
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
Int. J. Numer. Meth. Engng 2004; 60:2313–2333 (DOI: 10.1002/nme.1045)

Finite element formulation for modelling large deformations
in elasto-viscoplastic polycrystals
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SUMMARY

Anisotropic, elasto-viscoplastic behaviour in polycrystalline materials is modelled using a new, updated
Lagrangian formulation based on a three-field form of the Hu-Washizu variational principle to create
a stable finite element method in the context of nearly incompressible behaviour. The meso-scale is
characterized by a representative volume element, which contains grains governed by single crystal
behaviour. A new, fully implicit, two-level, backward Euler integration scheme together with an
efficient finite element formulation, including consistent linearization, is presented. The proposed finite
element model is capable of predicting non-homogeneous meso-fields, which, for example, may impact
subsequent recrystallization. Finally, simple deformations involving an aluminium alloy are considered
in order to demonstrate the algorithm. Copyright � 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The mechanical properties of polycrystalline materials, such as yield and fatigue strength,
anisotropy, etc., depend upon meso-structural features such as grain structure, both size and
shape, and grain orientation distribution, among other things. The deformation and thermal his-
tories during processing are key factors affecting these features, which evolve during processing
due to deformation and recrystallization phenomena. In this work, the focus is on modelling
the evolution of the grain structure and local crystallographic orientations during deformation.
Thus, the modelling effort is centered at the meso-scale, i.e. the polycrystalline aggregate scale.
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In modelling the behaviour of polycrystalline metals at the meso-scale, it is necessary to
model both the individual grains (crystals) and their interactions. The behaviour of single
crystal has been studied extensively over many years, for example: Taylor et al. [1] studied
plastic deformation in single crystals; Hill and Rice [2] extended this study to rate-independent
elastic–plastic deformations and Peirce et al. [3] described material rate dependence and local-
ized deformation in crystalline solids, just to name a few. In order to model a polycrystal and
link to the macro-scale, the interactions of the grains must be considered and an averaging pro-
cedure, or mean field hypothesis, is needed. One common approach is to assume homogeneous
deformations and stresses within the individual grains, allowing incompatibility in the stress
and/or displacement field across grain boundaries. In these cases, the macroscopic deformation
and stress are taken to be the average over all the grains. For example, in the extended Taylor
hypothesis [4, 5], each crystal is assumed to undergo the macroscopic deformation identically,
and the overall stresses are computed by averaging local stresses in crystals. Other averaging
approaches have also been proposed [6, 7]. Such models do not capture the non-homogeneous
deformation fields within the grains, which are necessary to satisfy both compatibility and stress
equilibrium across grain boundaries. It is these intra-grain heterogeneities that play an essen-
tial role in subsequent recrystallization phenomena and damage evolution. In order to model
these heterogeneities, several researchers have modelled discretized, idealized grain structures
in both two [8–10] and three dimensions [11]. More recently, Busso et al. [12] and Beaudoin
et al. [13] have modelled three-dimensional, discretized, idealized grains together with gradient
crystal plasticity models, albeit very different approaches considering different gradient fields,
to capture grain size effects. Sarma et al. [14] consider a more realistic grain structure in three
dimensions.

As mentioned above, several authors have presented finite element formulations for modelling
discretized grains at the meso-scale. In many of these cases, a velocity-based formulation is
used [11, 13–15], where the primary variable solved for in the finite element formulation is the
velocity field, which is then multiplied by the incremental time step to update the geometry. Such
formulations require small time steps both to preserve accuracy and to maintain convergence.
Displacement-based finite element formulations, frequently implemented into the commercial
finite element code ABAQUS, have also been described in the literature [9, 10, 12]. In these
cases, the tangent matrix is typically formed using finite difference approximations.

The present work provides a new computational framework for modelling the mesoscopic
behaviour of polycrystals at finite strains. The meso-scale is characterized by a representative
volume element (RVE), commonly referred to as a unit cell, which contains an aggregate of
grains. The polycrystal RVE is modelled with a displacement-based updated Lagrangian finite
element formulation based on the Hu-Washizu variational principle. Because the behaviour of
polycrystalline metal subjected to large strains is nearly incompressible, a mixed finite element
method that interpolates the pressure and displacement fields separately is required. For Galerkin
methods, the choice of interpolation functions must satisfy the Ladyzenskaya–Babuska–Brezzi
condition (see e.g. Reference [16]) in order to achieve unique solvability, convergence, and
robustness. Without balancing the interpolations properly, significant oscillations in the solution
typically result. Numerous formulations that give stable solutions have been proposed [17–20],
and in this work, a Hu-Washizu variation approach is applied. Consistent linearization is used
to obtain an efficient algorithm, where large time steps can be taken. At the beginning of
Section 2, we summarize the principal equations of the updated Lagrangian formulation in-
cluding decomposition of the deformation gradient into elastic and plastic parts [21, 22].
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A kinematic split of the deformation gradient into volume preserving and volumetric parts
is used. A fully implicit two-level backward Euler integration scheme is presented in Section 3.
In Section 4, we introduce the three-field form of the Hu-Washizu variational principle based
on the kinematic split of the deformation gradient. Next, we describe the finite element formu-
lation including the consistent linearization. Finally, examples are considered involving simple
deformations in order to demonstrate the algorithm.

The symbolic notation adopted herein upper case boldface italic and lower case boldface
Greek letters e.g. P and � for second-order tensors. The trace of the second-order tensor is
denoted as tr(A), and the tensor operations between two second-order tensors S and E are
indicated as SE for a contraction of tensors (a second-order tensor) or S : E for the scalar
product (a double contraction). Furthermore, over-hat, e.g. Ŝ, denotes quantity S at the relaxed
configuration, over-bar, e.g. F̄ , denotes the volume preserving part of a tensor F , and over-
tilde, e.g. F̃ denotes the finite element approximation of F computed from the finite element
approximation of the displacement field.

2. CRYSTAL ELASTO-VISCOPLASTIC MODEL

First, let us assume the motion �(X, t) and let F (X, t) = ∇�(X, t) be the deformation gradient
at the current time t ∈ R

+ with the Jacobian given by J = det(F ). Here X ∈ R
3 designates

the position of a particle in the reference configuration B0 ⊂ R
3 in the Cartesian co-ordinate

system.
In general, the volume preserving part of a deformation, denoted with an over-bar (¯), is

F̄ = J−1/3F (1)

and the volumetric part reads,

� = J (2)

In this work, a kinematic split of the deformation gradient into volume preserving and volumet-
ric parts is used to create a stable finite element method, avoiding oscillations in the solution
for the pressure, in the context of nearly incompressible behaviour [17, 18]. Using an up-
dated Lagrangian formulation and adopting the multiplicative decomposition of the deformation
gradient into elastic and plastic parts [21, 22], we arrive at (Figure 1),

Fn+1 = FrFn = �1/3
r F̄r�

1/3
n F̄n

Fn+1 = eFn+1
pFn+1 = �

1/3
n+1

eF̄n+1
pFn+1

eFn+1 = Fr
eFn

pF−1
r = �1/3

r F̄r
eFn

pF−1
r

F∗ = Fr
eFn

pFn+1 = pFr
pFn

(3)

where right subscripts n and n + 1 indicate times tn and tn+1, and left superscripts e and p
denote elastic and plastic parts, respectively; Fr is the relative deformation gradient and F∗
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Figure 1. Kinematic decomposition of deformation gradients.

denotes the trial elastic deformation gradient. The plastic deformation gradient and the volume
preserving part of the elastic deformation gradient satisfy,

det(pF ) = 1 and det(eF̄ ) = 1 (4)

Symbol � = �r�n is now an additional variable entering the formulation and denotes a mixed
representation for the determinant of the deformation gradient, � ≡ det(F ). In the finite element
formulation, Equation (2) is satisfied in a weak sense to provide stability. Then the relative
deformation gradient is set as Fr = �1/3

r J̃
−1/3
r F̃r, J̃r = det(F̃r), where over-tilde (˜) denotes a

quantity computed from the finite element approximation of the displacement field. Referring
to Figure 1, the proposed formulation is based on moving relaxed configuration B̂n → B̂n+1,
which will lead to a specific finite element treatment.

We assume that crystallographic slip is the only mechanism for the plastic deformation. Such
slip occurs due to dislocation motion through the crystal lattice, which can also undergo elastic
stretch and rotation. Following the approach proposed by Maniatty et al. [23] and using the
multiplicative decomposition of the deformation gradient, Equation (32), the velocity gradient
yields

L = eḞ eF−1 + eF pL̂eF−1 (5)

and

pL̂ = pḞ pF−1 =
Ns∑

�=1
�̇�P � (6)

where pL̂ denotes the plastic velocity gradient on the relaxed configuration B̂, as shown in
Figure 1; �̇� is the rate of shearing on the slip system �, and Ns denotes the number of slip
systems for a crystal; P � = ��

1 ⊗ ��
2 represents the Schmid tensor, where ��

1, ��
2 denote the �

slip direction and slip plane normal, respectively. Note that the Schmid tensor P � is identical
in both the reference B0 and the relaxed B̂ configurations.
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In general, the Helmholtz free energy per unit volume stored in the system depends on the
elastic behaviour, plastic state of deformation, and temperature. For the sake of simplicity, we
neglect thermal effects and adopt the usual assumption that the elastic potential is unaffected
by the plastic flow. In addition, it is assumed that the elastic behaviour is linear and elastic
strains are small, typical for metals. Based on such observation, one can define the hyperelastic
potential as,

Ŵ (eF ) = 1
2

eÊ : L : eÊ (7)

and the elastic constitutive stress strain relation on the relaxed configuration B̂ reads,

Ŝ = 2
�Ŵ

� eC
= L : eÊ (8)

where eC = eF TeF denotes the right Cauchy–Green deformation tensor, eÊ = 1
2 (eC −1) denotes

the elastic Green–Lagrange strain tensor, L represents the fourth-order elasticity tensor and 1

is the second-order identity tensor; the second Piola–Kirchoff (P–K) stress Ŝ can be expressed
as the pull back of the Cauchy stress � given by Ŝ = det(eF )eF−1� eF−T.

The viscoplastic slip along crystallographic slip systems is modelled assuming a simple
power law [23, 24],

�̇� = �̇0
��

g�

∣
∣
∣
∣

��

g�

∣
∣
∣
∣

1/m−1

(9)

where m is a material rate sensitivity parameter, �̇0 is a reference rate and g� denotes a
resistance to plastic slip (hardness) on slip system �. The resolved shear stress �� is related to
the second P–K stress as,

�� = (eCŜ) : P � (10)

To describe the evolution of hardness on the slip systems, we adopt an approach proposed by
Voce [25] and later modified by Kocks [26]. This approach assumes that effects of self and
latent hardening are equivalent. Thus, all slip systems start with same hardness and harden
together at the same rate. Therefore, the superscript � can be dropped from the hardness, and
the evolution equation yields

ġ = G(�̇, g)�̇ = G0

(
gs − g

gs − g0

)

�̇ (11)

where a hardening rate G0 and an initial resolved shear strength g0 are material parameters;
�̇ denotes the total shearing rate on all slip systems

�̇ =
Ns∑

�=1
|�̇�| (12)

The saturation value of the hardness gs is given by

gs = gs0

∣
∣
∣
∣

�̇

�̇s

∣
∣
∣
∣

�

(13)
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where gs0 , �̇s and � are material parameters. There are numerous other models for slip system
hardening, and the influence of assumptions about latent versus self hardening have been
discussed in the literature, e.g. Reference [27]. In this work, the focus is on demonstrating the
numerical algorithm. As a first step, the relatively simple, but widely used, hardening model
described above is implemented. Implementing other models will not substantially change the
algorithm, and future work will involve investigation of other slip system hardening models.

3. INTEGRATION PROCEDURE

For a prescribe deformation path, the stress response and hardness evolution can be obtained by
integrating the constitutive equations presented in the previous Section. The proposed numerical
procedure employs a fully implicit two-level backward Euler integration scheme together with
a modified Lagrange variational principle to enforce the plastic incompressibility at the material
scale. Here, it is assumed that the deformation is known from the overall finite element method,
which will be described later in the article; in particular, all the primary quantities Fn, Ŝn, �n

and gn are known at time tn, and the finite element approximations of the relative deformation
gradient F̃r and of the relative volumetric deformation �r are given, where tn+1 ≡ tn + �t and
�t is a time step.

In the first level of integration, applying a backward Euler scheme to integrate the plastic
deformation gradient yields,

pFn+1 = pFn + �tpḞn+1 = pFn + �tpL̂n+1
pFn+1 (14)

It should be noted that an exponential map may also be used to efficiently integrate Equation (6),
see for example References [28, 29]. This results in the following when a backward Euler
approach is maintained:

pFn+1 = exp(�tpL̂n+1)
pFn =

(

I + �tpL̂n+1 +
�t2

2
pL̂n+1

pL̂n+1 + · · ·

)

pFn

= pFn + �tpL̂n+1
pFn + h.o.t. (15)

In the present work, the plastic deformation step size in the integration is strongly restricted by
the high degree of non-linearity of the constitutive model, typical for aluminium. As a result, the
first higher order term in Equation (15) is four orders of magnitude smaller than the first order
term, and, of course, Equation (14) is equivalent to Equation (15) to first order. Furthermore,
since the result of the integration of pFn+1 is restricted to the space where det(pFn+1) = 1,
the results from using either approach are not substantially different. In this work, the simple
backward Euler form in Equation (14) is used.

After introducing Equation (6) into Equation (14) and keeping the hardness g fixed, in this
first level, at its best available estimate, the inverse of the relative plastic deformation gradient
is then,

pF−1
r = [1 − �tpL̂n+1] (16)
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Furthermore, the plastic velocity gradient is given by

pL̂n+1 =
Ns∑

�=1
�̇�
n+1P

� =
1

�t

(

1 − pF−1
r

)

(17)

Next, letting M ≡ pF−1
r , consider a modified Lagrange functional,

�m(M, �) = �(M ) + �Ic(M ) (18)

where

�(M ) =
�t

2

[
Ns∑

�=1
�̇�
n+1P

� −
1

�t
(1 − M)

]

:

[
Ns∑

�=1
�̇�
n+1P

� −
1

�t
(1 − M )

]

(19)

� represents the Lagrange multiplier, and the incompressibility constraint condition is,

Ic(M ) = [det(M −1pFn) − 1] = 0 (20)

Solving the saddle point problem, inf sup �m(M, �), we obtain a system of ten non-linear
equations for the components of M and the Lagrange multiplier �,

RM =
��m

�M
=

Ns∑

�=1
�̇�
n+1P

� −
1

�t
(1 − M ) − � det(M −1pFn)M

−T = 0

R� =
��m

��
= [det(M −1pFn) − 1] = 0

(21)

The Newton–Raphson iterative procedure is applied to solve this system and its linearization
yields,








�RM

�M

�RM

��

�R�

�M

�R�

��








k

{
�M

��

}

= −

{
RM

R�

}k

(22)

where for the (k + 1)th iteration, the inverse of the relative plastic deformation gradient and
the Lagrange multiplier are updated as M

k+1 = M
k + �M and �k+1 = �k + ��, respectively.

The linearized terms on the left-hand-side of Equation (22) are

DRM[�M ] =
Ns∑

�=1

��̇�
n+1

���
n+1

D��
n+1[�M ]P � +

1

�t
�M

+� det(M −1pFn)[tr(M
−1

�M )M −T + (M −1
�MM

−1)T]

DRM [��] = −det(M −1pFn)M
−T

��

DR�[�M ] = −det(M −1pFn)M
−T : �M

DR�[��] = 0

(23)
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where

��̇�
n+1

���
n+1

=
�̇0

mgn+1

∣
∣
∣
∣

��
n+1

gn+1

∣
∣
∣
∣

1/m−1

(24)

The notation R
k+1
y ≈ R

k
y +DRy[�y] = 0 is employed in this paper for consistent linearization

of a non-linear system Ry = 0, where a solution yk+1 = yk +�y at iteration k +1 is obtained
using Newton’s iterative method. The consistent linearization of the resolved shear stress ��

n+1
can be obtained using Equations (3), (8) and (10),

D��
n+1[�M ] = {F T

∗
eFn+1G

�} : �M (25)

where

G
� = Ŝn+1P

�T
+ P �Ŝn+1 + L : (eCn+1P

�) (26)

and F∗ = Fr
eFn = �1/3

r J̃
−1/3
r F̃r

eFn, as shown in Figure 1. It is noted that the quantities at
time tn+1 in Equations (24) and (26) are evaluated at the kth iteration.

Once a solution for M and � is known, the second level of the algorithm provides a solution
for the hardness. Integrating Equation (11) with a backward Euler scheme, and keeping M,
��
n+1 and �̇�

n+1 fixed, one obtains,

gn+1 =
(gsn+1 − g0)gn + �tG0gsn+1�̇n+1

(gsn+1 − g0) + �tG0�̇n+1
(27)

where �̇n+1 and gsn+1 are given by Equations (12) and (13). Now the new hardness gn+1
is used in the first level of the integration scheme, Equations (21)–(25), and the staggered
procedure is repeated until global convergence is obtained. Usually, less that ten iterations k

are sufficient in the first level of procedure to reach the convergence criterion on residuals,

‖RM‖ + ‖R�‖ � tol = 10−5 (28)

and only three to five global iterations are necessary to achieve a tolerance for,

‖gk+1
n+1 − gk

n+1‖

‖g0‖
� tol = 10−5 (29)

For quick convergence, it is important to take a good initial guess of M. Since the elastic
deformations are generally small, it is assumed that the total increment of deformation is plastic
for the initial guess, i.e.

pF k=0
n+1 = eF−1

n Fn+1 ⇒ M
k=0 = eF−1

n F−1
r

eFn (30)

Moreover, if the solution for M and g is not found within a user specified number of iterations,
a command is passed to the global finite element environment to change time and load steps,
as will be described later.
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4. FINITE ELEMENT FORMULATION

In this section, the variational formulation and numerical treatment of the elasto-viscoplastic
boundary value problem by the finite element method are outlined. The present finite element
formulation is based on a kinematic split of the deformation gradient into volume-preserving
(deviatoric) and volumetric parts together with a three-field form of the Hu-Washizu variational
principle [17–19] to treat volume constraints arising from the nearly incompressible behaviour
due to the isochoric plastic flow.

Let x = �(X, t) be the spatial co-ordinates of a particle and xn+1 = X + un+1, where
un+1 = un +u denotes the incremental displacement field. Further, let F̃r = [1+∇u] represents
the relative deformation gradient, where ∇ is a gradient with respect to xn. Next, consider the
Lagrangian functional written as,

�L(u, �r, p) =
1

2

∫

Bn

1

det(F̃n)

eÊ : L : eÊ dVn +

∫

Bn

1

det(F̃n)
p(J̃rJ̃n − �r�n) dVn + Lext

(31)

with

eÊ = 1
2

(

�2/3
r J̃−2/3

r M
TeF T

n F̃ T
r F̃r

eFnM − 1

)

(32)

where p = ( 1
3 )(tr �) is the hydrostatic stress; Lext denotes a total potential energy associated

with body forces f (x) and prescribed tractions t̆(x) on the boundary �(�B�).
The condition of stationarity for the functional �L(u, �r, p) is given by

inf
u∈U

inf
�r∈Q

sup
p∈Q

�L(u, �r, p) (33)

and

U ⊂ [H 1]N , u = ŭ on �(�Bu)

Q ⊂ L2

(34)

where N being the space dimension, H 1 represents the Sobolev space, and �(�Bu) is the
boundary on which displacements ŭ are prescribed. Following standard variational methods,
the resulting system of non-linear equations yields,

Ru ≡
��L

�u
�u =

∫

Bn

1

det(F̃n)
{�2/3

r J̃−2/3
r A(�u) : Ŝ + pJ̃rJ̃ntr(F̃−1

r ∇�u)} dVn

−

∫

�B�

1

det(F̃n)
t̆ · �u dAn −

∫

Bn

1

det(F̃n)
f · �u dVn

Rp ≡
��L

�p
�p =

∫

Bn

1

det(F̃n)
{J̃rJ̃n − �r�n}�p dVn

R� ≡
��L

��r
��r =

∫

Bn

1

det(F̃n)

{
1
3�−1/3

r J̃−2/3
r B : Ŝ − p�n

}

��r dVn

(35)
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where �u, �p, ��r are arbitrary functions satisfying,

�u ∈ U, �u = 0 on �(�Bu)

�p, ��r ∈ Q

(36)

and

A(�u) = M
T
C(�u)M, C(�u) = eF T

n [(∇�uTF̃r)
sym − 1

3 F̃ T
r F̃r tr(F̃−1

r ∇�u)]eFn

B = M
T
DM, D = eF T

n F̃ T
r F̃r

eFn

(37)

4.1. Linearization

The finite element method together with a standard Newton–Raphson method is applied to
solve the non-linear system equations (35). While an accurate integration of the constitutive
equations is necessary to update stresses and the internal state variables, the formation of a
tangent stiffness tensor that is consistent with the integration procedure is essential to maintain
a quadratic rate of convergence [30], if one is to employ the standard Newton–Raphson method
in solving the above system. A consistent linearization for the set of non-linear equations given
in Equations (35), about a configuration u, �r, p, is given by

DRu[�u] + DRu[�p] + DRu[��r] = −Ru

DRp[�u] + 0 − DRp[��r] = −Rp

DR�[�u] − DR�[�p] + DR�[��r] = −R�

(38)

where

DRu[�u] =

∫

Bn

1

det(F̃n)









�4/3
r J̃−4/3

r A(�u) : L : A(�u)
︸ ︷︷ ︸

elastic material contribution

+ �2/3
r J̃−2/3

r M
TeF T

n E
eFnM : Ŝ

︸ ︷︷ ︸

elastic geometric contribution

+ �4/3
r J̃−4/3

r A(�u) : L : [(DM [�u])T
DM ]sym

︸ ︷︷ ︸

plastic material contribution

+ 2�2/3
r J̃−2/3

r [(DM [�u])T
CM ]sym : Ŝ

︸ ︷︷ ︸

plastic geometric contribution

+ pJ̃rJ̃n[tr(F̃
−1
r ∇(�u))tr(F̃−1

r ∇�u) − tr(F̃−1
r ∇(�u)F̃−1

r �u)]
︸ ︷︷ ︸

pressure geometric contribution









dVn
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DRu[��r] =

∫

Bn

1

det(F̃n)

{
2
3�−1/3

r J̃−2/3
r A(�u) : Ŝ��r

+2�2/3
r J̃−2/3

r [(DM [��r])
T
CM ]sym : Ŝ

+ 1
3�1/3

r J̃−4/3
r A(�u) : L : B��r

+�4/3
r J̃−4/3

r A(�u) : L : [(DM [��r])
T
DM ]sym

}

dVn

DR�[�u] =

∫

Bn

1

det(F̃n)

{
2
3�−1/3

r J̃−2/3
r A(�u) : Ŝ

+ 2
3�−1/3

r J̃−2/3
r [(DM [�u])T

DM ]sym : Ŝ

+ 1
3�1/3

r J̃−4/3
r B : L : A(�u)

+ 1
3�1/3

r J̃−4/3
r [(DM [�u])T

DM ]sym : L : B

}

dVn

DR�[��r] =

∫

Bn

1

det(F̃n)

{

− 1
9�−4/3

r J̃−2/3
r B : Ŝ��r

+ 2
3�−1/3

r J̃−2/3
r [(DM [��r])

T
DM ]sym : Ŝ

+ 1
9 �−2/3

r J̃−4/3
r B : L : B��r

+ 1
3 �1/3

r J̃−4/3
r B : L : [(DM [��r])

T
DM ]sym

}

dVn

DRp[��r] ≡ DR�[�p] =

∫

Bn

1

det(F̃n)
{�n��r} dVn�p

DRp[�u] ≡ DRu[�p] =

∫

Bn

J̃rtr(F̃
−1
r ∇�u) dVn�p

(39)

and

E = [∇�uT∇(�u)]sym + 1
3 F̃ T

r F̃r[tr(∇(�u)F̃−1
r ∇�uF̃−1

r ) + 2
3 tr(F̃−1

r ∇(�u))tr(F̃−1
r ∇�u)]

− 2
3 tr(F̃−1

r ∇(�u))(F̃ T
r ∇�u)sym − 2

3 tr(F̃−1
r ∇�u)(F̃ T

r ∇(�u))sym (40)

The resulting tangent stiffness tensor is non-symmetric in the present analysis. Several finite
element approximation schemes can be used within the proposed variational framework pro-
vided by Equation (31). In this work, discontinuous pressure and Jacobian interpolations are
assumed, which enables these fields to be eliminated at the element level leading to a gen-
eralized displacement method, as in References [17, 18, 31]. The system of linear equations,
Equation (38), is solved using sparse direct solver UMFPACK [32–34]. It still remains to
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determine linearization of the relative plastic deformation gradient, DM [�u] and DM [��r],
respectively. This will be described in the following subsection.

4.2. Linearization of M with respect to u and �r

First let us recall that the inverse of the relative plastic deformation gradient and the hardness
are given in our integration algorithm as Equations (9), (11), (16), (27),

pF−1
r ≡ M =

[

1 − �t
Ns∑

�=1
�̇�P �

]

, �̇� = �̇n+1(�
�
n+1, gn+1)

gn+1 =
(gsn+1 − g0)gn + �tG0gsn+1�̇n+1

(gsn+1 − g0) + �tG0�̇n+1
, ġ = G(�̇n+1, gn+1)�̇n+1

(41)

Using the implicit integration scheme for the plastic deformation gradient, Equation (14), and
the hardness, Equation (27), linearization DM [�u] and Dgn+1[�u] yield,

DM [�u] = −�t
Ns∑

�=1

(

��̇�
n+1

���
n+1

D��
n+1[�u] +

��̇�
n+1

�gn+1
Dgn+1[�u]

)

P �

Dgn+1[�u] = K1

Ns∑

�=1
K�

2D��
n+1[�u]

(42)

where

K1 =
K4

1 − K4
∑Ns

�=1�̇
�
n+1/|�̇

�
n+1| ��̇�

n+1/�gn+1

, K�
2 =

�̇�
n+1

|�̇�
n+1|

��̇�
n+1

���
n+1

, K3 =
gs0�

�̇s

∣
∣
∣
∣

�̇n+1

�̇s

∣
∣
∣
∣

�−1

K4 = �tG0
K3�̇n+1(gn − g0 + �tG0�̇n+1) + gsn+1(gsn+1 − g0 − gn) + g0gn

(gsn+1 − g0 − gn + �tG0�̇n+1)
2

(43)

and

��̇�
n+1

���
n+1

=
�̇0

mgn+1

∣
∣
∣
∣

��
n+1

gn+1

∣
∣
∣
∣

1/m−1

,
��̇�

n+1

�gn+1
= −

�̇0�
�
n+1

mg2
n+1

∣
∣
∣
∣

��
n+1

gn+1

∣
∣
∣
∣

1/m−1

(44)

After substituting Equation (422) into Equation (421) and computing linearized term
D��

n+1[�u], we obtain a tensor equation in the form,

DM [�u] : A = −∇(�u) : B (45)

where

A =
1

�t
I +

Ns∑

�=1

��̇�
n+1

���
n+1

(C� ⊗ P �) + K1

(
Ns∑

�=1
K�

2C
�

)

⊗

(
Ns∑

	=1

��̇
	
n+1

�gn+1
P 	

)

B =
Ns∑

�=1

��̇�
n+1

���
n+1

(D� ⊗ P �) + K1

(
Ns∑

�=1
K�

2D
�

)

⊗

(
Ns∑

	=1

��̇
	
n+1

�gn+1
P 	

)
(46)
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and

C� = M
−TeCn+1G

�

D� = �1/3
r J̃−1/3

r
eFn+1G

�
M

TeF T
n − 1

3 (eCn+1 : G
�)F̃−T

r

(47)

Note that I is the fourth order identity tensor, ⊗ denotes dyadic product, and G
� is given by

Equation (26). Inverting the fourth order tensor on the left-hand side of Equation (45) allows
for the linearized form DM [�u] to be determined.

Likewise,

DM [��r] = −�t
Ns∑

�=1

(

��̇�
n+1

���
n+1

D��
n+1[��r] +

��̇�
n+1

�gn+1
Dgn+1[��r]

)

P �

Dgn+1[��r] = K1

Ns∑

�=1
K�

2D��
n+1[��r]

(48)

and an analogous tensor equation to Equation (45) results,

DM [��r] : A = −F��r (49)

where

F =
1

3�r

Ns∑

�=1

��̇�
n+1

���
n+1

(eCn+1 : G
�)P � +

1

3�r
K1

(
Ns∑

�=1
K�

2[
eCn+1 : G

�]

)(
Ns∑

	=1

��̇
	
n+1

�gn+1
P 	

)

(50)

Please note that, only right-hand sides of the tensor equations, Equations (45) and (49), differ
from each other, and the operator A remains the same; therefore, the inverse of the operator
A has to be performed only once to get both linearized terms.

4.3. Adaptive time stepping procedure

The present finite element method together with integration scheme is fully implicit, and hence,
the time step is mainly limited by considerations of convergence in the solution of the non-
linear equations and accuracy. A simple time stepping procedure based on subdivision of user
defined loading history has been implemented in the present work. The user prescribes the
loading/displacement boundary condition history and sets the initial time intervals, denoted
�t
+1 = t
+1 − t
. An equilibrium solution for the user defined time interval �t
+1 is found
within a set of non-uniform sub-increments of size �t�
+1

k
�
+1

k such that

�t
+1 ≡
S
+1
∑

k=1
�t�
+1

k
�
+1

k (51)

where S
+1 denotes a total number of sub-increments each containing �
+1
k uniform time sub-

steps �t�
+1
k

. The number of sub-increments and sub-steps in each interval is governed by the

convergence or divergence of the global finite element and integration algorithms. Initially, the
user defined time interval �t1 is treated as a single sub-increment with a single sub-step, thus,
S1 = 1, �1

1 = 1, and �t�1
1

= �t1, initially. If convergence is achieved for this interval, the
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same �t is taken for the next interval, and so on. If convergence is not achieved, then the
number of sub-steps is increased by one and the size of time step is reduced. This process of
adding a sub-step and reducing the time step is repeated until convergence is obtained. Then
the algorithm proceeds to the next sub-step. If, at some point partially through the interval, say
after p sub-steps out of a total of q sub-steps for the interval, convergence is not achieved, then
those p sub-steps already completed, for which convergence has been achieved, are defined as a
sub-increment, and the remaining portion (q −p sub-steps) is defined as another sub-increment,
and the number of sub-steps in this remaining sub-increment are increased by one (q − p + 1)
reducing the time step in this remaining portion. This procedure is continued until the interval
is completed. The next interval is then initially assumed to have a single sub-increment and the
initial time step is defined based on the time step at the end of the previous time interval. If,
on the other hand, convergence is achieved for several sub-steps in a row, then those sub-steps
are defined as a sub-increment, and the number of sub-steps for the sub-increment on the
remaining interval is reduced by one increasing the time step to speed up the computation.
This automatic time stepping procedure is robust and finds quickly the optimal time steps.

5. EXAMPLES

As an illustration and verification of the proposed model, we analysed plane strain compression
and plane strain simple shear deformations on a unit cell consisting of 51 randomly oriented
grains. The overall effective stress–strain curve and texture evolution are compared with results
from the Taylor model. It should be noted, however, that such comparison is informative only,
because the finite element analysis presented enforces specific strictly homogeneous boundary
conditions on the heterogeneous media resulting in non-homogeneous deformation along the
edges with homogeneous stresses. A larger sample of grains, and considering only the interior
grains, or better yet, proper scale linking through enforcing appropriate boundary conditions,
would be required for a more appropriate comparison. In this paper, the main goal is demonstra-
tion of the integration and finite element algorithm. Future work includes proper computational
homogenization. The geometry of the selected RVE was motivated by a micrograph of an
aluminium alloy [35]. This image, with highlighted grain boundaries, is shown in Figure 2(a).
Figure 2(b) displays the finite element discretization of the selected unit cell. Note, that grains
on boundaries of the unit cell were modified to allow for periodic boundary conditions, which
will be considered in future work, as will be mentioned in the Conclusions section. A mixed
mesh, primarily consisting of quadrilateral elements, was generated using the T 3D generator
developed by Rypl [36]. A total of 1746 nodes, 107 P1/P0 triangles and 1617 Q1/Q0 quadri-
laterals were used in the discretization of the 0.1 × 0.1 mm domain. Because of the relatively
small number of triangles and the Hu-Washizu finite element formulation, mesh locking does
not occur.

The material behaviour is as described in Equations (8)–(13). The properties are selected
for Al-1100 at a temperature of 300 K and are listed in Table I. The elastic anisotropy of
aluminium, which is small, is neglected in this analysis, and the elastic Lamè parameters are
taken to be �e = 25.30 GPa and �e = 54.41 GPa. Aluminium is face-centred-cubic and the
usual primary twelve {111}〈110〉 slip systems are considered. The 〈111〉 pole figures depicting
the initial random texture of the unit cell are shown in Figure 3.
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(a) (b)

Figure 2. (a) Micrograph; and (b) FE representation of the unit cell.

Table I. Viscoplastic properties of Al-1100.

m g0 �̇0 G0 gs0 �̇s �

0.005 27.17 MPa 1.0 s−1 58.41 MPa 61.80 MPa 5.0 × 1010 s−1 5.0988 × 10−6

1

3

2

1

(a) (b)

Figure 3. The 〈111〉 pole figures of initial 51 grain orientations.

The deformations considered, as mentioned above, are plane strain compression and simple
shear. For the case of plane strain compression, the displacement ŭ is applied in the −x2
direction to the top of the unit cell, and in the case of simple shear, the displacement ŭ is
applied in the +x1 direction to the top of the unit cell. In both cases, the bottom of the
unit cell is fixed in the x2 direction. For plane strain compression, only the lower left-hand
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corner is fixed in the x1 direction to prevent rigid body motion, whereas for simple shear,
the whole length of the bottom edge is fixed in the x1 direction. The time over which the
total deformation occurs is denoted ttot. The macroscopic deformation gradients associated with
these deformations, assuming incompressible behaviour, are for plane strain compression

F n+1 =










ttot

ttot + tn+1
̆
0 0

0 1 +
tn+1

ttot

̆ 0

0 0 1










and for simple shear

F n+1 =









1
tn+1

ttot

̆ 0

0 1 0

0 0 1









where 
̆ = ŭ/ l and l is the length of a side of the unit cell. In the comparative analyses where
the Taylor model was used, these deformation gradients were applied to each grain. Those
simulations were carried out using the integration algorithm described in Section 3 and the
same results were obtained using the integration algorithm presented in Reference [23].

The resulting local and macroscopic behaviour are characterized by the effective plastic strain
and von Mises effective stress. The local effective plastic strain p
eff and effective stress �eff
are computed as,

p
eff =

∫ t

0

√

2
3

pD̂ · pD̂ dt ′

and

�eff =

√

3
2�′ · �′

where

pD̂ ≡ sym(pL̂)

The macroscopic response of the unit cell is described by the average rate of deformation and
stress tensors, denoted by underline (_), which are computed as a volume averages of the local
fields,

pD̂ =
1

v

∫

v

pD̂ dv, � =
1

v

∫

v

� dv

where v is the volume of the deformed unit cell. The macroscopic effective plastic strain and
stress are then computed analogously to the local fields as

p
eff =

∫ t

0

√

2
3

pD̂ · pD̂ dt ′
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Figure 4. The effective plastic strain p
eff after 40% plane strain compression of the unit cell.
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Figure 5. The overall effective stress–strain behaviour for plane strain compression.

and

�eff =

√

3
2�′ · �′

First, consider the plane strain compression case. The unit cell is compressed by 40%
(
̆ = −0.4, ŭ = −0.04 mm) along the x2 axis over a time of ttot = 40 s with ˙̆u = −0.001 mm/s
constant. The average time step needed for convergence was found to be �t = 0.14 s. Figure 4
shows deformation of the unit cell and the meso-scale effective plastic strain, and Figure 5 shows
the effective stress–strain response along with that predicted using the Taylor model. As can be
seen from Figure 4, the deformation on the lateral boundaries is strongly non-homogeneous,
leading to greater localization, and thus, softer response, than would be expected from either a
Taylor model, as seen in Figure 5, or a multi-scale model with appropriate boundary conditions.
The predicted textures for both the Taylor and finite element models at the final compression
of 40% are displayed in Figure 6. As expected, a stronger texture was obtained from the Taylor
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1

3

1

3

(a) (b)

Figure 6. The 〈111〉 pole figures after 40% plane strain compression of the unit cell: (a) Taylor model;
and (b) finite element model.

Figure 7. The effective plastic strain p
eff after 50% plane strain simple shear of the unit cell.

model, which over-predicts the final texture. It should be noted also that more poles are plotted
from the finite element model after compression because the grains deform non-homogeneously
resulting in different parts of a single grain having different orientations, although that grain
had a single orientation at the start. An orientation pole is plotted for each integration point
in the finite element discretization.

In the next example, we compare the stress–strain response and texture prediction obtained
with both the Taylor and finite element models for plane strain simple shear. The unit cell is
sheared by 
̆ = 0.5, ŭ = 0.05 mm over a time of ttot = 50 s with ˙̆u = 0.001 mm/s constant.
The average time step needed for convergence was found to be �t = 0.2 s in this example. As
one may expect, the strain localization is more dominant for this type of loading as shown in
Figure 7. The reaction shear forces are localized to the top right and bottom left corners, where
the effective plastic strain is more developed. Such localized behaviour influences substantially
the macroscopic stress–strain response of the RVE, as shown in Figure 8. Figure 9 shows
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Figure 8. The overall effective stress–strain behaviour for plane strain simple shear.
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Figure 9. The 〈111〉 pole figure after 50% plane strain simple shear of the unit cell: (a) Taylor model;
and (b) finite element model.

comparison of 〈111〉 pole figures for both the Taylor and finite element models. The texture is
not strongly developed in this case due to the continual rotation of the principle directions during
the deformation. The main observation worth noting again is the spreading of the orientations
in the finite element model due to the non-homogeneous deformations in the grains.
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6. CONCLUSIONS

The proposed computational model is shown to be effective in modelling elasto-viscoplastic
behaviour and texture evolution in a polycrystal subject to finite strains. The finite element
framework, based on an updated Lagrangian formulation, adopts a kinematic split of the defor-
mation gradient into volume preserving and volumetric parts together with a three-field form
of the Hu-Washizu variational principle to create a stable finite element method. The consistent
linearization of the resulting system of nonlinear equations is derived.

The meso-scale is characterized by a representative volume element and is capable of pre-
dicting local non-homogeneous stress and deformation fields. The numerical analysis of plane
strain compression and simple shear loading of a unit cell was compared to the widely used
Taylor model. Such comparison is for information only, because the finite element analysis
is influenced by the specific homogeneous boundary conditions resulting in non-homogeneous
deformation on lateral boundaries.

The present work is a first step toward linking the macro-scale to the meso-scale through
computational homogenization, where a meso-structure is fully coupled with the deformation at
a typical material point of a macro-continuum. In this work, the appropriate periodic boundary
conditions have not yet been derived. Further, on-going work involves extending the present
model to cover macro–meso transition including periodic fields.
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