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SUMMARY

The objective in this paper is to present some developments for the analysis of Navier–Stokes in-
compressible and compressible fluid flows with structural interactions. The incompressible fluid is
discretized with a new solution approach, a flow-condition-based interpolation finite element scheme.
The high-speed compressible fluids are solved using standard finite volume methods. The fluids are
fully coupled to general structures that can undergo highly non-linear response due to large deforma-
tions, inelasticity, contact and temperature. Particular focus is given on the scheme used to couple the
fluid media with the structures. The fluids can also be modelled as low-speed compressible or slightly
compressible media, which are important models in engineering practice. Some solutions obtained
using ADINA are presented to indicate the analyses that can be performed. Copyright � 2004 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

The analysis of multiphysics problems, and specifically the solution of fluid–structure inter-
actions, has been given increased attention during recent years [1]. This is largely because
numerical methods have become very powerful and can be used at reasonable costs giving
great benefits in scientific and engineering studies. Traditionally, fluid flows have been solved
assuming rigid structures, and structures have been solved assuming fluid pressures. Sometimes
iterations were used between the analyses of the two media to ensure that reasonable assump-
tions have been used in each case. However, there are many problems where a direct fully
coupled analysis is needed to model the physics of the fluid–structure problem accurately. This
is particularly the case when the structure undergoes large deformations in the interaction with
the fluid and thermal effects need be included.
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Of course, fully coupled fluid–structure interactions in which the fluid is assumed to be an
acoustic medium (with relatively small motions) have been analysed for some time and can
now be solved very efficiently [2–4]. The assumption of small fluid particle motions can also
be removed to allow in an effective way for actual fluid flows [5, 6]. However, we are here
concerned with the solution of the full Navier–Stokes (or Euler) equations for the fluid flow.
There are numerous important applications where such flows are fully coupled with structures,
meaning that the response in each medium is strongly affected by the response in the other,
and it is important to predict the flows as well as the structural deformations accurately. We
present some illustrative applications in Section 5.

Fluid flows are generally characterized as fully incompressible flows or high-speed compress-
ible flows. In addition, it can be important to model flows as slightly compressible (reached
from the fully incompressible case) and low-speed compressible (reached from the high-speed
compressible case). These two flow models are frequently used in practice. Of course, struc-
tures are usually described by Lagrangian formulations, whereas fluids are described by Eulerian
formulations. For the coupling of these media, it is common to use an arbitrary-Lagrangian–
Eulerian (ALE) formulation for the fluid [5, 7]. Particular care must be taken to properly couple
the fluid and the structure on the interface between the media. Also, an important ingredient
of the overall solution scheme is the algorithm to update the fluid mesh which in the ALE
formulation must move as the structure deforms.

In engineering practice and in scientific studies, it is clearly best to have a general approach
towards solving fluid flows coupled with structures. The structural components might be shells
with various possible behaviours [8] or solids that due to their low material stiffness are rather
flexible. In each case, the structural deformations can be complex and highly affected by the
specific fluid flow that takes place, and vice versa, the fluid flow can be highly affected by
the structural deformations that occur.

Our objective in this paper is to present some developments to solve fluid flows with structural
interactions. The flows can be modelled as mentioned above and of course can include effects of
turbulence. The developments provide procedures for an analyst in engineering or the sciences
to solve complex fluid flows with structural interactions.

In Section 2, we present a solution method for the laminar incompressible Navier–Stokes
equations. An important point is that in engineering practice an analyst of a fluid flow struc-
tural interaction problem frequently does not know how high a Reynolds number flow will be
encountered and what turbulence model should best be used. Hence, the problem is frequently
best solved first by assuming laminar conditions. Then, continuing the analysis, the math-
ematical model might be (and frequently must be) refined by a suitable turbulence model.
Of course, such hierarchical solution approach to a fluid-flow structural interaction prob-
lem (that is, using increasingly more complex mathematical models to describe the physics
of the problem [9]) assumes that all models can actually be solved. For this reason, we
have endeavored to develop a solution scheme that can solve the laminar Navier–Stokes
equations at high Reynolds numbers, with reasonable accuracy, even when using relatively
coarse meshes [10–12]. The flow-condition-based interpolation (FCBI) scheme that we are
developing is a novel approach with good stability and accuracy characteristics [12]. The
scheme can of course also be used for slightly compressible flows and low-speed compressible
flows.

We then briefly mention in Section 3 the discretization scheme that we use for high-speed
compressible flows [13, 14].
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These categories of modelling fluid flows are providing physically realistic mathematical
models of many flow situations coupled with structural interactions.

The discretization schemes to solve these fluid models are used with an arbitrary-Lagrangian–
Eulerian formulation that is coupled to the Lagrangian formulation of structures [15, 16]. These
can undergo very large deformations, be subjected to non-linear material conditions, and contact.
The finite element procedures used to model the structures in particular including contact
conditions are described elsewhere [9, 17]. Specifically, in fluid–structure interactions, frequently
thin shell behaviour needs to be properly solved and therefore must be accurately represented
[18, 19].

An important ingredient of the analyses is the scheme used to couple the structures and
fluids. We describe this scheme in Section 4. This coupling is of course applicable to all the
fluid flows mentioned above.

To demonstrate the use of the solution schemes, we present in Section 5 some illustrative
example solutions obtained using ADINA, and finally, in Section 6, we give our concluding
remarks.

2. INCOMPRESSIBLE FLUID FLOWS

We consider in this section the solution of the incompressible Navier–Stokes equations govern-
ing laminar flow. As we pointed out already, in practical fluid–structure interaction analyses,
frequently, the Reynolds number of flow is not known prior to the analysis, and even if known,
it is not clear what turbulence model to use. Hence, frequently, the analyst would like to obtain,
in the first instance, a solution assuming laminar flow conditions. Once this solution has been
calculated, assuming of course with reasonable accuracy, the fluid model can be refined by the
use of an appropriate turbulence model.

In using such hierarchical models of fluid flows [9], it is important to recall that weak
solutions exist of the laminar Navier–Stokes equations up to Reynolds numbers of about 106—
of course, provided transient analyses are considered and the initial conditions are sufficiently
smooth [20, 21]. Hence it is reasonable to seek finite element solutions of the laminar Navier–
Stokes equations for high Reynolds number flows, even when using relatively coarse and
unstructured meshes. Clearly, with such meshes it is hardly possible to have excellent accuracy
in all aspects of the solution. Instead, the key aim must be to have in these solutions sufficient
accuracy for the specific variables of interest [10, 12]. The flow predictions reached with
coarse (but still reasonable) meshes must be overall realistic and the forces transmitted to
the structures must be of reasonable accuracy. The flow predictions should of course also
converge with optimal rate to the ‘exact’ solution of the fluid flow mathematical model as the
meshes are refined. Furthermore, the solution scheme should not be based on artificial solution
parameters but be physically based, and numerically shown and mathematically proven to have
the mentioned characteristics. These solution features are very difficult to reach in a solution
scheme but are key to have a general and effective approach to solve fluid-flow structural
interaction problems in engineering practice. The desired scheme does not exist as yet and can
be considered to constitute an ‘ideal’ solution procedure [10–12]. We are developing the FCBI
procedure to reach a method closer to this ‘ideal’ scheme.

Consider a general fluid flow problem governed by the incompressible Navier–Stokes equa-
tions. We assume that the problem is well posed in the Hilbert spaces P and V . The governing
equations in conservative form are
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Find the pressure p(x, t) ∈ P , velocity v(x, t) ∈ V , and temperature �(x, t) ∈ V such that

��

�t
+ ∇ · (�v) = 0

��v
�t

+ ∇ · (�vv − �) = fB (x, t) ∈ � × [0, T ]
��cv�

�t
+ ∇ · (�cvv� − k∇�) = 2�D2 + qB + ∇ · v(−p + �∇ · v)

(1)

where for fully incompressible flow, of course, the density � is assumed to be constant, but for
slightly compressible and low-speed compressible flows, we assume � = �(p) and � = �(p, �),
respectively. Also, we assumed cv to be constant, an assumption that can be easily removed.
The above equations are subject to the initial and boundary conditions

v(x, 0) = 0v(x)

�(x, 0) = 0�(x) x ∈ � (2)

p(x, 0) = 0p(x)

v = vs (x, t) ∈ S̄v × (0, T ] (3)

� · n= fs (x, t) ∈ Sf × (0, T ] (4)

� = �s (x, t) ∈ S̄� × (0, T ] (5)

kn · ∇� = qs (x, t) ∈ Sq × (0, T ] (6)

where

� = �(v, p) = −pI + 2�e + �∇ · vI (7)

D2 = e ⊗ e ≡ eij eij (8)

with the second viscosity � and

e = 1
2 [∇v + (∇v)T] (9)

Also, � is the viscosity, k is the thermal conductivity, fB is the body force, � ∈ R2,3 is a
domain with the boundary S = S̄v ∪ Sf = S̄� ∪ Sq (Sv ∩ Sf = ∅, S� ∩ Sq = ∅), T is the
time span considered, vs is the prescribed velocity on the boundary S̄v , fs are the prescribed
tractions on the boundary Sf , �s is the prescribed temperature on the boundary S̄�, qs is the
prescribed heat flux on the boundary Sq , and n is the unit normal to the boundary.

The solution variables for these equations are the primitive variables; that is, the pressure
p, velocity v and temperature �. For the finite element solution, we use a Petrov–Galerkin
variational formulation with subspaces Vh, Uh and Wh of V , and Ph and Qh of P of the
problem in Equations (1)–(6). The formulation for the numerical solution is:
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Figure 1. Control volume M and evaluation of functions in Vh for flux through ab; 0� �, � � 1:
(a) two-dimensional 9-node element; and (b) sub-element.

Find p ∈ Ph, v ∈ Vh(Reh), � ∈ Vh(P eh) and u, � ∈ Uh such that for all w ∈ Wh, q ∈ Qh∫
�

q

[
��

�t
+ ∇ · (�u)

]
d� = 0 (10)

∫
�

w

[
��u
�t

+ ∇ · (�uv − �(u, p)) − fB
]
d� = 0 (11)

∫
�

w

[
��cv�

�t
+ ∇ · (�cvu� − k∇�) − 2�D2 − qB − ∇ · u(−p + �∇ · u)

]
d� = 0 (12)

where Reh and Peh are the element Reynolds and element Peclet numbers, respectively. We
should note the use of the different spaces in the above discretization scheme. The trial functions
in Uh are the usual functions of finite element interpolations for velocities and temperature
[9]. Similarly, the interpolation functions in the space Ph are the usual functions used in
incompressible analysis to satisfy, for the selected velocity interpolations, the inf–sup condition
of incompressible analysis [9, 22]. Hence, various suitable function spaces Uh and Ph are
available.

An important ingredient of the scheme is that the trial functions in Vh are different from the
functions in Uh. They are defined using the flow conditions along the sides/faces of control
volumes around the element nodes. Specifically, the trial functions in Vh(Reh) and Vh(Peh) are
determined, respectively, based on the element Reynolds numbers (for velocity) and element
Peclet numbers (for temperature). For example, considering a 9-node element and the control
volume shown in Figure 1 and linear functions in Uh, we would use for Vh(Reh) the functions

 hv
1 hv

4

hv
2 hv

3


 =

[
h(x1),h(x2)

]
h(�)hT(�) (13)

with

xk = eqk� − 1

eqk − 1
, qk = �ūk · �xk

�
(14)
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where ūk is the flow solution evaluated at the centre of the sides considered (� = 1
2 ) and

� = 0, 1 for k = 1, 2, respectively).
Finally, the elements in the spaces Qh and Wh are step functions. For example, for the node

considered in Figure 1, we have for the element in Wh,

hw
1 =



1 (�, �) ∈

[
0, 1

2

]
×

[
0, 1

2

]
0 else

(15)

Of course, the trial functions in Uh and Vh are ‘attached’ to the same nodal velocities and
temperatures. A formulation example is presented in Reference [12] but of course other elements
with appropriate interpolations could be used.

The stability in the solution is obtained through three ingredients in the scheme:

• The use of the pair of functions in Uh and Ph to satisfy the inf–sup condition of
incompressible analysis. These are the same pairs of functions that are, for example, also
used in the analysis of solids or acoustic fluids [9, 22, 23].

• The use of step weight functions around nodes, which results in a strong local mass
and momentum conservation, and hence directly also in the global mass and momentum
conservation.

• The use of the flow-condition-based interpolation in the space Vh, which results in stability
of the convective terms (the ‘upwinding effect’ which is introduced in a natural and
physically based manner).

Considering the effectiveness of the scheme, it is important to note that the use of the trial
functions makes it possible to calculate consistent Jacobian matrices in the Newton–Raphson
iterations to solve the algebraic finite element equations [9]. Hence consistent stiffness matrices
can be established for the complete fluid–structure system which makes it possible to solve
complex practical problems with highly non-linear response.

We discussed above the solution of the governing equations assuming laminar flow conditions.
To introduce turbulence models, these equations are supplemented by the governing equations
of the turbulence models. The solution of the convective–diffusive equations governing the
turbulence effects is then obtained using the same numerical scheme.

While we use the current FCBI scheme already effectively in solutions, see Reference [12]
and Section 5, clearly further improvements based on physical insight and mathematical analysis
are very desirable—and we believe can also be reached, because the solution approach can be
explored much further.

3. HIGH-SPEED COMPRESSIBLE FLUID FLOWS

The governing Navier–Stokes equations in high-speed compressible flow are written in their
strong conservation form

�U
�t

+ ∇ · F = S (16)
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with

U =



�

�v

�E


 , F =




�v

�vv − �

�vE − � · v − k∇�


 , S =




0

fB

fB · v + qB


 (17)

where E (= 1
2v · v + e) is the specific energy and e is the internal energy.

The solution variables are now the conservative variables; that is, the density �, the specific
discharge �v and the specific total energy �E. Various boundary conditions are now possible
which depend on whether external or internal flows are considered, whether subsonic or su-
personic inlet/outlet conditions are present, and so on, see Reference [14] for a table giving
boundary conditions.

To ensure (strongly) local conservation of mass, momentum and energy, we still use the step
functions as weighting functions. However, we also use a flux-splitting method to evaluate the
total fluxes along control volume sides/faces of the element nodes in order to capture shocks
in flow solutions. Details of the solution scheme can be found in Reference [13].

4. STRUCTURES AND THE COUPLING BETWEEN FLUID FLOWS
AND STRUCTURAL MEDIA

As we mentioned above, the structural domains are described using a Lagrangian formulation
[9]. The structures can comprise solids, shells, beams, and other structural elements, including
contact surfaces. Of particular interest in fluid–structure interactions is the capability to analyse
thin shells interacting with fluid flows. Thin shell structures display a variety of deformation
behaviours [8, 24] and the analysis of their interactions with fluid flows can be a significant
challenge. In particular, an unstable chaotic response of the structure might occur that is
important to predict [16, 25, 26].

The coupling of the fluid and structural response can be achieved numerically in different
ways, but in all cases, of course, the conditions of displacement compatibility and traction
equilibrium along the structure–fluid interfaces must be satisfied, see e.g. References [13–16].

Displacement compatibility:

df = ds (x, t) ∈ Si × [0, T ] (18)

Traction equilibrium:

ff = fs (x, t) ∈ Si × [0, T ] (19)

where df and ds are the displacements, ff and fs are the tractions of the fluid and solid,
respectively, and Si is the interface of the fluid and solid domains.

These conditions must be imposed efficiently in the numerical solution. Assume that the
fluid and structural domains have been meshed using entirely different elements (see Figure 2).
We consider any well-posed structural and fluid models associated with any physically realistic
material and boundary conditions.
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Figure 2. Illustration of fluid and solid meshes and mappings of displacements and tractions
on fluid–structure interfaces. The solid arrows indicate traction mapping and the dashed

arrows indicate displacement mapping.

The conditions of stress equilibrium require that, on an interface, the stresses of the fluid
(represented by fluid variables defined at the fluid mesh points) be balanced by the stresses in
the structure. Thus, we map the fluid tractions onto the structural nodes and then calculate the
corresponding forces along the structural interface

FS(v, p) =
∫

Si

HST
f̂f dS (20)

where f̂f denotes the fluid tractions at the location of the structural nodes and the matrix HS

stores the displacement interpolation functions of the structural elements along the interface.
The nodal forces calculated in Equation (20) are applied to the structural model as external
forces. This procedure ensures ‘consistency’ in the stress transfer between the fluid and structure
(that is, the patch test is passed [9]).

In order to determine the fluid mesh nodal displacements, we first consider the boundary
nodes on the fluid–structure interfaces. Here the Lagrangian co-ordinates are used to impose
the displacement compatibility condition (18). We enforce the solid displacements onto the
fluid nodes by using the displacement interpolations on the solid. Of course, on the rest of
the boundary, the fluid nodal co-ordinates can be moved or be fixed (independent of the fluid
velocity) but the geometric domain of the fluid must not change. To ensure regularity of the
mesh, Laplace equations are solved, first over internal and boundary lines, then over surfaces,
and finally over volumes.

Using this approach, the displacements along the interfaces are (in discretized form) compat-
ible between the fluid and solid domains. In the continuum, the displacements, velocities and
accelerations are compatible. To achieve this compatibility directly in the numerical solution,
our approach is to simply use one integration scheme (in ADINA, the first and second order
implicit Runge–Kutta methods) for the complete coupled system.

Using the above discretization schemes, the resulting coupled algebraic system of equations
to be solved for each time step considered can be written as

F(X) =
[
Ff(Xf ,Xs)

Fs(Xf ,Xs)

]
= 0 (21)

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 60:213–232



GENERAL FLUID FLOWS WITH STRUCTURAL INTERACTIONS 221

where, respectively, Ff and Fs represent the equation systems for the fluid and solid models, and
Xf and Xs are the fluid and solid nodal solution variables. In short, F represents the coupled
system of equations and X represents all nodal solution variables of the coupled system.
The non-linear system of equations can be solved either directly as one set or iteratively by
partitioning [16, 27, 28].

In the ‘directly fully coupled solution’ using, for example, the Newton–Raphson method, the
linearization of the equations at each iteration gives


 Aff Afs

Asf Ass




[
�Xf

�Xs

]
=

[ −Ff(Xf ,Xs)

−Fs(Xf ,Xs)

]
(22)

These equations are solved directly with a sparse solver or iteratively [9] and the new solution
vector is updated by

X ⇐ X + �X (23)

The Jacobian matrices are calculated using [9]

Aff = �Ff

�Xf
, Afs = �Ff

�Xs

Asf = �Fs

�Xf
, Ass = �Fs

�Xs

(24)

In the ‘iterative solution by partitioning’, the fluid equations and solid equations are solved
alternately (using direct or iterative methods as well), to pass latest solutions from one model
to the other. In each case the iteration is continued until the coupled system (21) has been
solved up to a given tolerance.

Note that in this approach, the fluid stresses are imposed as forces onto the structure, and
the structural displacements impose a change onto the fluid domain. We could have proceeded
in the opposite way, that is, by imposing stress boundary conditions onto the fluid and velocity
boundary conditions onto the structure. However, this approach might be unstable for general
fluid–structure interaction analysis, because any small error in displacements imposed onto the
structure by the fluid velocities will result into large errors in tractions imposed onto the fluid.

Other approaches are to consider the complete structural and fluid system using the methods
described in References [29, 30]. However, it is not yet clear how these methods will perform
in engineering practice when the stresses in the structure need be calculated accurately with
very large structural displacements.

An important requirement in the analysis of a non-linear dynamic system can be to assess
whether a stable or unstable, notably chaotic, response has been predicted. In the case of a
fluid–structure system we would usually be interested in characterizing the structural response,
because it is the structure that should not become unstable.

A rather obvious way to assess the character of the calculated response is to perform a
Fourier analysis of the solution calculated at a particular point of the structure. However, the
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specific point needs to be selected, the assessment would only be carried out in post-processing
of the response, and the solution at the point may not properly represent the global response
of the structure (and indeed the convergence at a point may not even be defined [24]). Hence,
a global measure of the character of the solution should be calculated and we have developed
a scheme that uses the Lyapunov exponent for that purpose [16, 25, 26]. In this scheme, during
the non-linear response solution, it is assessed whether a perturbation in the response will
grow as given by the Lyapunov exponent. The added computational expense is relatively small
and a global measure of the stability of the structural system acted upon by the fluid is
directly calculated. Of course, the scheme does have limitations in that, for example, only
one exponent is calculated and only the long-term instability is measured, as pointed out in
References [16, 25, 26], see also Section 5.4.

5. ILLUSTRATIVE SOLUTIONS

The objective in this section is to present some solutions that briefly demonstrate the analysis
capabilities described above. In each analysis case, a fluid flow structural interaction solution
is considered.

Figure 3. (a) Sketch of the flow over backward facing step problem, cantilever in channel is not present
in the first analysis; (b) fluid mesh of four-node elements [12, 19] used in the flow over backward
facing step; (c) velocity fields and streamlines using laminar model in the flow over backward facing
step: (1) Re = 1; (2) Re = 102; (3) Re = 104; (4) Re = 106; (d) velocity fields and streamlines using
turbulence model in the flow over backward facing step: (1) Re = 1; (2) Re = 102; (3) Re = 104;
(4) Re = 106; (e) computed solutions compared with the experimental data [31]: (1) x-velocity profile
at location x = 4; (2) x-velocity profile at location x = 6; (f) fluid mesh used in the flow over
backward facing step and a cantilever. The cantilever is modelled using 9-node 2D solid elements
with E = 107 and � = 0.3; (g) velocity fields obtained using laminar model in the flow over backward
facing step and a cantilever. Case (1): Re = 1 (v = 1, � = 1, � = 0.5); Case (2): Re = 100 (v = 1,
� = 1, � = 50). Horizontal displacement dx at tip of cantilever, Case (1): dx = 0.093; Case (2):
dx = 0.472; (h) velocity fields obtained using turbulence model in the flow over backward facing step
and a cantilever. Case (1): Re = 1000 (v = 1, � = 0.1, � = 50), dx = 0.366; Case (2): Re = 10 000

(v = 1, � = 0.01, � = 50), dx = 0.365.
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Figure 3. Continued.

5.1. Flow over backward facing step problem

We consider the fluid flow problem shown in Figure 3(a). This is a well-known problem,
involving turbulent flow, used to test numerical solution schemes because experimental results
are available. We first consider the flow problem without structural interaction, and then modify
the problem to include a structural response.
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Figure 3. Continued.

Our first purpose is to illustrate the approach described in the paper towards the solution
of incompressible fluid flow problems; namely that an analyst may well desire first a laminar
flow solution and then refine the flow model to include an appropriate turbulence model.
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Figure 3. Continued.

Figure 3(b) shows the mesh used and Figures 3(c) and 3(d) give the laminar and turbulent
flow solutions respectively for Re = 1, 102, 104 and 106 (by fixing the inlet velocity and
changing the viscosity). We used the standard K/	 model to include the turbulence effects. Of
course, at low Reynolds numbers the same flow is predicted with or without the turbulence
model. Then, as the Reynolds number is increased, it becomes important to include turbulence
effects in the solution in order to obtain meaningful results. Figure 3(e) shows some computed
results compared with experimental results at Re = 90 900 (of course, including the turbulence
effects).

In Figure 3(c), we give the laminar flow results for very high Reynolds numbers. This is—of
course—merely a numerical test of the solution scheme and indeed it is a rather ‘drastic’ test
of the FCBI solution scheme used.

We next place a flexible cantilever beam into the channel. Figure 3(f) shows the fluid mesh
and Figures 3(g) and 3(h) give the computed results for different Reynolds numbers using
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Figure 4. (a) Definition of the hydraulic engine mount problem. The displacement at the top is
prescribed as dz = −0.4 + 0.1 sin(20
t) (cm); (b) fluid mesh (four-node elements) and solid mesh
(9/3 elements [9]) used in the hydraulic engine mount problem; and (c) Z-reaction force (N) at the

mounted location verses the z-displacement (m) prescribed at the top.

laminar and turbulent flow assumptions (both the fluid density and the viscosity are changed,
for the purpose of calculating structural deformations under different fluid pressures). For the
higher Re values the K/	 model is used. Of course, the flow is now showing a totally different
behaviour due to the obstruction by the cantilever.

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 60:213–232



GENERAL FLUID FLOWS WITH STRUCTURAL INTERACTIONS 227

Table I. Material data used for hydraulic engine mount problem.

Oil Steel Rubber (Ogden model)

�s = 4000 kg/m3 �3 = 3
� = 1058 kg/m3 �s = 7800 kg/m3 � = 5.31 × 108 Pa �1 = 1.1 × 107

� = 0.058 kg/m s E = 2.07 × 1011 Pa �1 = 1 �2 = −6.5 × 106

� = 1.96 × 109 Pa � = 0.3 �2 = 2 �3 = 1.4 × 106

5.2. Axisymmetric hydraulic engine mount problem

We consider an hydraulic engine mount subjected to excitation. Such mounts are used in the
automotive industry to reduce engine vibration and noise.

Figure 4(a) shows the axisymmetric mount considered. The mount is subjected to a sinosoidal
prescribed displacement at the top. The solid part consists of rubber (light gray part) and of
steel at the centre (dark gray part). The fluid is oil modelled as a slightly compressible Navier–
Stokes fluid in laminar flow conditions. Table I gives the material data used. Figure 4(b) shows
the fluid mesh and the solid mesh used. The specific objective of the analysis is to predict the
hysteresis behaviour of the mount for the given forced excitation. The calculated response is
given in Figure 4(c) which shows that the energy absorption of the mount is significant.

5.3. Axisymmetric high-speed flow with shock problem

In high-speed compressible flow, the possibility and location and strength of a shock is of major
concern. In internal flows, the shape of the channel plays a significant role in determining the
flow field.

Figure 5(a) shows the problem considered. The shell in the channel provides for a converging–
diverging flow and hence for the possibility of a shock. In the first solution we assume that
the shell is rigid. In this case the Mach contours are as given in Figure 5(b). Next, we assume
that the shell is flexible. In this case the solution shown in Figure 5(c) is obtained. It is clear
that the flexibility of the shell significantly affects the flow field and location of the shock.

5.4. Collapsible channel flow problem

This problem is of much interest in bio-mechanical studies. Figure 6(a) shows the problem
considered. The decrease in the pressure at the right-hand end of the channel causes the
collapsible segment of the channel wall to vibrate, and in fact hit the vertical stop (modelled
as a spring). Under certain conditions, a chaotic response is observed [25].

Figure 6(b) shows the calculated mid-point displacement of the collapsible segment and
Figure 6(c) gives the calculated approximation for the Lyapunov characteristic exponent. This
exponent is clearly positive indicating that the response is chaotic. More details on the com-
putations performed are given in Reference [25].

5.5. Artificial lung problem

The development of artificial lungs is of much interest in the field of biomedical engineering.
We present here some ingredients—but no details—of the analysis of a typical artificial lung
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Figure 5. (a) Problem of high-speed compressible Euler fluid flow coupled with a shell. The
shell properties are: E = 2.07 × 1011 Pa and � = 0.3. The fluid conditions and properties are:
pi = 86 100 Pa; �i = 300 K; po = 50 000 Pa; cp = 1004.5 m2/s2 K; and cv = 717.5 m2/s2 K; (b)
Mach contours from the fluid solution assuming a stiff shell; and (c) Mach contours from the fluid

solution assuming a flexible shell.

problem. Figure 7(a) shows a finite element model of an artificial lung. The fluid, blood, is
passed into a reservoir that is bounded by a flexible shell, modelled by four-node shell elements.
The compliant shell expands to accept the fluid and then passes it by a pumping action into
the core of the lung. This part of the lung is a fibre bundle which is modelled as a porous
3D medium.
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Figure 6. (a) Collapsible channel flow problem considered; (b) calculated mid-point membrane dis-
placement; and (c) calculated Lyapunov characteristic exponent.

The interest in the numerical simulation lies in predicting the deformations of the thin shell
that determine the amount of blood and oxygen that can be passed. The shell deformations
are clearly dependent on the fluid pressure and, in turn, the fluid flow is influenced by the
deformations of the structure. Thus the coupled solution of the fluid flow and shell becomes a
key factor in analysing an artificial lung.

Typical fluid pressure and velocity results, and shell deformations drawn to scale are shown
in Figure 7(b).

6. CONCLUDING REMARKS

The objective of this paper is to present some solution capabilities for fluid flow structural inter-
action analyses. We considered quite general flow fields and very general structural conditions,
as analyzed with ADINA.

The analysis of fluid flow structural interactions in engineering practice requires a somewhat
different approach than can be followed in a pure research environment. In engineering practice,
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Figure 7. (a) Illustration of the artificial lung and the meshes used; and (b) typical fluid pressure
(left) and velocity (centre) distributions, and the deformation of the shell drawn to scale (right, the

dashed line shows the original mesh).

the analyst frequently does not know what Reynolds number flow is to be simulated. Hence, it
is natural to first consider laminar flow conditions and obtain a response. Then, based on the
available laminar flow solution, the analyst can choose the appropriate turbulence models to be
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used. In the paper, we thus refer to an ‘ideal’ solution scheme for the laminar Navier–Stokes
equations. This scheme would be quite robust, reliable and accurate, not require the setting of
any solution parameters, and provide good convergence in the iterative solution of the non-
linear finite element equations. Such a scheme does not exist yet, but we are developing the
FCBI approach to obtain a method closer to the ideal scheme. The current FCBI procedure
can already be used for complex fluid flow problems with structural interactions, and we see
considerable potential to further increase its effectiveness [32], in particular when used with
goal-oriented error estimations [33, 34].

There are many applications of fluid flow interaction problems and it is apparent that further
significant advances in modelling and solution capabilities are in much demand. The great
challenge, however, lies in the development of capabilities that are general and reliable for
accurate solutions, and can be used by other persons than the code developers for the simulation
of complex problems [35].
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