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This bibliography lists references to papers, conference pro-

ceedings and theses/dissertations dealing with finite element

analysis of rotor dynamics problems that were published in

1994–1998. It contains 319 citations. Also included, as sepa-

rate subsections, are finite element analyses of rotor elements

– discs, shafts, spindles, and blades. Topics dealing with frac-

ture mechanics, contact and stability problems of rotating

machinery are also considered in specific sections. The last

part of the bibliography presents papers dealing with specific

industrial applications.

1. Introduction

The information is the most valuable, but least val-
ued, tool the professional has. The output of scien-
tific papers is growing and it is becoming more dif-
ficult to be fully up-to-date with all the relevant in-
formation. It is also known that a number of chan-
nels that researchers/practical engineers have at their
disposal for information retrieval increases fast but it
is questionable if researchers/practical engineers are
willing to spend the time necessary to look for informa-
tion. It has been pointed out that in engineering, infor-
mal knowledge channels are the most frequently used
means of obtaining information. Many professionals
prefer to rely on personal judgment or on the wisdom
of their colleagues whenever they have problems to
solve. Hopefully, it is the author’s expectation that this
bibliography will save time for readers looking for in-
formation dealing with subjects described below.

Modern rotating systems, often operating under ex-
treme conditions and performing demanding tasks, are

a prime machinery for transporting momentum, mass,

and heat in many engineering systems. To understand

the dynamics of these systems is very important in the

design process as well as in the requirements to en-

hance the reliability and operational efficiency of these

machines. In the design stage it is necessary to predict

the dynamic behavior of rotor systems in bending and

torsion, today frequently computed by using finite ele-

ment techniques. This is the main subject of this bibli-

ography. Topics dealing with fracture mechanics, con-

tact and stability problems of rotating machinery are

also considered in separate sections.

This bibliography provides a list of references on

finite element dynamic analysis of rotating systems

and their elements. General solution techniques as well

as problem-specific applications are included. The en-

tries have been retrieved from the author’s database,

MAKEBASE [1,2]. The references have been pub-

lished in scientific journals, conference proceedings,

and theses/dissertations between 1994–1998. They are

sorted in each category alphabetically according to the

first author’s name. If a specific paper is relevant for

several subject categories, the same reference can be

listed under respective section headings, but the inter-

ested reader is expected to consider also areas adjacent

to his/her central area of research. Listed references are

grouped into the following sections and subsections:

• rotors and their elements (rotors, discs, shafts,

spindles, blades)

• fracture mechanics and fatigue

• contact and contact-impact problems

• stability analysis

• specific industrial applications

Not included in the bibliography: drilling shafts,

bearings, seals, passive/active vibration control of rotor

systems, optimization problems.
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2. Rotors and their elements

The basic elements of a rotor are the disc, the shaft,

the bearings and the seals. In this section of the bibli-
ography listed papers are dealing with dynamic finite
element analyses of rotors and their elements, with em-

phasis on their characteristics and behavior. Free and
forced vibrations are studied. A rotating shaft is typi-
cally modelled as a series of line or beam elements; pa-

pers on rotating beams are also included. The determi-
nation of natural frequencies and mode shapes of rotat-
ing structures, such as turbine blades is very important

in the design of turbomachines. Therefore as special
subsections also blades and spindels are addressed.

2.1. Rotors

Topics included: finite element modelling tech-
niques in rotating machinery; linear and nonlinear vi-

bration analysis; modal analysis; rotor model updat-
ing; multi-body dynamic modelling; flexural behav-
ior of rotors; torsional vibration analysis; analysis of

whirl speeds; aeroelastic/aerodynamic rotorcraft anal-
ysis; vibratory rotor hub loading; effect of misalign-
ment on rotor vibrations; rotary machines subjected to

earthquake; finite elements for rotor modelling.
Types of rotor systems under consideration: flexible

rotor systems; flexible rotors on flexible suspensions;

flexible rotors in magnetic bearings; rotor-bearing sys-
tems; multi-bearing rotors; geared rotor-bearing sys-
tems; rotor-shaft-bearing systems; rotor-bearing with

misaligned shafts; rotors supported by a spherical spi-
ral groove bearings; rotors supported by a piecewise
linear journal bearings; blade-disc-shaft systems; com-
posite rotors.

2.2. Discs

The following topics are included in this subsec-
tion: dynamic modelling of discs; linear and nonlin-
ear vibration analysis; vibration localization; predic-

tion of forced response in time and frequency domains;
modal interactions is spinning discs; flexural, torsional
and axial dynamic analysis; thermally stressed spin-

ning plates.
Types of discs analyzed: rotating isotropic/ortho-

tropic/anisotropic discs; rotating pretwisted plates; cir-
cular discs with noncentral holes; bladed discs; mis-

tuned bladed discs; bladed discs with friction dampers;
flexible bladed disc-shaft assemblies; disc-shaft as-
semblies; composite discs; reinforced ceramic rotating

discs.

2.3. Shafts

In this subcategory the following subjects are han-

dled: dynamic modelling of rotating beams/shafts;

modal analysis; linear and nonlinear vibration anal-

ysis; high-speed rotation analysis; model updating

techniques; twisted rotating beams; coupled torsional-

lateral-axial vibration analysis; coupled torsional-flex-

ural vibration analysis; finite elements for shaft mod-

elling.

Rotating elements under consideration: rotating

beams and shafts; Timoshenko beams; filleted shafts;

D-shaped shafts; geared shaft systems; flexible links;

circular plates with solid shafts; bladed disc-shaft

assemblies; disc-shaft assemblies; composite beams/

shafts.

2.4. Spindles

Topics included: dynamic modelling of spindles;

modal analysis; identification of modal parameters; vi-

bration and deformation analyses.

Rotating elements/systems: spindles; spindle-bear-

ing systems; lathe-spindle assembly; cutting machine

tool spindles; grinding machine tool spindles; hydro-

static gas bearing spindles; air-spindles.

2.5. Blades

This subsection deals with topics such as: dynamic

modelling of rotating blades; modal analysis; linear

and nonlinear vibration analysis; deformation analysis;

forced response analysis; damping considerations; vi-

bration analysis of pre-twisted blades; aeroelastic re-

sponse analysis.

The following components are included: blades;

blades with flexible coupling; blades with small holes;

blade arrays; composite rotor blades.

3. Fracture mechanics and fatigue

Rotating machinery components are prone to crack-

ing and failure caused by creep, fatigue and their in-

teraction. Fatigue crack growth studies are central to

damage-tolerance approaches. Mathematical models

of cracked rotor systems have been developed to pre-

dict the change in vibrational behavior due to crack

growth. The main subject of this section are finite el-

ement, linear and nonlinear, studies of various aspects

of vibration of rotating machinery with a crack.
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This section deals with finite element analysis of ro-

tating crack models. Included are topics such as: vibra-

tion analysis; modal parameters identification; crack

initiation and propagation; dynamic failure analysis;

damage analysis and detection; environmental and me-

chanical fatigue; fretting fatigue; fatigue crack growth

and propagation; creep-fatigue modelling; creep crack

initiation; surface flaw behaviors; lifetime evaluation;

probabilistic fracture mechanics; sensitivity analysis;

stress intensity factor computations.

The following cracked components are under con-

sideration: rotors; shafts; discs; turboalternator rotors;

helicopter rotors; turbine blades; turbine rotors; com-

pressor blades; aeroengine discs; rotor-bearing sys-

tems.

4. Contact and contact-impact problems

The contact in rotating systems has long been rec-

ognized as a major contributor to their failures. Devel-

oping adequate contact models and incorporating them

into the dynamic finite element analysis of rotating ma-

chinery are key issues in order to understand the mech-

anisms and in this way to predict accurately the phe-

nomena. Many rotors also contain components stacked

and held together. When the rotor whirls, working

joints are causing the friction damping which is a po-

tential source of instability.

Types of contact and contact-impact problems that

are analyzed/simulated in this section are, for example:

rotor-stator contact problems; rotor-bearing contacts;

shaft-hub connections; gear-shaft connections; shaft-

cone connections; blade-disc connections; joints of

hollow shafts; shaft couplings for rotor wheels; joints

of aeroengine discs; rotor-foundation interaction; fric-

tional heating in shaft-bush system; contact analysis of

turbine blades; impact behavior of rotor dynamic sys-

tems; crashworthy rotorcraft design; blast loading of

discs; helicopter rotor blade-droop stop impacts.

5. Stability analysis

Rotors should not be working in the unstable regime.

The instability is induced by fluid-solid interaction and

can be seen as a spontaneous growth in whirl ampli-

tude upon reaching some threshold speed. The sources

of instability are bearings and seals, passive forces in

turbines or impellers, internal friction, etc.

Vibration and dynamic stability/instability problems

are the subjects of this section. The following com-

ponents/systems have been analyzed by finite element

methods: discs; rotating shafts; cracked shafts and ro-

tating beams; rotating blades; turbomachinery blades;

Timoshenko shafts; composite shafts; non-symmetric

rotors on distributed bearings; pre-twisted rotors; rotor-

bearing systems. The aeroelastic stability of helicopter

rotor blades is also included.

6. Specific industrial applications

Specific industrial applications in this last section in-

clude finite element analyses and design considerations

of: compressor rotors; gas turbine rotors and blades;

turbogenerator rotors; rotorcraft transmissions; heli-

copter rotors and blades; rotors of gyroscopes and cen-

trifuges; bearingless helicopter rotors; rotor-fuselage

systems; cam engine shaft systems; wing drive shafts;

multiblade fan shaft systems; turbine blades; wind tur-

bine blades; aircraft turbine blades; turbine blade rows;

centrifugal and hydraulic pumps.

Readers interested in the finite element literature

in general are referred to [3] or to the author’s In-

ternet Finite Element Book Bibliography (http://www.

solid.ikp.liu.se/fe/index.html). The solutions of rotor-

dynamic problems in general can be found in many

books, for example in [4–9]. A list of references on fi-

nite element analysis of machine elements where bear-

ings and seals are included can be found in [10], and

the active vibration control is a part of the [11].
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