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Abstract. In this paper, we use an extended form of the finite element method to study failure in

polycrystalline microstructures. Quasi-static crack propagation is conducted using the extended

finite element method (X-FEM) and microstructures are simulated using a kinetic Monte Carlo

Potts algorithm. In the X-FEM, the framework of partition of unity is used to enrich the classical

finite element approximation with a discontinuous function and the two-dimensional asymptotic

crack-tip fields. This enables the domain to be modeled by finite elements without explicitly

meshing the crack surfaces, and hence crack growth simulations can be carried out without the

need for remeshing. First, the convergence of the method for crack problems is studied and its

rate of convergence is established. Microstructural calculations are carried out on a regular lattice

and a constrained Delaunay triangulation algorithm is used to mesh the microstructure. Fracture

properties of the grain boundaries are assumed to be distinct from that of the grain interior, and the

maximum energy release rate criterion is invoked to study the competition between intergranular

and transgranular modes of crack growth.
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1 Introduction

Microstructural features in polycrystalline materials play an important role in

determining the failure mechanisms as well as the macroscopic mechanical re-

sponse in these class of materials. In monolithic, polycrystalline materials, tai-

lored microstructures can induce crack bridging and kinking, leading to improved

toughness and failure resistance [1]. The role and influence of microstructural

features (e.g., grain size and shape, and grain boundary characteristics) on frac-

ture is well-established [2]. Experimental evidence has demonstrated that the

fracture resistance of polycrystals can be enhanced by increasing the fraction

of so-called special boundaries and by modifying the grain boundary network

and topology [3–5]. However, theoretical and numerical models have not yet

emerged that can fully explain these experimental findings. In this paper, we

use a finite element-based mesoscale fracture model that accounts for the grain

structure and the differences in the critical fracture energy of the grain boundaries

vis-à-vis that of the grain interior.

Failure modeling in disordered (heterogeneous) materials has been approached

using lattice (spring-network) models [6–10] Voronoi cell-based finite element

method [11], and cohesive surface formulations within finite elements [12]. Frac-

ture strength in disordered materials is governed by weakest-link statistics [13].

Spring-network models are intuitive in nature, and can be easily implemented;

however, it is difficult to obtain both elastic homogeneity and grid-insensitive

crack propagation directions on random lattice networks [14]. Discrete crack

growth modeling with finite elements is the prevailing standard. The modeling

of arbitrary geometries with varying material properties render finite elements

as a powerful computational tool. Even though crack growth modeling with

remeshing has reached a mature stage of development [15,16], it is not readily

amenable to a microscopic description of failure modeling and hence has not

received wide attention.

Recently, there has been significant progress in the direction of discrete crack

growth modeling – the development of a partition of unity finite element method

for crack modeling (coined as the extended finite element method or X-FEM)

[17,18] has provided an accurate and robust numerical method that removes the

need to mesh the crack surfaces in static or quasi-static crack growth simula-
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tions. In the X-FEM, the framework of partition of unity [19] is used to enrich

the classical displacement-based finite element approximation with a discon-

tinuous function (Heaviside step function) and the two-dimensional asymptotic

crack-tip fields. This provides a means to model the crack independently of the

underlying finite element mesh. As opposed to previous developments in mod-

eling strong (displacement) discontinuities within finite elements [20], some of

the noteworthy advantages of the X-FEM are: a single-field variational principle

is used with no incompatibilities introduced between elements; the symmetry

and sparsity of the stiffness matrix are retained; and the crack discontinuity can

be totally arbitrary with respect to the finite element mesh.

It is now well-recognized that failure modeling at the microstructural (meso-

scopic) scale in heterogeneous materials is an appropriate and potentially fruitful

path [21]. In this study, the incorporation of microstructure within a continuum-

based partition of unity finite element method represents a significant point of

departure from prior finite element models for fracture. The topology of poly-

crystalline materials and in particular the grain structure needs to be accounted

for in any realistic failure modeling endeavor. The size of the grain (e.g., grain

diameter) provides a natural length-scale that is embedded within the mesoscopic

fracture model. Such an approach can lead to better integration of experiment

and numerical modeling towards the development of a useful tool for fracture

simulation in complex heterogeneous materials.

In [22], the computational algorithm for brittle fracture simulations in poly-

crystalline microstructures was presented; here, the same algorithm is used to

elucidate some of the key features of the crack growth model. In Section 2,

the extended finite element method is introduced, and in Section 3, computer

simulation of polycrystalline microstructures and the microstructural meshing

algorithm are summarized. The weak form and discrete equations used in the

X-FEM are presented in Section 4. In Section 5.1, a convergence study of the

X-FEM for an edge crack problem is carried out. The crack growth procedure

is outlined in Section 5.2, and numerical simulation results are presented in Sec-

tion 5.3. The main conclusions obtained from this study are given in Section 6.
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2 Extended finite element method

The partition of unity finite element method [19] is a generalization of the stan-

dard Galerkin finite element method. In the literature, numerical techniques

such as the extended finite element method (X-FEM) [17,18], generalized finite

element method [23], or the element partition method [24] are all particular in-

stances of the partition of unity method. In the X-FEM, the emphasis has been on

modeling discontinuities (such as cracks) with minimal enrichment. Even though

the idea of adding special functions to the finite element approximation is not

new [25], unlike previous attempts, the partition of unity framework satisfies a

few important properties which makes it a powerful tool for local enrichment

within a finite element setting:

(1) can incorporate application-specific basis functions to better approximate

the solution;

(2) automatic enforcement of continuity (conforming trial and test approxi-

mations); and

(3) point or line singularities in 2-d, and surface discontinuities in 3-d can

be modeled without the need for the discontinuous surfaces to be aligned

with the finite element mesh.

In [17], the linear elastic near-tip asymptotic fields were used as enrichment

functions, whereas in [26], the asymptotic near-tip fields for a bimaterial interface

crack were adopted.

We summarize some of the essential concepts related to 2-d crack modeling

in isotropic media [17]. For further details on the X-FEM implementation, the

interested reader can refer to References [17] and [27]. Consider a single crack

in 2-dimensions. Let �c be the crack surface (interior) and �c the crack tip – the

closure �̄c = �c ∪�c. The enriched displacement (trial and test) approximation

for 2-d crack modeling is of the form [17]:

uh(x) =
∑
I∈N

NI(x)


uI + H(x)aI︸ ︷︷ ︸

I ∈N�

+
4∑

α=1

�α(x)bα
I

︸ ︷︷ ︸
I ∈N�


 , (1)
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where uI is the nodal displacement vector associated with the continuous part

of the finite element solution, aI is the nodal enriched degree of freedom vector

associated with the Heaviside function H (assumes the value +1 above the crack

and −1 below the crack), and bα
I is the nodal enriched degree of freedom vector

associated with the elastic asymptotic crack-tip functions. In the above equation,

N is the set of all nodes in the mesh; N� is the set of nodes whose shape function

support is cut by the crack interior �c; and N� is the set of nodes whose shape

function support is cut by the crack tip �c (N� ∩ N� = ∅):

N� = {nK : nK ∈ N, ω̄K ∩ �c �= ∅}, (2)

N� = {nJ : nJ ∈ N, ωJ ∩ �c �= ∅, nJ �∈ N�}. (3)

The crack-tip enrichment functions in isotropic elasticity are:[
�α(x), α = 1 − 4

]
=

[√
r sin

θ

2
,
√

r cos
θ

2
,
√

r sin θ sin
θ

2
,
√

r sin θ cos
θ

2

]
,

(4)

where (r, θ) are polar coordinates in the local crack-tip coordinate system. In

Fig. 1a, the nodes enriched by the Heaviside function (open circles) and the crack-

tip functions (filled circles) are shown for an edge crack, whereas in Fig. 1b, the

shape function support ωI as well as the local coordinate system for the crack-tip

enrichment functions are illustrated.

In Reference [17], the algorithm for the selection of nodes for enrichment is

presented. When a crack is nearly coincident with a finite element edge, care

must be taken so as to avoid linear dependencies between basis functions; a

tolerance criterion is used in the algorithm. If the crack intersects the finite

elements, then element partitioning is also carried out; a higher-order (6 × 6)

quadrature rule is used in partitioned elements for accurate numerical integration

of the weak form. The need for partitioning and its distinction from remeshing is

discussed in greater detail in [27]. The above steps ensure that the linear system

of equations is well-conditioned.

3 Polycrystalline microstructure

In order to simulate quasi-static crack propagation in a polycrystalline material,

a realistic microstructure was first produced using the Potts model for grain

Comp. Appl. Math., Vol. 23, N. 2-3, 2004
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Figure 1 – Enrichment for an edge crack. (a) Nodal enrichment for Heaviside (open

circles) and crack-tip (filled circles) functions; and (b) Coordinate configuration (r, θ)

for crack-tip enrichment functions.

growth [28]. In this model, a continuum microstructure is mapped onto a regular

two-dimensional square lattice containing N sites. Each lattice site is assigned

a number si , which corresponds to the orientation of the grain in which it is

embedded. The number of distinct grain orientations (spins) is Q. Lattice

sites that are adjacent to neighboring sites having different grain orientations are

regarded as being adjacent to a grain boundary, whereas a site surrounded by sites

with the same grain orientation is in the grain interior. The grain boundary energy

is specified by associating a positive energy with grain boundary sites and zero

energy for sites in the grain interior, in accordance with the Potts Hamiltonian:

E = J

N∑
i=1

nn(i)∑
j=1

(
1 − δsisj

)
, (5)

where J is a constant proportional to the grain boundary energy per unit length,

and δij is the Kronecker delta. In Eq. (5), the summation on i is over all the sites

in the lattice, whereas that on j is over the first and second nearest neighbors

nn(i) of site i. The kinetics of the boundary motion are simulated via a zero-

temperature Monte Carlo technique in which a lattice site is selected at random

and its orientation is randomly changed to one of the other grain orientations.
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The change in energy associated with the change in orientation is then evaluated.

If the change in energy is less than or equal to zero, the reorientation is accepted;

if the energy is raised, the reorientation is rejected. Microstructures are produced

by initially assigning a random value si of the grain orientation (1 ≤ si ≤ Q) to

each site. Time is measured in units of Monte Carlo steps: one MCS corresponds

to N attempted changes, with the time increment �t = 1/N MCS after every

reorientation. The Monte Carlo procedure is executed until the desired grain size

is produced.

In the crack propagation simulations, the initial finite element mesh is based

on the microstructure generated by the Potts model. In the literature, mesh gen-

eration algorithms for material microstructures are available [29,30]. In order

to perform crack propagation simulations in 2-d, we required a Delaunay tri-

angulation meshing scheme in which the polycrystalline material is represented

by distinct grains and the grain boundaries are associated with one-dimensional

segments (edges of the finite elements). To meet our needs, we developed a

Delaunay algorithm to mesh the polycrystalline microstructure [22]. The input

to the meshing algorithm is a polycrystalline microstructure produced by the

Potts model, with known spins si (1 ≤ si ≤ Q, 1 ≤ i ≤ N). A grain boundary

conforming finite element mesh is constructed using a Delaunay triangulation

algorithm [31], with a provision for local mesh refinement. Mesh refinement

is based on a comparison between the actual local length scale 	 (e.g., element

circum-radius) and the desired length scale specified by a scalar variable ρ called

the length density function.

4 Governing equations

4.1 Strong form

Consider a body � ⊂ R
2, with boundary �. The boundary � = �u ∪�t ∪m

i=1 �i
c,

where �u is the essential boundary, �t the natural boundary, and �i
c are the

internal cracks. The field equations of elastostatics in the absence of body forces

are:

∇ · σ = 0 in �, σ = C : ε, ε = ∇su, (6)
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where ∇s is the symmetric gradient operator, u is the displacement vector, ε

is the small strain tensor, σ is the Cauchy stress tensor, and C is the tensor of

elastic moduli for a homogeneous isotropic material. The essential and natural

boundary conditions are:

u = ū on �u, σ · n = t̄ on �t,

σ · n = 0 on �i
c, (i = 1, 2, . . . , m),

(7)

where n is the unit outward normal to �, ū and t̄ are prescribed displacements

and tractions, respectively, and m is the number of cracks. Note that the third

equality in Eq. (7) imposes the condition that the crack �i
c is traction-free.

4.2 Weak form and discrete equations

The weak form (principle of virtual work) for linear elastostatics is:∫
�h

σ : δεh d� =
∫

∂�h
t

t̄ · δuh d� ∀δuh ∈ Uh
0, (8)

where uh ∈ Uh and δuh ∈ Uh
0 are the approximating trial and test functions

used in the X-FEM, and δ is the first variation operator. The space Uh is the

enriched finite element space that satisfies the essential boundary conditions, and

which include basis functions that are discontinuous across the crack surfaces.

The space Uh
0 is the corresponding space with homogeneous essential boundary

conditions. The finite element domain is �h and the traction boundary conditions

are imposed on ∂�h
t , which is a subset of ∂�h.

The trial function uh and the test function δuh used in the X-FEM are of the

form given in Eq. (1). On substituting the trial and test functions in the above

equation, and using the arbitrariness of nodal variations, the following discrete

system of linear equations is obtained:

Kd = f, (9)

where d is the vector of nodal unknowns, and K and f are the global stiffness

matrix and external force vector, respectively [22].
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5 Numerical results

We first test the X-FEM on a benchmark problem to check the accuracy of the

stress intensity factors (SIFs) and to establish the rate of convergence of the

method. The convergence of the numerical method is studied by imposing the

exact near-tip displacement field on the boundary of an elastic plate that contains

a crack that extends from the perimeter to the center of the specimen. Then, we

describe the simulation procedure for crack growth through a microstructure and

present crack growth simulations for varying grain boundary toughness.

5.1 Convergence study

Consider an elastic plate of dimensions (−1, 1) × (−1, 1) with a crack of unit

length that extends from (−1, 0) to (0, 0). The Cartesian components of the near-

tip displacement field [2] corresponding to KI = 1 and KII = 1 are imposed on

the boundary of the specimen:

u1(r, θ) = 1

4µ

√
r

2π

{[
(2κ − 1) cos

θ

2
− cos

3θ

2

]

+
[
(2κ + 3) sin

θ

2
+ sin

3θ

2

]}
,

(10a)

u2(r, θ) = 1

4µ

√
r

2π

{[
(2κ + 1) sin

θ

2
− sin

3θ

2

]

−
[
(2κ − 3) cos

θ

2
+ cos

3θ

2

]}
,

(10b)

where µ = E/2(1+ ν) is the shear modulus, E is theYoung’s modulus, and ν is

the Poisson’s ratio of the material. The constant κ = 3 − 4ν under plane strain

conditions. The mixed mode SIFs are computed using the domain form [32] of

the interaction integral [33]. The radius of the domain rd = rkhe, where he is

the mesh spacing and rk is a scalar multiple. All elements that lie within a radius

of rd from the crack-tip are selected to form the 2-d domain that is used in the

domain integral computations; for further details on the SIF computations in the

X-FEM, see [17].
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The stress intensity factors and the relative error in the energy norm are com-

puted as the mesh is refined. The exact energy norm and the error in the energy

norm are defined as:

‖u‖E(�) =
(

1

2

∫
�

εT Cε d�

)1/2

,

‖u − uh‖E(�) =
(

1

2

∫
�

(ε − εh)T C(ε − εh) d�

)1/2

.

(11)

Four different meshes are considered: 10×10, 20×20, 40×40, and 160×160;

a sample mesh (20 × 20 elements) is shown in Fig. 2a. To impose the essential

boundary conditions, the crack is explicitly meshed over one element (AB),

whereas the remaining part of the crack (BC) is modeled by the X-FEM (Fig. 2a).

The scaling factor rk = 4 is used in the domain integral computations. The results

of the convergence study are listed in Table 1 and in Fig. 2b, the relative error in

the energy norm is plotted as a function of the mesh spacing he (log–log plot).

In Fig. 2, the rate of convergence R is also indicated. The numerically computed

SIFs are in agreement with the exact solution, and a rate of convergence of one-

half is realized, which matches the theoretical convergence rate of the finite

element method in the presence of a dominant
√

r-singularity [25].

Mesh (he) KI KII

‖u − uh‖E(�)

‖u‖E(�)

10 × 10 (0.200) 1.006 1.006 9.379 × 10−2

20 × 20 (0.100) 1.003 1.003 6.945 × 10−2

40 × 40 (0.050) 1.002 1.002 5.018 × 10−2

160 × 160 (0.005) 1.000 1.000 2.549 × 10−2

Table 1 – Convergence study: SIFs and relative error in the energy norm.

5.2 Simulation procedure

Polycrystalline microstructures are obtained using the Potts grain growth model

outlined in Section 3, and a grain boundary conforming finite element mesh of

Comp. Appl. Math., Vol. 23, N. 2-3, 2004
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Figure 2 – Convergence study. (a) Mesh (20 × 20); and (b) Rate of convergence in the

energy norm.

the microstructure is constructed. The problem domain is a square of edge length

L. An initial pre-crack of size a (typically 0.02L) is introduced along a grain

boundary that emanates from x1 = 0.5L on the top surface. The top and bottom

surfaces are traction-free; uniaxial strain is applied in the x1-direction by fixing

the left edge and imposing displacement boundary conditions on the right edge

(Fig. 3).

traction−free

traction−free

ε ε

pre−crack

Figure 3 – Model geometry and boundary conditions.

Let us denote the critical fracture energy of a grain boundary by G
gb
c and that of

the grain interior by Gi
c. The validity of Griffith-Irwin fracture mechanics is not

lost at the microstructural level [2], and hence one can use the classical notion

Comp. Appl. Math., Vol. 23, N. 2-3, 2004
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of mechanical energy release rate G for crack growth. The energy release rate

G under plane strain conditions is related to the stress intensity factors through

Irwin’s relation:

G = (1 − ν2)(K2
I + K2

II )

E
. (12)

The crack will propagate along a grain boundary or through the grain interior

depending on which has the larger value of G/Gk
c (k is either gb or i). In the

grain interior, the crack is assumed to propagate preferentially in the the maxi-

mum hoop (circumferential) stress direction (KII = 0) [34]. The crack growth

procedure is summarized below:

1. Pre-crack the sample and apply load (strain-controlled)

2. If the crack is within a grain, then

• Determine G in the maximum hoop stress direction

• If G > Gi
c, propagate crack in that direction

• Move crack-tip a small fraction of grain size or up to a boundary

3. If the crack is along a grain boundary, then

• Determine G in the maximum hoop stress direction and in both

directions along the grain boundary

• Move the crack-tip in the direction of maximum G > Gk
c (k = gb

or i) if any are larger than unity

• Move the crack-tip a small fraction of the grain size or grain edge

length, without crossing a boundary or junction

4. Increment load and go to step 2

5.3 Crack growth simulations

A 100 × 100 lattice with Q = 100 is used to generate the microstructure. The

kinetic Monte Carlo algorithm is executed until a time of 104 MCS. In all the crack

growth simulations, plain strain conditions are assumed with Young’s modulus

E = 105 and Poisson’s ratio ν = 0.3.

Comp. Appl. Math., Vol. 23, N. 2-3, 2004



(a) (b)
Figure 4 – Microstructure meshing. (a) ρ = 0.05; and (b) ρ = 0.02.

6 Conclusions

In this paper, we first established that the rate of convergence of the extended fi-

nite element method (X-FEM) for crack problems was one-half , which matches

the theoretical convergence rate of the FEM in the presence of a dominant
√

r-

singularity [25]. Subsequently, through numerical simulations, we demonstrated

the promise and potential of the X-FEM for crack growth studies in polycrys-

talline materials.
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We first mesh a given microstructure using two different values of the length

density function ρ: with increasing ρ, smaller grains tend to be merged with

larger grains. To ensure the presence of all the grains in the mesh, ρ should be

selected to be a fraction of the average grain diameter d. Next, we study the

influence of the mesh size on the crack path. For a fixed ratio G
gb
c /Gi

c = 0.4, we

conducted crack growth simulations for different values of ρ (Fig. 5). The results

reveal that for ρ ≤ 0.03, there is little bias in the crack path. Lastly, we present

crack growth simulations using ρ = 0.03 for varying grain boundary toughness

values: G
gb
c /Gi

c = 0.4, 0.5, 0.6, 0.8. The simulation results are illustrated in

Fig. 6 with the percentage of the crack path that is intergranular indicated within

braces. As the toughness of the grain boundary is increased, the crack path tends

to be transgranular-dominated; for G
gb
c /Gi

c = 0.6, the crack path is mixed mode.
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(a) (b)

(c)

Figure 5 – Mesh size sensitivity on crack path for G
gb
c /Gi

c = 0.4. (a) ρ = 0.04; (b)

ρ = 0.03; and (c) ρ = 0.015.
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(a) (b)

(c) (d)

Figure 6 – Influence of grain boundary toughness on crack path. (a) G
gb
c /Gi

c = 0.4

(IG = 91.4%); (b) G
gb
c /Gi

c = 0.5 (IG = 70.8%); (b) G
gb
c /Gi

c = 0.6 (IG = 66.5%); and

(b) G
gb
c /Gi

c = 0.8 (IG = 6.8%).
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