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FINITE ELEMENT ERROR ESTIMATES
ON THE BOUNDARY

WITH APPLICATION TO OPTIMAL CONTROL

THOMAS APEL, JOHANNES PFEFFERER, AND ARND RÖSCH

Abstract. This paper is concerned with the discretization of linear elliptic
partial differential equations with Neumann boundary condition in polygonal
domains. The focus is on the derivation of error estimates in the L2-norm on
the boundary for linear finite elements. Whereas common techniques yield only
suboptimal results, a new approach in this context is presented which allows
for quasi-optimal ones, i.e., for domains with interior angles smaller than 2π/3
a convergence order two (up to a logarithmic factor) can be achieved using
quasi-uniform meshes. In the presence of internal angles greater than 2π/3
which reduce the convergence rates on quasi-uniform meshes, graded meshes
are used to maintain the quasi-optimal error bounds.

This result is applied to linear-quadratic Neumann boundary control prob-
lems with pointwise inequality constraints on the control. The approximations
of the control are piecewise constant. The state and the adjoint state are
discretized by piecewise linear finite elements. In a postprocessing step ap-
proximations of the continuous optimal control are constructed which possess
superconvergence properties. Based on the improved error estimates on the
boundary and optimal regularity in weighted Sobolev spaces almost second
order convergence is proven for the approximations of the continuous optimal
control problem. Mesh grading techniques are again used for domains with
interior angles greater than 2π/3. A certain regularity of the active set is
assumed.

1. Introduction

Let Ω be a bounded, two-dimensional, polygonal domain with Lipschitz bound-
ary Γ and m corner points x(j), j = 1, . . . ,m, counting counterclockwise. In par-
ticular, Γj denotes the side on the boundary Γ which connects the corners x(j) and
x(j+1); note that x(m+1) := x(1). The angle between Γj−1 and Γj is denoted by
ωj with the obvious modification for ω1. In the first part of this paper, we will
discretize the linear elliptic partial differential equation

(1.1)
−Δy + y = f in Ω,

∂ny = g on Γj , j = 1, . . . ,m,

with piecewise linear and continuous ansatz functions and focus on finite element
error estimates in the L2-norm on the boundary. Common approaches for this use
the trace theorem or the Nitsche method in L2(Γ). This yields an error bound
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of ch3/2. This estimate is sharp in the case of H2(Ω)-regularity of the solution.
For example, such limited regularity can be caused by the presence of corner sin-
gularities or by right-hand sides f and g in L2(Ω) and H1/2(Γ), respectively. For
more regular solutions in W 2,p(Ω) with p > 2 numerical examples indicate that the
convergence order is better; cf. [1, 20]. This can be explained by first using the
embedding Lp(Γ) ↪→ L2(Γ) and then applying the trace theorem or the Nitsche
method in Lp(Γ). Similar techniques are used in [20]. By this one obtains an error
bound of ch2−1/p. Accordingly for problem (1.1) a convergence order close to 2
can only be expected if ωj < π/2 for j = 1, . . . ,m, since the corner singularities
admit in general only a solution in W 2,∞(Ω) for such domains. In the present work
we will show that the estimates can even be improved assuming Hölder continuous
right-hand sides. Based on regularity results in weighted Sobolev spaces, techniques
of [2, 29, 30] and local finite element error estimates as described in [9, 28, 32] for a
quasi-optimal error bound of ch2| lnh|1+δ with some δ ∈ [0, 1/2] will be obtained
for domains with interior angles smaller than π/(2 − δ). Hence, in domains with
interior angles smaller than 2π/3 the error is definitely bounded by ch2| ln h|3/2.
These estimates hold still for quasi-uniform meshes. For domains with larger inte-
rior angles than π/(2− δ) mesh grading techniques will be applied to get the same
result. In that case the mesh grading parameter μj , that determines the strength
of the grading around the corner x(j), has to be chosen smaller than (δ + π/ωj)/2;
see Section 3 for details.

Error estimates of that kind are, for example, required for the numerical analysis
of Neumann boundary control problems. The second part of this paper is dedicated
to this topic. We will consider the optimal control problem

J(ū) = min
u∈Uad

J(u),(1.2)

J(u) := F (Su, u),

F (y, u) := 1
2
‖y − yd‖2

L2(Ω) + ν

2
‖u‖2

L2(Γ),

where the associated state y = Su to the control u is the weak solution of

(1.3)
−Δy + y = 0 in Ω,

∂ny = u on Γj , j = 1, . . . ,m,

the desired state yd belongs to the Hölder space C0,σ(Ω̄) with some σ ∈ (0, 1) and
the control variable is constrained by

a ≤ u(x) ≤ b for a.a. x ∈ Γ.

We will focus on the full discretization of problem (1.2) combined with a post-
processing procedure, i.e., the state and the adjoint state are discretized by linear
finite elements and the control is approximated by piecewise constant functions on
the boundary. Afterwards, in a postprocessing step, piecewise linear and globally
continuous controls are constructed, which possess superconvergence properties.
This postprocessing approach is well known for linear optimal control problems;
see [3, 24] for distributed controls and [1, 20] for controls located at the Neumann
boundary. It is extended to semilinear control problems in [26]. Also, different
approaches for problem (1.2) have been discussed in the literature. The numerical
analysis for the full discretization itself has been accomplished in [7]. In [6] the con-
trol is not discretized by piecewise constant functions but by piecewise linear and
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Figure 1. Convergence rates of the control in L2(Γ) depending on
the interior angles ωj . Solid lines: quasi-uniform meshes. Dashed
lines: graded meshes.

globally continuous functions. These two works attack semilinear elliptic problems.
The variational discretization concept, originally suggested in [12] for distributed
control problems, has been transferred to Neumann boundary control problems in
[6] for semilinear and in [1, 13, 20] for linear elliptic equations. This approach only
discretizes the state and adjoint state by linear finite elements but not the control.
In Figure 1 the obtained convergence rates of the control in L2(Γ) for the different
approaches are illustrated depending on the interior angles of the domain. In [7] a
convergence order of 1 is obtained in convex domains for the full discretization of
semilinear elliptic problems, where the control is discretized piecewise constantly.
Approximating the control with piecewise linear and continuous functions implies,
in convex domains, superlinear convergence and a convergence rate of 3/2 under an
additional assumption on the control; see [6]. Furthermore, in [6] an error bound
in L2(Γ) of ch3/2−ε with some arbitrary ε > 0 is established in convex domains for
the concept of variational discretizations. This approach admits, for linear prob-
lems in convex domains, a convergence rate in L2(Γ) of 3/2 and an error bound
of ch2−2/p| log h| in L∞(Γ)(↪→ L2(Γ)) with 2 < p < minj(2ωj/(2ωj − π)); see [13].
An improved estimate for the concept of variational discretizations and the post-
processing approach can be found in [20]. There, the authors proved for convex
domains an approximation rate of 2 − 1/p with the parameter p as before and a
rate of minj(1/2 + π/ωj) for nonconvex domains. They further establish better
estimates using higher order finite elements for the discretization of the state and
adjoint state (not contained in Figure 1). All the results, stated so far, have in
common, that the convergence rates are lower than 3/2 in nonconvex domains. In
[1] we have already proved that graded meshes with grading parameters μj < π/ωj

can be used to maintain a convergence order of 3/2 in nonconvex domains. Using
the quasi-optimal error estimates on the boundary of the first part and optimal
regularity of the solution in weighted Sobolev spaces we will show in the present
work under a structural assumption on the active set, that the error is bounded
by ch2| lnh|3/2 using quasi-uniform meshes even if ωj < 2π/3. For larger interior
angles we will prove that graded meshes with μj < 1/4 + π/2ωj imply the same
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convergence rate. For further literature concerning optimal control problems and
its discretization we refer to [1, 14, 20, 31] and the references therein.

The paper is organized as follows: In the next section we introduce weighted
spaces and some of its properties, which are used for the analysis in the subsequent
sections. Furthermore, we state results about weighted W 2,∞-regularity of the
solution of problem (1.1). The proof of these results is based on regularity results in
weighted Hölder spaces and is postponed to Section 8. Section 3 is concerned with
the discretization of problem (1.1) by linear finite elements using quasi-uniform
and graded meshes. This section includes the quasi-optimal finite element error
estimates in the domain and our first main result, the quasi-optimal finite element
error estimate on the boundary. In Section 4 we discuss the necessary and sufficient
optimality condition of problem (1.2). As a key point for the subsequent numerical
analysis we also prove optimal regularity in weighted Sobolev spaces for the solution
of the optimal control problem. The discrete counterpart of the continuous optimal
control problem (1.2) and its necessary and sufficient optimality condition is stated
in Section 5. In Section 6 we prove interpolation error estimates on the boundary.
These are special compared to the interpolation error estimates of Section 3, since
the techniques used in Section 3 would only yield suboptimal results. Finally, quasi-
optimal error estimates for the postprocessing approach are contained in Section 7.
We emphasize, that the optimal control and the desired state are separated from
the constants in all estimates.

In the sequel c denotes a generic constant, which is always independent of the
discretization parameter.

2. Regularity in weighted Sobolev spaces

The regularity of the solution of the elliptic boundary value problem (1.1) is
in general limited due to the corners of the domain even if the data f and g are
smooth. If one uses classical Sobolev-Slobodetskij spaces W s,p(Ω) to describe the
regularity, then this limitation is given by a dependence of the parameters s and
p on the interior angles of the domain; compare e.g. [8, 11]. Another possibility
to state the regularity uses weighted Sobolev spaces, which better incorporates the
singular behavior coming from the corners. To this end we introduce the circular
sectors ΩRj

and ΩRj/64 which are centered at the corners x(j) and possess the
opening angles ωj and the radii Rj and Rj/64, respectively. The radii Rj can be
chosen arbitrarily with the only restriction that the circular sectors ΩRj

do not
overlap. We denote by rj and ϕj the polar coordinates located at the point x(j).
The sides of the circular sectors ΩRj

, which coincide with the boundary Γ locally,
are defined by Γ+

j (ϕj = ωj) and Γ−
j (ϕj = 0). We set Γ±

j = Γ+
j ∪ Γ−

j . In the
following the closure of some set G will be denoted either by Ḡ or by cl(G). We set

Ω0 = Ω\
m⋃
j=1

ΩRj/64 and Γ0 = Γ ∩ Ω̄0.

We define for k ∈ N0, p ∈ [1,∞] and �β = (β1, . . . , βm)T ∈ R
m the weighted Sobolev

spaces W k,p
�β

(Ω) as the set of all functions on Ω with finite norm

‖v‖Wk,p
�β

(Ω) ∼ ‖v‖Wk,p(Ω0) +
m∑
j=1

‖v‖Wk,p
βj

(ΩRj
),
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where the Sobolev spaces W k,p(Ω) (= Hk(Ω) for p = 2) are defined as usual and
the weighted part in the norm is defined by

‖v‖Wk,p
βj

(ΩRj
) =

⎛
⎝ ∑

|α|≤k

‖rβj

j Dαv‖pLp(ΩRj
)

⎞
⎠

1/p

if 1 ≤ p < ∞,

‖v‖Wk,∞
βj

(ΩRj
) =

∑
|α|≤k

‖rβj

j Dαv‖L∞(ΩRj
)

using standard multi-index notation. We denote by C the set of all corner points.
The corresponding trace spaces W

k−1/p,p
�β

(Γ) (k ≥ 1) are equipped with the norm

‖v‖
W

k−1/p,p
�β

(Γ) = inf
{
‖u‖Wk,p

�β
(Ω) : u ∈ W k,p

�β
(Ω), u|Γ\C = v

}
.

Furthermore, we define the space W k,p
�β

(Γ) for k∈N0, p∈ [1,∞] and �β=(β1, . . . , βm)T

∈ R
m as the space of all functions such that

‖v‖Wk,p
�β

(Γ) ∼ ‖v‖Wk,p(Γ0) +
m∑
j=1

‖v‖Wk,p
βj

(Γ±
j ),

is finite, where

‖v‖Wk,p
βj

(Γ±
j

) =

⎛
⎝ ∑

|α|≤k

(
‖rβj

j ∂α
t v‖

p

Lp(Γ+
j

) + ‖rβj

j ∂α
t v‖

p

Lp(Γ−
j

)

)⎞⎠
1/p

if 1 ≤ p < ∞,

‖v‖Wk,∞
βj

(Γ±
j

) =
∑
|α|≤k

(
‖rβj

j ∂α
t v‖L∞(Γ+

j
) + ‖rβj

j ∂α
t v‖L∞(Γ−

j
)

)
.

Note, that ∂tv denotes the tangential derivative of v. For the numerical analysis it
is useful to introduce the seminorms

| · |Wk,p
�β

(Ω) and | · |Wk,p
�β

(Γ),

which are defined in analogy to the classical Sobolev seminorms. In Lemmas 2.1
and 2.2 we state selected properties of the weighted Sobolev spaces W k,p

�β
(Ω) and

W k,p
�β

(Γ) where we will use the uniform notation W k,p
�β

(G). The dimension of G is
n = 2 when G = Ω (or part of it) and n = 1 when G = Γ (or part of it).

Lemma 2.1. Let l and k be nonnegative integers. Then the following assertions
hold:

(1) Let β′
j > −n/p and βj − β′

j ≤ k for j = 1, . . . ,m and 1 ≤ p < ∞. Then
the continuous embedding W l+k,p

�β
(G) ↪→ W l,p

�β′ (G) holds.
(2) Let n/q − n/p > βj − β′

j for j = 1, . . . ,m and 1 ≤ q < p ≤ ∞. Then the
continuous embedding W l,p

�β
(G) ↪→ W l,q

�β′ (G) is valid.
(3) Let β′

j > −n/p and βj − β′
j < 1 for j = 1, . . . ,m and 1 ≤ p < ∞. Then

the compact embedding W l+1,p
�β

(G) c
↪→ W l,p

�β′ (G) holds.
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Proof. 1. Let γj := β′
j + k and �γ = (γ1, . . . , γm). By Hardy’s inequality applied

k-times and embeddings in the usual Sobolev spaces one obtains for β′
j > −n/p

that
W l+k,p

�γ (G) ↪→ W l,p
�β′ (G);

cf. Lemma 7.1.5 in [16] for the two-dimensional case with p = 2, and [18, (0.35)] for
general p but slightly different notation. Now, the first assertion follows immediately
since

W l+k,p
�β

(G) ↪→ W l+k,p
�γ (G)

for βj ≤ γj which is equivalent to βj − β′
j ≤ k.

2. This is a consequence of the Hölder inequality.
3. For three space dimensions this is proven in Lemma 8.1.2 in [21]. In one and

two space dimensions it can be proven analogously using the continuous embedding
of 1. �

Lemma 2.2. Let q ∈ [1,∞), −n/q < βj < n − n/q + 1 for j = 1, . . . ,m, k ≥ 0
and v ∈ W k+1,q

β (G). Then the norm equivalence

(2.1) ‖v‖Wk+1,q
�β

(G) ∼ |v|Wk+1,q
�β

(G) +
∑
|δ|≤k

∣∣∣∣
∫
G
Dδv dx

∣∣∣∣
is valid.

Proof. This assertion has already been proven in Lemma 2.2 of [4], where the
authors assume that 1− 2/q < βj ≤ 1. Let �1 = (1, . . . , 1) ∈ R

m. Using Lemma 2.1,
parts 2, 1, and 3, respectively, one has

(2.2) W k+1,q
�β

(G) ↪→ W k+1,1
�1 (G) ↪→ W k,1(G) and W k+1,q

�β
(G) c

↪→ W k,q
�β

(G)

for −n/q < βj < n−n/q+1. These two embeddings are essential to prove the norm
equivalence (2.1). In fact, tracing through the proof of Lemma 2.2 in [4] reveals that
the condition 1− 2/q < βj ≤ 1 can simply be replaced by −n/q < βj < n−n/q+1
by means of (2.2). �

As usual, the space Ck(Ω̄) denotes the set of all functions on Ω with bounded
and uniformly continuous derivatives up to order k. The norm in Ck(Ω̄) is defined
by

‖v‖Ck(Ω̄) =
∑
|α|≤k

sup
x∈Ω

|Dα
xv(x)|.

Functions belonging to the Hölder space Ck,σ(Ω̄) additionally possess bounded
derivatives of order k which are Hölder continuous with exponent σ ∈ (0, 1). The
norm in the Hölder space Ck,σ(Ω̄) is given by

‖v‖Ck,σ(Ω̄) = ‖v‖Ck(Ω̄) +
∑
|α|=k

sup
x,y∈Ω

|Dα
x v(x) −Dα

y v(y)|
|x− y|σ .

Now we have everything at hand to state the regularity results. Let f and g
be elements of the dual spaces of H1(Ω) and H1/2(Γ), respectively. Then, the
generalized solution of (1.1) is the unique element y ∈ H1(Ω) that satisfies

(2.3) a(y, v) = (f, v)L2(Ω) + (g, v)L2(Γ) ∀v ∈ H1(Ω),
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where a : H1(Ω) ×H1(Ω) → R is the bilinear form

(2.4) a(y, v) =
∫

Ω
(∇y · ∇v + yv) dx.

The regularity of the solution of problem (1.1) is described in the following two
lemmata. The proofs are postponed to Section 8, page 64ff. A survey of regularity
results of more general situations is contained in [19].

Lemma 2.3. Let λj = π/ωj and let βj satisfy the condition

1 > βj > max(0, 1 − λj) or βj = 0 and 1 − λj < 0

for j = 1, . . . ,m. Furthermore, let f ∈ W 0,2
�β

(Ω) and g ∈ W
1/2,2
�β

(Γ). Then
problem (1.1) has a unique generalized solution y ∈ W 2,2

�β
(Ω) and the a priori

estimate
‖y‖W 2,2

�β
(Ω) ≤ c

(
‖f‖W 0,2

�β
(Ω) + ‖g‖

W
1/2,2
�β

(Γ)

)
is valid.

Lemma 2.4. Let λj = π/ωj and let γj satisfy the condition

2 > γj > max(0, 2 − λj) or γj = 0 and 2 − λj < 0

for j = 1, . . . ,m. Moreover, let f ∈ C0,σ(Ω̄) with σ ∈ (0, 1) and g ≡ 0. Then the
unique generalized solution y of problem (1.1) fulfills the a priori estimate

‖y‖
W

2,∞
�γ

(Ω) + ‖y‖
W

2,∞
�γ

(Γ) ≤ c

⎛
⎝‖y‖C2(Ω̄0) +

m∑
j=1

∑
|α|≤2

‖rγj

j Dαy‖C0(Ω̄Rj
)

⎞
⎠ ≤ c‖f‖C0,σ(Ω̄).

3. Finite element error estimates on the boundary

We will now discretize the boundary value problem (1.1) by a finite element
method. For this purpose we introduce a family of graded triangulations {Th} of the
domain Ω where h denotes the global mesh parameter (cf. Definition 4.4.13 in [5]).
We assume h ≤ h0 < 1. Note that a segmentation Eh of the boundary is naturally
introduced by the triangulation Th. We denote by μj ∈ (0, 1], j = 1, . . . ,m, the
mesh grading parameters which are collected in the vector �μ. The distance of the
triangle T to the corner x(j) is defined by rT,j := infx∈T |x−x(j)|. We assume that
the element size hT := diam T satisfies

c1h
1/μj ≤ hT ≤ c2h

1/μj for rT,j = 0,
c1hr

1−μj

T,j ≤ hT ≤ c2hr
1−μj

T,j for 0 < rT,j ≤ Rj ,

c1h ≤ hT ≤ c2h for rT,j > Rj

(3.1)

for j = 1, . . . ,m and the radii Rj which we have defined in Section 2. Next, we
introduce the space Vh as the space of all piecewise linear and globally continuous
functions in Ω̄,

Vh := {yh ∈ C(Ω̄) : yh|T ∈ P1(T ) ∀T ∈ Th},
where P1(T ) denotes the space of polynomials of degree less than or equal to one
on T .

The discrete solution is the unique element yh ∈ Vh ⊂ H1(Ω) that satisfies

(3.2) a(yh, vh) = (f, vh)L2(Ω) + (g, vh)L2(Γ) ∀vh ∈ Vh.
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We set �λ = (λ1, . . . , λm)T = (π/ω1, . . . , π/ωm)T and �a = (a, . . . , a)T ∈ R
m for

any real number a, e.g., �1 = (1, . . . , 1)T ∈ R
m. Furthermore, all inequalities

in the sequel containing vectorial parameters must be understood component-by-
component. We proved in [1] the following estimates for the discretization error in
the domain.

Theorem 3.1. Let y and yh be the solutions of (2.3) and (3.2), respectively. The
discretization error can be estimated by

‖y−yh‖L2(Ω)+h‖y−yh‖W 1,2(Ω)≤ch2‖y‖W 2,2
�β

(Ω)≤ch2
(
‖f‖W 0,2

�β
(Ω) + ‖g‖

W
1/2,2
�β

(Γ)

)
,

provided that �1 − �λ < �β ≤ �1 − �μ, �β ≥ �0, f ∈ W 0,2
�β

(Ω) and g ∈ W
1/2,2
�β

(Γ).

The main new result of this section is the following finite element error estimate
on the boundary.

Theorem 3.2. Let y and yh be the solution of (2.3) and (3.2), respectively,
and g ≡ 0. The finite element error on the boundary admits for some arbitrary
δ ∈ [0, 1/2] the estimate

‖y − yh‖L2(Γ) ≤ ch2| lnh|1+δ‖f‖C0,σ(Ω̄)

provided that �μ < �δ/2 + �λ/2, �μ ∈ (δ/2, 1]m and f ∈ C0,σ(Ω̄), σ ∈ (0, 1).

Before we prove this theorem we add some discussion.

Remark 3.3. To get optimal discretization error estimates in the domain one only
needs a graded mesh with grading parameters �μ < �λ if the largest interior angle
in the domain is larger than π. However, the stronger condition �μ < �1/4 + �λ/2
is required to guarantee a finite element error estimate on the boundary of order
O(h2| lnh|3/2). Numerical examples also indicate that this condition is sharp; cf.
[1]. Mesh grading with the stronger refinement condition is indeed necessary in
domains which have interior angles greater than 2π/3.

Remark 3.4. In Theorem 3.2 a homogeneous boundary datum g is assumed. How-
ever, the assertion can easily be generalized to the inhomogeneous case. Then one
only needs regularity results as in Lemma 2.4 which incorporate an inhomogeneous
boundary datum g.

Remark 3.5. Optimal finite element error estimates in the L2-norm on a strip at
the boundary with width h are closely related to the error estimate of Theorem 3.2.
In [23] the authors prove an optimal estimate on a strip for the Dirichlet problem
in convex polygonal and polyhedral domains using quasi-uniform meshes. Whereas
the general approach in [23] as well as in the present work relies on local finite
element error estimates as described in [9, 32], the regularity theory used for the
numerical analysis differs fundamentally. In [23] weighted and anisotropic spaces
are used, which employ the distance to the boundary. In contrast, our analysis
is based on weighted spaces with respect to the corners, which allow the usage of
graded meshes with local grading parameters μj depending on the interior angles
ωj of each particular corner.

The remainder of this section is devoted to the proof of Theorem 3.2. The reader
who is not interested in the proving techniques may jump directly to Section 4
(application to an optimal control problem), page 52.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FINITE ELEMENT ERROR ESTIMATES 41

Γ+
Rj/16

Γ−
Rj/16

Ω̃0

ΩRj/16

ΩJ

∂Ω−
J

∂Ω+
J

Figure 2. Partition of Ω with subdomains ΩRj/16 (left) and
partition of ΩR with subdomains ΩJ (right)

In Section 2 we have already introduced circular sectors ΩRj
and ΩRj/64 which

are centered at the corners x(j) and possess the radii Rj and Rj/64; compare also the
mesh condition (3.1). Next, we introduce the circular sectors ΩRj/2, ΩRj/4, ΩRj/8,
ΩRj/16 and ΩRj/32 with the radii Rj/2, Rj/4, Rj/8, Rj/16 and Rj/32, respectively.
The sides of the circular sectors ΩRj/16 which coincide with the boundary Γ are
denoted by Γ+

Rj/16 (ϕj = ωj) and Γ−
Rj/16 (ϕj = 0). The union of both is denoted

by Γ±
Rj/16. Furthermore, we define Ω̃0 = Ω\

⋃m
j=1 ΩRj/16, Γ̃0 = Γ ∩ cl(Ω̃0) and

Ω̌0 = Ω\
⋃m

j=1 ΩRj/32. Figure 2 illustrates exemplarily such a partition of the
domain. The dashed and the dotted lines indicate (not to scale) the domains ΩRj/8
and ΩRj

, respectively.
Now we will proceed for every corner in the same way. Let the corner x(j0) be the

corner under consideration. We assume for the sake of simplicity but without loss of
generality that the corner x(j0) is located at the origin and Rj0 = 1. Furthermore,
we suppress the subscript j0 in the following, i.e., ΩR = ΩRj0

, ΩR/2 = ΩRj0/2, etc.
We divide the domain ΩR into subsets ΩJ ,

ΩR =
I⋃

J=0

ΩJ

where ΩJ = {x : dJ+1 ≤ |x| ≤ dJ} for J = 0, . . . , I − 1 and ΩI = {x : |x| ≤ dI}.
The radii dJ are set to 2−J and the index I is chosen such that

2−(I+k+1) ≤ c2h
1/μ ≤ 2−(I+k)

for some fixed k ∈ N0 and c2 from (3.1). Thus, I ∼ log 1
h for some h ≤ h0 < 1.

Obviously, there exists some constant cI ∈ R with

(3.3) c22k ≤ cI ≤ c22k+1

such that

(3.4) dI = 2−I = cIh
1/μ.
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For the moment we only assume that the parameter k is chosen such that cI ≥ 1.
It will be exactly specified in the proof of Lemma 3.10. The boundary parts of ΩJ

which coincide with the boundary of ΩR are denoted by ∂Ω+
J for ϕ = ω and by

∂Ω−
J for ϕ = 0. We set ∂Ω±

J = ∂Ω+
J ∪ ∂Ω−

J . Figure 2 shows such a division. Note
that

ΩR/2 =
I⋃

J=1

ΩJ , ΩR/4 =
I⋃

J=2

ΩJ , ΩR/8 =
I⋃

J=3

ΩJ , etc.

Next we introduce the extended subsets Ω′
J for J ≥ 1 and Ω′′

J for J ≥ 2 by

Ω′
J = ΩJ−1 ∪ ΩJ ∪ ΩJ+1

and
Ω′′

J = Ω′
J−1 ∪ Ω′

J ∪ Ω′
J+1

with the obvious modifications for J = I − 1, I. The boundary parts ∂Ω±
J
′ are

analogously defined with respect to Ω′
J .

Before going into detail let us elucidate the structure of our proof. As we will
see on page 51, L2(Γ±

R/16)-discretization error estimates are crucial ingredients of
the proof of Theorem 3.2. These are established in Lemma 3.12. The proof re-
quires L∞(Ω′

J)-interpolation error estimates (see Lemma 3.7 and Remark 3.8), the
weighted finite element error estimate of Lemma 3.10, and some kind of an inverse
inequality provided in Lemma 3.11. The proof of Lemma 3.10 relies on a kick
back argument, which is established by the special partition of the domain ΩR,
the H1(ΩJ)-interpolation error estimates of Lemma 3.7, and local H1(ΩJ)-finite
element error estimates provided by Lemma 3.9. Lemma 3.7 and Remark 3.8 are
also used in the proof of Lemma 3.9. All these arguments rely on the property that
the mesh is quasi-uniform in the strips Ω′

J which we are going to prove first.

Lemma 3.6. The element size hT of the elements T ⊂ Ω′
J satisfies

2−2(1−μ)c1hd
1−μ
J ≤ hT ≤ 21−μc2hd

1−μ
J , if 1 ≤ J ≤ I − 2,(3.5)

c1h
1/μ ≤ hT ≤ 22(1−μ)c2hd

1−μ
I = 22(1−μ)c2c

1−μ
I h1/μ, if J = I, I − 1(3.6)

with constants c1 and c2 from (3.1) and cI from (3.4).

Proof. For any element T ⊂ Ω′
J and J ≤ I − 2 one has dJ+2 < rT < dJ−1. Thus,

assertion (3.5) follows immediately with dJ+2 = 2−2dJ , dJ−1 = 2dJ and the mesh
condition (3.1). Assertion (3.6) holds analogously since for any element T ⊂ ΩJ ,
J = I, I − 1, one has 0 ≤ rT ≤ dI+2 = 22dI = 22cIh

1/μ. �

As indicated above we will use a kick back argument in the proof of Lemma 3.10.
This depends on the size of the constant cI . For that purpose we distinguish between
the generic constant c and the constant cI in the following two lemmas.

Lemma 3.7. Let μ ∈ (0, 1], v1 ∈ W 2,p
α (Ω′

J ), v2 ∈ W 2,∞
α (Ω′

J) and l = 0, 1.
(1) For 1 ≤ J ≤ I − 2 the estimates

‖v1 − Ihv1‖W l,2(ΩJ ) ≤ ch2−ld
(2−l)(1−μ)+1−2/p−α
J |v1|W 2,p

α (Ω′
J
),(3.7)

‖v2 − Ihv2‖L∞(ΩJ ) ≤ ch2d2−2μ−α
J |v2|W 2,∞

α (Ω′
J
),(3.8)

are valid for 2 ≤ p ≤ ∞ and α ∈ R.
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(2) Let 1 < q ≤ ∞, θl := max{0, (3 − l − 2/p)(1 − μ) − α)} and θ∞ :=
max{0, 2 − 2μ− α}. Then for J = I, I − 1 the inequalities

‖v1 − Ihv1‖W l,2(ΩJ ) ≤ cc
θl+1−2/p
I h(3−l−α−2/p)/μ|v1|W 2,p

α (Ω′
J
),(3.9)

‖v2 − Ihv2‖L∞(ΩJ ) ≤ ccθ∞I h(2−α)/μ|v2|W 2,∞
α (Ω′

J
),(3.10)

hold if max(2, q) ≤ p ≤ ∞ and −2/q < α < 2 − 2/q.

Proof. We begin with estimating ‖v1 − Ihv1‖W l,2(ΩJ ), J = 0, . . . , I, and l = 0, 1.
Let T ∈ Th be a triangle with T ∩ ΩJ �= ∅. We first introduce the polynomial
p1 ∈ P1(T ) and use the triangle inequality. This yields

‖v1 − Ihv1‖W l,2(T ) = ‖v1 − p1 − Ih(v1 − p1)‖W l,2(T )

≤ ‖v1 − p1‖W l,2(T ) + ‖Ih(v1 − p1)‖W l,2(T ).(3.11)

We can conclude for the first term in (3.11) after the transformation to the reference
element T̂ and using the embedding W 2,q′(T̂ ) ↪→ W l,2(T̂ ) which holds for q′ ≥ 1,

‖v1 − p1‖W l,2(T ) ≤ c|T |1/2h−l
T ‖v̂1 − p̂1‖W l,2(T̂ )

≤ c|T |1/2h−l
T ‖v̂1 − p̂1‖W 2,q′(T̂ ).(3.12)

To estimate the second term in (3.11) we use an inverse inequality for functions in
finite dimensional spaces (only for l = 1) and the embedding L∞(T̂ ) ↪→ L2(T̂ ) to
get

‖Ih(v1 − p1)‖W l,2(T ) ≤ c|T |1/2h−l
T ‖Îh(v̂1 − p̂1)‖W l,2(T̂ ) ≤ c|T |1/2h−l

T ‖Îh(v̂1 − p̂1)‖L2(T̂ )

≤ c|T |1/2h−l
T ‖Îh(v̂1 − p̂1)‖L∞(T̂ ) ≤ c|T |1/2h−l

T ‖v̂1 − p̂1‖L∞(T̂ )

≤ c|T |1/2h−l
T ‖v̂1 − p̂1‖W2,q′ (T̂ ).(3.13)

The last steps hold due to the boundedness of the interpolation operator Ih from
L∞(T̂ ) to L∞(T̂ ) and the embedding W 2,q′(T̂ ) ↪→ L∞(T̂ ), which is valid for q′ > 1.
The inequalities (3.12) and (3.13) yield together with (3.11) and the Deny-Lions
Lemma [10]

‖v1 − Ihv1‖W l,2(T ) ≤ c|T |1/2h−l
T ‖v̂1 − p̂1‖W 2,q′(T̂ ) ≤ c|T |1/2h−l

T |v̂1|W 2,q′(T̂ ),(3.14)

which holds for q′ > 1. Now we distinguish triangles T with rT = 0 and rT > 0.
For triangles with rT = 0 we choose q′ = 4q/(2q + 2 +αq) > 1 (see Section 9) with
some q > 1 and −2/q < α < 2 − 2/q. Using the embedding W 2,q

α (T̂ ) ↪→ W 2,q′(T̂ )
according to part 2 of Lemma 2.1 we obtain

‖v1 − Ihv1‖W l,2(T ) ≤ c|T |1/2h−l
T |v̂1|W 2,q

α (T̂ ).

The transformation back to the world element yields

‖v1 − Ihv1‖W l,2(T ) ≤ ch
3−l−α−2/q
T |v1|W 2,q

α (T ) ≤ ch(3−l−α−2/q)/μ|v1|W 2,q
α (T ),(3.15)

since r̂α ∼ h−α
T rα, |T | ∼ h2

T and hT ∼ h1/μ (cf. mesh condition (3.1)). In the case
that rT > 0 we easily get from (3.14) for any q′ = q > 1 and (3.1)

‖v1 − Ihv1‖W l,2(T ) ≤ ch
3−l−2/q
T |v1|W 2,q(T )

≤ ch3−l−2/qr
(3−l−2/q)(1−μ)−α
T |v1|W 2,q

α (T ).(3.16)
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So far we have derived estimates for ‖v1 − Ihv1‖W l,2(T ). Next, we consider the
domains ΩJ . We distinguish between 1 ≤ J ≤ I−2 and J = I−1, I. In the former
case we get from (3.16),

‖v1 − Ihv1‖W l,2(ΩJ ) ≤

⎛
⎝ ∑

T⊂Ω′
J

‖v1 − Ihv1‖2
W l,2(T )

⎞
⎠

1/2

≤ c

⎛
⎝ ∑

T⊂Ω′
J

(
h2−lr

(2−l)(1−μ)−α
T |v1|W 2,2

α (T )

)2
⎞
⎠

1/2

≤ ch2−ld
(2−l)(1−μ)−α
J |v1|W 2,2

α (Ω′
J
)

≤ ch2−ld
(2−l)(1−μ)+1−2/p−α
J |v1|W 2,p

α (Ω′
J
),

where we used rT ∼ dJ (cf. Lemma 3.6), the Hölder inequality with some p ≥ 2
and |Ω′

J | ∼ d2
J in the last steps. In the case that J = I − 1, I we can conclude

using (3.15) and (3.16) with some q > 1, p ≥ max(2, q) and −2/q < α < 2 − 2/q,
‖v1 − Ihv1‖W l,2(ΩJ )

≤

⎛
⎜⎜⎝ ∑

T⊂Ω′
J

rT =0

‖v1 − Ihv1‖2
W l,2(T ) +

∑
T⊂Ω′

J
rT>0

‖v1 − Ihv1‖2
W l,2(T )

⎞
⎟⎟⎠

1/2

≤ c

⎛
⎜⎜⎝ ∑

T⊂Ω′
J

rT =0

(
h(3−l−α−2/p)/μ|v1|W 2,p

α (T )

)2

+
∑

T⊂Ω′
J

rT>0

(
h3−l−2/pr

(3−l−2/p)(1−μ)−α
T |v1|W 2,p

α (T )

)2

⎞
⎟⎟⎠

1/2

≤ c

⎛
⎜⎜⎝ ∑

T⊂Ω′
J

rT =0

(
h(3−l−α−2/p)/μ|v1|W 2,p

α (T )

)2

+
∑

T⊂Ω′
J

rT>0

(
cθlI h(3−l−α−2/p)/μ|v1|W 2,p

α (T )

)2

⎞
⎟⎟⎠

1/2

≤ ccθlI h(3−l−α−2/p)/μ

⎛
⎝ ∑

T⊂Ω′
J

|v1|2W 2,p
α (T )

⎞
⎠

1/2

≤ ccθlI h(3−l−α−2/p)/μ|v1|W 2,p
α (Ω′

J
)

⎛
⎝ ∑

T⊂Ω′
J

1

⎞
⎠

1/2−1/p

,(3.17)
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where we used h1/μ ≤ rT ≤ cdI = ccIh
1/μ, if rT > 0, and the discrete Hölder

inequality. Since |Ω′
J | ∼ d2

I , dI = cIh
1/μ and minT⊂Ω′

J
hT ∼ h1/μ for J = I, I − 1

we get that⎛
⎝ ∑

T⊂Ω′
J

1

⎞
⎠

1/2−1/p

≤
(

|Ω′
J |

minT⊂Ω′
J
h2
T

)1/2−1/p

≤ c
(
c2I
)1/2−1/p = cc

1−2/p
I .

Thus, we obtain for q > 1, p ≥ max(2, q) and −2/q < α < 2 − 2/q,

‖v1 − Ihv1‖W l,2(ΩJ ) ≤ cc
θl+1−2/p
I h(3−l−α−2/p)/μ|v1|W 2,p

α (Ω′
J
).

It remains to prove the L∞-error estimates. Let T be a triangle with T ∩ ΩJ �= ∅.
As in (3.11) we first insert an arbitrary polynomial p1 ∈ P1(T ). This yields for
some q′ > 1,

‖v2 − Ihv2‖L∞(T ) ≤ ‖v2 − p1‖L∞(T ) + ‖Ih(v2 − p1)‖L∞(T )

≤ c‖v̂2 − p̂1‖L∞(T̂ ) ≤ c|v̂2|W 2,q′
α (T̂ );

cf. (3.13) and (3.14). If rT = 0 we get, as in (3.15), for q > 1 and −2/q < α < 2−2/q,

‖v2 − Ihv2‖L∞(T ) ≤ ch
2−α−2/q
T |v2|W 2,q

α (T ) ≤ ch(2−α)/μ|v2|W 2,∞
α (T ).(3.18)

In the case that rT > 0 we can conclude, as in (3.16),

‖v2 − Ihv2‖L∞(T ) ≤ ch2
T |v2|W 2,∞(T ) ≤ ch2r2−2μ−α

T |v2|W 2,∞
α (T ).(3.19)

Now we suppose that v2−Ihv2 admits its maximum in ΩJ at some point x0 ∈ T̄∗ ⊂
Ω′

J . If 1 ≤ J ≤ I − 2 we obtain using (3.19) and rT ∼ dJ ,

‖v2 − Ihv2‖L∞(ΩJ ) = ‖v2 − Ihv2‖L∞(T∗) ≤ ch2d2−2μ−α
J |v2|W 2,∞

α (T∗)

≤ ch2d2−2μ−α
J |v2|W 2,∞

α (Ω′
J
).

In the case that J = I − 1, I we get for rT∗ = 0, according to (3.18),

‖v2 − Ihv2‖L∞(ΩJ ) ≤ ch
2−α−2/q
T∗ |v2|W2,q

α (T∗) ≤ ch2−α
T∗ |v2|W2,∞

α (T∗) ≤ ch2−α
T∗ |v2|W2,∞

α (Ω′
J
),

which holds for some q > 1 and −2/q < α < 2 − 2/q. Since hT∗ ∼ h1/μ we can
continue with

‖v2 − Ihv2‖L∞(ΩJ ) ≤ ch(2−α)/μ|v2|W 2,∞
α (Ω′

J
).

In the case that rT∗ > 0 we can conclude analogously to (3.17) using (3.19),

‖v2 − Ihv2‖L∞(ΩJ ) = ‖v2 − Ihv2‖L∞(T∗) ≤ ch2
T∗ |v2|W 2,∞(T∗)

≤ ch2r2−2μ−α
T∗

|v2|W 2,∞
α (T∗) ≤ ccθ∞I h2h(2−2μ−α)/μ|v2|W 2,∞

α (Ω′
J
)

= ccθ∞I h(2−α)/μ|v2|W 2,∞
α (Ω′

J
).

�

Remark 3.8. The inequalities (3.7)– (3.10) hold as well if we replace ΩJ with Ω′
J

and Ω′
J with Ω′′

J , respectively. In that case we have to distinguish 2 ≤ J ≤ I − 3
and J = I − 2, I − 1, I.

Lemma 3.9. Let μ ∈ (0, 1] and y ∈ W 2,∞
α (ΩR).
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(1) For 2 ≤ J ≤ I − 3 the estimate

‖y − yh‖H1(ΩJ ) ≤ c
(
hd2−μ−α

J |y|W 2,∞
α (Ω′′

J
) + d−1

J ‖y − yh‖L2(Ω′
J
)

)
is valid for α ∈ R.

(2) Let 1 < q ≤ ∞. Then for J ≥ I − 2 the inequality

‖y − yh‖H1(ΩJ ) ≤ c
(
c5Ih

(2−α)/μ|y|W 2,∞
α (Ω′′

J
) + d−1

J ‖y − yh‖L2(Ω′
J
)

)
holds true for −2/q < α < 2 − 2/q.

Proof. The proof relies on local finite element error estimates stated in [9] and on
the interpolation error estimates given in Lemma 3.7. For J = 0, . . . , I we get from
Theorem 3.4 of [9],

‖y−yh‖H1(ΩJ ) ≤ c
(
‖y − Ihy‖H1(Ω′

J
)+d−1

J ‖y − Ihy‖L2(Ω′
J
) + d−1

J ‖y − yh‖L2(Ω′
J
)

)
,

where the constant c does not depend on cI . In the case that 2 ≤ J ≤ I − 3 one
gets with Lemma 3.7 and Remark 3.8

‖y − yh‖H1(ΩJ ) ≤ c
(
hd2−μ−α

J |y|W 2,∞
α (Ω′′

J
) + h2d2−2μ−α

J |y|W 2,∞
α (Ω′′

J
)

+d−1
J ‖y − yh‖L2(Ω′

J
)

)
.

Since hd−μ
J ≤ hd−μ

I = c−μ
I ≤ 1 we arrive at

‖y − yh‖H1(ΩJ ) ≤ c
(
hd2−μ−α

J |y|W 2,∞
α (Ω′′

J
) + d−1

J ‖y − yh‖L2(Ω′
J
)

)
.

This is the first inequality of the assertion. For J ≥ I−2 we proceed in an analogous
way. But now we use the interpolation error estimates from Lemma 3.7, with regard
to Remark 3.8, which are stated there for domains close to or at the corner. Let
θl := max{0, (3 − l)(1 − μ) − α} for l = 0, 1. By this we obtain

‖y − yh‖H1(ΩJ ) ≤ c
(
cθ1+1
I h(2−α)/μ|y|W 2,∞

α (Ω′′
J
) + cθ0+1

I d−1
J h(3−α)/μ|y|W 2,∞

α (Ω′′
J
)

+d−1
J ‖y − yh‖L2(Ω′

J
)

)
≤ c

(
(cθ1+1

I + cθ0I )h(2−α)/μ|y|W 2,∞
α (Ω′′

J
) + d−1

J ‖y − yh‖L2(Ω′
J
)

)
≤ c

(
c5Ih

(2−α)/μ|y|W 2,∞
α (Ω′′

J
) + d−1

J ‖y − yh‖L2(Ω′
J
)

)
,

where we used d−1
J h1/μ ≤ d−1

I h1/μ = c−1
I , θ1 ≤ 4 and θ0 ≤ 5 in the last steps. �

Lemma 3.10. Let 1 < q ≤ ∞. Then for y ∈ W 2,∞
γ (ΩR), γ ≤ 5/2 − 2μ and

−2/q < γ < 2 − 2/q the inequality

‖(r + dI)−1/2 (y − yh) ‖L2(ΩR/8) ≤ c
(
h2| lnh|1/2|y|W 2,∞

γ (ΩR) + ‖y − yh‖L2(ΩR)

)
holds.

Proof. We define the weight function σ = r+dI . Furthermore, let χ be the charac-
teristic function, which is equal to one in ΩR/8 and equal to zero in ΩR\ cl(ΩR/8).
Next, we introduce the boundary value problem

−Δw + w = σ−1 (y − yh)χ in ΩR,(3.20)
∂nw = 0 on ∂ΩR
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with its weak formulation

(3.21) aΩR
(ϕ,w) = (σ−1(y − yh)χ, ϕ)L2(ΩR) ∀ϕ ∈ H1(ΩR),

where the bilinear form aΩR
: H1(ΩR) ×H1(ΩR) → R is defined by

aΩR
(ϕ,w) =

∫
ΩR

(∇ϕ · ∇w + ϕw) dx.

Since r(r + dI)−2 ≤ r−1 and y − yh ∈ H1(Ω) we can conclude, using part 1 of
Lemma 2.1, that

‖σ−1(y − yh)χ‖W 0,2
1/2(ΩR) ≤ ‖σ−1(y − yh)‖W 0,2

1/2(ΩR) ≤ ‖y − yh‖W 0,2
−1/2(ΩR)

≤ ‖y − yh‖H1(ΩR);

this means for the right-hand side of (3.20) that σ−1(y − yh)χ ∈ W 0,2
1/2(ΩR). Thus,

we get according to Lemma 2.3 that the solution w belongs to W 2,2
1/2(ΩR), since

1 > 1/2 > 1 − λ = 1 − π/ω for every angle ω in (0, 2π). Moreover, if we use the
inequality r < r + dI we obtain the validity of the a priori estimate

(3.22) ‖w‖W 2,2
1/2(ΩR) ≤ c‖σ−1 (y − yh) ‖W 0,2

1/2(ΩR/8) ≤ c‖σ−1/2 (y − yh) ‖L2(ΩR/8).

Using part 1 of Lemma 2.1 we can also show that

(3.23) ‖w‖H1(ΩR) = ‖w‖W 1,2
0 (ΩR) ≤ c‖w‖W 2,2

1/2(ΩR) ≤ c‖σ−1/2 (y − yh) ‖L2(ΩR/8).

Now, let η be an infinitely differentiable function in cl(Ω), which is equal to one in
ΩR/8, supp η ⊂ ΩR/4 and ∂nη = 0 on ∂ΩR. By setting ϕ = ηv in (3.21) with some
v ∈ H1(ΩR) one can show that w̃ = ηw fulfills the equation

aΩR
(v, w̃) = (ησ−1 (y − yh)χ− Δηw − 2∇η · ∇w, v)L2(ΩR) ∀v ∈ H1(ΩR).

By this we get

‖σ−1/2 (y − yh) ‖2
L2(ΩR/8) = (ησ−1(y − yh)χ, y − yh)L2(ΩR)

= aΩR
(y − yh, w̃) + (Δηw, y − yh)L2(ΩR) + 2(∇η · ∇w, y − yh)L2(ΩR)

≤ aΩR
(y − yh, w̃) +

(
‖Δηw‖L2(ΩR) + 2‖∇η · ∇w‖L2(ΩR)

)
‖y − yh‖L2(ΩR)

≤ aΩR
(y − yh, w̃) + c‖w‖H1(ΩR)‖y − yh‖L2(ΩR)

≤ aΩR
(y − yh, w̃) + c‖σ−1/2 (y − yh) ‖L2(ΩR/8)‖y − yh‖L2(ΩR),(3.24)

where we used the Cauchy-Schwarz inequality and (3.23) in the last steps. It
remains to estimate the first term in (3.24). Since w̃ is equal to zero in ΩR\ cl(ΩR/4)
we can use the Galerkin orthogonality of y − yh, i.e., aΩR

(y − yh, Ihw̃) = a(y −
yh, Ihw̃) = 0. This yields together with an application of the Cauchy-Schwarz
inequality

aΩR
(y − yh, w̃) = aΩR

(y − yh, w̃ − Ihw̃)

≤ c

I∑
J=2

‖y − yh‖H1(ΩJ )‖w̃ − Ihw̃‖H1(ΩJ ).(3.25)

Remember that w̃ − Ihw̃ ≡ 0 in ΩJ for J = 0, 1. Now each term on the right-hand
side of (3.25) is estimated separately. We distinguish between 2 ≤ J ≤ I − 3 and
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J = I, I − 1, I − 2 as it has already been done in the previous lemmas. We get for
2 ≤ J ≤ I − 3 with Lemma 3.9,

‖y − yh‖H1(ΩJ ) ≤ c
(
hd2−μ−γ

J |y|W 2,∞
γ (Ω′′

J
) + d−1

J ‖y − yh‖L2(Ω′
J
)

)
and with Lemma 3.7 with α = 1/2,

‖w̃ − Ihw̃‖H1(ΩJ ) ≤ chd
1/2−μ
J |w̃|W 2,2

1/2(Ω
′
J
),

By means of these two estimates one can conclude for 2 ≤ J ≤ I − 3,

‖y−yh‖H1(ΩJ )‖w̃ − Ihw̃‖H1(ΩJ )

≤ c
(
h2d

5/2−2μ−γ
J |y|W 2,∞

γ (Ω′′
J
) + hd−μ

J ‖d−1/2
J (y − yh) ‖L2(Ω′

J
)

)
|w̃|W 2,2

1/2(Ω
′
J
)

≤ c
(
h2d

5/2−2μ−γ
J |y|W 2,∞

γ (Ω′′
J
) + c−μ

I ‖d−1/2
J (y − yh) ‖L2(Ω′

J
)

)
|w̃|W 2,2

1/2(Ω
′
J
),(3.26)

where we used hd−μ
J ≤ hd−μ

I = c−μ
I . For J = I, I − 1, I − 2 we get from Lemma 3.9

for 1 < q ≤ ∞ and −2/q < γ < 2 − 2/q,

‖y − yh‖H1(ΩJ ) ≤ c
(
c5Ih

(2−γ)/μ|y|W 2,∞
γ (Ω′′

J
) + d−1

J ‖y − yh‖L2(Ω′
J
)

)
and from Lemma 3.7 with α = 1/2

‖w̃ − Ihw̃‖H1(ΩJ ) ≤ cc
max{0,1/2−μ}
I h1/2μ|w̃|W 2,2

1/2(Ω
′
J
).

We can combine the last two estimates to arrive at

‖y − yh‖H1(ΩJ )‖w̃ − Ihw̃‖H1(ΩJ ) ≤ c
(
c
11/2
I h(5/2−γ)/μ|y|

W
2,∞
γ (Ω′′

J
)

+c
max{0,1/2−μ}
I (h1/μd−1

J )1/2‖d−1/2
J (y − yh) ‖L2(Ω′

J
)

)
|w̃|

W
2,2
1/2(Ω′

J
)

≤ c
(
c
11/2
I h(5/2−γ)/μ|y|

W
2,∞
γ (Ω′′

J
)

+c
max{−1/2,−μ}
I ‖d−1/2

J (y − yh) ‖L2(Ω′
J
)

)
|w̃|

W
2,2
1/2(Ω′

J
),(3.27)

where we used max{0, 1/2 − μ} < 1/2 and h1/μd−1
J ≤ h1/μd−1

I = c−1
I . Let θ :=

max{−1/2,−μ}. Inserting the inequalities (3.26) and (3.27) into (3.25) yields

aΩR(y − yh, w̃ − Ihw̃)

≤ c

I−3∑
J=2

(
h2d

5/2−2μ−γ
J |y|

W
2,∞
γ (Ω′′

J
) + c−μ

I ‖d−1/2
J (y − yh) ‖L2(Ω′

J
)

)
|w̃|

W
2,2
1/2(Ω′

J
)

+ c

I∑
J=I−2

(
c
11/2
I h(5/2−γ)/μ|y|

W
2,∞
γ (Ω′′

J
) + cθI‖d−1/2

J (y − yh) ‖L2(Ω′
J
)

)
|w̃|

W
2,2
1/2(Ω′

J
).

If we additionally set γ ≤ 5/2 − 2μ, using c−μ
I < cθI and d−1

J ≤ cσ−1, we can
conclude

aΩR
(y − yh, w̃ − Ihw̃)

≤ c
I∑

J=2

(
c
11/2
I h2|y|W 2,∞

γ (Ω′′
J
) + cθI‖σ−1/2 (y − yh) ‖L2(Ω′

J
)

)
|w̃|W 2,2

1/2(Ω
′
J
).
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Now we get with
∑I

J=2 1 ∼ | lnh| and the discrete Cauchy-Schwarz inequality
aΩR

(y − yh, w̃ − Ihw̃)

≤ c
(
c
11/2
I h2| lnh|1/2|y|W 2,∞

γ (ΩR) + cθI‖σ−1/2 (y − yh) ‖L2(ΩR)

)
|w̃|W 2,2

1/2(ΩR).

Since |w̃|W 2,2
1/2(ΩR) ≤ c‖w‖W 2,2

1/2(ΩR) we can apply the a priori estimate (3.22), which
yields

aΩR
(y − yh, w̃ − Ihw̃) ≤ c

(
c
11/2
I h2| ln h|1/2|y|W 2,∞

γ (ΩR)(3.28)

+ cθI‖σ−1/2(y − yh)‖L2(ΩR)
)
‖σ−1/2(y − yh)‖L2(ΩR/8).

By inserting (3.28) into (3.24) and dividing by ‖σ−1/2 (y − yh) ‖L2(ΩR/8) we obtain

‖σ−1/2 (y − yh) ‖L2(ΩR/8)

≤ c
(
c
11/2
I h2| lnh|1/2|y|

W
2,∞
γ (ΩR) + cθI‖σ−1/2 (y − yh) ‖L2(ΩR) + ‖y − yh‖L2(ΩR)

)
≤ c

(
c
11/2
I h2| lnh|1/2|y|

W
2,∞
γ (ΩR) + cθI‖σ−1/2 (y − yh) ‖L2(ΩR/8) + cθI‖y − yh‖L2(ΩR)

)
,

where we used σ−1/2 = (r + dI)−1/2 ≤ r−1/2 ≤ (R/8)−1/2 ≤ c if r ≥ R/8. Finally,
we get (

1 − ccθI
)
‖σ−1/2 (y − yh) ‖L2(ΩR/8)

≤ c
(
c
11/2
I h2| lnh|1/2|y|W 2,∞

γ (ΩR) + cθI‖y − yh‖L2(ΩR)

)
.

If one has chosen the parameter k in (3.3) large enough such that

ccθI = cc
max{−1/2,−μ}
I ≤ c

(
c22k

)max{−1/2,−μ}
< 1,

then the desired result follows. �
In the remainder of this section the constant cI is hidden in the generic constant c.

Lemma 3.11. For vh ∈ Vh and 1 ≤ p ≤ ∞ there exists a constant c > 0 such
that

‖vh‖Lp(∂Ω±
J

) ≤ ch−1/pd
−(1−μ)/p
J ‖vh‖Lp(Ω′

J
) for 1 ≤ J ≤ I − 2,

‖vh‖Lp(∂Ω±
J

) ≤ ch−1/(pμ)‖vh‖Lp(Ω′
J
) for J = I − 1, I.

Proof. Let E ⊂ ∂Ω±
J
′, and let T ⊂ Ω′

J be the corresponding triangle. By an affine
change of variables to the reference edge Ê and reference triangle T̂ , respectively,
using the continuity of v̂h on cl(T̂ ) and the norm equivalence in finite dimensional
spaces we obtain

‖vh‖Lp(E) ≤ ch
1/p
T ‖v̂h‖Lp(Ê) ≤ ch

1/p
T ‖v̂h‖L∞(Ê) ≤ ch

1/p
T ‖v̂h‖L∞(T̂ )

≤ ch
1/p
T ‖v̂h‖Lp(T̂ ) ≤ ch

−1/p
T ‖vh‖Lp(T ).

Now we can sum up to get

‖vh‖pLp(∂Ω±
J

) ≤
∑

E⊂∂Ω±
J

′

‖vh‖pLp(E) ≤ c
∑

T⊂Ω′
J

(
h−1
T ‖vh‖pLp(T )

)

≤ c min
T⊂Ω′

J

h−1
T

∑
T⊂Ω′

J

‖vh‖pLp(T ).

One can conclude the desired result with Lemma 3.6. �
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Lemma 3.12. Let 0 ≤ δ ≤ 1/2 and 1 < q ≤ ∞. Then for y ∈ W 2,∞
γ (ΩR),

γ ≤ 2 + δ − 2μ and −2/q < γ < 2 − 2/q the estimate

‖y − yh‖L2(Γ±
R/16)

≤ c
(
h2| lnh|1+δ|y|W 2,∞

γ (ΩR) + ‖y − yh‖L2(ΩR)

)
is valid.

Proof. Note that Γ±
R/16 =

⋃I
J=4 ∂Ω±

J . It holds for J = I − 1, I that

‖y − yh‖L2(∂Ω±
J

) ≤ ‖y − Ihy‖L2(∂Ω±
J

) + ‖Ihy − yh‖L2(∂Ω±
J

)

≤ cd
1/2
J ‖y − Ihy‖L∞(∂Ω±

J
) + ‖Ihy − yh‖L2(∂Ω±

J
),

where we have used |∂Ω±
J |∼dJ . The continuity of y−Ihy on cl(ΩJ) and Lemma 3.11

with p = 2 yields

‖y − yh‖L2(∂Ω±
J

) ≤ cd
1/2
J ‖y − Ihy‖L∞(ΩJ ) + ch−1/(2μ)‖Ihy − yh‖L2(Ω′

J
).

Since dJ ∼ h1/μ for J = I − 1, I and |Ω′
J | ∼ d2

J we can proceed with

‖y−yh‖L2(∂Ω±
J

)

≤ cd
1/2
J ‖y − Ihy‖L∞(ΩJ ) + cd

−1/2
J ‖y − Ihy‖L2(Ω′

J
) + cd

−1/2
J ‖y − yh‖L2(Ω′

J
)

≤ cd
1/2
J ‖y − Ihy‖L∞(Ω′

J
) + cd

−1/2
J ‖y − yh‖L2(Ω′

J
).(3.29)

Next we consider the case 4 ≤ J ≤ I − 2. Again we use |∂Ω±
J | ∼ dJ and the

continuity of y − Ihy on cl(ΩJ). Thus we can write

‖y − yh‖L2(∂Ω±
J

) ≤ cd
1/2
J ‖y − yh‖L∞(∂Ω±

J
) ≤ cd

1/2
J ‖y − yh‖L∞(ΩJ ).

Since each subdomain Ω′
J has a positive distance to the corner for 4 ≤ J ≤ I − 2,

we can use Theorem 10.1 in [32] with s = 0 to get

‖y − yh‖L2(∂Ω±
J

) ≤ cd
1/2
J | lnh|‖y − Ihy‖L∞(Ω′

J
) + cd

−1/2
J ‖y − yh‖L2(Ω′

J
).(3.30)

This is essentially Corollary 5.1 of [28] where the authors have already inserted an
interpolation error estimate. In Example 10.1 of [32] the author proved that this
result is also applicable for the domains Ω′

J , i.e., for domains which abut on the
boundary but contain no corner point. Let δ ∈ [0, 1/2]. Using (3.29) and (3.30) we
arrive at

‖y − yh‖L2(Γ±
R/16) =

(
I∑

J=4

‖y − yh‖2
L2(∂Ω±

J
)

)1/2

≤ c

(
I∑

J=4

(
d
1/2
J | ln h|‖y − Ihy‖L∞(Ω′

J
) + d

−1/2
J ‖y − yh‖L2(Ω′

J
)

)2
)1/2

≤ c| lnh| max
4≤J≤I

(
dδJ‖y − Ihy‖L∞(Ω′

J
)

)( I∑
J=4

d1−2δ
J

)1/2

+ c

(
I∑

J=4

‖d−1/2
J (y − yh)‖2

L2(Ω′
J
)

)1/2

.

An application of the discrete Hölder inequality yields(
I∑

J=4

d1−2δ
J

)1/2

≤
(

I∑
J=4

dJ

)(1−2δ)/2 ( I∑
J=4

1

)δ

≤ c| lnh|δ,
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where we have used
∑I

J=4 dJ ∼ |Γ±
R/16| and

∑I
J=4 1 ∼ | lnh| in the last step. Thus,

we obtain

‖y − yh‖L2(Γ±
R/16)

≤ c| lnh|1+δ max
4≤J≤I

(
dδJ‖y − Ihy‖L∞(Ω′

J
)

)
+ c‖(r + dI)−1/2(y − yh)‖L2(ΩR/8).

Let 1 < q ≤ ∞, −2/q < γ < 2 − 2/q and γ ≤ 2 + δ − 2μ ≤ 5/2 − 2μ. Then we get
with Lemma 3.7 and Lemma 3.10,

‖y − yh‖L2(Γ±
R/16)

≤ ch2| lnh|1+δ max
4≤J≤I

|y|W 2,∞
γ (Ω′′

J
)

+ c
(
h2| lnh|1/2|y|W 2,∞

γ (ΩR) + ‖y − yh‖L2(ΩR)

)
,

which ends the proof. �

Now we are able to prove Theorem 3.2.

Proof. We split the error on the boundary into the already introduced boundary
parts,

(3.31) ‖y − yh‖L2(Γ) ≤ c

⎛
⎝ m∑

j=1
‖y − yh‖L2(Γ±

Rj/16)
+ ‖y − yh‖L2(Γ̃0)

⎞
⎠ .

For each boundary part Γ±
Rj/16, j = 1, . . . ,m, we get from Lemma 3.12,

‖y − yh‖L2(Γ±
Rj/16)

≤ c
(
h2| lnh|1+δ|y|W 2,∞

γj
(ΩRj

) + ‖y − yh‖L2(ΩRj
)

)
,(3.32)

provided that 0 ≤ δ ≤ 1/2, 1 < qj ≤ ∞, γj ≤ 2+δ−2μj and −2/qj < γj < 2−2/qj .
If we set μj ≥ δ/2 we can choose qj such that 1 ≤ 2/(2μj − δ) < qj < ∞. By this
we get that (3.32) is valid for 0 ≤ γj ≤ 2+ δ− 2μj with some arbitrary δ ∈ [0, 1/2],
i.e., it holds that

‖y − yh‖L2(Γ±
Rj/16)

≤ c

(
h2| lnh|1+δ|y|W 2,∞

2+δ−2μj
(ΩRj

) + ‖y − yh‖L2(ΩRj
)

)
(3.33)

for every δ ∈ [0, 1/2]. Next, we estimate the last term in the right-hand side
of (3.31). We can conclude from the embedding L∞(Γ0) ↪→ L2(Γ0) and the fact
that y − yh is a continuous function on cl(Ω̃0) that

‖y − yh‖L2(Γ̃0) ≤ c‖y − yh‖L∞(Γ̃0) ≤ c‖y − yh‖L∞(Ω̃0).

Next we use Theorem 10.1 in [32] with s = 0 to get

‖y − yh‖L2(Γ̃0) ≤ c
(
| lnh|‖y − Ihy‖L∞(Ω̌0) + ‖y − yh‖L2(Ω̌0)

)
,

Compare the proof of Lemma 3.12 for the applicability of this theorem in that case.
Since the domain Ω̌0 ⊂ Ω0 has a constant, positive distance to the corner, we can
conclude using standard interpolation theory that

‖y − yh‖L2(Γ̃0) ≤ c
(
h2| lnh||y|W 2,∞(Ω0) + ‖y − yh‖L2(Ω̌0)

)
.(3.34)

Combining the inequalities (3.31), (3.33) and (3.34) we obtain

‖y − yh‖L2(Γ) ≤ c

(
h2| lnh|1+δ|y|W 2,∞

�2+�δ−2�μ
(Ω) + ‖y − yh‖L2(Ω)

)
.(3.35)
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Using Lemma 2.4 we can conclude for some arbitrary σ ∈ (0, 1),
(3.36) ‖y‖W 2,∞

�2+�δ−2�μ
(Ω) ≤ c‖f‖C0,σ(Ω̄),

if μj > δ/2 and max(0, 2 − λj) < 2 + δ − 2μj or 0 ≤ 2 + δ − 2μj in the case that
2 − λj < 0. The latter condition is fulfilled for any μj ∈ (0, 1]. The former one is
equivalent to μj < δ/2 + λj/2 if μj ∈ (δ/2, 1]. It follows from Theorem 3.1 that

‖y − yh‖L2(Ω) ≤ ch2‖f‖W 0,2
�1−�μ

(Ω) ≤ ch2‖f‖L2(Ω),(3.37)

if μj < λj . Finally, the inequalities (3.35), (3.36) and (3.37) yield together with the
embedding C0,σ(Ω̄) ↪→ L2(Ω) the desired result. �

4. The continuous optimal control problem

In this section we state the continuous optimality system for problem (1.2) and
describe the regularity of its solution in weighted Sobolev spaces. The exposition
follows those in [1, 20]. The solution operator S : L2(Γ) → L2(Ω) which associates
a state y = Su to a control u via (1.3) has already been introduced in Section 1.
We denote with S∗ : L2(Ω) → L2(Γ) the adjoint operator of S. One has

(Su, z)L2(Ω) = (u, S∗z)L2(Γ) ∀u ∈ L2(Γ), z ∈ L2(Ω).
Furthermore, we define the operator P : L2(Ω) → H1(Ω) by Pz := p where p is the
solution of

(4.1)
−Δp + p = z in Ω,

∂np = 0 on Γ.
The operators S∗ and P are related by S∗z = (Pz)|Γ = p|Γ. We can also associate
an adjoint state to every control u by P (Su− yd). Finally, we define the projection

Π[a,b]f(x) := max(a,min(b, f(x)))
and the set of admissible controls as

Uad := {u ∈ L2(Γ) : a ≤ u ≤ b a.e. on Γ}.
Theorem 4.1. The optimal control problem (1.2) has a unique solution ū ∈
L2(Γ). Let ȳ = Sū and p̄ = P (Sū− yd) be the state and adjoint state associated
with ū. Then the variational inequality

(p̄ + νū, u− ū)L2(Γ) ≥ 0 ∀u ∈ Uad(4.2)
is satisfied, which can be expressed equivalently by

(4.3) ū(x) = Π[a,b]

(
−1
ν
p̄(x)

)
for a.a. x ∈ Γ.

Moreover, let yd ∈ C0,σ(Ω̄) with some σ ∈ (0, 1) and let βj and γj satisfy the
conditions

1 > βj > max(0, 1 − λj) or βj = 0 and 1 − λj < 0,(4.4)
2 > γj > max(0, 2 − λj) or γj = 0 and 2 − λj < 0,(4.5)

for j = 1, . . . ,m. Then ȳ belongs to W 2,2
�β

(Ω), p̄ to W 2,∞
�γ (Ω) and p̄|Γ to W 2,∞

�γ (Γ).
Furthermore, the following estimate is valid:

‖ȳ‖W 2,2
�β

(Ω) + ‖p̄‖W 2,∞
�γ

(Ω) + ‖p̄‖W 2,∞
�γ

(Γ) ≤ c
(
‖ū‖L2(Γ) + ‖yd‖C0,σ(Ω̄)

)
.
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Proof. Since the optimal control problem is linear quadratic and strictly convex,
the existence and the uniqueness of a solution ū ∈ L2(Γ) is an immediate result;
compare also [6, 7, 20]. The variational inequality (4.2) represents the necessary
optimality condition which is also sufficient due to the strict convexity. The proof
of the equivalence between the variational inequality (4.2) and the projection for-
mula (4.3) can be found, e.g., in [7]. To prove the assertion on the regularity and
the a priori estimates we start with the optimal control ū in L2(Γ). This implies
according to [15] or Theorem 2.1 in [7] that ȳ belongs to H3/2(Ω) and
(4.6) ‖ȳ‖H3/2(Ω) ≤ c‖ū‖L2(Γ).

Furthermore, one can conclude for any ε ∈ (0, 1/2]∩ (0, σ] with the Sobolev embed-
ding theorem that
(4.7) ‖ȳ‖C0,ε(Ω̄) ≤ c‖ȳ‖H3/2(Ω).

Based on this, using the results of Lemma 2.4, we get that p̄ admits the estimate

(4.8) ‖p̄‖W 2,∞
�γ

(Ω) + ‖p̄‖W 2,∞
�γ

(Γ) ≤ c‖y− yd‖C0,ε(Ω̄) ≤ c
(
‖y‖C0,ε(Ω̄) + ‖yd‖C0,ε(Ω̄)

)
,

provided that condition (4.5) is satisfied. Due to the Lax-Milgram Theorem and a
standard trace theorem one also gets that

(4.9) ‖p̄‖H1/2(Γ) ≤ c‖p̄‖H1(Ω) ≤ c‖y − yd‖L2(Ω) ≤ c
(
‖y‖C0,ε(Ω̄) + ‖yd‖C0,ε(Ω̄)

)
.

Since the optimal control ū is related to the optimal adjoint state p̄ via the projection
formula (4.3) we obtain ū ∈ H1/2(Γ) and

‖ū‖H1/2(Γ) ≤ ‖ū‖L2(Γ) +
(∫

Γ

∫
Γ

|ū(x1) − ū(x2)|2
|x1 − x2|2

dsx1 dsx2

)1/2

= ‖ū‖L2(Γ) +

(∫
Γ

∫
Γ

|Π[a,b]
(
− 1

ν
p̄(x1)

)
− Π[a,b]

(
− 1

ν
p̄(x2)

)
|2

|x1 − x2|2
dsx1 dsx2

)1/2

≤ ‖ū‖L2(Γ) + c

(∫
Γ

∫
Γ

|p̄(x1) − p̄(x2)|2
|x1 − x2|2

dsx1 dsx2

)1/2

.(4.10)

The last step can easily be verified, if one distinguishes the nine cases −p̄(x1)/ν <
a ∧ −p̄(x2)/ν < a, −p̄(x1)/ν < a ∧ a ≤ −p̄(x2)/ν ≤ b, −p̄(x1)/ν < a ∧
−p̄(x2)/ν > b, a ≤ −p̄(x1)/ν ≤ b ∧ −p̄(x2)/ν < a, etc. Using the embedding
H1/2(Γ) ↪→ W

1/2,2
�β

(Γ), which is valid for �β ≥ �0, yields together with Lemma 2.3,

(4.11) ‖ȳ‖W 2,2
�β

(Ω) ≤ c‖ū‖
W

1/2,2
�β

(Γ) ≤ c‖ū‖H1/2(Γ),

provided that the condition (4.4) is fulfilled. Finally, the estimates (4.6), (4.7),
(4.8), (4.9), (4.10) and (4.11) yield the desired result. �

Corollary 4.2. Let yd ∈ C0,σ(Ω̄) with some σ ∈ (0, 1) and let βj satisfy the
condition
(4.12) 1/2 > βj > max(0, 3/4 − λj/2) or βj = 0 and 3/4 − λj/2 < 0
for j = 1, . . . ,m. Then the optimal adjoint state p̄|Γ = S∗(Sū − yd) belongs to
W 2,2

2�β
(Γ) ↪→ W 1,∞

�β
(Γ) and the following a priori estimate holds:

(4.13) ‖p̄‖W 1,∞
�β

(Γ) ≤ c‖p̄‖W 2,2
2�β

(Γ) ≤ c
(
‖ū‖L2(Γ) + ‖yd‖C0,σ(Ω̄)

)
.
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Proof. We begin by proving that the first inequality of (4.13) holds for 0 ≤ βj <
1/2, j = 1, . . . ,m. The Sobolev inequality yields, with some q ∈ (1, 2],

‖p̄‖W 1,∞
�β

(Γ) = ‖p̄‖W 1,∞(Γ0) +
m∑
j=1

∑
|α|≤1

‖rβj

j ∂α
t p̄‖L∞(Γ±

j
)

≤ ‖p̄‖W 2,2(Γ0) + c

m∑
j=1

∑
|α|≤1

‖rβj

j ∂α
t p̄‖W 1,q(Γ±

j
).(4.14)

For 0 < βj < 1/2 we set 1/q = max((�2 − �β)/2, (�3 + 2�β)/4). Thus, 1 < q < 2. We
get with the product rule and part 1 of Lemma 2.1 that∑

|α|≤1

‖rβj

j ∂α
t p̄‖W 1,q(Γ±

j
)

≤ c

(
‖p̄‖W 0,q

βj−1(Γ
±
j

) + ‖p̄‖W 1,q
βj−1(Γ

±
j

) + ‖p̄‖W 2,q
βj

(Γ±
j

)

)
≤ c‖p̄‖W 2,q

βj
(Γ±

j
) ≤ c‖p̄‖W 2,2

2βj
(Γ±

j
).(4.15)

In the case that βj = 0 we directly get this result from (4.14) with q = 2. In
summary, one obtains from the inequalities (4.14) and (4.15) for 0 ≤ βj < 1/2 the
validity of the first inequality of (4.13). Finally, if we set the weights βj according
to (4.12) and define the weights δj = max(0, 7/8+3βj/2−λj/4) for j = 1, . . . ,m in
a clever way, then we get using part 2 of Lemma 2.1 and Theorem 4.1 the desired
result

‖p̄‖W 2,2
2�β

(Γ) ≤ c‖p̄‖W 2,∞
�δ

(Γ) ≤ c
(
‖ū‖L2(Γ) + ‖yd‖C0,σ(Ω̄)

)
with some σ ∈ (0, 1). �

5. The discrete optimal control problem

In this section we fully discretize the optimal control problem (1.2). The state
and the adjoint state will be discretized by piecewise linear and globally continuous
functions. The control will be approximated by piecewise constant functions.

In Section 3 we have already introduced the graded triangulations Th of Ω with
its boundary triangulations Eh. The space Vh has been defined by

Vh = {yh ∈ C(Ω̄) : yh|T ∈ P1(T ) ∀T ∈ Th}.
Furthermore, we introduce the spaces

Uh := {uh ∈ L∞(Γ) : uh|G ∈ P0(G) ∀G ∈ Eh}

and

Uad
h := Uh ∩ Uad.

The discrete variant of the state equation reads as follows: Find for each u ∈ L2(Γ)
the unique element yh ∈ Vh satisfying

(5.1) a(yh, vh) = (u, vh)L2(Γ) ∀vh ∈ Vh,

where the bilinear form a : H1(Ω) × H1(Ω) → R is defined in (2.4). We denote
with Sh : L2(Γ) → L2(Ω) the discrete solution operator which maps a control u to
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Shu := yh via (5.1). The fully discretized version of the optimal control problem
can now be stated as

Jh(ūh) = min
uh∈Uad

h

Jh(uh),(5.2)

with

Jh(uh) := 1
2
‖Shuh − yd‖2

L2(Ω) + ν

2
‖uh‖L2(Γ).

As in the continuous case we can deduce an optimality system for the discrete
problem. For that purpose we also introduce the discrete version of the solution
operator P which is denoted by Ph : L2(Ω) → H1(Ω) and defined by Phz = ph
with some function z ∈ L2(Ω) and ph being the unique element in Vh such that

a(vh, ph) = (z, vh)L2(Ω) ∀vh ∈ Vh.

Let S∗
h : L2(Ω) → L2(Γ) denote the discretized version of the operator S∗. Then we

can conclude that S∗
hz = (Phz)|Γ, since the adjoint of the discrete solution operator

is equal to the discretization of the adjoint solution operator. Furthermore, we have
that

(Shu, z)L2(Ω) = (u, S∗
hz)L2(Γ) ∀z ∈ L2(Ω), ∀u ∈ L2(Γ).

Finally, the discrete adjoint state is the unique element Ph(Shu− yd) ∈ Vh.

Lemma 5.1. The discrete optimal control problem (5.2) admits a unique solution
ūh. Let ȳh = Shūh and p̄h = Ph(Shūh − yd) be the discrete state and discrete
adjoint state associated with ūh. Then the discrete variational inequality

(p̄h + νūh, uh−ūh)L2(Γ) ≥ 0 ∀uh ∈ Uh
ad(5.3)

is satisfied.

Proof. This follows analogously to the continuous case. �

6. Results from numerical integration

For the subsequent discretization error analysis of the optimal control problem
we need some results from numerical integration on the boundary. Remember, that
the triangulation Th of the domain Ω induces a segmentation Eh of the boundary Γ.
We define the distance of the edge E to the corner x(j) by rE,j := infx∈E |x− x(j)|
and the element size hE by hE := diam E. According to (3.1) there holds

c1h
1/μj ≤ hE ≤ c2h

1/μj for rE,j = 0,
c1hr

1−μj

E,j ≤ hE ≤ c2hr
1−μj

E,j for 0 < rE,j ≤ Rj ,

c1h ≤ hE ≤ c2h for rE,j > Rj ,

(6.1)

for j = 1, . . . ,m. Furthermore, for j = 1, . . . ,m let Eh,j be the subtriangulation
of Eh such that

⋃
E∈Eh,j

Ē ⊂ Γ±
j and E ∩ Γ±

j �= E for all E /∈ Eh,j . We set
Eh,0 = Eh\

⋃n
j=1 Eh,j .

Now, let SE be the midpoint of the edge E ∈ Eh. Then the projection operator
Rh is defined as the 0-interpolator onto Uh, i.e.,

Rh : C(Γ) → Uh, f → Rhf,

where
(Rhf)(x) := f(SE) if x ∈ E.
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In the proof of Lemma 3.7 we have already derived interpolation error estimates
in T . There we used the embedding W 2,q′(T̂ ) ↪→ L∞(T̂ ) if q′ > 1. Afterwards we
applied the Deny-Lions Lemma and embeddings, which hold for weighted Sobolev
spaces (cf. the steps between (3.13) and (3.16)). If we would do the same for
boundary elements E, we would get a condition that is too restrictive on the mesh
grading parameters μj . For that reason we use Lemma 2.2 in the proof of the
following lemma about the approximation properties of the operator Rh.

Lemma 6.1. Let 1/4 < μj ≤ 1. Then the estimate∣∣∣∣
∫
E

(f −Rhf)ds
∣∣∣∣ ≤ ch2|E|1/2|f |W 2,2

2(1−μj)(E)

holds true for any element E ∈ Eh,j and every function f ∈ W 2,2
2(1−μj)(E).

Proof. First, we observe that the integral vanishes for any polynomial p of order
one, hence ∣∣∣∣

∫
E

(f −Rhf)ds
∣∣∣∣ =

∣∣∣∣
∫
E

(f − p−Rh(f − p))ds
∣∣∣∣

≤ |E|
(
‖f − p‖L∞(E) + ‖Rh(f − p)‖L∞(E)

)
≤ c|E|‖f − p‖L∞(E).(6.2)

In the last step we used that Rh is a bounded operator from L∞(E) to L∞(E)
with ‖Rh‖L∞(E)→L∞(E) = 1. Now we distinguish between edges E with rE,j > 0
and rE,j = 0. In the first case we use the embedding W 2,2(Ê) ↪→ L∞(Ê) and
the Deny-Lions Lemma [10] after the transformation to the reference edge Ê. We
obtain

‖f − p‖L∞(E) = ‖f̂ − p̂‖L∞(Ê) ≤ c‖f̂ − p̂‖W 2,2(Ê) ≤ c|f̂ |W 2,2(Ê).(6.3)

The reverse transformation together with hE ∼ hr1−μ
E,j yields∣∣∣∣

∫
E

(f −Rhf)ds
∣∣∣∣ ≤ c|E|1/2h2

E|f |W 2,2(E) ≤ c|E|1/2h2|f |W 2,2
2(1−μj)(E).

In the second case, rE,j = 0, we use the embedding W 2,2
2(1−μj)(Ê) ↪→ W

2,4/(5−4μj)
1 (Ê)

↪→ W 1,4/(5−4μj)(Ê) ↪→ L∞(Ê) (see Section 9), which holds for 1/4 < μj ≤ 1
(cf. parts 2 and 1 Lemma 2.1). By this we obtain, using Lemma 2.2,

‖f − p‖L∞(E) = ‖f̂ − p̂‖L∞(Ê) ≤ c‖f̂ − p̂‖W 2,2
2(1−μj)(Ê)

≤ c

⎛
⎝|f̂ − p̂|W 2,2

2(1−μj)(Ê) +
∑
δ≤1

∣∣∣∣
∫
Ê

∂δ
t (f̂ − p̂)dŝ

∣∣∣∣
⎞
⎠

= c

⎛
⎝|f̂ |W 2,2

2(1−μj)(Ê) +
∑
δ≤1

∣∣∣∣
∫
Ê

∂δ
t (f̂ − p̂)dŝ

∣∣∣∣
⎞
⎠ ,(6.4)

since p is polynomial of order one. Next, we choose p such that the last term of (6.4)
vanishes, which is possible without any restriction. This yields

‖f − p‖L∞(E) ≤ c|f̂ |W 2,2
2(1−μj)(Ê) ≤ ch

2μj

E |E|−1/2|f |W 2,2
2(1−μj)(E),(6.5)
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where we used r̂
2(1−μj)
j ∼ h

−2(1−μj)
E r

2(1−μj)
j . The inequalities (6.2) and (6.5) yield

with hE ∼ h1/μj the assertion for rE,j = 0. �

Corollary 6.2. Let E ∈ Eh and f ∈ W 2,2(E). Then the estimate∣∣∣∣
∫
E

(f −Rhf)ds
∣∣∣∣ ≤ ch2|E|1/2|f |W 2,2(E)

is valid.

Proof. This follows from (6.2) and (6.3) together with hE ≤ ch after the reverse
transformation to the edge E. �

Lemma 6.3. Let 0 < μj ≤ 1. Then the estimate∣∣∣∣
∫
E

(f −Rhf)ds
∣∣∣∣ ≤ ch|E||f |W 1,∞

1−μj
(E)

holds true for any element E ∈ Eh,j and every function f ∈ W 1,∞
1−μj

(E).

Proof. We get from (6.2),∣∣∣∣
∫
E

(f −Rhf)ds
∣∣∣∣ ≤ c|E|‖f − p‖L∞(E) ≤ c|E|‖f̂ − p̂‖L∞(Ê)

≤ c|E|‖f̂ − p̂‖W 1,q(Ê) ≤ c|E||f̂ |W 1,q(Ê)(6.6)

where we used the embedding W 1,q(Ê) ↪→ L∞(Ê) with some q > 1 and the Deny-
Lions Lemma [10]. Now we consider the case that rE,j > 0. After the reverse
transformation to the edge E one gets with hE ∼ hr

1−μj

E,j ,∣∣∣∣
∫
E

(f −Rhf)ds
∣∣∣∣ ≤ c|E|1−1/qhE |f |W1,q(E) ≤ c|E|hr1−μj

E,j |f |W1,∞(E) ≤ c|E|h |f |
W

1,∞
1−μj

(E).

In the case that rE,j = 0 we can conclude using (6.6) with q = 2/(2 − μj) > 1 and
the embedding W 1,∞

1−μj
(Ê) ↪→ W 1,2/(2−μj)(Ê), which holds for 0 < μj ≤ 1,∣∣∣∣
∫
E

(f −Rhf)ds
∣∣∣∣ ≤ c|E||f̂ |W 1,∞

1−μj
(Ê).

Finally, the reverse transformation to the edge E together with r̂
1−μj

j ∼ h
μj−1
E r

1−μj

j

and hE ∼ h1/μj yields∣∣∣∣
∫
E

(f −Rhf)ds
∣∣∣∣ ≤ c|E|hEh

μj−1
E |f |W 1,∞

1−μj
(E) ≤ c|E|h|f |W 1,∞

1−μj
(E). �

Corollary 6.4. Let E ∈ Eh and f ∈ W 1,∞(E). Then the estimate∣∣∣∣
∫
E

(f −Rhf)ds
∣∣∣∣ ≤ ch|E||f |W 1,∞(E)

holds.

Proof. One gets this result from (6.6) with q = ∞ and hE ≤ ch after the reverse
transformation to the edge E. �
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7. Discretization error estimates for the optimal control problem

Based on the results of the previous sections we first analyze in the following the
fully discrete optimal control problem of Section 5 with respect to its discretiza-
tion error. Afterwards we construct in a postprocessing step a new control which
possesses better approximation properties. Let

K1 :=
⋃

E∈Eh:ū/∈W 2,2
2(�1−�μ)

(E)

E, K2 :=
⋃

E∈Eh:ū∈W 2,2
2(�1−�μ)

(E)

E.

Throughout the rest of this paper we make the following assumption on the measure
of the set K1.

Assumption 7.1. We assume that meas(K1) < ch.

Remark 7.2. This assumption is satisfied in many practical applications. For ex-
ample it is fulfilled if the optimal control ū has only a finite number of kinks due to
the projection on the interval [a, b]. Section 4 in [20] contains a more detailed dis-
cussion on the validity of this assumption in the case �μ = �1 (quasi-uniform meshes)
where W 2,2

2(�1−�μ)(E) ≡ W 2,2(E). For refined meshes, Assumption 7.1 is even slightly
weaker.

Let us define the L2-projection of a function f ∈ L2(Γ) as the piecewise constant
function in Uh that fulfills

Qhf |E ≡ 1
|E|

∫
E

f(x)ds

on any element E ∈ Eh. The following approximation property of the L2-projection
is proven in Corollary 4.8 of [1].

Corollary 7.3. For any element E ∈ Eh and any functions f ∈ H1(E) and
v ∈ Hs(E), s = [0, 1], the estimate

(f −Qhf, v)L2(E) ≤ chs+1
T |f |H1(E)|v|Hs(E)

is valid.

Lemma 7.4. Let Assumption 7.1 be satisfied. Then the estimate

‖Sh(ū−Rhū)‖L2(Ω) ≤ ch2
(
‖ū‖L2(Γ) + ‖yd‖C0,σ(Ω̄)

)
is valid, provided that the mesh parameters �μ are chosen such that �1/2 < �μ <
�1/4 + �λ/2.

Proof. First, we introduce the function S(ū−Rhū) and apply the triangle inequality.
This yields

‖Sh(ū−Rhū)‖L2(Ω) ≤ ‖(Sh − S)(ū−Rhū)‖L2(Ω) + ‖S(ū−Rhū)‖L2(Ω).(7.1)

Applying the Nitsche method together with �μ < �λ (cf. the proof of Lemma 4.1 in
[1]) we get for the first term in (7.1),

‖(Sh − S)(ū−Rhū)‖L2(Ω) ≤ ch‖S(ū−Rhū)‖H1(Ω)

≤ ch‖ū−Rhū‖L2(Γ) ≤ ch2|ū|W 1,2
�0

(Γ),(7.2)
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where we used the a priori estimate given by the Lax-Milgram Theorem, a standard
interpolation error estimate and hT ≤ ch in the last steps. Note that we use W 1,2

�0 (Γ)
instead of H1(Γ) since the former is defined piecewise. Let z = S(ū−Rhū). Then
we get for the second term in (7.1),

‖S(ū−Rhū)‖2
L2(Ω) = (S(ū−Rhū), z)L2(Ω) = (ū−Rhū, S

∗z)L2(Γ)

= (ū−Qhū, S
∗z)L2(Γ) + (Qhū− Rhū, S

∗z)L2(Γ),(7.3)

where we introduced the intermediate function Qhū. Again, we estimate both terms
in (7.3) separately. One obtains for the first term with Corollary 7.3 and hT ≤ ch,

(ū−Qhū, S
∗z)L2(Γ) =

∑
E∈Eh

(ū−Qhū, S
∗z)L2(E) ≤ c

∑
E∈Eh

h2|ū|H1(E)|S∗z|H1(E).

Next we apply the discrete Cauchy-Schwarz inequality, the trace theorem, the
Sobolev inequality, part 2 of Lemma 2.1 and the a priori estimate from Lemma 2.3.
This yields

(ū−Qhū, S
∗z)L2(Γ) ≤ ch2|ū|W 1,2

�0
(Γ)|S∗z|W 1,2

�0
(Γ) ≤ ch2|ū|W 1,2

�0
(Γ)‖Pz‖H3/2+ε(Ω)

≤ ch2|ū|W 1,2
�0

(Γ)‖Pz‖W 2,4/3+ε(Ω) ≤ ch2|ū|W 1,2
�0

(Γ)‖Pz‖W 2,2
�1/2−�ε

(Ω)

≤ ch2|ū|W 1,2
�0

(Γ)‖z‖W 0,2
�1/2−�ε

(Ω) ≤ ch2|ū|W 1,2
�0

(Γ)‖z‖L2(Ω),(7.4)

which holds for �0 < �ε < �1/2 − max(0,�1 − �λ). For the second term in (7.3) we get
with the Hölder inequality

(Qhū−Rhū, S
∗z)L2(Γ) ≤ ‖Qhū− Rhū‖L1(Γ)‖S∗z‖L∞(Γ)

≤ c‖Qhū−Rhū‖L1(Γ)‖z‖L2(Ω),(7.5)

where we used the embedding W 1,2
�0 (Γ) ↪→ L∞(Γ) and |S∗z|W 1,2

�0
(Γ) ≤ c‖z‖L2(Ω) as

in (7.4). Since Rhū is constant on every element E we can continue with

‖Qhū−Rhū‖L1(Γ) = ‖Qh (ū−Rhū) ‖L1(Γ) =
∑
E∈Eh

∣∣∣∣
∫
E

(ū−Rhū) ds
∣∣∣∣

=
m∑
j=0

∑
E∈Eh,j

E⊂K1

∣∣∣∣
∫
E

(ū− Rhū) ds
∣∣∣∣ +

m∑
j=0

∑
E∈Eh,j

E⊂K2

∣∣∣∣
∫
E

(ū−Rhū) ds
∣∣∣∣ .
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Using Lemmas 6.1 and 6.3 and Corollaries 6.2 and 6.4 we get for μj > 1/4,

‖Qhū−Rhū‖L1(Γ) ≤ c

⎛
⎜⎜⎝ ∑

E∈Eh,0
E⊂K1

h|E||ū|W1,∞(E) +
m∑

j=1

∑
E∈Eh,j

E⊂K1

h|E||ū|
W

1,∞
1−μj

(E)

+
∑

E∈Eh,0
E⊂K2

h2|E|1/2|ū|W2,2(E) +
m∑

j=1

∑
E∈Eh,j

E⊂K2

h2|E|1/2|ū|
W

2,2
2(1−μj)(E)

⎞
⎟⎟⎠

≤ ch|K1|

(
|ū|W1,∞(K1∩Γ0) +

m∑
j=1

|ū|
W

1,∞
1−μj

(K1∩Γ±
j

)

)

+ ch2|K2|1/2
(
|ū|W2,2(K2∩Γ0) +

m∑
j=1

|ū|
W

2,2
2(1−μj)(K2∩Γ±

j
)

)

≤ ch2
(
|ū|

W
1,∞
�1−�μ

(K1) + |ū|
W

2,2
2(�1−�μ)

(K2)

)
,(7.6)

where we used the discrete Cauchy-Schwarz inequality and Assumption 7.1. Col-
lecting the results from the inequalities (7.1), (7.2), (7.3), (7.4), (7.5) and (7.6)
yields

(7.7) ‖Sh(ū−Rhū)‖L2(Ω) ≤ ch2
(
|ū|W 1,2

�0
(Γ) + |ū|W 1,∞

�1−�μ
(K1) + |ū|W 2,2

2(�1−�μ)
(K2)

)
.

Next, we take into account that ū is given by the projection formula (4.3). We
divide the boundary Γ into the boundary parts I, where ū = −p̄/ν, and A, where
ū = a or ū = b. We obtain for �μ > �1/2,

|ū|W 1,2
�0

(Γ) ≤ |ū|W 1,2
�0

(I) + |ū|W 1,2
�0

(A) ≤ c|p̄|W 1,2
�0

(I) ≤ c‖p̄‖W 2,2
2(�1−�μ)

(Γ).(7.8)

The last step holds due to the embedding W 2,2
2(�1−�μ)(Γ) ↪→ W 2,2

�1 (Γ) ↪→ W 1,2
�0 (Γ),

which is valid for �μ > �1/2 (cf. parts 2 and 1 of Lemma 2.1). Analogously we get

|ū|W 1,∞
�1−�μ

(K1) + |ū|W 2,2
2(�1−�μ)

(K2) ≤ c

(
|p̄|W 1,∞

�1−�μ
(K1∩I) + |p̄|W 2,2

2(�1−�μ)
(K2∩I)

)

≤ c

(
|p̄|W 1,∞

�1−�μ
(Γ) + |p̄|W 2,2

2(�1−�μ)
(Γ)

)
.(7.9)

In summary one obtains from the inequalities (7.7), (7.8) and (7.9),

‖Sh(ū−Rhū)‖L2(Ω) ≤ ch2
(
|p̄|W 1,∞

�1−�μ
(Γ) + ‖p̄‖W 2,2

2(�1−�μ)
(Γ)

)
.

The results of Corollary 4.2 imply for �1/2 < �μ < �1/4 + �λ/2,

‖Sh(ū−Rhū)‖L2(Ω) ≤ ch2
(
‖ū‖L2(Γ) + ‖yd‖C0,σ(Ω̄)

)
. �
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Lemma 7.5. Let v ∈ L2(Γ) and z ∈ L2(Ω). The discrete solution operators Sh

and S∗
h admit for �0 < �μ ≤ �1 the estimates

‖Shv‖L2(Ω) ≤ c‖v‖L2(Γ),

‖Phz‖L2(Ω) ≤ c‖z‖L2(Ω),

‖S∗
hz‖L2(Γ) ≤ c‖z‖L2(Ω).

Proof. We prove the second and third inequality. The first one can be proven
analogously. The coercivity of the bilinear form, the Cauchy-Schwarz inequality
and the embedding H1(Ω) ↪→ L2(Ω) yield

‖Phz‖2
H1(Ω) ≤ ca(Phz, Phz) = c(z, Phz)L2(Ω) ≤ c‖z‖L2(Ω)‖Phz‖H1(Ω).

One gets the second inequality with the embedding H1(Ω) ↪→ L2(Ω) and the third
one with the trace theorem ‖S∗

hz‖L2(Γ) ≤ c‖Phz‖H1(Ω). �

Lemma 7.6 (Supercloseness). Let Assumption 7.1 and the condition �1/2 < �μ <
�1/4 + �λ/2 be fulfilled. Then the estimate

‖Rhū− ūh‖L2(Γ) ≤ ch2| lnh|3/2
(
‖ū‖L2(Γ) + ‖yd‖C0,σ(Ω̄)

)

holds true.

Proof. To prove this lemma we proceed similarly to the proof of Lemma 5.2 of [1].
In Lemma 5.1 of [1] the validity of the inequality

ν‖Rhū− ūh‖2
L2(Γ) ≤ (Rhp̄− p̄h, ūh −Rhū)L2(Γ)

is stated. Inserting appropriate intermediate functions yields

ν‖Rhū− ūh‖2
L2(Γ) ≤ (Rhp̄− p̄, ūh −Rhū)L2(Γ)

+ (p̄− S∗
h(ShRhū− yd), ūh −Rhū)L2(Γ)

+ (S∗
h(ShRhū− yd) − p̄h, ūh −Rhū)L2(Γ).(7.10)

We are going to estimate each term on the right-hand side of (7.10) separately.
Since ūh − Rhū is constant on every boundary element E we obtain for the first
term,

(Rhp̄− p̄, ūh −Rhū)L2(Γ) =
∑
E∈Eh

∫
E

(Rhp̄− p̄)(ūh −Rhū)ds

=
m∑
j=0

∑
E∈Eh,j

(ūh −Rhū)|E
∫
E

(Rhp̄− p̄)ds.
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Using Lemma 6.1 and Corollary 6.2 we can conclude as in the proof of Lemma 7.4
for �1/4 < �μ < �1/4 + �λ/2,

(Rhp̄− p̄, ūh −Rhū)L2(Γ)

≤ ch2

⎛
⎝ ∑

E∈Eh,0

|E|1/2
∣∣(ūh −Rhū)|E

∣∣ |p̄|W 2,2(E)

+
m∑
j=1

∑
E∈Eh,j

|E|1/2
∣∣(ūh −Rhū)|E

∣∣ |p̄|W 2,2
2(1−μj)(E)

⎞
⎠

= ch2

⎛
⎝ ∑

E∈Eh,0

‖ūh − Rhū‖L2(E)|p̄|W 2,2(E)

+
m∑
j=1

∑
E∈Eh,j

‖ūh −Rhū‖L2(E)|p̄|W 2,2
2(1−μj)(E)

⎞
⎠

≤ ch2‖ūh −Rhū‖L2(Γ)|p̄|W 2,2
2(�1−�μ)

(Γ)

≤ ch2‖ūh −Rhū‖L2(Γ)

(
‖ū‖L2(Γ) + ‖yd‖C0,σ(Ω̄)

)
.(7.11)

The last two inequalities hold with respect to the discrete Cauchy-Schwarz inequal-
ity and Corollary 4.2. For the second term in (7.10) we get with the Cauchy-Schwarz
inequality

(p̄−S∗
h(ShRhū−yd), ūh−Rhū)L2(Γ) ≤ ‖p̄−S∗

h(ShRhū−yd)‖L2(Γ)‖ūh−Rhū‖L2(Γ).

We again introduce intermediate functions, apply the triangle inequality and
Lemma 7.5. By this we get

‖p̄− S∗
h(ShRhū− yd)‖L2(Γ) = ‖S∗(ȳ − yd) − S∗

h(ShRhū− yd)‖L2(Γ)

≤ ‖(S∗ − S∗
h)(ȳ − yd)‖L2(Γ) + ‖S∗

h(S − Sh)ū‖L2(Γ) + ‖S∗
hSh(ū−Rhū)‖L2(Γ)

≤ ‖(S∗ − S∗
h)(ȳ − yd)‖L2(Γ) + c‖(S − Sh)ū‖L2(Ω) + c‖Sh(ū−Rhū)‖L2(Γ).

These three terms have been estimated in Theorem 3.2, Theorem 3.1, and Lemma 7.4.
Thus, one obtains for �1/2 < �μ < �1/4 + �λ/2 < �λ and some ε ∈ (0, 1/2] ∩ (0, σ] with
σ ∈ (0, 1)

(p̄− S∗
h(ShRhū− yd), ūh −Rhū)L2(Γ)

≤ ch2| lnh|3/2
(
‖ȳ − yd‖C0,ε(Ω̄) + ‖ȳ‖W 2,2

�1−�μ
(Ω)

+ ‖ū‖L2(Γ) + ‖yd‖C0,σ(Ω̄)

)
‖ūh −Rhū‖L2(Γ)

≤ ch2| lnh|3/2
(
‖ȳ‖W 2,2

�1−�μ
(Ω) + ‖ū‖L2(Γ)

+ ‖yd‖C0,σ(Ω̄)

)
‖ūh −Rhū‖L2(Γ)

≤ ch2| lnh|3/2
(
‖ū‖L2(Γ) + ‖yd‖C0,σ(Ω̄)

)
‖ūh −Rhū‖L2(Γ),(7.12)
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where we used the embedding W 2,2
�1−�μ

(Ω) ↪→ W 2,2
�1/2(Ω) ↪→ W 2,2/(2−ε)(Ω) ↪→ C0,ε(Ω̄)

(according to part 2 of Lemma 2.1 and the Sobolev inequality) and Theorem 4.1.
Having in mind the definition of p̄h and S∗

h we get for the third term in (7.10)

(S∗
h(ShRhū− yd) − p̄h, ūh −Rhū)L2(Γ) = (S∗

h(Sh(Rhū− ūh)), ūh −Rhū)L2(Γ)

= (Sh(Rhū− ūh), Sh(ūh −Rhū))L2(Ω) = −‖Sh(Rhū− ūh)‖2
L2(Ω) ≤ 0.(7.13)

Finally, the inequalities (7.10), (7.11), (7.12) and (7.13) imply the desired result. �

We are now prepared to formulate our main result. Let ū be the solution of the
optimal control problem (1.2), ȳ = Sū the corresponding state, and p̄ = P (Sū−yd)
the corresponding adjoint state; see Theorem 4.1. Furthermore, let ūh, ȳh and p̄h
be their discrete counterparts as introduced in Section 5; see Lemma 5.1. We define
the projection ũh of p̄h by

ũh = Π[a,b]

(
−1
ν
p̄h

)
.

This function ũh is piecewise linear and continuous, but it does not belong to the
finite element space Vh|Γ in general. However, one can prove that ũh possesses
superconvergence properties.

Theorem 7.7. Under Assumption 7.1 the discretization error estimates

‖ȳ − ȳh‖L2(Ω) ≤ ch2| lnh|3/2
(
‖ū‖L2(Γ) + ‖yd‖C0,σ(Ω̄)

)
,

‖p̄− p̄h‖L2(Γ) + ‖p̄− p̄h‖L2(Ω) ≤ ch2| lnh|3/2
(
‖ū‖L2(Γ) + ‖yd‖C0,σ(Ω̄)

)
,

‖ū− ũh‖L2(Γ) ≤ ch2| lnh|3/2
(
‖ū‖L2(Γ) + ‖yd‖C0,σ(Ω̄)

)
hold, provided that the grading parameter �μ fulfills the condition �1/2 < �μ <
�1/4 + �λ/2.

Proof. Let ε ∈ (0, 1/2]∩(0, σ] with σ ∈ (0, 1) and �1/2 < �μ < �1/4+�λ/2. Introducing
intermediate functions, the triangle inequality and Lemma 7.5 yield

‖ȳ − ȳh‖L2(Ω) ≤ ‖(S − Sh)ū‖L2(Ω) + ‖Sh(ū−Rhū)‖L2(Ω) + ‖Sh(Rhū− ūh)‖L2(Ω)

≤ ‖(S − Sh)ū‖L2(Ω) + ‖Sh(ū−Rhū)‖L2(Ω) + c‖Rhū− ūh‖L2(Γ).

If we apply the results of Theorem 3.1, Lemma 7.4, Lemma 7.6 and Theorem 4.1
we obtain

‖ȳ − ȳh‖L2(Ω) ≤ ch2| lnh|3/2
(
‖ȳ‖W 2,2

�1−�μ
(Ω) + ‖ū‖L2(Γ) + ‖yd‖C0,σ(Ω̄)

)

≤ ch2| lnh|3/2
(
‖ū‖L2(Γ) + ‖yd‖C0,σ(Ω̄)

)
.(7.14)

The error of the adjoint state on the boundary and in the domain can be estimated
by

‖p̄− p̄h‖L2(Γ) + ‖p̄− p̄h‖L2(Ω) ≤ ‖(S∗ − S∗
h)(ȳ − yd)‖L2(Γ) + ‖S∗

h(ȳ − ȳh)‖L2(Γ)

+ ‖(P − Ph)(ȳ − yd)‖L2(Ω) + ‖Ph(ȳ − yh)‖L2(Ω),

≤ ‖(S∗ − S∗
h)(ȳ − yd)‖L2(Γ) + ‖(P − Ph)(ȳ − yd)‖L2(Ω)

+ ‖ȳ − ȳh‖L2(Ω),
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where we used Lemma 7.5. Next, we apply Theorem 3.1, Theorem 3.2 and (7.14).
By this we get

‖p̄− p̄h‖L2(Γ) + ‖p̄− p̄h‖L2(Ω)

≤ ch2| lnh|3/2
(
‖ȳ − yd‖C0,ε(Ω̄) + ‖ȳ − yd‖W 0,2

�1−�μ
(Ω) + ‖ū‖L2(Γ) + ‖yd‖C0,σ(Ω̄)

)

≤ ch2| lnh|3/2
(
‖ȳ‖C0,ε(Ω̄)+‖ȳ‖W 0,2

�1−�μ
(Ω)+‖ū‖L2(Γ)+‖yd‖W 0,2

�1−�μ
(Ω) + ‖yd‖C0,σ(Ω̄)

)
.

The embeddings W 2,2
�1−�μ

(Ω) ↪→ W 2,2
�1/2(Ω) ↪→ W 2,2/(2−ε)(Ω) ↪→ C0,ε(Ω̄) ↪→ W 0,2

�1−�μ
(Ω),

which hold according to part 2 of Lemma 2.1 and the Sobolev embedding theorem,
yield together with Theorem 4.1

(7.15) ‖p̄− p̄h‖L2(Γ) + ‖p̄− p̄h‖L2(Ω) ≤ ch2| lnh|3/2
(
‖ū‖L2(Γ) + ‖yd‖C0,σ(Ω̄)

)
.

Finally, we observe that the projection operator Π[a,b] is Lipschitz continuous
(cf. also the proof of Theorem 4.1). This implies together with (7.15),

ν‖ū− ũh‖L2(Γ) = ν

∥∥∥∥Π[a,b]

(
−1
ν
p̄

)
− Π[a,b]

(
−1
ν
p̄h

)∥∥∥∥
L2(Γ)

≤ c‖p̄− p̄h‖L2(Γ)

≤ ch2| lnh|3/2
(
‖ū‖L2(Γ) + ‖yd‖C0,σ(Ω̄)

)
,

which ends the proof. �

Remark 7.8. An alternative discretization concept for optimal control problems is
variational discretization. It is introduced in [12] for distributed control problems
and applied in [6] for Neumann boundary control problems. The finite element
error estimate on the boundary given in Theorem 3.2 can be used to prove the
same discretization error estimates of order two (up to a logarithmic factor) for
this concept, compare Section 7 in [20] and Section 6 in [1].

Remark 7.9. In our former paper [1] we proved error estimates of order 3
2 for

‖ȳ − ȳh‖L2(Ω), ‖p̄ − p̄h‖L2(Γ), ‖p̄ − p̄h‖L2(Ω), and ‖ū − ũh‖L2(Γ) by using simpler
techniques and a weaker grading condition. The numerical tests in Section 7 of [1]
showed that a stronger mesh grading leads to almost second order convergence; see
[1, Table 1], and initiated the research of the current paper. Hence the numerical
example there can be considered as an example for the theory developed here.

8. Proof of regularity results

The aim of this section is to prove Lemma 2.3 and Lemma 2.4. To this end, it is
useful to have a second type of weighted Sobolev space and appropriate weighted
Hölder spaces available.

The spaces V k,p
�β

(Ω) and V k,p
�β

(Γ) are defined analogously to the weighted Sobolev

spaces W k,p
�β

(Ω) and W k,p
�β

(Γ), respectively (see Section 2), except that the weighting

functions rβj

j in the definition of the norms are substituted by r
βj−k+|α|
j . Note that

the the classical Sobolev spaces W k,p(Ω) are included in the weighted Sobolev
spaces W k,p

�β
(Ω) by setting βj = 0 for j = 1, . . . ,m, whereas they do not belong to

the scale of the weighted spaces V k,p
�β

(Ω). But there is a relation between the space

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FINITE ELEMENT ERROR ESTIMATES 65

W k,p
�β

(Ω) and the space V k,p
�β

(Ω). We recall Lemma 2.1 of [1], which represents this
relation for k = p = 2. For general k ∈ N0 and 1 < p < ∞ we refer to Theorem 2.1
of [22].

Lemma 8.1. Let ηj , j = 1, . . . ,m, be infinitely differentiable cut-off functions in
Ω̄ equal to one in ΩRj/64 and supp ηj ⊂ ΩRj

. For �β ∈ (0, 1)m one has

W 2,2
�β

(Ω) = V 2,2
�β

(Ω) ⊕ η1P0(Ω) ⊕ · · · ⊕ ηmP0(Ω),

where P0(Ω) is the set of constant polynomials on Ω. In particular, for any
v ∈ W 2,2

�β
(Ω) one can write v = vs +

∑m
j=1 ηjv(x(j)) with vs ∈ V 2,2

�β
(Ω). Moreover,

the norm equivalence

‖v‖W 2,2
�β

(Ω) ∼ ‖vs‖V 2,2
�β

(Ω) +
m∑
j=1

|v(x(j))|

is valid.

Finally, we introduce the weighted Hölder spaces Nk,σ
�β

(Ω), where k ∈ N0, σ ∈
(0, 1) and �β = (β1, . . . , βm)T ∈ R

m. These spaces consist of all k times continuously
differentiable functions in Ω̄\C such that

‖v‖Nk,σ
�β

(Ω) ∼ ‖v‖Ck,σ(Ω̄0) +
m∑
j=1

‖v‖Nk,σ
βj

(ΩRj
)(8.1)

is finite, where

‖v‖Nk,σ
βj

(ΩRj
) =

∑
|α|≤k

‖rβj−σ−k+|α|
j Dαv‖C0(Ω̄Rj

)

+
∑
|α|=k

sup
x,y∈ΩRj

∣∣rj(x)βjDα
x v(x) − rj(y)βjDα

y v(y)
∣∣

|x− y|σ .

The trace spaces Nk,σ
�β

(Γ) are defined in the same manner.
Now we have everything at hand to discuss the regularity results. If the boundary

of the domain Ω is smooth enough, and if f ∈ L2(Ω) and g ∈ H1/2(Γ), then one can
show that the generalized solution is an element of H2(Ω). In polygonal domains
this statement fails. In general the weak solution of (1.1) does not belong to H2(Ω)
if ωj > π for some j. Instead, one can show that the solution has the asymptotics

y =
m∑
j=1

ηjc0,j +
∑

j:ωj>π

ηjc1,jr
λj

j cos(λjϕj) + yreg,

where ηj denote the cut-off functions introduced in Lemma 8.1, c0,j and c1,j are
some constants, λj = π/ωj and the function yreg belongs to H2(Ω). For more gen-
eral f ∈ W 0,2

�β
(Ω) and g ∈ W

1/2,2
�β

(Γ) with max(0, 1 − λj) < βj < 1 the asymptotic
representation

y =
m∑
j=1

ηjc0,j + ysing
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holds, where ysing belongs to V 2,2
�β

(Ω) (cf. [25, Chapter 2]). Based on such repre-
sentations, regularity results in weighted Sobolev spaces can be proven. The result
needed is stated in Lemma 2.3. We will now sketch the proof.

Proof. (Lemma 2.3) We get from the Lax-Milgram Theorem the unique solvability
of problem (1.1) in H1(Ω) if βj < 1. The unique solvability in W 2,2

�β
(Ω) and the

validity of the a priori estimate for max(0, 1 − λj) < βj < 1 is then a consequence
of Lemma 6.3.3 of [21] by using a partition of unity method (the aforementioned
asymptotic representation is used in the proof of that lemma). In the case that
βj = 0 and 1 − λj < 0 we can deduce the unique solvability from Corollary 4.4.3.8
of [11]. The a priori estimate holds in that case according to Theorem 4.3.1.4 of
[11] and the Lax-Milgram Theorem. �

Next, we would like to prove also regularity results in W 2,∞
�β

(Ω) and W 2,∞
�β

(Γ),
as stated in Lemma 2.4. To our knowledge there is no reference where this is done
directly. Instead, we use regularity results in weighted Hölder spaces for that pur-
pose. The following lemma represents parts of Theorem 1.4.5 of [17], which has been
adapted to our setting (compare also [22]). Note, that asymptotic representations
of the solution are again used in its proof.

Lemma 8.2. Let u ∈ V 2,2
�β

(Ω) with βj = 1/2 for j = 1, . . . ,m be a solution of

−Δu + u = F in Ω,

∂nu = G on Γj , j = 1, . . . ,m,

where F ∈ N0,σ
�δ

(Ω) and G ∈ N1,σ
�δ

(Γ). If 0 < 2 + σ − δj < λj for j = 1, . . . ,m,
then u belongs to N2,σ

�δ
(Ω) and the a priori estimate

(8.2) ‖u‖N2,σ
�δ

(Ω) ≤ c
(
‖F‖N0,σ

�δ
(Ω) + ‖G‖N1,σ

�δ
(Γ) + ‖u‖L1(Ω)

)
is valid.

We are now prepared to prove Lemma 2.4.

Proof (Lemma 2.4). From Lemma 2.3 we know that the solution y of (1.1) belongs
to W 2,2

�β
(Ω) if 1 > βj > max(0, 1 − λj). In the following we choose βj = 1

2 , which
is possible since λj > 1/2 for every ωj ∈ [0, 2π). Next, we would like to apply
Lemma 8.2, but y /∈ V 2,2

�β
(Ω). Instead, we first use Lemma 8.1. This yields the

splitting

(8.3) u := y −
m∑
j=1

ηjy(x(j)) ∈ V 2,2
�β

(Ω),

where ηj denote the cut-off functions introduced in Lemma 8.1. Furthermore, u
solves

−Δu + u = f −
m∑
j=1

ηjy(x(j)) +
m∑
j=1

y(x(j))Δηj=: F in Ω,

∂nu = −
m∑
j=1

y(x(j))∂nηj =: G on Γk, k = 1, . . . ,m.
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Let δj ≥ σ be real numbers for j = 1, . . . ,m. Then, one can show for any function
w ∈ C0,σ(Ω̄) that

‖w‖N0,σ
�δ

(Ω) ≤ ‖w‖C0,σ(Ω̄0)

+ c

m∑
j=1

⎛
⎜⎜⎝‖rδj−σ

j w‖C0(Ω̄Rj
) + sup

x,y∈ΩRj

|x−y|≤ 1
2 rj(x)

rj(x)δj |w(x) − w(y)|
|x− y|σ

⎞
⎟⎟⎠

≤ c‖w‖C0,σ(Ω̄)(8.4)

(cf. Section 1.1 in [27] for technical details or Section 5 of [22]). Thus, the functions
f , ηj and Δηj belong to N0,σ

�δ
(Ω) and ∂nηj to N1,σ

�δ
(Γ) (Δηj and ∂nηj even vanish

in the neighborhood of every corner). Based on this we can conclude for δj−σ ≥ 0,

F ∈ N0,σ
�δ

(Ω) and G ∈ N1,σ
�δ

(Γ).

Now we can apply Lemma 8.2. We obtain that u belongs to N2,σ
�δ

(Ω) if 0 < 2+σ−
δj < λj for j = 1, . . . ,m. Furthermore, the a priori estimate

(8.5) ‖u‖N2,σ
�δ

(Ω) ≤ c
(
‖F‖N0,σ

�δ
(Ω) + ‖G‖N1,σ

�δ
(Γ) + ‖u‖L1(Ω)

)
is valid. By setting γj = δj − σ ≥ 0 we obtain

‖y‖W 2,∞
�γ

(Ω) + ‖y‖W 2,∞
�γ

(Γ) ≤ c

⎛
⎝‖y‖C2(Ω̄0) +

m∑
j=1

∑
|α|≤2

‖rγj

j Dαy‖C0(Ω̄Rj
)

⎞
⎠

≤ c

⎛
⎝‖u‖C2(Ω̄0) +

m∑
j=1

∑
|α|≤2

‖rγj

j Dαu‖C0(Ω̄Rj
)

+
m∑
j=1

∣∣∣y(x(j))
∣∣∣
⎡
⎣‖ηj‖C2(Ω̄0) +

∑
|α|≤2

‖rγj

j Dαηj‖C0(Ω̄Rj
)

⎤
⎦
⎞
⎠

≤ c

⎛
⎝‖u‖C2(Ω̄0) +

m∑
j=1

∑
|α|≤2

‖rγj

j Dαu‖C0(Ω̄Rj
) +

m∑
j=1

∣∣∣y(x(j))
∣∣∣
⎞
⎠

where we inserted (8.3) and used that r
γj

j (for γj ≥ 0) and |Dαηj | is bounded by a
constant. Since γj = δj − σ and 2 − |α| ≥ 0 for |α| ≤ 2 we can conclude

‖y‖W 2,∞
�γ

(Ω) + ‖y‖W 2,∞
�γ

(Γ)

≤ c

⎛
⎝‖u‖C2(Ω̄0) +

m∑
j=1

∑
|α|≤2

‖rδj−σ−2+|α|
j Dαu‖C0(Ω̄Rj

) +
m∑
j=1

∣∣∣y(x(j))
∣∣∣
⎞
⎠

≤ c

⎛
⎝‖u‖N2,σ

�δ
(Ω) +

m∑
j=1

∣∣∣y(x(j))
∣∣∣
⎞
⎠ .(8.6)
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Next, we apply the a priori estimate (8.5), which holds for γj > 2 − λj , and insert
the definitions of F and G and (8.3). This yields

‖u‖N2,σ
�δ

(Ω) ≤ c

⎛
⎝‖f +

m∑
j=1

y(x(j)) (Δηj − ηj) ‖N0,σ
�δ

(Ω) + ‖
m∑
j=1

y(x(j))∂nηj‖N1,σ
�δ

(Γ)

+‖y −
m∑
j=1

ηjy(x(j))‖L1(Ω)

⎞
⎠

≤ c

⎛
⎝‖f‖N0,σ

�δ
(Ω) + ‖y‖L1(Ω) +

m∑
j=1

∣∣∣y (x(j)
)∣∣∣
⎞
⎠ .(8.7)

Again we used that |Dαηj | is bounded by a constant. The last two terms in (8.7)
can be estimated by applying the Sobolev embedding theorem, part 2 of Lemma 2.1,
and the a priori estimate of Lemma 2.3. By this we obtain with some ε ∈ (1, 4/3)
(see Section 9),

‖y‖L1(Ω) +
m∑
j=1

∣∣∣y (x(j)
)∣∣∣ ≤ c‖y‖C0(Ω̄) ≤ c‖y‖W 2,1+ε(Ω̄) ≤ c‖y‖W 2,2

�β
(Ω̄)

≤ c‖f‖W 0,2
�β

(Ω̄) ≤ c‖f‖L2(Ω) ≤ c‖f‖C0,σ(Ω̄).(8.8)

Finally, the inequalities (8.4), (8.6), (8.7) and (8.8) yield the a priori estimate of
the assertion. �

9. Added after proof

(1) On page 43, line 2 below equation (3.14), the choice q′ = 4q/(2q+2+αq) > 1
should be replaced by q′ = 2q2/(4q − 2 + αq(q − 1)) > 1, and on the next
line the embedding W 2,q

α (T̂ ) ↪→ W 2,q′(T̂ ) should be replaced by W 0,q
α (T̂ ) ↪→

W 0,q′(T̂ ).
(2) On page 56, lines 3 and 4 below equation (6.3), the quantity 4/(5 − 4μj)

should be replaced by 8/(9 − 4μj).
(3) On page 68, line 3 below equation (8.7), It should read ε ∈ (0, 1/3), instead

of ε ∈ (1, 4/3).
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