()lna ds).
0 0

Next, we obtain optimal order error estimates in Lo ([0, 00), H®) with s = 0,1
for up,1 and s = 0 for up 2. The regularity requirement is minimal, see Remark B8
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Theorem 4.2. Let u1,us and up,1,up2 be the solutions of @X) and EX), respec-
tively, and set e; := up; — u;, © = 1,2. Then, fort >0, we have

llex(®)llr < C{lluno = Ruuolls + llvn,0 — Ruvoll}

(4.11) t
+Ch{llu @l + [ lia(s)lh ds},
0
les @Il < C{lluno — Ratiolls +lleno — Racoll}
(4.12) t
+ O {Jlua®)+ [ Nia(o)llds},
0
llex ()1l < C{llun,0 — Ruuoll + |[vn,0 — Prvoll -1}
(4.13)

+ ol + [ lu)las).

Proof. We set
(4.14) ei =0; + p; = (up; — mu) + (mus — ), i=1,2,
where T will be chosen as Ry, or P,. By subtraction of 1) and (), recalling
Vi, C H', we obtain
(Vér(t), Vxi) — (Vea(t), Vxa
(é2(t), x2) + (Ve (), Vx2)

N
Il

0,
0 Yx1, X2 € Vi, t > 0.

Y

Hence,
(V61,Vx1) = (V62,Vx1) = —(Vp1, Vxa) + (Vp2, V1),
(62, x2) + (V61,Vx2) = —(f2, x2) = (Vp1, Vx2),
First, in order to prove the error estimates {EI1) and {IZ), we set
0; = up; — Rpus, pi=(Rp—IDu;, i=1,2.
By the definitions of the operators Ry, Py, we have
(V01,Vx1) — (V62,Vx1) =0,
(02, x2) + (V61,Vx2) = —(p2, X2),

that is, 61,0y satisfy @J) with f; = 0, fo = —p2. Therefore, by the stability
inequality (I0) with a = 0, we obtain

Vx1,Xx2 € Vi, t > 0.

Vx1,Xx2 € Vp, t >0,

t
161 ln,1 + [162()[[n,0 < C{||91(0)||h,1 + 162(0)[[n,0 + / 1Prp2(8)lln,0 ds};

0
Recalling (ETA) and that ||vy|
lex@lls < C{llun.0 — Ruetalls + llon.o — Ruvol

no = |lvnll and [[on[ln,1 = [lvalli, vn € Vi, we have

t
+ [ IRn = Dzl ds + (Rs - Dun 0l }
0
lea(®)ll < C{ lluno = Ruuolly + om0 = Ravol

t
+ [ NR = Dia(e)ds + R = Dua(o)] .
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Using [@2) we conclude (@I and EI).

Finally, to prove the error estimates [@I3)) we alter the choice of 7; in ([EI4]) and
set
01=uh,1—RhU1, 1= Rh—fuh
(4.15) 0> = up2 — Prua, 22 = Eph - I))Uz-
Then, similarly to the previous case,
(V61,Vx1) — (V6s2,Vx1) = (Vp2, Vxa),
(B2, x2) + (V81,Vx2) = 0,

that is, 6, 05 satisty @3) with fi = pa, fo = 0. Therefore, by the stability inequal-
ity @I) with a = —1, we obtain

161 ()| 5,0 + [162(8)[|n,~1
t
< C{||91(0)||h,0 + [162(0)[|n,~1 + / IR kp2(5)|n.0 dS},
0

Using @5), @I4), and
IRnp2ll = IPa(I = Rp)uzll < [[(Ra — Duzll,

Vx1,x2 € Vp, t >0,

we have

lex(®)I1 < C{lluno = Ruuoll + l[on,0 = Pavol| 1

+ [ IR = Dua(e)lds + (R = Dus 01}
This proves [EI3). O

4.2. Error estimates for the homogeneous problem. Here we specialize to
the homogeneous problem

i)+ Au@) =0, >0,
u(0) = ug, u(0) = vy,

and express the error estimates in terms of the initial values. Differentiating the
equation with respect to ¢, we obtain in a standard way

(4.17) DG + D)2 40 = 0112 + a2
Here, for k=0,1, ...,
uh = A*ug, v} = AFug, r =2k,
ub = AFvg, v = AF g, r=2k+1.
We use the notation from Section Bl and we write [I6) as
X(t)=AX (), t>0,
X(0) = Xo,

(4.16)

(4.18)

and we recall that the linear operator A is the generator of a Cy-semigroup E(t) =
et4 given by ([2). Therefore the solution is X (t) = E(t)Xo. The finite element
problem is then to find X, (¢) € Vj, x V}, such that

Xn(t) = AnXn(t), t>0,

(4.19) Xr(0) = Xp,o,
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Up,1 Uh,0
Xp= " X0 = [0
h |:/u'h,2:| ’ h,0 |:/Uh,0:|
Similarly to 3), it can be shown that Aj generates a Cy-semigroup Ep(t) given
by

| O A8
(4.21) En(t) =" = l_A}L/QSh(t) hCh(t) ]

where

(4.20) Ay = [_%h é] ,

with
Cu(t) = cos(tA}/?),  Sp(t) = sin(tA}/?).

For example, similarly to the infinite dimensional case, using the eigenpairs of the
discrete Laplacian Ap, that is {(Ap,j, ¢h,j)}§v:"1, with N, = dim(V3), we have

Ny
A;1/2 Sin(tA}lﬂ)'Uh = Z )\;,;/2 sin(t)\,ll{;)(vh, ¢h,j)¢h,j; Vp € Vh.
j=1

We may now formulate a consequence of Theorem EE2 which will be used to
prove the strong convergence of the finite element approximation of the stochastic
wave equation. Recall |||v]||2=[|v1]|% + |lv2|]2_; from @).

Corollary 4.3. Denote Xo = [ug,vo]T and

(4.22) W) Xo = (Ch(8)Pr — C(1))uo + (A, Sh(t)Ph — A~/28(t)) vy,
(4.23) n(t)Xo = (Cht)Ri — C(t))ug + (A, />Sh(t)Pr — A=28(t))vo,
(4.24) Gh(t)Xo = —(AY2Sh()Rn — AY25(t))ug + (Ch(t)Ph — C(t))vo.

Then we have

(4.25) |1 F () Xoll < C(L+ t)hE||| Xollls, t>0, B€[0,3],
(4.26) IGr(t)Xollr < O+ )REE=V|||Xoll|5, t>0, e [L,3],
(4.27) IGh(t)Xoll < C(L+ )PV ||| Xo||lg, ¢>0, Bel[l,4].

Note that Fj, and G, differ only in the choice of initial value: ug,, = Pruo and
uo,n = Rpup. This is necessary in order to accomodate the lowest order of initial
regularity used (8 =0 and g = 1).

Proof. We begin with the case 8 = 0 of (ZH). By the stability @I0) with a = —1
and its the analogue for the continuous equation, and (H), we have

| F () Xoll < [lun,1(®)]] + [lui(t)]]

< C([luoll + llvoll—1) = C I[lo-
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For the case § = 3 we use {I3) with ug,p = Pruo and vo,, = Prvo, and EID),
| F5 () Xol| = llex(?)]]
< C{l|Pn(I — Ri)uoll}

t
+ O {llu @l + [ lua(o)llads}
0
< Ch*{|luoll2 + Ilvoll1 + t(|[wolls + [lvoll2) }
< C+ 1| Xol s

The proof is then completed by interpolation between these cases.

For @28)) we first use @I) with a =0,
G (®) Xollr < lluna(®)llr + llua(®)llx
< C{IIRnuollr + IPrvoll + [luollr + [lvoll }
< C(lluoll + [lvoll) = Cll|Xoll]s-
Then we use EII) with ug,, = Rpug and vg p, = Phrug,
IGA () Xollr = llex () |1

t
< C{IIPu(L = Raooll} + Ch{lur @)+ [ lia(s)] ds}
0
< Ch{|luoll2 + llvollx + t(lluolls + [lvoll2) }
< O+ t)h?|[| Xol|ls-
For @21) we apply EI0) with o = 0,
IGR(#®)Xoll < llun2@®)] + [luz(®)]] < C{lIRruolls + IPavoll + lluolls + I|voll }
< C([luollr + llvoll) = Cll1Xolll1-
Then we use @IZ) with ugn = Rpug and vg p, = Phug,

IGa()Xoll = llea®)] < OH {Jua®lo + [ el s}

< Ch{|luolls + llvoll2 + t(lluolla + llwolla)} < C(1 + t)A?[||Xo|]s-
O
Remark 4.4. The regularity assumption on X¢ in Corollary B3 cannot be relaxed.

This means that ||| Xo|||g can not be replaced by ||| Xo|||g—e for any € > 0. This is
shown in the lemma below for the periodic problem

U(z,t) — ugg(z,t) =0, (z,t) € R x (0,00),
(428)  ulo+2m,0) = ua,b), (s,1) € R x (0,00)
u(z,0) = uo(z), u(z,0) =vo(z), z€R
Lemma 4.5. Let u be the solution of B28) and uy its finite element approzi-

mation. Assume that, for some B > 0, there is a constant C' such that for all
uo € HZ,,, vo € H3' and h > 0,

per
lu(t) = un(®)|] < Ch3® (lluoll ga + Ilvollzsr1), > 0.
Then a > .
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Here Hg‘e, stands for the subspace of H?® consisting of 2r-periodic functions.

Proof. The proof is adapted from [19]. We omit the details. a

Remark 4.6. Optimal order Lo, ([0, 00), H?) estimates for the finite element approx-
imation of displacement u = u; and velocity 4@ = us were first obtained by [I0].
However, the regularity requirement for the initial displacement is not minimal in
[I0]. This was improved in [3], and in [I9] it was shown that the resulting regular-
ity requirement is optimal, see Lemma above. The error estimates [@IZ) and
ETI3) are in agreement with the corresponding ones in [3] and [T9]. Furthermore,
the proof presented here seems to be more straightforward.

5. THE FINITE ELEMENT METHOD FOR THE STOCHASTIC PROBLEM

We now consider the approximation of the stochastic wave equation. The spa-
tially discrete analogue of (Z8) is to find Xp(t) = (un,1(t), un2(t)) € Vi x V}, such
that

dXh(t) = AhXh(t) dt + PpB dW(t), t>0,

(5.1) Xr(0) = Xo,n,

where Aj, is defined in [@20). Recall that A, generates the Co-semigroup Ep,(t) =
et4r on V}, given by @ZI)), and therefore the unique mild solution of (1)) is given
by

(5.2) Xp(t) = En()Xon + /0 Ep(t — s)PyBAW (s), t> 0.

Recall ||[]|[5= lloall3 + vzl from @D

Theorem 5.1. Let Xo = [ug,v0]T and let X = [u1,us]T and Xp = [un,1,un2]T be
given by B3) and &), respectively. Then, the following estimates hold for t > 0,
where C(t) is an increasing function.

If wo,p, = Prug, vo,n = Prvo, and B € [0, 3], then

(5:3) Iluna(t) = ur(B)ll 00,10y < CORT {1 Xol|Laa,me) + 142 7DQ 2 s }.
If wo,r, = Riuo, vo,n = Prvo, and B € [1,3], then
(5.4)
lun,1(8) = w(®)l] 0,71y < CEORFE{ | Xol|Ly(,me) + 107 7DQ? s }.
If ug,, = Ryuo, vo,n = Prug, and B € [1,4], then
(5.5)
lun2(6) = 2@l 0,10y < CORTOV{IXo | (o) + [1AF7DQH 2 s}
The discrete initial values (uo,, = Rpuo, Or uo,p, = Rpuo, and vop = Prup) and
the regularity of the initial values (X, € H?) are chosen so that the corresponding
rates of convergence match those of the stochastic convolution terms. Of course,

other choices are possible with different convergence rates that can be derived from
Theorem
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Proof. We prove (B3)); the proofs of the other estimates are similar.
In addition to Fj defined in ([E22) we introduce

(5.6) Kn(t)f = (A, > Sh(t)Ph — A7Y/2S(1)) f
and deduce from [@2Z3) with up = 0 that
(5.7) KR (@) FIl < C(L+ t)h3P|f]l -1

Then we have
t
w1 () — w1 (8) = Fa ()Xo + / Kn(t — 5)dW (s).
0

By It0’s isometry (Z3),

t
s () = Ol ey < IBOKolaay + | [ Bne=awe),

t . 1/2
= a0 Xl + ([ 1K(6)Q s d)
=I+1I. ’
From Z3) it follows that
I = E(||Fi () Xol?) < C(t)h3PE(||| Xoll3).

Recalling the definition of the Hilbert-Schmidt norm from Section [, using an or-
thonormal basis {e}$2, in U = H°, we obtain

%t
12 =3 [ 1K@ el .

k=170
Finally, by setting f = Q'/%e; in (B1), we conclude that

4 > 4 _
II* < C(1)th3° Y _[1Q" Pexllz_1 = C(1)hF7|APD/2Q 2 s,
k=1
which completes the proof of &.3). O
Remark 5.2. Let consider the one dimensional case with space-time white noise,
that is, when d = 1, Q@ = I. Then 8 < 1/2 (see Remark B2) and the convergence
rate in (B3) is O(h®), a < 1/3, which is in agreement with [I8], while O(h'/2) was
shown for the leap-frog scheme in [24]. The reason why a higher rate of convergence
is obtained in [24] is that the Green’s functions of the continuous and the discrete
equations coincide at the mesh points.
Another example of a numerical scheme where this happens is Galerkin’s method
with
Vi = span{e’™ : |n| < 1/h},
see [19, Remark 2]. Then instead of [@2H) we would have
1Fw(t) Xoll < CR||Xollls, >0,
and, under the assumptions of (B3),
[[un,1(t) = w1 (D) |Lo@,v) < ChE{[IXollLy(,mm) + AP D2QY?|ns .
This yields the optimal order O(h*), a < 1/2, for @ = I.
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The error estimates in Theorem B2, and therefore in Corollary B33 and Theorem
BTl can be extended to higher order finite element methods. The reason is that the
error estimates for the elliptic and the orthogonal projections in [2) and E3),
respectively, as well as the stability inequality ([EI0) hold for higher order finite
element spaces V}, consisting of continuous piecewise polynomials of order at most
k > 1. This means that in case of highly correlated noise, one might expect higher
order of strong convergence when using a higher order finite element method. In
this case the counterpart of Theorem Bl reads as follows.

Theorem 5.3. Let Xo = [ug,v0]” and let X = [u1,u2]? and Xy = [up,1,un2]?
be given by B) and B2, respectively, where the finite element spaces Vi, consist
of continuous piecewise polynomials of order at most k > 1. Then, the following
estimates hold for t > 0, where C(t) is an increasing function.

If wo,p, = Prug, vo,n = Prvo, and S € [0,k + 2], then

llun,1 (@) = ur (), 0,80y < C(t)h%ﬁ{”XO”Lz(Q,Hﬁ) +[[AZEDQY2 s}
If ug,, = Riuo, vo,, = Prvo, and B € [1,k + 2], then
luna(t) — wr ()|, 0,1
< CORFTE D1 Xo| Ly mey + [1A2F~DQ2 s }.
If wo,, = Riuo, vo,n = Prvo, and B € [1,k + 3], then

lun2(8) = w2l 0110
k41

< C(Oh# V|| Xo |y, m8) + 1AZFD QY s }.

6. NUMERICAL EXPERIMENTS

In this section we demonstrate the order of strong convergence of the finite
element method for the linear stochastic wave equation LSWE ([Il) by numerical
examples. To this end, the backward Euler method is used for time stepping and
some computational analysis on the approximation of the stochastic convolution is
reviewed, see [26].

6.1. Computational analysis. First recall the matrix form of &II),

dup 1(t) 0 I [upa(t) 0
6.1 ’ = ’ dt
(6.1) |:duh,2(t) —Ar 0] |upa(t) + PrdW(t)|’
Let 0 =ty < t1 < --- < tn, = TN, be a uniform partition of the time interval [0, Tv]
with time step k = 1/N; and time subintervals I, = (tp—1,tn), n =1,2, .-+, N¢.
Then the backward Euler method is formulated as, forn =1, 2, --- |, Ny,

up urtl [ o kIl [UP 0
(62) [U{‘] - [U;—l = |-kAw o) |Up] T |Phawn]

Here U € V} is an approximation of u;(-,t,), i = 1, 2, and [UP,U9]T = &,. We
multiply (E2) by

Ap 0O

0 I
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to take advantage of the resulting skew-symmetric structure, see Subsection B3]
and rearrange, to obtain, forn =1, 2, --- , Ny,

(6.3) Ay —kAR] [UP] _ [An O] [UP! 4 0
' kA, I ||UZ| |0 I||Ur! Pr AW |-
For some other ways of approximating the noise and the stochastic integrals we

refer to, for example, [2] and [g].
Recalling the Fourier expansion [ZZ) of W, we have, for all x € V},

(6.4) (Ph AW",X) Z’Y;/ AB(ej, x Z%/ ABF(e5,X),

where we truncated the sum to J terms. Recall that {8;(¢)}/=, are mutually
independent standard real-valued Brownian motions, and that the increments in

E2) are
(6.5) ABY = Bj(tn) — Bj(tn-1) ~ VEN(0,1),

that is, real-valued Gaussian random variables with 0 mean and variance k. We
also note that v; = 1 for the white noise.

Recalling the semidiscrete solution uj, from (E2), we denote by uj the semidis-
crete solution obtained by using the truncated noise; that is,

(6.6) ul(t) = En(t) X0h+2~y/2/ Byt — 5)PaBe; dB; (s).

Jj=1

The following lemma shows, that under some assumptions on the triangulation and
the covariance operator @, it is enough to take J > N, with N, = dim(V4}) in order
to preserve the order of the FEM.

Lemma 6.1. Let u; and uy be defined by ©8) and [BD), respectively. Assume
that A and Q) have a common orthonormal basis of eigenfunctions {e]} ° . and that
Vi, with dimension Ny, is defined on a family of quasi-uniform trwngulatwns {Tn}
of D. Then for J > Ny, the following estimates hold, where C(t) is an increasing
function.

If [AB-D/2Q1?||ys < oo for some B € [0,3], then,

17 1 () = wn1 (B)]| (0, 1oy < CE)RFPAPD2QH2 |y,
If |AB-D/2Q1/2||ys < oo for some B € [1,3], then,
i+ (8) = wn1 (D Ly, iy < COORZEVACD/2QL2] g,
If |AB-D/2Q1/2||gs < oo for some B € [1,4], then,
llun 2(8) = un,2 (@)l o0, 0y < C(t)hs PV AP=D2QL2| s,

Proof. We prove the second estimate; the others are proved similarly. From (&2
and (B0) it follows that

up 1 (8) —upa(t) = Y 1/2/ A7 Su(t — s)Phe; dB;(s).

j=T+1
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By Ito’s isometry (), the independence of §;’s and recalling the error operator
from (BH), we have

) t
o) = s Oy = 2 % [ I8 2 ShPues | ds
j=J+1

oo t
<230 5 [IATS (e ds

j=J+1

) t
23 / 1En(s)e; |2 ds
j=J+1 70
=I+1I.

Let \; denote the eigenvalues of A corresponding to e;. Then
A= sin(sAY2)e |2 = sin®(sA}/%).

Thus,

S t
r=2% 7]-/ 1A=/ sin(sAM2)e; |2 ds
j=J+1 70

00 ¢
=2 Z 'yj/ sin2(s)\;/2)ds
j=J+1 0

o0 o0
—(B—1 —
<2t 3 o<t > AP0y
j=J+1 j=J+1

o0
—(B—1 — —(B— _
<2, 00 3T Ny <ot YA D22 8
j=J+1

For II, by @Z6) with ug =0, v = e;, we have

0 t
<ot Y [l ds
j=J+1 Y0
oo
=CWR" Y illesllz_y < CORTHACTI2QY g,
j=J+1
Hence the proof is completed by the fact that, for a quasi-uniform family of trian-
gulations, we have Nj, ~ h~? and therefore,

At < eI <onN Pt < onl.
O

Remark 6.2. In practice Q and A do not have a common orthonormal basis of
eigenfunctions and the eigenfunctions of @) are not known explicitly. In this case,
one has to solve the eigenvalue problem Qu = Au on Sy, in order to represent PpW.
Computationally this could be very expensive if ) is given by an integral operator.
However, if the kernel is smooth then this can be done more efficiently, see [21].
Furthermore, similarly to the parabolic case [I3], it is enough to keep J < Np,
terms, for suitable J depending on the kernel, in the expansion of P W.
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6.2. Numerical example. For the numerical experiments, we consider the LSWE
in one spatial dimension,

du — Audt = dW, (z,t) € (0,1) x (0,1),
67)  u(0,t)=u(l,t) =0, te(0,1),
u(z,0) = cos(n(z — 1/2)), ui(x,0) =0, =z € (0,1).

Clearly, there is no exact solution available from a numerical viewpoint as even the
solution of the deterministic problem is given as an infinite Fourier series expansion
(see, e.g., [9]). Therefore we take the exact solution to be a finite element approxi-
mation on a very fine mesh with mesh size hegqct t0 approximate u = u(z, 1), using
the backward Euler method (E3) for time stepping with a small fixed time step
k. We note that we chose the time step k according to k < h2, since the rate of
convergence of the fully discrete (623) for the deterministic problem is O(k + h2).
Applying the time stepping (B3) to (B1) we obtain the discrete system

(6.8) X" =EX""! b,

where b = [0, b2]T and by is computed using 4). We note that for the deterministic
problem b = 0, the expected rate of convergence in the Ls-norm for both the
displacement u = u; and the velocity 4 = usy is 2 by [(@I3)) and @IF), respectively,
see Figure 1.

If {); }‘;‘;1 are the eigenvalues of A, and we set Q = A~%, s € R, then

o0 o0
— —5— —s— 2(B_g—
e e LA SR VD P e
=1 =1

which is finite if and only if § < 14+s—d/2 with d being the dimension of the domain
D. In our example (1), where d = 1, we consider two different choices for the
noise. First, we consider space-time white noise corresponding to s = 0 and hence
B < 1/2 and then a correlated noise corresponding s = —1 and hence 8 < 3/2. We
note that since the eigenfunctions of A are given as e; = v/2sin(jnz), j > 1, (ej, x)
can be computed exactly for x = ¢;,4 = 1, ---, Ny, with {cpi}f\ill being a basis
in Vj,. Thus, in the case of space-time white noise, we do not expect convergence
for the finite element approximation of velocity up 2 by (&H), but we expect the
rate of convergence to be 1/3 for displacement up,; by (3). These are confirmed
by Figure 2. In the second case, the expected rate of strong convergence is 1 and
1/3 for displacement and velocity by (&3) and (B3), respectively, as Figure 3 also
confirms. We note that we have used a uniform spatial mesh and therefore with
@ = A?, the assumptions of Lemma [B.1] are fulfilled.

6.3. Comments on numerical linear algebra. On each time level the linear
system (ER) has to be solved. This can simply be done by the backslash operator
“\” in Matlab, but it can be performed faster if instead we perform a minimum
degree permutation of the coefficeint matrix ¥ and then use the “LU” factorization
of the permuted ¥. The coefficient matrix ¥ in @3) is skew-symmetric, which
implies that, in particular, ¥;; # 0 if ¥; # 0. This means that the command
“symamd” in Matlab can be used. The algorithm for solving the linear system
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[EX) is performed in the following steps, with obvious notations,
(REPT)P,X™ = P,(EX" ' 4+ b)
X" =)
LU X™ = Pub

Xn = Ulu\(Llu\(-Plui)))
X" = PS_IXH,

where P, = symamd(X), and [Py, L1y, U] = lu (X™) in Matlab. With hexace = 277
and k = h2,,., the computation time for each realization, that is, the computation
time of generating the Brownian motion, computing the exact solution and the
approximated solutions with mesh sizes h = 27! to h = 27%, takes approximatly
40 seconds with “\” while it takes 4 seconds with minimum degree permutation.
The reason for this can be seen in Figure 4 and Figure 5, where the structure and
the number of nonzero entries in the “LU” factorization of £ and ¥ are shown. An
AMD Opteron computer with 15 Gigabytes RAM memory and 2.2 GHz CPU has

been used for these experiments.

Remark 6.3. One might consider two ways to compute the vector b in (E8). Either
using matrix-matrix multiplication, that is, we need to generate the increments
(E3) at once in a big Ny X Nj, matrix, or using vector-matrix multiplications that
means we need to generate the increments (f3) in a loop and each time in a vector
1 x Np. We used the first idea since it is faster and there was enough memory for
the computations. However, the size of the matrix of the increments, and hence the
memory usage, grows considerably when refining the mesh and taking smaller time
steps. For example, with N, = 27 and N; = 2!, in our experiments 256 Mbytes
RAM was needed for storing the increment matrix, while for Nj, = 28 and N; = 216,
we needed almost 2 Gbytes. In the latter case we used the second approach, that is
vector matrix multiplications, and the computation time for each realization took
about 6 seconds.
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h =2’7, k=h2, Deterministic problem
exact

-1 T

Iogz(error)
|
4
T

~10}+

- : —@— Theoretical order = 2
—12} L] — A — Empirical order for velocity

— # — Empirical order for displacement
I I I I I I I I I

-3 -2.5 -2 -1.5 -1 -0.5
log,(h)

FI1GURE 1. Deterministic problem: the order of strong convergence
in the Le-norm is 2 for both the displacement u (dashed-square)
and the velocity o (dashed-triangle).

2_7, k=h2, 100 realizations,  White noise

T T T T
A — Y Y A - - - — - A
2| 4
| ./“///.-/-. 7
oL g 4
= — A
5 o - -®-—" "%
T —Ar B
N
j=2
o
s 4
-8t 4
-10 - — A — Empirical order for velocity H
—@— Theoretical order for displacement = 1/3
— @ — Empirical order for displacement
n T n T n

12 ; ; ; :
. -3 -25 -2 -15 -1 -0.5
log,(h)

FiGUure 2. LSWE with white noise: the order of strong conver-
gence in the Ly-norm is 1/3 for the displacement u (dashed-circle);
but there is no convergence for the velocity @ (dashed-triangle).
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hexam:zq, k=h?, 100 realizations, Correlated noise (Q:/\’l)
oF T T T T T .
2L 4
—al 4
5
= -ef 1
j=2
o
8l 4
-10}F . —4&— Theoretical order for velocity = 1/3 ~
— A — Empirical order for velocity
—@— Theoretical order for displacement = 1
— @ — Empirical order for displacement
—12 i i i h n n n n n
-5.5 -5 -4.5 -4 - -2.5 -2 -1.5 -1 -0.5

-3
tog, (h)

FiGUuRE 3. LSWE with correlated noise Q = A~': the order of
strong convergence in the Ls-norm is 1 for the displacement u
(dashed-circle), and 1/3 for the velocity 4 (dashed-triangle).

L )
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[0] 100 200 o 100 200
nz = 954 nz = 2609

FIGURE 4. Structure and number of nonzero elements of LU(X)

L U
0] (0]
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100 100
150 150
200 200
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o] 100 200 (] 100 200
nz =762 nz = 883

FIGURE 5. Structure and number of nonzero elements of LU(S).
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