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Preface

Computational methods to approximate the solution of differential equations play

a crucial role in science, engineering, mathematics, and technology. Indeed, the

key processes which govern the physical world—wave propagation, thermody-

namics, fluid flow, solid deformation, gas dynamics, electricity and magnetism,

quantum mechanics, general relativity, and many more—are described by differ-

ential equations, and we depend on numerical methods for the ability to simulate,

explore, predict, and control systems involving these processes. The variety of

differential equation problems that arise in these applications is vast, and much

research has gone into developing numerical methods which can solve different

problems accurately and efficiently. Mathematical analysis of these algorithms

plays an essential role, furnishing rigorous validation to particular methods in

clearly delineated circumstances, supplying quantitative error bounds, and en-

abling comparison among competing methods. In this book we will focus on

finite element methods, a vast class of numerical methods for differential equa-

tions which is of wide applicability and great utility, and also, not coincidentally,

one for which there is an extensive body of mathematical analysis.

The finite element method is a mature tool, in both practice and theory, in

many areas of computational science. Nonetheless, the variety of partial dif-

ferential equations (PDEs) which arise is vast, and there are still many impor-

tant problems for which the known numerical approaches fail, and good numer-

ical methods are yet to be devised. Consequently, research aimed at devising

and analyzing new methods is flourishing. Traditionally, the key mathematical

tools for the study of numerical PDEs, and especially of finite element methods,

have come from functional analysis: Hilbert and Banach spaces, the Hilbert pro-

jection theorem, the Lax–Milgram lemma, the Bramble–Hilbert lemma, duality,

Sobolev spaces, etc. The finite element exterior calculus (FEEC), presented in

this book, also depends essentially on functional analysis, especially the theory

of closed unbounded operators on Hilbert space. But FEEC’s mathematical ar-

senal goes well beyond functional analysis, bringing in tools from geometry and

topology to develop and analyze numerical methods for classes of PDEs resistant

to more traditional approaches. Methods derived from FEEC are prime examples

of structure-preserving numerical methods, in that they are designed to preserve

key geometric, topological, and algebraic structures of the PDE at the discrete

level. This turns out to be crucial to the development of successful finite element

methods for a variety of problems for which standard methods fail. Specifically,

FEEC focuses on PDEs which relate to complexes of differential operators act-

ing on Hilbert function spaces and uses finite element spaces which form sub-

complexes of these complexes, and which can be related to them via commuting

projections.

ix
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x Preface

While FEEC’s antecedents go back decades, to the early days of the finite el-

ement method and even before, it first began to be defined as a distinct theory in

my presentation to the International Congress of Mathematicians in 2002 [5] and

was formalized in two long papers I coauthored with Richard Falk and Ragnar

Winther in 2006 [11] and 2010 [13]. The first paper emphasized a particular com-

plex of differential operators, namely, the de Rham complex of differential forms

on a domain in R
3 (or a Riemannian manifold). It was here that the name finite

element exterior calculus first appeared, referring to the calculus of differential

forms. In the 2010 paper, more emphasis was put on the abstract structure of a

Hilbert complex, of which the L
2 de Rham complex is a special case, allowing

FEEC to deal with other complexes that arise in other applications.

By June 2012 the basic outlines of FEEC theory were in place, and I was

fortunate to be offered the opportunity to present an intensive short course on

FEEC to an audience of nearly 70 faculty members, graduate students, and other

researchers from around the world. The course was generously supported by

the National Science Foundation and the Conference Board of the Mathematical

Sciences as part of the NSF-CBMS conference series and expertly hosted at the

Institute of Computational and Experimental Research in Mathematics (ICERM)

at Brown University. This book grew out of that course. It shares with the course

the goal of helping numerical analysts to master the fundamentals of FEEC, in-

cluding the geometrical and functional analysis preliminaries, quickly and in one

place. But the book has a broader audience in mind than the course, aiming to

be accessible as well to mathematicians and students of mathematics from areas

other than numerical analysis who are interested in understanding how techniques

from geometry and topology come to play a role in numerical PDE. FEEC has

been vigorously developing in the time since the course, and so the book contains

much more material than was taught in the course, some of which was not even

developed at that time.

The first portion of the book, Chapters 1–5, quickly develops the prerequisite

material from homological algebra, algebraic topology, and functional analysis.

These ingredients are combined in the basic structure of a Hilbert complex studied

in Chapter 4. Remaining in this general abstract framework, the approximation

of problems related to Hilbert complexes is developed in Chapter 5. The second

portion of the book consists of Chapters 6 and 7, where we apply the general

theory to the most canonical example of a Hilbert complex, the L
2 de Rham

complex on a domain in R
n. Finally, in the closing chapter we briefly survey

some other examples and applications.

I am grateful to NSF and CBMS for their support of the FEEC course in

2012 and of this volume and for the support I received during the period I was

developing FEEC and writing the book from NSF grants DMS-1115291, DMS-

1418805, and DMS-1719694. Ron Rosier and David Bressoud, the former and

current directors of CBMS, are to be particularly thanked for their patience and

understanding. I am also grateful to ICERM for hosting the course and especially

to Alan Demlow, Johnny Guzmán, and Dmitriy Leykekhman, who conceived and

organized it. The audience for the course, many of whom have gone on to make

important contributions to FEEC, was also a great source of stimulation and in-

spiration. Several people have proofread all or part of the manuscript and made

countless valuable suggestions: thanks to Richard Falk, Ragnar Winther, Shawn

Walker, Espen Sande, and Kaibo Hu. Johnny Guzmán, Anil Hirani, and Ragnar

Winther have even used an early version of the book as a text for a course they

taught, which was particularly helpful.
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Preface xi

Participants in the NSF-CBMS Conference on

Finite Element Exterior Calculus,

held at ICERM, Brown University, in June 2012.
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