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Abstract. Numerical solutions using finite element methods are considered for transient flow
in a porous medium coupled to free flow in embedded conduits. Such situations arise, for example,
for groundwater flows in karst aquifers. The coupled flow is modeled by the Darcy equation in a
porous medium and the Stokes equations in the conduit domain. On the interface between the matrix
and conduit, Beavers–Joseph interface conditions, instead of the simplified Beavers–Joseph–Saffman
conditions, are imposed. Convergence and error estimates for finite element approximations are
obtained. Numerical experiments illustrate the validity of the theoretical results.
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1. Introduction. The purpose of this paper is to investigate finite element ap-
proximations of the time-dependent Stokes–Darcy system with the Beavers–Joseph
interface condition. Our motivation is the modeling and numerical simulation of
groundwater flows in karst aquifers.

Karst aquifers represent a very significant source of water for public and private
use. For instance, aquifers supply 90% of the water used for domestic and public
purposes in the state of Florida. However, in comparison with large amounts of
studies of groundwater in porous and fractured media, studies about karst aquifers
are still very limited and inaccurate. One of the difficulties in the modeling of karst
aquifers is that, in addition to a porous limestone matrix, a typical karst aquifer also
has large cavernous conduits that are known to largely control groundwater flows
within the aquifer. We refer to such a system as a conduit-matrix system. In this
study, we develop a new modeling approach for water flows in conduit-matrix systems.
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Specifically, we conceptualize karst aquifers as consisting of two separated yet abutting
domains: a conduit domain and a matrix domain. In the conduit domain, the flow is
described by the Stokes equations, whereas in the matrix domain, it is described by
the Darcy equation.

Although the use of the combination of the Darcy equation with the Stokes equa-
tions to simulate water flows in conduit-matrix systems is relatively new, there have
been a few studies of the numerical solutions of the coupled Stokes–Darcy equations;
see [3, 4, 10, 13, 14]. In [3], the Stokes–Darcy system is considered but the interac-
tion in the normal direction is ignored; numerical simulation results using a domain
decomposition method are provided. In [10], a formulation based on the Beavers–
Joseph–Saffman–Jones interface conditions is considered. There, the existence and
uniqueness of the weak solution as well as error analyses for mixed finite element
approximations (see also [14]) are proved. All the works cited, however, consider
only the steady state case and utilize the simplified interface conditions such as the
Beavers–Joseph–Saffman–Jones condition.

In this paper, we study the time-dependent Stokes–Darcy coupled system. In-
stead of using the simplified Beavers–Joseph–Saffman–Jones [9, 15] interface condi-
tion, we use the Beavers–Joseph interface condition that was first observed through
experiments [1]. Although the Beavers–Joseph–Saffman–Jones conditions have been
mathematically proved to be valid under certain restrictive conditions [8, 9, 15], it is
not clear if they are applicable to complicated matrix-conduit systems with curved
interfaces together with inhomogeneous and anisotropic media.

One of the challenges of using the Beavers–Joseph interface conditions is that the
bilinear form in the weak formulation is not coercive, which makes it difficult to carry
out analysis for our work [2]. The remedy is a proper rescaling of the Darcy equation
[2]. It turns out that the bilinear form for the new system satisfies a G̊arding-type
inequality for a sufficiently large scaling factor; this enables us to complete convergence
and error analyses.

The paper is organized as follows. In section 2, we formulate the problem, includ-
ing a specification of the interface conditions. In section 3, we study the convergence
and error estimates for spatially semidiscrete finite element approximations for the
time-dependent Stokes–Darcy problem. Then, in section 4, we consider the fully dis-
crete finite element approximation based on the backward-Euler scheme. Finally, in
section 5, we present a variety of computational results that illustrate our theoretical
analyses.

2. Stokes–Darcy system with Beavers–Joseph interface condition.

2.1. Formulation of the problem. We assume that a conduit-matrix system
consists of two domains, the conduit domain Ωc ⊂ R

d and the matrix domain Ωm ⊂
R

d, d = 2, 3. See the sketch in Figure 2.1 for d = 2. Let Γcm = ∂Ωc ∩ ∂Ωm,
Γc = ∂Ωc \ Γcm, and Γm = ∂Ωm \ Γcm.

In the matrix, Ωm, the flow is governed by the Darcy system

(2.1)

S∂tφm +∇ · vm = f2

vm = −K∇φm
φm(0) = φ0

⎫⎪⎬
⎪⎭ in Ωm.

Here, ∂t :=
∂
∂t , vm denotes the specific discharge, φm the hydraulic (piezometric) head,

S the mass storativity coefficient, K the hydraulic conductivity tensor of the porous
media which is assumed to be symmetric and positive definite, and f2 a sink/source
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Fig. 2.1. The conceptual domain of a conduit-matrix system.

term. The hydraulic head φm is linearly related to the dynamic pressure of the fluid,
pm, via φm := z + pm

ρg , where ρ denotes the density, g the gravitational acceleration,
and z the relative depth from an arbitrary fixed reference height. By substituting
the second equation in (2.1) into the first one, we obtain the parabolic equation that
governs the hydraulic head:

S∂tφm +∇ · (−K∇φm) = f2 in Ωm.

We impose the homogeneous Dirichlet condition along the boundary of the matrix:

φm| = 0 on Γm.

In the conduit domain of the problem, Ωc, the flow is governed by the Stokes
equations:

∂tv = ∇ ·
(
− pI+ 2νD(vc)

)
+ f1

∇ · vc = 0
vc(0) = v0

⎫⎪⎬
⎪⎭ in Ωc,

where vc denotes the fluid velocity, D(vc) :=
1
2 (∇vc+(∇vc)

T ) the deformation tensor,
ν the kinematic viscosity of the fluid, p the kinematic pressure, and f1 a general body
forcing term that includes gravitational acceleration. For the sake of simplicity, the
homogeneous Dirichlet condition is imposed on the boundary of the conduit:

vc = 0 on Γc.

We use the subscripts m and c to indicate where the variables belong. We omit these
subscripts in what follows whenever there is no possibility for confusion.
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On the interface Γcm, the Beavers–Joseph conditions are imposed:

(2.2)

vc · ncm = vm · ncm

−nT
cmT(vc, p)ncm = g(φm − z)

−Pτ (T(vc, p)ncm) =
αν

√
3√

trace(Π)
Pτ (vc − vm)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

on Γcm,

where ncm denotes the unit normal vector on Γcm pointing from Ωc to Ωm, Pτ (·) the
projection onto the local tangent plane on Γcm, g the gravitational acceleration, α a
constant parameter, Π the intrinsic permeability that satisfies the relation K = Πg

ν ,
and T(vc, p) the stress tensor defined as

T(v, p) = −pI+ 2νD(v).

The last equation in (2.2) is the Beavers–Joseph condition [1]. If the term vc − vm

is replaced by vc, then the Beavers–Joseph condition reduces to the Beavers–Joseph–
Saffman–Jones condition.

2.2. Weak formulation of the time-dependent Stokes–Darcy model. For
s > 1

2 , define the Hilbert spaces

Hs
c,0 := {w ∈

(
Hs(Ωc)

)d | w = 0 on Γc},

Hs
m,0 := {ϕ ∈ Hs(Ωm) | ϕ = 0 on Γm},

Q := L2(Ωc)

and the product Hilbert spaces

L2 :=
(
L2(Ωc)

)d × L2(Ωm),

Hs := Hs
c,0 ×Hs

m,0.

A norm on Q is given by

‖q‖0 := ‖q‖L2(Ωc)

for q ∈ Q and a norm in Hs is given by

‖w‖s :=
(
‖w‖2(Hs(Ωc))d

+ ‖ϕ‖2Hs(Ωm)

)1/2

for w = (w, ϕ) ∈ Hs. In what follows, we use W to denote H1 and V the divergence
free subspace of W, i.e.,

V := H1
c,div ×H1

m,0,

where H1
c,div =

{
w ∈ H1

c,0 | divw = 0
}
. For convenience in carrying out the conver-

gence and error analyses of sections 3 and 4, we introduce an equivalent norm on L2:
for η > 0 and v = (v, ψ) ∈ L2,

‖v‖0,η :=
(
‖v‖2(L2(Ωc))d

+ ‖η 1
2ψ‖2L2(Ωm)

)1/2

,
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whereas ‖ · ‖L2 denotes the standard norm. We also need the trace space H
1/2
00 (Γcm)

defined as H
1/2
00 (Γcm) := H1

c,0|Γcm .
We define the bilinear forms a : W×W → R and b : W×Q→ R as follows. For

u = (u, φ) and v = (v, ψ) in W and q in Q,

a(u,v) := 2ν

∫
Ωc

Du : DvdΩc +
1

S

∫
Ωm

(K∇φ) · ∇ψdΩm

+ g

∫
Γcm

φv · ncmdΓcm − 1

S

∫
Γcm

u · ncmψdΓcm

+

∫
Γcm

να
√
d√

trace(Π)
Pτ (u+K∇φ) · vdΓcm

and

b(u, q) := −
∫
Ωc

q∇ · udΩc.

Here, the integral of Pτ (K∇φ)·v on Γcm is understood to be the value of the functional

Pτ (K∇φ)|Γcm ∈
(
H

1
2
00(Γcm)

)′
applied to v|Γcm ∈ H

1
2
00(Γcm), which is well defined when

K is isotropic (see [2, 11] for more details). Thus, from now on, we assume that K is
isotropic. Finally, we define the linear functional F : W → R by

〈F,w〉 := 〈f1,w〉c + 〈f2, ϕ〉m + g

∫
Γcm

zw · ncmdΓ,

where f1 and f2 are functionals on H1
c,0, respectively, and H

1
m,0, and 〈·, ·〉c and 〈·, ·〉m

are the dualities induced by the L2 inner product on Ωc and Ωm, respectively. The
last integral results from the second equation in (2.2). The effect of the integral is
to add the hydrostatic pressure profile to the Stokes equations. It does not affect
the well-posedness or regularity of the problem. For convenience of discussion, it is
omitted hereafter, although it is taken into account in the numerical experiments.

We can now define a weak formulation for the Stokes–Darcy problem: seek u =
(u, φ) ∈ W and p ∈ Q such that

(2.3)

⎧⎪⎨
⎪⎩

〈∂tu,v〉+ a(u,v) + b(v, p) = 〈F,v〉 ∀v ∈ W,

b(u, q) = 0 ∀ q ∈ Q,

u(0) = u0

for almost all t, 0 < t ≤ T , where u0 = (u0, φ0). We say that (u, p) = (u(t), p(t)) is a
weak solution of the Stokes–Darcy problem if (u, p) ∈ L2(0, T ;W)×L2(0, T ;Q) with

∂tu(t) ∈ L2(0, T ;W
′
) and satisfies (2.3). Here, W

′
is the dual space of W.

The difficulty with the weak formulation (2.3) is that the bilinear form a is not
coercive, which hinders the convergence and error analyses for finite element ap-
proximations. To overcome this difficulty, we multiply (2.1) by a scaling factor η.
Obviously, the scaling factor does not change the Darcy equation itself. However, we
need to modify the interface conditions accordingly in order to preserve the solution
of the Stokes–Darcy problem. To this end, we modify the variational formulation as
follows:

(2.4)

⎧⎪⎨
⎪⎩

〈∂tu,v〉η + aη(u,v) + b(v, p) = 〈F,v〉η ∀v ∈ W,

b(u, q) = 0 ∀ q ∈ Q,

u(0) = u0,
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where

〈∂tu,v〉η :=

〈(
∂tu
η∂tφ

)
,v

〉

and

aη(u,v) := 2ν

∫
Ωc

D(u) : D(v)dΩc +
η

S

∫
Ωm

(K∇φ) · ∇ψdΩm

+ g

∫
Γcm

φv · ncmdΓcm − η

S

∫
Γcm

u · ncmψdΓcm

+ να
√
d

∫
Γcm

1√
trace(Π)

Pτ (u+K∇φ) · vdΓcm.

A slightly simpler approach is to take the Leray–Hopf projection, and we work
on the divergence free subspace only, i.e., seek u = (u, φ) ∈ V and p ∈ Q such that

(2.5) 〈∂tu,v〉η + aη(u,v) = 〈F,v〉η ∀v ∈ V

for almost all t, 0 < t ≤ T .
From [2], we have the following result concerning the existence of a G̊arding-type

inequality for aη and the existence and uniqueness of weak solutions for the Stokes–
Darcy problem.

Proposition 2.1. The bilinear form aη satisfies the following G̊arding-type in-
equality: for sufficiently large η > 0, there exist constants C1,η > 0 and C0 > 0 such
that

(2.6) aη(u,u) ≥ C1,η ‖u‖21 − C0 ‖u‖20,η .

Furthermore, (2.5), the Stokes–Darcy problem with the Beavers–Joseph interface con-
dition, has a unique weak solution and (2.4) (or (2.3)) is equivalent to (2.5).

It is easy to verify that aη is continuous on W; i.e., there exists a constant C2,η

such that

(2.7) aη(u,v) ≤ C2,η‖u‖1‖v‖1
∀ u,v ∈ W.

In what follows, we assume that η is a sufficiently large fixed parameter so that
(2.6) and (2.7) hold. Without confusion, we may drop the subscript η for these
constants in the inequalities. We use C to denote a generic constant whose value may
vary with context.

3. Spatial semidiscretization via finite element methods. For i = 1, 2, we
partition Ωj into the mesh {T h

j } (j = m, c) with Ωj = ∪K∈{T h
j }K. We assume that

the cells K ∈ {T h
j } are affine equivalent and the grids of {T h

c } and {T h
m} match along

Γcm.
Next, we introduce the finite element spaces Wh and Qh which are div-stable:1

there exists a constant β > 0, independent of h, such that

Wh = Hh
c ×Hh

m ⊂ W, Qh ⊂ Q,(3.1)

inf
0�=qh∈Qh

sup
0�=vh∈Wh

b(vh, qh)

‖vh‖1‖qh‖0
> β.(3.2)

1This is also referred to as the inf-sup or LBB condition. Interested readers may refer to, e.g.,
[5, 6] for such element pairs.
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We also assume Korn’s inequality (see [2])

(D(vh),D(vh)) ≥ C‖vh‖21 ∀ vh ∈ Wh.

Furthermore, we assume that Wh and Qh include continuous piecewise polynomials
of degree at least k and piecewise polynomials of degree at least k − 1, respectively
(k ≥ 1), and satisfy the following approximation properties:

inf
vh∈Wh

‖v− vh‖1 ≤ Chs‖v‖s+1 ∀v ∈ Hs+1, 0 < s ≤ k,(3.3)

inf
q∈Qh

‖q − qh‖0 ≤ Chs‖q‖s ∀q ∈ Hs(Ωc), 0 < s ≤ k.(3.4)

We also assume that for the chosen finite element spaces Wh and Qh there exists a
projection operator Πh : H1

c,0 → Hh
c such that

(3.5) Πhw ∈ Hh
c , (∇ · (w −Πhw), qh) = 0 ∀qh ∈ Qh, ∀w ∈ H1

c,0(Ωc),

(3.6) ‖w −Πhw‖1 ≤ Chs‖w‖s+1 ∀w ∈ Hs+1
c,0 (Ωc),

where 0 ≤ s ≤ k and C is a positive constant independent of h and w. Details about
the definitions of the finite element spaces Wh and Qh and of the existence of the
projection operator Πh can be found in [5, Chapter II, pages 136 and 146] for k = 1
and in [12] for k = 1, 2, 3.

Now we introduce the discretely divergence free space

Vh :=
{
vh ∈ Wh| b(vh, qh) = 0 ∀qh ∈ Qh

}
.

We define P h : L2 → Vh to be the projection operator with respect to the L2 inner
product, i.e.,

P hw ∈ Vh, (P hw,vh) = (w,vh) ∀vh ∈ Vh, ∀w ∈ L2.

The following proposition is about the approximation properties of P h [7].
Proposition 3.1. The operator P h satisfies the following approximation prop-

erties:

(1) ‖w− P hw‖1 → 0 as h→ 0 ∀w ∈ V;

(2) ‖w− P hw‖1 ≤ Chr‖w‖r+1 ∀w ∈ Hr+1 ∩V;

(3) ‖w− P hw‖0 ≤ Chr+1‖w‖r+1 ∀w ∈ Hr+1 ∩V;

(4) ‖w− P hw‖L2(0,T ;W) → 0 as h→ 0 ∀w ∈ L2(0, T ;V);

(5) ‖w− P hw‖L2(0,T ;W) ≤ Chr‖w‖L2(0,T ;Hr+1) ∀w ∈ L2(0, T ;Hr+1 ∩V).

Here r ∈ [0, k].
We also need the following Gronwall’s inequality in the error estimate.
Lemma 3.2. Assume that K : [0, T ] → [0,∞) is a continuous function. If the

continuous function u satisfies

u(t) ≤ K(t) + α

∫ t

0

u(s)ds ∀t ∈ [0, T ],
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where α ≥ 0, then

(3.7) u(t) ≤ K(t) + α

∫ t

0

K(s)eα(t−s)ds.

The finite element method for problem (2.4) is defined as finding (uh, ph) ∈
H1(0, T ;Wh)× L2(0, T ;Qh) such that

(3.8)

⎧⎨
⎩

〈∂tuh(t),vh〉η + aη(u
h(t),vh) + b(vh, ph(t)) = 〈F(t),vh〉η,

b(uh(t), qh) = 0,
uh(0) = P hu0

∀vh ∈ Wh and ∀qh ∈ Qh. Using the G̊arding inequality (2.6), we can easily prove
that if F ∈ L2(0, T ;L2), then (3.8) has a unique solution (uh, ph) ∈ H1(0, T ;Vh) ×
L2(0, T ;Qh) (see the appendix for details).

Theorem 3.3. Assume that u0 ∈ V, F ∈ L2(0, T ;L2) and (u, p) ∈ [L2(0, T ;V)∩
H1(0, T ;V

′
)]× [L2(0, T ;L2(Ωc))] is the solution of (2.4). Then

‖u− uh‖L2(0,T ;H1) → 0.

Furthermore, if (u, p) ∈ L2(0, T ;Hr+1)× L2(0, T ;Hr(Ωc)), 0 < r ≤ k, then

‖u− uh‖L2(0,T ;H1) ≤ Chr(‖u‖L2(0,T ;Hr+1) + ‖p‖L2(0,T ;Hr(Ωc))).

Proof. Subtracting (3.8) from (2.4) we have that⎧⎨
⎩

〈∂tu(t)− ∂tu
h(t),vh〉η + aη(u(t)− uh(t),vh)

+ b(vh, p(t)− ph(t)) = 0 ∀ vh ∈ Wh,
b(u(t)− uh(t), qh) = 0 ∀ qh ∈ Qh.

From the above equation we deduce that for almost every t ∈ [0, T ]

〈∂tu(t)− ∂tu
h(t),u(t)− uh(t)〉η + aη(u(t)− uh(t),u(t)− uh(t))

= 〈∂tu(t)− ∂tu
h(t),u(t)− P hu(t)〉η + aη(u(t)− uh(t),u(t)− P hu(t))

− b(P hu(t)− uh(t), p(t)− ph(t)).

Noting that P hu− uh ∈ Vh implies ∂tP
hu− ∂tu

h ∈ Vh, we also have

〈∂tu(t)− ∂tu
h(t),u(t)− P hu(t)〉η = 〈∂tu(t)− ∂tP

hu(t),u(t)− P hu(t)〉η

and

b(P hu(t), qh) = 0 ∀qh ∈ Qh.

Using the above equations and the G̊arding inequality (2.6) we deduce that ∀qh ∈
L2(0, T ;Qh) and for almost every t

1

2

d

dt
‖u(t)− uh(t)‖20,η + C1‖u(t)− uh(t)‖21

≤ 1

2

d

dt
‖u(t)− P hu(t)‖20,η + C0‖u(t)− uh(t)‖20,η

+ aη(u(t)− uh(t),u(t)− P hu(t))

+ b(u(t)− P hu(t), p(t)− qh(t))− b(u(t)− uh(t), p(t)− qh(t)).
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The continuity of aη and b and Young’s inequality give

1

2

d

dt
‖u(t)− uh(t)‖20,η + C1‖u(t)− uh(t)‖21

≤ 1

2

d

dt
‖u(t)− P hu(t)‖20,η + C0‖u(t)− uh(t)‖20,η

+
1

4
C1‖u(t)− uh(t)‖21 +

C2
2

C1
‖u(t)− P hu(t)‖21

+
1

2
‖u(t)− P hu(t)‖21 +

1

2
‖p(t)− qh(t)‖20

+
1

4
C1‖u(t)− uh(t)‖21 +

1

C1
‖p(t)− qh(t)‖20,

where C0, C1, and C2 are the constants that appeared in (2.6) and (2.7) with the
subscript η dropped out.

From this estimate we obtain

1

2

d

dt
‖u(t)− uh(t)‖20,η +

1

2
C1‖u(t)− uh(t)‖21

≤ 1

2

d

dt
‖u(t)− P hu(t)‖20,η + C0‖u(t)− uh(t)‖20,η

+ C‖u(t)− P hu(t)‖21 + C‖p(t)− qh(t)‖20.

Integrating the above inequality from 0 to t, we have that

‖u(t)− uh(t)‖20,η + C1

∫ t

0

‖u(s)− uh(s)‖21ds

≤ ‖u(t)− P hu(t)‖20,η + 2C0

∫ t

0

‖u(s)− uh(s)‖20,ηds

+ 2C

∫ t

0

‖u(s)− P hu(s)‖21ds+ 2C

∫ t

0

‖p(s)− qh(s)‖20ds.

By Gronwall’s inequality (3.7), we have that

‖u(t) − uh(t)‖20,η ≤ C

(
‖u(t)− P hu(t)‖20,η

+

∫ t

0

(‖u(s)− P hu(s)‖21 + ‖p(s)− qh(s)‖20)ds+ e2C0t

∫ t

0

(
‖u(s)− P hu(s)‖20,η

+

∫ s

0

(‖u(τ)− P hu(τ)‖21 + ‖p(τ)− qh(τ)‖20)dτ
)
ds

)
≤ C(T )

(
‖u(t)− P hu(t)‖20,η

+ ‖u− P hu‖2L2(0,T ;H1) + ‖p− qh‖2L2(0,T ;L2(Ωc))

)
∀ qh ∈ Qh.

The result of the theorem is then the consequence of approximation properties of P hu
and qh. The proof is complete.

Using an argument similar to the one in [7], we can obtain the following error
estimates for the time derivative ∂tu and the pressure p.

Theorem 3.4. Assume that

(u, p) ∈ [L2(0, T ;Hr+1) ∩H1(0, T ;Hr−1)]× L2(0, T ;Hr(Ωc))
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for some r ∈ [1, k] is the solution of problem (2.4), and let (uh, ph) ∈ H1(0, T ;Wh)×
L2(0, T ;Qh) be the solution of (3.8). Then

‖∂tu− ∂tu
h‖L2(0,T ;L2) + ‖p− ph‖L2(0,T ;L2(Ωc))

≤ Chr−1(‖∂tu‖H1(0,T ;Hr−1) + ‖u‖L2(0,T ;Hr+1) + ‖p‖L2(0,T ;Hr(Ωc))).

4. Fully discrete finite element/backward-Euler discretization. Divide
the time interval [0, T ] into N subintervals [tn, tn+1] (n = 0, 1, . . . , N − 1), satisfying

0 = t0 < t1 < · · · < tN−1 < tN = T.

Let Δtn = tn−tn−1 be the time step with the biggest time step Δt = max1≤n≤N Δtn.

Define the time backward difference operator dtn by dtnu
n
h =

un
h−un−1

h

Δtn
or dtnu =

u(tn)−u(tn−1)
Δtn

.
Based on the weak form (2.4), we propose the space-time fully discretized implicit

Euler scheme as follows: given (u0
h, p

0
h) ∈ Wh × Qh, find (un

h, p
n
h) ∈ Wh × Qh such

that

(4.1)

{
〈dtnun

h,v
h〉η + aη(u

n
h,v

h) + b(vh, pnh) = 〈Fn,vh〉η ∀ vh ∈ Wh,
b(un

h, q
h) = 0 ∀ qh ∈ Qh

for n = 1, 2, . . . , N , where Fn := F(tn).
A special version of this scheme restricted to the divergence free subspace V and

with uniform time step was discussed in our work [2].
To obtain the error estimates for the fully discretized implicit Euler scheme (4.1),

we introduce the projection operator P = (Ps,Pp) : W×Q→ Wh ×Qh such that for
(u, p) ∈ W ×Q the projection (Psu,Ppp) satisfies

(4.2)

{
aη(u− Psu,v

h) + C0〈u− Psu,v
h〉η + b(vh, p− Ppp) = 0,

b(u− Psu, q
h) = 0

∀ vh ∈ Wh and ∀ qh ∈ Qh. The G̊arding-type inequality (2.6) in Proposition 2.1
implies that there is a unique solution (Psu,Ppp) ∈ Wh × Qh for a given (u, p) ∈
W ×Q.

Thanks to the G̊arding-type inequality (2.6) in Proposition 2.1, we have the fol-
lowing approximate properties for (Psu,Ppp).

Proposition 4.1.

Let 0 < r ≤ k.
1. Assume that

(u, p) = (u, φ, p) ∈ Lq(0, T ;Hr+1)× Lq(0, T ;Hr(Ωc))

for some q ∈ [1,∞]. Let (Psu,Ppp) be the projection solution of (4.2). Then
we have

(4.3)
‖u− Psu‖Lq(0,T ;H1) + ‖p− Ppp‖Lq(0,T ;L2(Ωc))

≤ Chr(‖u‖Lq(0,T ;Hr+1) + ‖p‖Lq(0,T ;Hr(Ωc))).

2. Assume that

(u, p) ∈ H l(0, T ;Hr+1)×H l(0, T ;Hr(Ωc)).

Then we have

(4.4)
‖∂ltu− ∂ltPsu‖L2(0,T ;H1) + ‖∂ltp− ∂ltPpp‖L2(0,T ;L2(Ωc))

≤ Chr(‖u‖Hl(0,T ;Hr+1) + ‖p‖Hl(0,T ;Hr(Ωc))).
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Proof. Let eh = u− Psu. Combining (4.2) and the equality

aη(eh, eh) + C0〈eh, eh〉η
= aη(eh,u− vh) + C0〈eh,u− vh〉η
+ aη(eh,v

h − Psu) + C0〈eh,vh − Psu〉η

for vh = (vh, ψh) ∈ Wh and ph ∈ Qh, we obtain

aη(eh, eh) + C0〈eh, eh〉η
= aη(eh,u− vh) + C0〈eh,u− vh〉η − b(vh − Psu, p− Ppp).

From the definitions of Πh in (3.5), it is easy to verify that

(4.5)
b(vh − Psu, p− Ppp) = b(vh − u, p− Ppp) + b(u− Psu, p− Ppp)

= b(vh −Πhu, p− Ppp) + b(Πhu− u, p− ph)
+ b(u− Psu, p− ph),

where Πhu = (Πhu, φ). Now letting vh = (Πhu, P hφ) in (4.5), using the G̊arding
inequality (2.6) and the continuity property of the bilinear operators a and b, we
obtain the following estimate:

C1‖eh‖21 ≤ aη(eh,u− vh) + C0〈eh,u− vh〉η − b(vh − Psu, p− Ppp)
≤ C‖eh‖1‖u− vh‖1 + C0η‖eh‖0‖u− vh‖L2

+C‖eh‖1‖p− ph‖0 + C‖u−Πhu‖1‖p− ph‖0,

which implies that

(4.6) ‖eh‖1 ≤ C

(
‖u− vh‖1 + ‖u−Πhu‖1 + inf

ph∈Qh
‖p− ph‖0

)
.

The div-stability condition implies that

(4.7) ‖p− Ppp‖ ≤ C

(
‖u− vh‖1 + inf

ph∈Qh
‖p− ph‖0

)
.

Combining the estimates (4.6) and (4.7), the approximate properties (3.3) and (3.4)
of the finite element spaces Wh and Qh, and the approximate property (3.6) of Πh,
we obtain the estimate (4.3). If the solution (u, p) has the regularities needed, the
estimate (4.4) holds true just by differentiating the equations in (4.2) with respect to
time t and using the same methods of obtaining the estimate (4.3).

Remark 4.2. In the proof of Proposition 4.1, we used the projection operator Πh.
If we do not use the operator Πh, we can also prove that the estimates in Proposi-
tion 4.1 are true by using the same techniques used in the proof of Theorem 1.1 in
Chapter II in [5].

To obtain the error estimates ‖u− Psu‖L2 , we assume that the solution u of

(4.8)

{
aη(u,v) + C0〈u,v〉η + b(v, p) = 〈F,v〉η ∀ v ∈ W,

b(u, q) = 0 ∀ q ∈ Q

has the following regularity:

(4.9) ‖u‖2 + ‖p‖H1(Ωc) ≤ C‖F‖L2 .
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We also assume that the dual problem of (4.8) is regular in the sense of (4.9). Then
we have the following Aubin–Nitsche-type estimate on ‖u− Psu‖L2 .

Proposition 4.3. Under the assumptions of Proposition 4.1, we have the esti-
mates

(4.10)
‖u− Psu‖Lq(0,T ;L2) + h‖p− Ppp‖Lq(0,T ;L2(Ωc))

≤ Chr+1(‖u‖Lq(0,T ;Hr+1) + ‖p‖Lq(0,T ;Hr(Ωc)))

and

(4.11)
‖∂ltu− ∂ltPsu‖L2(0,T ;L2) + h‖∂ltp− ∂ltPpp‖L2(0,T ;L2(Ωc))

≤ Chr+1(‖u‖Hl(0,T ;Hr+1) + ‖p‖Hl(0,T ;Hr(Ωc))).

Proof. Let eh = u− Psu and (ud, pd) satisfy

(4.12)

{
aη(v,u

d) + C0〈v,ud〉η + b(v, pd) = 〈eh,v〉η ∀ v ∈ W,
b(ud, q) = 0 ∀ q ∈ Q.

Choosing v = eh in (4.12), we have that

(4.13)
‖eh‖20,η = aη(eh,u

d) + C0〈eh,ud〉η + b(eh, p
d)

= aη(eh,u
d − vh) + C0〈eh,ud − vh〉η

+ b(eh, p
d − ph)− b(ud − vh, p− Ppp)

∀ vh ∈ Wh and ph ∈ Qh, which implies that

(4.14) ‖eh‖20,η ≤ C(‖eh‖1 + ‖p− Ppp‖0)
(

inf
vh∈Wh

‖ud − vh‖1 + inf
ph∈Qh

‖pd − ph‖0
)
.

The approximation properties of the finite element spaces vh ∈ Wh and ph ∈ Qh and
the regularity inequality (4.9) give us

(4.15)
inf

vh∈Wh
‖ud − vh‖1 + inf

ph∈Qh
‖pd − ph‖0

≤ Ch(‖ud‖2 + ‖pd‖H1(Ωc)) ≤ Ch‖eh‖L2 .

Now the estimates (4.3), (4.14), and (4.15) lead to the estimate (4.10). Under the
conditions in the proposition, by differentiating the equations in (4.2) with respect to
time t, we can similarly obtain the estimate (4.11).

Now we turn to estimating the error enh = u(tn)−un
h, where u(tn) is the value of

the solution u of problem (2.4) at t = tn, and un
h is the solution of the fully discretized

implicit Euler scheme (4.1).
Theorem 4.4. Assume that 0 < r ≤ k and the solution (u, p) of problem (2.4)

satisfies

∂ttu ∈ L2(0, T ;L2),
(u, p) ∈ H1(0, T ;Hr+1)×H1(0, T ;Hr(Ωc)),

(u, p) ∈ L∞(0, T ;Hr+1)× L∞(0, T ;Hr(Ωc)).

Also assume that the regularity property (4.9) of (4.8) holds. Let (un
h , p

n
h), n =

1, . . . , N , be the solution of the implicit Euler scheme (4.1), and assume that the
initial approximation u0

h of u(0) satisfies

‖u0
h − Psu(0)‖L2 ≤ C∗hr+1.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FINITE ELEMENT APPROXIMATION FOR STOKES–DARCY FLOW 4251

Then we have the following estimate:

(4.16)

‖u(tn)− un
h‖0,η ≤ C

(
hr+1 +Δt ‖∂ttu‖L2(0,T ;L2)

+ hr+1(‖u‖H1(0,T ;Hr+1) + ‖p‖H1(0,T ;Hr(Ωc)))

+ hr+1(‖u‖L∞(0,T ;Hr+1) + ‖p‖L∞(0,T ;Hr(Ωc)))
)
.

Proof. Denote by (un, pn) the value of (u(t), p(t)) at the time t = tn. Let
enh = ηnh + ξnh and ζnh = ζn1 + ζn2 , where ηnh = un −Psu

n, ξnh = Psu
n −un

h = (ξnu , ξ
n
φ)

T ,
ζn1 = pn − Ppp

n, and ζn2 = Ppp
n − pnh .

Let (u(t), p(t)) be the solution of (2.4), and let (Psu(t),Ppp(t)) ∈ Wh × Qh be
its projection solution defined by (4.2). Then (Psu

n,Ppp
n) satisfies

(4.17)

⎧⎪⎪⎨
⎪⎪⎩

aη(Psu
n,vh) + b(vh,Ppp

n) = aη(u
n,vh) + b(vh, pn) + C0〈ηnh ,vh〉η

= −〈∂tun,vh〉η + 〈Fn,vh〉η
+ C0〈ηnh ,vh〉η,

b(Psu
n, qh) = 0

∀ vh ∈ Wh and qh ∈ Qh. Subtracting (4.1) from (4.17), we deduce

(4.18)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

〈dtnξnh ,vh〉η + aη(ξ
n
h ,v

h) + b(vh, ζn2 )

= 〈dtnPsu− ∂tu(tn),v
h〉η + C0〈ηnh ,vh〉η

= 〈dtnPsu− dtnu,v
h〉η + 〈dtnu− ∂tu(tn),v

h〉η
+C0〈ηnh ,vh〉η,

b(ξnh , q
h) = 0.

Letting vh = ξnh in (4.18), we have that

(4.19)
〈dtnξnh , ξnh 〉η + aη(ξ

n
h , ξ

n
h )

= 〈dtnPsu− dtnu, ξ
n
h 〉η + 〈dtnu− ∂tu(tn), ξ

n
h 〉η

+C0〈ηnh , ξnh 〉η.

Using the fact that (a− b)a = a2−b2

2 + (a−b)2

2 , we rewrite (4.19) as

(4.20)
‖ξnh‖20,η + (Δtn)

2

∥∥∥∥ξnh − ξn−1
h

Δtn

∥∥∥∥
2

0,η

+ 2Δtnaη(ξ
n
h , ξ

n
h )

= ‖ξn−1
h ‖20,η + 2Δtn〈dtnPsu− dtnu, ξ

n
h 〉η

+2Δtn〈dtnu− ∂tu(tn), ξ
n
h 〉η + 2ΔtnC0〈ηnh , ξnh 〉η.

Summing up (4.20), we get

(4.21)

‖ξnh‖20,η +
n∑

i=1

(Δti)
2

∥∥∥∥∥ξ
i
h − ξi−1

h

Δti

∥∥∥∥∥
2

0,η

+ 2

n∑
i=1

Δtiaη(ξ
i
h, ξ

i
h)

= ||ξ0h||20,η + 2
n∑

i=1

Δti〈dtiPsu− dtiu, ξ
i
h〉η

+2

n∑
i=1

Δti〈dtiu− ∂tu(ti), ξ
i
h〉η + 2

n∑
i=1

C0Δti〈ηih, ξih〉η

= R0 +Rn
1 +Rn

2 +Rn
3 .
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For the second term on the right-hand side of (4.21), we have

(4.22)

|Rn
1 | = 2

∣∣∣∣∣
n∑

i=1

Δti〈dtiPsu− dtiu, ξ
i
h〉η

∣∣∣∣∣
= 2

∣∣∣∣∣∣
n∑

i=1

〈∫ ti

ti−1

∂tηh(t)dt, ξ
i
h

〉
η

∣∣∣∣∣∣
≤ 6η‖ηh‖2H1(0,tn;L2) +

1

6

n∑
i=1

‖ξih‖20,ηΔti

≤ Ch2(r+1)(‖u‖2H1(0,tn;Hr+1)

+ ‖p‖2H1(0,tn;Hr(Ωc))
) +

1

6

n∑
i=1

‖ξih‖20,ηΔti.

From the fact that

(4.23) ∂tf(ti)−
f(ti)− f(ti−1)

Δti
=

1

Δti

∫ ti

ti−1

(t− ti−1)∂ttf(t)dt,

we have

(4.24)

|Rn
2 | = 2

∣∣∣∣∣
n∑

i=1

Δti〈dtiu− ∂tu(ti), ξ
i
h〉η

∣∣∣∣∣
≤ 6η(Δti)

2‖∂ttu‖2L2(0,tn;L2) +
1

6

n∑
i=1

‖ξih‖20,ηΔti.

Using Proposition 4.3, we estimate Rn
3 as

(4.25)

|Rn
3 | =

∣∣∣∣∣2
n∑

i=1

C0Δti〈ηih, ξih〉η

∣∣∣∣∣
≤ 6ηC2

0

n∑
i=1

‖ηih‖20Δti +
1

6

n∑
i=1

‖ξih‖20,ηΔti

≤ Ch2(r+1)(‖u‖2L∞(0,tn;Hr+1) + ‖p‖2L∞(0,tn;Hr(Ωc))
)

+
1

6

n∑
i=1

‖ξih‖20,ηΔti.

Insert the estimates (4.22), (4.24), and (4.25) into (4.21) and add
∑n

i=1 2ΔtiC0 <
ξih, ξ

i
h >η to both sides to obtain the following estimate:

‖ξnh‖20,η +
n∑

i=1

(Δti)
2

∥∥∥∥∥ξ
i
h − ξi−1

h

Δti

∥∥∥∥∥
2

0,η

+ 2

n∑
i=1

Δtiaη(ξ
i
h, ξ

i
h) + 2

n∑
i=1

ΔtiC0〈ξih, ξih〉η

= R0 +Rn
1 +Rn

2 +Rn
3 + 2

n∑
i=1

ΔtiC0〈ξih, ξih〉η

≤ ‖ξ0h‖20,η + 6η(Δti)
2‖∂ttu‖2L2(0,tn;L2) +

1

2

n∑
i=1

‖ξih‖20,ηΔti + 2

n∑
i=1

ΔtiC0‖ξih‖20,η

+ Ch2(r+1)(‖u‖2L∞(0,tn;Hr+1) + ‖p‖2L∞(0,tn;Hr(Ωc))
)

+ Ch2(r+1)(‖u‖2H1(0,tn;Hr+1) + ‖p‖2H1(0,tn;Hr(Ωc))
).(4.26)
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Using the Gronwall inequality (3.7), we obtain the following estimate:

‖ξnh‖20,η +
n∑

i=1

(Δti)
2

∥∥∥∥∥ξ
i
h − ξi−1

h

Δti

∥∥∥∥∥
2

0,η

+ 2

n∑
i=1

Δtiaη(ξ
i
h, ξ

i
h) + 2

n∑
i=1

ΔtiC0〈ξih, ξih〉η

≤ C
(
‖ξ0h‖20,η + (Δti)

2‖∂ttu‖2L2(0,T ;L2)

+ h2(r+1)(‖u‖2L∞(0,T ;Hr+1) + ‖p‖2L∞(0,T ;Hr(Ωc))
)

+ h2(r+1)(‖u‖2H1(0,T ;Hr+1) + ‖p‖2H1(0,T ;Hr(Ωc))
)
)
.(4.27)

Using the conditions in the theorem, the estimates in Proposition 4.3, and the estimate
(4.27), we get the estimate (4.16). The proof is completed.

5. Numerical experiments.

5.1. Direct solver. We use a direct solver for our numerical simulation; i.e.,
by adding up Darcy’s equation and the transient Stokes equations, we obtain the
following linear equation and solve it together with the incompressibility condition as
a whole:∫

Ωc

∂tuvdΩc + η

∫
Ωm

φtψdΩm + 2ν

∫
Ωc

Du : DvdΩc +
η

S

∫
Ωm

(K∇φ) · ∇ψdΩm

+ g

∫
Γcm

φv · ncmdΓcm −
∫
Ωc

p∇ · vdΩc −
η

S

∫
Γcm

u · ncmψdΓcm

+
να

√
2√

trace(Π)

∫
Γcm

Pτ (u+K∇φ) · vdΓcm

= 〈f1,w〉c + 〈f2, φ〉m + g

∫
Γcm

zw · ncmdΓ.

We set Π to be a constant matrix in the simulation; hence it could be taken out of the
integral. The scalar parameter

√
d in the Beavers–Joseph interface boundary condition

has been changed to
√
2 here because we work with two-dimensional domains in our

numerical simulation. The scaling parameter η is set to 1 for convenience. In fact, once
we know that the fully discretized coupling problem has a unique solution after being
scaled by η, the system without scaling should also have the same unique solution.
From the viewpoint of linear algebra, the η simply plays a role of preconditioning in
the following sense:(

ηADarcy ηBinterface

Cinterface DStokes

)
=

(
ηI 0
0 I

)(
ADarcy Binterface

Cinterface DStokes

)
.

Since we are using the direct solver, the issue of condition number does not concern us.
However, as h → 0, we need to use a large enough η to scale the system. Otherwise,
the linear system may become very ill-conditioned and degenerate in the limit.

Quadratic elements are used for the Darcy problem and div-stable Taylor–Hood
elements are used for the Stokes part. This is saying that the r in Proposition 3.1
equals 2.

5.2. Steady-state solution. We perform numerical experiments on the unit
square, (0, 1)× (−0.25, 0.75). Let (0, 1)× {0} be the interface separating the conduit
from above and the matrix from below. For simplicity, all the parameters such as K,
K, S, ν, α, ρ, and g are set to 1. The scaling factor, η, is also set to 1, as has been
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Table 1

Convergence rate for steady-state problem. Taylor–Hood element is used in the Stokes region
and quadratic element is used in the Darcy region. We obtain convergence rate of 2 for seminorm
|u|1 and p and 3 for ‖u‖L2 . The last row of convergence rate is obtained by linear least square
fitting.

h ‖u− uh‖0 |u− uh|1 ‖p− ph‖0 ‖φ− φh‖0 |φ− φh|1
2−3 2.827E-4 1.081E-2 8.565E-3 5.482E-4 3.117E-2
2−4 3.628E-5 2.667E-3 1.929E-3 5.993E-5 7.782E-3
2−5 4.606E-6 6.640E-4 4.654E-4 7.085E-6 1.944E-3
2−6 5.800E-7 1.658E-4 1.152E-4 8.683E-7 4.859E-4

Rate of conv. 2.976 2.009 2.070 3.099 2.001

explained. We set the appropriate forcing term and Dirichlet boundary conditions
such that the following solution to the steady-state Stokes–Darcy problem is exact:

⎧⎪⎪⎨
⎪⎪⎩

u = x2y2 + e−y,

v = − 2
3xy

3 + [2− π sin(πx)],

p = −[2− π sin(πx)] cos(2πy),
φ = [2− π sin(πx)][−y + cos(π(1 − y))].

Table 1 gives the convergence rate of the steady-state problem. The well-posedness
of the steady-state Stokes–Darcy system with the Beavers–Joseph condition (time-
independent case of (2.4)) is not discussed in this paper. In [2], it is shown that the
well-posedness is obtainable for a small enough Beavers–Joseph parameter α and the
rescaling technique is not useful for the time-independent case. The numerical results
here attest that the steady-state problem may be solvable with reasonable accuracy
even without theoretical guarantee of well-posedness. These numerical results are also
useful in selecting the initial condition, u0

h, for the time-dependent problem and help
avoid computing the projection (4.2) for the initial condition (see the discussion in
the next subsection).

5.3. Transient solution. With the same domain setting, we set the appropriate
forcing term and Dirichlet boundary conditions such that the following solution to the
transient Stokes–Darcy problem is exact:

⎧⎪⎪⎨
⎪⎪⎩

u = [x2y2 + e−y] cos(2πt),

v = [− 2
3xy

3 + [2− π sin(πx)]] cos(2πt),

p = −[2− π sin(πx)] cos(2πy) cos(2πt),
φ = [2− π sin(πx)][−y + cos(π(1 − y))] cos(2πt).

We use the numerical solution computed in the steady-state case as the numerical
initial condition, u0

h. The requirement of the error u0
h − Psu(0) in Theorem 4.4 is

satisfied because ‖u0
h − u(0)‖L2 ≤ C∗h3 (corresponding to r = 2). Tables 2 and 3

summarize the convergence rates with different order combinations of h and Δt. In
particular, Table 3 confirms the convergence rate estimation provided in Theorem 4.4.

Appendix. Well-posedness of the semidiscrete finite element approxi-
mation problem (3.8). From (3.8) we have that

(A.1) 〈∂tuh(t),vh〉η + aη(u
h(t),vh) = 〈F(t),vh〉η ∀vh ∈ Vh.
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Table 2

Convergence rate with Δt ∼ h2.

Δt h ‖u− uh‖0 |u− uh|1 ‖p− ph‖0 ‖φ− φh‖0 |φ− φh|1
2−6 2−3 1.114E-3 1.458E-2 1.563E-2 3.677E-3 4.314E-2
2−8 2−4 2.774E-4 3.741E-3 3.662E-3 9.053E-4 1.090E-2
2−10 2−5 6.949E-5 9.449E-4 8.928E-4 2.255E-4 2.733E-3
2−12 2−6 1.741E-5 2.372E-4 2.214E-4 5.632E-5 6.837E-4

Rate of conv. 2.000 1.981 2.046 2.010 1.994

Table 3

Convergence rate with Δt ∼ h3.

Δt h ‖u− uh‖0 |u− uh|1 ‖p− ph‖0 ‖φ− φh‖0 |φ− φh|1
2−6 2−3 1.114E-3 1.458E-2 1.563E-2 3.677E-3 4.314E-2
2−9 2−4 1.426E-4 3.008E-3 2.181E-3 4.613E-4 9.262E-3
2−12 2−5 1.797E-5 6.921E-4 4.296E-4 5.726E-5 2.124E-3
2−15 2−6 2.254E-6 1.682E-4 1.064E-4 7.124E-6 5.079E-4

Rate of conv. 2.984 2.143 2.394 3.005 2.135

Equation (A.1) is a system of linear ODEs with constant coefficients. Thus, it has a
unique solution uh(t) ∈ Vh, 0 < t < T . Let vh = uh in (A.1), and use the G̊arding
inequality (2.6) to obtain

1

2

d

dt
‖uh(t)‖20,η + C1‖uh(t)‖21 ≤

(
C0 +

1

2

)
‖uh(t)‖20,η +

1

2
‖F(t)‖20,η.

Integrating the above inequality, we obtain

‖uh(t)‖20,η + 2C1

∫ t

0

‖uh(t)‖21ds

≤ ‖P hu0‖20,η +
∫ t

0

‖F(s)‖20,ηds+ (2C0 + 1)

∫ t

0

‖uh(s)‖20,ηds.

By the Gronwall inequality (3.7), we have that

(A.2) ‖uh(t)‖20,η ≤ C(‖P hu0‖20,η + ‖F‖2L2(0,T ;L2)),

where C is a constant. This proves that uh ∈ L2(0, T ;Vh). By regarding uh as the
solution to the ODE (A.1), it is easy to see that uh ∈ H1(0, T ;Vh). However, the
norm is not uniformly bounded and depends on h.

Now consider the following equivalent form of (A.1):

(A.3) ãη(u
h,vh) = −〈∂tuh,vh〉η + C0〈uh,vh〉η + 〈F,vh〉η ∀vh ∈ Vh,

where C0 is a constant that appeared in (2.6) and ã is a bilinear form on Wh ×Wh

defined as

ãη(w
h,vh) = aη(w

h,vh) + C0〈wh,vh〉η ∀wh,vh ∈ Wh.

Clearly, ã is coercive. From the estimate (A.2) and the inf-sup condition (3.1), we
can find ph ∈ Qh satisfying (3.8) and the estimate (see [5, Theorem I.4.1])

‖ph(t)‖0 ≤ C(h)(‖P hu0‖0,η + ‖F‖L2(0,T ;L2)),

where C is a constant dependent on h. This proves that ph ∈ L2(0, T ;Qh).
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