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Abstract. Transient thermal analysis of engineering materials and 
structures by space discretization techniques such as the finite element 
method (FEM) or finite volume method (FVM) lead to a system of parabolic 
ordinary differential equations in time. These semidiscrete equations are 
traditionally solved using the generalized trapezoidal family of time 
integration algorithms which uses a constant single time step. This single 
time step is normally selected based on the stability and accuracy criteria 
of the time integration method employed. For long duration transient 
analysis and/or when severe time step restrictions as in nonlinear problems 
prohibit the use of taking a larger time step, a single time stepping strategy 
for the thermal analysis may not be optimal during the entire temporal 
analysis. As a consequence, an adaptive time stepping strategy which 
computes the time step based on the local truncation error with a good 
global error control may be used to obtain optimal time steps for use 
during the entire analysis. Such an adaptive time stepping approach is 
described here. Also proposed is an approach for employing combined 
FEM/FVM mesh partitionings to achieve numerically improved physical 
representations. Adaptive time stepping is employed thoughout to 
practical linear/nonlinear transient engineering problems for studying 
their effectiveness in finite element and finite volume thermal analysis 
simulations. 

Keywords. Transient thermal analysis; finite element method; finite 
volume method; temporal analysis. 

Introduction 

The complexity of modern engineering systems places increased demand on thermal 
analysis of engineering systems with accurate physical interpretations. More and 
more discrete numerical methods such as the finite difference method (FDM) (Lax & 
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Wendroff 1964; Richtmeyer & Morton 1967), finite element method (FEM) 
(Zienkiewicz & Cheung 1965; Bathe 1982; Hughes 1987) etc., are used in conduction 
heat transfer analysis. The finite element method provides a close approximation of 
curved boundaries, and a systematic and general way of modelling the boundary 
conditions. For these reasons, FEM has become a powerful numerical tool in real 
engineering problems. 

The finite difference method is another numerical technique in which the 
approximate solution is obtained by directly discretizing the governing differential 
equation. This form of the finite difference method has been historically restricted to 
rectangular domains and meshes and later been extended to included applicability 
to general, orthogonal curvilinear coordinate systems. Another approach that has 
received attention among heat transfer analysts and researchers is the control volume 
approach (Patankar & Baliga 1978; Patankar 1980; Baliga & Patankar 1983). In this 
approach, an energy balance is applied to discrete control volumes and discretization 
is used only where surface fluxes require approximation. The property of the control 
volume approach is that the resulting finite difference equations are conservative, 
and the discrete equations maintain an accurate accounting of energy flows in the 
domain. In the application of the finite difference and control volume methods, the 
coordinate system must be defined over the entire solution domain prior to effecting 
the discrete method. The finite element method, however, removes the above 
disadvantage by utilizing a coordinate system which is local to each individual element. 
Another approach is the use of finite element philosophy (such as isoparametric 
formulations based on" a finite volume) directly to the conservative energy form of 
the heat conduction equation, and obtaining the discrete form based on the energy 
balance. This approach called the finite volume approach, is cited to have the benefits 
of the finite dement method in its applicability to a general curvilinear domain, while 
preserving the conservation of energy (Schneider 1982; Baliga & Patankar 1983; 
Schneider & Zedan 1983; Banaszek 1984). 

The finite element method follows a philosophically different approach than does 
the finite difference method. In elasticity problems, for e.g., there exists a variational 
extremum principle such that the minimization of potential energy or the application 
of the principle of virtual work leads, naturally, to the discrete model. In heat 
conduction, such a natural formulation with'a clear physical interpretation does not 
exist (Zienkiewicz & Cheung 1965; Bathe 1982; Owen & Damjanic 1983; Taylor et al 
1983, pp. 405-31; Hughes 1987; Tamma & Namburu 1989; Namburu & Tamma 
1991), although the existence of variational forms for thermal analysis situations can 
be proven. 

Traditionally, the semi-discrete time dependent equations obtained for the transient 
analysis are solved with a time stepping scheme using the trapezoidal family of the 
algorithms (Bathe 1982; Hughes 1987; Tamma & Namburu 1989; Namburu & 
Tamma 1991). Normally a single time step is employed over the entire temporal 
analysis. This single time step is normally selected based on the stability and accuracy 
criteria of the time integration scheme used. For a particular trapezoidal family of 
algorithms, the time step is based on the accuracy desired. Explicit and implicit 
methods have been used in the past. Whereas explicit methods are easy to code, the 
severe time step restriction brought by stability considerations have made implicit 
methods, in particular the trapezoidal Crank-Nicolson method, a logical choice by 
many analysts. However, although the method is unconditionally stable, the time 
step is still dictated by accuracy considerations. Nonetheless, the single time step 
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Figure 1. Typical solution domain. 
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selected initially for desired accuracy levels may not be optimal at all times during 
the analysis. It is possible that the time step selected may be too large for the accuracy 
desired in the analysis. It is also possible that the initial time step selected is too 
small during the analysis and the same desired accuracy could have been obtained 
using a larger time step during the analysis. An adaptive automated time stepping 
approach based on local truncation error with good control of global error will yield 
optimal time steps which changes continually during the analysis. Such an adaptive 
time stepping strategy based on local truncation error is considered here for the 
practical applicability to engineering problems in conjunction with finite element and 
finite volume methods. Conduction/convection/radiation effects are included. A brief 
overview of finite element/finite volume methods is first described followed by an 
effective automated time stepping approach adopted in this paper. Combined mesh 
partitionings involving FEM/FVM meshes based on physical situations to obtain 
numerically improved physical representations have been considered. Numerical test 
cases are described and comparative pros and cons are identified for practical 
situations. 

Geometry and element definition 

For purposes of illustration, attention is restricted here to two-dimensional problems. 
A typical solution domain is shown in figure 1 which is subdivided into linear 
quadrilateral finite elements. A typical element is shown in figure 2, with the local 
coordinate system (~, ~/). For the individual element, the local node numbers ranging 
from 1 through 4 are shown and the temperature field T and the global coordinates 

4 

2 

Figure 2. A typical finite volume element. 
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x, y are interpolated using bilinear isoparametric formulations of the form 

4 

T =  Y. N, T,, (I) 
/ = 1  

4 

x = ~ Nixl ,  (2) 
i = 1  

4 

y = ~, N i y  ,, (3) 
i = l  

where the shape functions Ni are defined by 

N 1 = ¼(1 -- ¢)(1 -- r/), 

N2 = ¼(I - r/)(l + ~), 

N ~  = ¼(I + ¢)(I + ,I), 

N,) = ¼(1 + ,)(1 - ¢). (4) 

The x and y derivatives of the temperature can be determined as 

i = !  
n = (5) 

d T  ~ ON i ' 

where the x and y derivatives of the shape functions appearing in (5) are determined by 

Ox = 1 0q O~ 0¢ . (6) 

ONi Det [ J ]  clx c3x t~N i 

t ay on a~ an j 

Considering a general line segment shown in figure 3, the normal vector while 
traversing along from point 1 to point 2 is defined by 

dS = dy i ' -  dxj. (7) 

d y  

dx  
_ 2  

Figure 3. Typical surface line segment. 
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The above definitions set the basis in the development of the finite element/finite 
volume formulations as described next. 

Finite element equations and element matrices 

Of interest here are general nonlinear transient thermal problems governed by 

pc(OT/Ot) - V.(KVT) = Q, 

with the appropriate boundary and initial conditions. These are defined as 

where 

T= Tp, 

qini --  qs + qh + q ,  = O, 

qh = h ( T -  Th), 

q, = ae(T'* -- T~). 

(8) 

(11) 

(12) 

Applying the traditional Galerkin finite element method to (8-12), using the shape 
functions defined in the earlier section, leads to a semi-discrete equation of the form 

EC]{~ r} + [[Kc] + [Kn] + [K,]]{T} "= {Re} + {RQ} + {Rq} + {Rh} + {R,} 
(13) 

where [C] is the capacitance matrix, [Kc], [Kh] and [K,] are element conduction 
matrices corresponding to conduction, convection and radiation respectively; {Rc}, 
{RQ }, {Rq }, {eh }, {R, } are the load vectors from specified nodal temperatures, internal 
heat generation, edge heating, radiation and convection. These are defined as 

[C] = f pcNr Nd~, (14) 
fie 

[Kc]= f B~ KBn, (15) 

[Kh] = fr2 hNrNd~' (16) 

[K,]{T} = f aeT'*NrdFt, (17) 
F2 

{Re} = -- f (q-~)NrdF, (18) 
Fx 

{RQ} = f QNrd•, (19) 
tie 

{Rq} = f qsNrdF, (20) 
F2 

{Rh} = f hThUTdF, (21) 
F2 

on F 1 , (9) 

on F z, (10) 
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{R,} = f r  aeT~NTdF' 
2 

with initial conditions T(0) = To. 

(22) 

Finite volume equations and element matrices 

Here a procedure analogous to that followed by the conventional finite element 
formulation is considered. In this a single, isolated finite volume is first considered. 
The application of an energy balance to this element gives rise to element level matrices, 
which are related to the nodal temperature values of the element. Once the appropriate 
capacitance and conduction and load formulations are obtained, assembly rules in 
a similar sense of the finite element formulations can be employed to construct the 
global equation system from the element level equations. 

The element matrices are constructed using a single element as shown in figure 4. 
The single finite volume element is subdivided into four internal finite volumes, each 
of which is associated with the corresponding nearest neighboring node of the element. 
In the linear quadrilateral element shown in figure 4, the control volume boundaries 
are chosen to be coincident with the element exterior boundaries and with the local 
coordinate~surfaces defined by ~ = 0 and ~/= 0. This choice is consistent from element 
to element ha the entire formulation, and this boundary selection makes the evaluation 
of the integrals defined in the formulation easier. 

The energy balance is now applied to one such control volume and is expressed 
as: net rate of conduction into control volume = rate of generation within control 
volume + rate of change of energy within the control volume. 

For the control volume associated with node 3 (sub-control volume 3) in figure 4, 
this energy balance can be mathematically expressed as 

Q2,3-i-Q4,3-t-Qel,3 d-Qe2,3 q.- f f QdV= ~ f f pcTdV, (23) 
CV CV 

Qe2,3 3 

Qel,3 

4 / 

2 

~ F i g u r e  4. 
1 

Single element frith finite 
volume subdivision and heat flows. 
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where the limits of the integral correspond to the control volume associated with the 
node 3. The subscripts el and e2 in (23) refer to the energy flows into control volume 
3 through surfaces which are on the exterior of the element and arise either from the 
physical domain boundary or from adjacent elements. In the case of adjacent elements, 
the heat fluxes cancel with each other, while in the case of the boundary, the boundary 
conditions determine the contribution of these terms. The interior terms which give 
rise to the conduction matrix coefficients are now considered. 

In general, the heat flow through a surface can be expressed as 

Q = ~ q. dS (24) 
Js 

where the heat flux vector q is given as 

k OT~-k,  OT'^ 
q - - - - - -  X OX ~yJ" 

In this case 

(25) 

Based on this the various matrices for the finite volume element can be obtained. 
The conduction contributions are 

f i=° ( O N i O y  ONiOx ) d , +  
K x"= =-1 kx 0x 0¢ k, 0y-0-~ .=o 

f f=o  ( O N i O y O N i c'~_~r/ ) I - k - -  - -  + k r dr/ ,  ( 2 7 )  
= - 1 Ox Or~ Ox ~ = o 

K 2 i =  kx 0x 0~ ky d~+ 
' = i O y  

i f = °  ( O N ,  Oy k ON, Ox) dr~, 
=-1 k Ox Or/ r O-x~  ~=o 

f~f=l(  ONiOy kyONiOx) dr/+ 
K3 ' i  = =o kx Ox Or~ 0~-0~ ~=o 

f¢:=a ( ON, Oy ON, Ox)] de, (29) 
oo - k x ~ + k , ~  .~o 

K,,,= oo',- - L 2 ~ + ' o y ~  ~oo ;.o( 
- k x - -  - - . +  ky d ~ ,  ( 3 0 )  

=-1 Ox O~ Ox 

where i = 1,4 in the above expressions are for a bilinear element. 
Based on the energy balances of each of the control volumes, the capacitance 

matrix entries are given by the following expressions f::; f;o 
C1. i = pcN i Det [J] d~ dr/, (3 l) 

1 = - 1  

(28) 

dS = dy?- dxL (26) 
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f¢i=1 f,=o C2, ~ = pcN~ Det [J] d~dr/, 
= 0  * = - 1  

C3, i = p c N  i Det [J] d~ dr/, 
= 0  = 0  

C4, i = p c N  i Det [J] d~ dr/. 
= - 1  = 0  

The stiffness matrix corresponding to surface convection is given by 

(Kh)l , i  = hN~ Det [J] d~ dr/, 
= - 1  = - 1  

(Kh)2,i = h N  i Det [J] d~ dr/, 
= 0  = - 1  

(Kh)3,i = h N  i Det [J] d~ dr/, 
= 0  = 0  

(Kh)4,~ = h N  i Det [J] d~ dr/. 
= - 1  = 0  

The 
Jacobian for the nonlinear formulations are given by 

for7 (KR)  1.~ = 4tre T~v e N i Det [J] d~ dr/, 
= - 1  = - 1  

(Ka)2, , = 4treTa~e N i Det [J] d~ dr/, 
= 0  = - 1  

(Ka)a, i = 4treT~, c N~ Det [J] d~dr/, 
= 0  = 0  

(KR)4.i = 4tre Tavc N~ Det [J] de dr/. 
= - 1  = 0  

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

stiffness matrices corresponding to the surface radiation involved in the 

(39) 

(40) 

(41) 

(RQ) 1 = Q Det [J] d~ dr/, (43) 
= - 1  1 

(Re) 2 = Q Det [J] d~dn, (44) 
= 0  = - 1  

(Ro)3 = Q Det [J] d~ dr/, (45) 
= 0  = 0  

The various volume load vectors for volume heating, convection and radiation are 
given by the following integral expressions. 

For the volumetric heat source Q, the corresponding load vectors are given by 

(42) 
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(RQ) 4 = Q Det [J] d~ dq. (46) 
= - 1  = 0  

The load vectors due to surface convection are given by 

f7 o f::; (Rh)l = h T h Det I-J] d ~ dq, (47) 
= - 1  1 

(R,)2 = h T h Det [J]  d~ dr/. (48) 
= 0  = - 1  

(R,)a = h T h Det [J]  d~ dq. (49) 
= 0  = 0  

C°C (R,), = h T h Det [J]  d~ d,.  (50) 
o ¢ = - 1 . ~ . = o  

where Th is the ambicnt temperature. The load vectors due to surface radiation are 
given by 

C f: (R ) 1 = aer~ Det [J] d~dth (51) 
= - 1  = - 1  

;7 C (R,)2 = ae T~ Det [J]  d~ dq, (52) 
= O  1 

iT'r: (R.) 3 = aer~ Det [J] d~ dq. (53) 
= 0  ,~ = 0  

C;: (R.) 4 = ae T~ Det [J]  d~ dr/. (54) 
= - 1  = 0  

The element matrices due to edge heating, edge convection and edge radiation are 
given by the line integrals. For example for the control volume 3 it is given by an 
integral of the form 

(gease)a.~ = Ni(1. q)Det [S] dq. (55) 
= 0  

where Det [S] is the determinant associated with the edge integral. For a typical edge 
of length l the associated stiffness matrix form is given by 

K,ag = -  ~ "1 . (56) 
2 Z Z 

The load vector contribution due to the heating, radiation and convection effects 
on an edge is given by a vector of the form 

R IF1 ] (57) 
°~'° = 2 L1 J 
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Adaptive time integration methods 

An automated adaptive time stepping approach is employed here for both the finite 
element method (FEM) and the finite volume method. This adaptive time stepping 
approach based on the localized error control which also gives a good global error 
control has been used in conjunction with the generalized trapezoidal s-family of 
time integration methods (Bathe 1982; Hughes 1987) used for the semi-discrete heat 
equation. For completeness, the generalized trapezoidal family of algorithms is briefly 
described followed by the adaptive time stepping strategy. 

Generalized trapezoidal family method 

The semidiscrete heat equation can be written as 

C2" + KT = F, (58) 

where C is the capacitance matrix, K is the conduction matrix, F is the heat supply 
vector, T is the temperature vector, and i" is the time derivative of T. The matrices 
C and K are assumed to be symmetric. The heat supply is a prescribed function of 
t and Tcomes from the various load vector terms considered earlier. 

The initial-value problem consists of finding a function T satisfying (58) and 

T(0) = To, (59) 

where To is initially given. 
The most well known and commonly used algorithms for solving (58) are members 

of the generalized trapezoidal family of methods, which consists of the following 
equations 

C T  +1 + K T . + I = F  +1, 

T.+ 1 = T  + At1"+., 

t , + ,  = (1 -- cot" + ctt,+ 1, 

(60) 

(61) 

(62) 

where T, and "r. are the approximations to T(t.) and "F(t.) respectively; 
F.+ 1 = F(t.+ 1); At is the time step, assumed constant for the time being; and ~ is the 
parameter in the interval [0, 1] where ~t = 0 corresponds to the forward Euler scheme; 
at = 1/2 is tlxe Crank-Nicholson scheme; ~t = 2/3 is the Galerkin scheme and 0t = 1 is 
the backward Euler scheme. Of these schemes, only the ~ = 1/2 is second order 
accurate in time. 

Customarily most of the approaches adopted for the time integration have been 
based on a single time step being used in the entire analysis. This time step is normally 
selected based on the stability and accuracy criteria which depends on the value of ~. 
In particular, in the finite volume method the value of ct = 1 has been extensively used 
which corresponds to the backward Euler method which is unconditionally stable, 
but only first order accurate. In the finite element method, however, ~ = 1/2 and ~ = 0 
have been the more prominent approaches for transient thermal analysis simulations. 
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Adaptive time stepping strategy 

The finite element/finite volume methods traditionally employ a single time stepping 
strategy in conjunction with the selected generalized trapezoidal family of schemes 
described earlier. In this case the time step At selected for the time stepping in based 
on the accuracy desired. Instead of a fixed time step it is desirable to have an adaptive 
automated time step which varies continually during the analysis minimizing the 
local truncation error and with a good global error control. Such an approach will 
give optimal time steps with a good error control. Eriksson and Johnson (Eriksson 
& Johnson 1987; Johnson 1988; Thomea et al 1990) developed error bounds for a 
class of problems defined by the first-order parabolic differential equations to which 
the semi-discrete form of the heat equation belongs. The error bound can be written 
(with particular reference to the backward Euler) as 

max I[ T(t,) -- T. [I ~< C[log(tN/At.) + 1]1/2max(At, max l[ T(t)11 ). 
t <<. tN n <~ N t E l n  

(63) 

The adaptive time stepping approach is based on the following strategy. Suppose, 
is a given tolerance and the discrete equation for T satisfies 

max II T(t) - T. IP ~ 6. (64) 
t <~ tN 

Using (63) and neglecting the logarithmic error, the time step At. can be chosen such 
that 

CAt.max II t(t)II ~ 6, (65) 
t <~ tN 

where the constant C is known approximately. Since T(t) is not known, the condition 
given by (65) is replaced by 

II T. - T._ x 1[ ~< 6/C = A Tto~. (66) 

This leads to an algorithm for At,, assuming T._ 1 has already been computed. This 
permits an adaptive time stepping strategy as follows: 

(1) choose the initial step size Ato(At._ i); 
(2) increment in time with At. = At._ 1 to obtain the solution T,; 
(3) if ~17C <~ tl T. - T._I II ~< 61C; 
(4) then stop and accept the time step At.. Otherwise increase or decrease At. by a 
factor, say, 2 (for example). 

Here 6 is the required selected tolerance, C is an assumed known constant, 7 is a 
suitable constant (2 or 3). 11 " "  II refers to the L~ norm. This gives a simple error 
estimator with a good control of global error. 

The estimated error employing the above is thus 

max I[T . . . .  ,(t) - T(t)1[ ~< f /C  = A Tto ,. (67) 
t<~ t~ 
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That is, 

(68) 

The above adaptive time stepping strategy is theoretically justified for nonlinear 
parabolic problems (Eriksson & Johnson 1987; Thomea et al 1990) and can be used 
in heat transfer situations and solidification problems (Ouyang & Tamma 1992). The 
additional computations involved in this time step control are considerably small. 
Limitations on permissible time steps are based on stability for the explicit form of 
the time integration and based on accuracy for the implicit form of the time integration. 

For the adaptive time stepping strategy, A Tto~ can also be automatically selected 
to control the error employing the following proposed procedure. At step n. 

• Set A Trot = x %  of T, where T, = I Tmax - T r a i n  [. 

This adaptive time stepping strategy based on a posteriori error estimates, is reliable 
and for IlTexac t -TI I  < 6 the error is bounded. The above-mentioned approach 
enables control of error and permits an effective and optimal strategy for the nu- 
merical solution of both linear and nonlinear heat transfer problems, employing finite 
element and finite volume approaches. 

The time step selected during the time advancement based on the above scheme 
has been used in test problems involving only finite element/finite volume element 
formulations for general heat transfer problems. Comparisons are drawn for the 
pros/cons over single time stepping strategies. 

For the adaptive time stepping strategy, additional computations at intermediate 
levels are necessary whenever there is a change in the time step. Caution should be 
exercised to adjust the time steps when they become too small or too large, and when 
there are rapid transient fluctuations. 

Test problems 

To validate the present developments the following test problems are considered. 
These test problems with various material nonlinearities and radiation effects cover 
a wide range of potential problems encountered in engineering practice. For the 
transient thermal analysis the time integration has been performed using the general- 
ized trapezoidal ~t family of algorithms, in conjunction with both single and adaptive 
time stepping strategies. Finite element and finite volume based elements are used 
as appropriate and an illustrative mesh partitioning example is also described. 
All computations have been performed on Cray XMP. The test examples are described 
next. 

Transient nonlinear analysis of the space shuttle thermal protection system 

The problem involves one-dimensional representations of the thermal protection 
system (TPS) of the space shuttle which is composed of different materials (figure 5). 
The thermophysical properties of various materials are given in figure 6. The shuttle 
TPS, which is initially at T = 322 K is subjected to a sudden step heat flow input at 
the exposed surface as shown in Figure 5. The exposed surface of the TPS is assumed 
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Figure 5. Shuttle TPS and description of the problem. 
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Figure 6. Thermal properties of various materials. C, and K respectively for 042 
(a & b), RSl (c & d), felt (e & f), and aluminum (g & h). 
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Figure 7. Temperature histories of various locations of TPS. 

to radiate to an ambient absolute zero temperature continuously. The same problem 
was also analysed by Williams & Curry (1977), and Namburu & Tamma (1991). For 
evaluating the effectiveness of the finite volume formulations, a total of 19 finite 
volume elements with a total of 40 d.o.f, has been employed. A typical transient 
thermal response is shown in figure 7. The results obtained employing adaptive time 
stepping and without adaptive time stepping and using the Galerkin finite elements 
and finite volume elements show good comParison. The adaptive time stepping 
variations during the analysis for both the Galerkin finite element method and finite 
volume method are shown in figure 8. It is clear from the figure that the time step 

ta 
11; 

..4 

18 

16 

12 

4O 

Figure 8. 
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has adapted based on a posteriori error estimator and the adaptivity is clearly seen 
when there are sudden changes in the external heat fluxes etc., as seen when the 
global time is 100 seconds. A time step of 0-01 seconds (0t = 0-5, extremely conservative) 
was employed to serve as a benchmark result without adaptive time stepping. With 
the adaptive time stepping procedure employed, the analysis was completed in 
approximately 200 steps for the same time period and the results are in excellent 
agreement. 

Two-dimensional rectangular plate with convection and radiation along two edges 

In this example a rectangular plate with nonlinear boundary conditions involving 
radiation and nonlinear material properties is considered. One quarter of the plate 
is modelled due to symmetry. The physical plate and the finite element model are 
shown in figure 9. The nonlinear material properties are as shown in figure 10. 
Comparison of results with traditional finite element formulation shows the effective- 
ness of the finite volume method as shown in figure 1 I. A time step of 0.05 seconds 
(~ = 0.5) is employed when the analysis is done without resorting to adaptive time 
stepping which requires 200 steps, and with adaptive time stepping the analysis is 
completed in about 120 steps. The adaptive time step variations are shown in 
figure 12. 

4.0 in 

5.0 in 

Plate geometry 

/ / /  Convection and radiation 
along the edges 

J 
J 
2 

i j  

J 

Finite element model of one quarter plate Figure 9. Two edge convection and radiation. 
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Mesh partitionings:Finite element and finite volume partitions 

The Galerkin finite element method based on the differential form of the global 
conservation of energy provides numerical approximations which are in general 
globally conservative. Such numerical approximations however may violate local 
conservative properties, which the finite volume type elements preserve, as these have 
been developed from the local conservation form of the energy equation. Considering 
the physical situations, with Galerkin finite elements being employed, local conserva- 
tion is more likely to be violated in regions where there are external heat fluxes acting 
on the surface of a body. Such cases may lead to solutions which may violate some 
physical principles (Banaszek 1984). In these instances, the locally conservative finite 
volume element is cited (Banaszek 1984) to avoid such violations while preserving 
the local energy conservation. Hence, it is proposed that there be mesh partitionings 
based on the physical situation to employ locally conser~iative finite volume elements 
in the regions where external heat fluxes are present, and to use the Galerkin finite 
elements over the other regions of the domain. The example problem in which the 
two sides are subjected to heat fluxes due to convection and radiation is modelled 
here with these element partitionings. Finite volume elements are used in the regions 
near to the sides which are subjected to convection and radiation heat fluxes and 
the remaining region is modelled with Galerkin finite elements. Such a mesh is 
shown in figure 13, and such a partitioning approach based on two different 
methodologies will lead to better preservation of local conservation near the external 
heat flux regions while satisfying global conservation. A time step of 0.05 seconds 
(~ = 0-5) was employed in the analysis. The adaptive time step variations for this case 
are shown in figure 14. 

Based on the proposed hypothesis, improved numerical approximations for general 
heat transfer situations can be obtained by employing mesh partitionings based on 
the locally conservative finite volume elements in the regions of external fluxes and 
sudden gradient fluxes to avoid violation of physical laws and preserve local conserva- 
tion. Galerkin finite elements are employed in other regions. Such modelling and 
decision-making depends on the intuition, experience and knowledge of the analyst, 
and currently efforts are underway to establish more rigour for such partitioning 
strategies. 
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Concluding remarks 

An adaptive time stepping strategy, based on a posteriori error estimates which 
permits control of global error for finite element/finite volume computations, was 
described for applicability to general transient thermal problems. To accurately 
predict the solution behaviour and to effectively make use of computational resources, 
such approaches are attractive and involve the use of an optimal number of time 
steps as opposed to that when a single uniform time stepping is used. Mesh partitioning 
techniques for combining Galerkin finite elements and finite volume based element 
approaches were proposed to obtain numerically improved physical representations. 
Test cases showed that the present formulations can accurately track transient 
behaviour and that the mesh partitionings provide features for improved numerical 
representations of the physical situations. 
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