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Finite element formulation for shear modulus reconstruction

in transient elastography
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In order to image the shear modulus in soft tissue, for medical diagnosis, given
one component of measured displacements as a function of time on an imaging
plane, two related direct finite element-based inversion algorithms are presented.
One algorithm is based on the governing equations expressed in the frequency
domain, and the other is in the time domain. The algorithms consider the
complete equations of isotropic, small deformation, elasto-dynamics, where the
hydrostatic stress is also treated as an unknown. The algorithms reconstruct both
the shear modulus and hydrostatic stress fields, and regularization is used to
stabilize the hydrostatic stress recovery. An algorithm is also developed for
reconstructing the second displacement component, while simultaneous finding
a smooth approximation to the measured displacement component to reduce
noise. Shear modulus reconstruction results from both algorithms, using
experimental ultrasound measurements on a tissue-mimicking phantom, are
presented, and the merits and drawbacks of each algorithm are discussed.
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1. Introduction

Elastography is a novel imaging technique, which maps the elastic properties of tissue,

such as Young’s modulus or the shear modulus (which is proportional to Young’s

modulus), in an anatomically meaningful presentation to provide useful clinical

information for diagnosis [1]. In early elastography work, simplifying assumptions were

used to generate images associated with elastic properties relatively easily from

measurements of tissue motion. For example, Ophir et al. [2] solved the 1D Hookean

equation for the stiffness from uniaxial measured strains in space. In that work, they

assumed that the stress field is uniaxial and constant in space, which is only true for

an homogeneous medium with an infinite-size compressor. In vibration amplitude

sonoelastography, the vibration amplitude pattern map was associated with the stiffness

where low amplitude areas were simply interpreted as stiff regions [3]. Despite the

simplifications, very promising results were obtained in these early works. To obtain more
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quantitative and accurate elastographic images, elastography has started to be considered

within the framework of inverse problem solutions, since in elastography, the goal is to

reconstruct mechanical properties of tissue based on the measured displacements, without

any knowledge about the presence, location, or shape of abnormal regions. In this work,

we focus on dynamic elastography, where the displacements resulting from a transient

pulse are measured on an interior plane in the body. This represents a rich data set from

which to reconstruct the elastic shear modulus [4].

In most of the dynamic elastography literature, where the displacements resulting from

a dynamic excitation are measured and used to reconstruct the elastic shear modulus field,

the equations of elasto-dynamics are simplified by assuming local homogeneity of the

shear modulus and neglecting the gradient of the hydrostatic stress field, giving the

Helmholtz equation

�
d2u

dt2
¼ �r2u ð1Þ

where � is the density, u is the displacement and m is the shear modulus. With this

equation, the displacement components decouple allowing for a reconstruction based on

only one measured component. Fink and co-workers used this equation for shear modulus

reconstruction by solving directly in both the time domain [5] and in the Fourier domain

[6,7] given transient data. Manduca et al. [8] used local frequency estimation following the

approach that was originally proposed by Knutsson et al. [9] to estimate shear stiffness

from time harmonic data. One disadvantage of local frequency estimation is that the

resolution of the reconstructed shear stiffness image is limited to only half of a wavelength

into a given region. McLaughlin et al. [10] developed a novel method to invert the

Helmholtz equation, where they separated the Fourier transform of the displacement data

into phase and amplitude and then applied spatially varying smoothing filters designed to

equalize the variance across the image. An important advantage to all of these methods is

that they are computationally fast as they solve for the shear modulus locally using direct

inversion methods that do not require iterations.

Other researchers have proposed methods that start from the complete equations of

elasto-dynamics, but make the same simplifying assumptions so that they are effectively

still in solving the Helmholtz equation. Sinkus et al. [11] proposed a method where the

curl-operator is applied to the equations of elasto-dynamics and, neglecting gradients in

the Lamé parameters, eliminated the term associated with the hydrostatic stress. This

approach has the disadvantage of requiring third-order spatial derivatives of the data.

Romano et al. [12] presented a novel finite element-based technique where, by integrating

the variational statement of the governing equations by parts twice, all derivatives on the

displacement field are eliminated, and then, through appropriate choice of weighting

functions, the unknown traction boundary conditions are eliminated from the equations.

However, in integrating by parts the second time, they neglected the gradients in the elastic

moduli, and ultimately, they also neglected the gradients in the hydrostatic stress field.

Thus, the same assumptions are used that reduce the equations of elasto-dynamics down

to the Helmholtz equation.

Recently, McLaughlin and Renzi [13,14], have developed a method for reconstructing

the shear wave speed for transient elastography and supersonic shear imaging, where they

first find the arrival times of the transient, propagating wave, and then solve for the wave

speeds using the Eikonal equation, which does not assume that the shear modulus is
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locally constant. This method also has the advantage that it only requires first-order

spatial derivatives.

Several researchers have developed iterative methods for reconstructing the shear

modulus, where they do consider the complete equations of elasto-statics or elasto-

dynamics. In these methods, the general idea of the reconstruction algorithm is to find the

best stiffness distribution in order to minimize the difference between the measured

displacements from the experiment and the calculated displacements from the

mathematical model. An important strength of these methods is that no derivatives of

the measured displacements need to be calculated, thus, these methods are robust against

noise in the data. However, iterative methods are less efficient than direct inversion

methods, since they do require iterations and because the forward problem needs to be

solved on the whole problem domain at each iteration. In addition, since the forward

problem needs to be solved, boundary conditions, that are not typically well-known,

are required. If, for example, the measured displacements are used, then the measured

displacements on the boundary are treated as exact, while the interior measured

displacements are not (a best fit to these is all that is required), and so the measured

boundary displacements are overweighted. Kallel et al. [15] and Oberai et al. [16] applied

their iterative inversion methods to quasi-static compression elastography and Van

Houten et al. [17–20] and Fu et al. [21] to time harmonic elastography using MRI and

ultrasound, respectively. All of these iterative inversion methods use a finite element-based

algorithm. In each case, they solve for either two independent elastic parameters (assuming

isotropy) or just the shear or elastic modulus, assuming a relationship between the shear or

elastic modulus they are solving for and a second, independent elastic constant.

In this article, we use a direct, finite element-based, inversion approach for recovering

the shear modulus and hydrostatic stress given time-dependent displacement measure-

ments resulting from a transient pulse, considering the complete equations of elasto-

dynamics. The problem to be solved is to find the shear modulus distribution that best

satisfies the governing equations, i.e. equations of elasto-dynamics, for the given

displacement field. The main advantage of this approach, relative to iterative methods,

is that it is fast as it does not require iterations nor a forward solution on the whole

domain. Furthermore, the solution may be found on small sub-domains, which also

increases the algorithm speed. A second advantage, relative to iterative methods, is that it

does not require boundary conditions. The disadvantage of this method, as compared to

iterative methods, is that it requires first derivatives of the measured displacement data,

which is still better than most direct inversion methods that typically require second

derivatives. To overcome this disadvantage, the data is first filtered and then an averaging

derivative method [10,22], which is designed for taking derivatives of data with noise, is

applied. This is an extension of earlier work [23], where only time harmonic displacements

were considered. In [23], the importance of considering the hydrostatic stress, which, as

mentioned above, is frequently neglected, was shown.

Two algorithms are presented, one solves in the frequency domain and the other in the

time domain. In the frequency domain, only the dominant frequency is considered.

The primary advantage to solving in the frequency domain is that it reduces the problem

size by eliminating the time dependency of the hydrostatic stress, which is treated as an

unknown to be recovered. An additional advantage is that the data is automatically

smoothed and all the measured time frames are considered when the Fourier transform is

taken. An advantage to solving in the time domain is that all the frequency content in the

data are considered, not just the dominant frequency.
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The two approaches are used for reconstructing the shear modulus field given

displacement data from the transient elastography experiment, developed by Fink and

co-workers [5], performed on a tissue-mimicking phantom. The data consists of one

component of the displacement field in a plane as a function of time following a transient

excitation on the surface of the phantom. Since the reconstruction algorithms require

both displacement components in the imaging plane, a method for reconstructing the

second displacement component, assuming volume preserving deformation and that the

component out of the plane is negligible, while simultaneously finding a smooth

approximation to the measured component is developed and used. The results from the

two approaches are compared.

2. Methods

2.1. Forward problem

We first present the governing equations assuming linear elastic, isotropic, dynamic tissue

motion. While tissue typically exhibits anisotropic and viscoelastic behaviour, this is

presented as a first step and for comparison with other algorithms with similar limitations.

Details about the reasonableness of these simplifications are explained very well in Ophir

et al. [24]. Let the tissue region of interest be defined as �, and the dynamic motion be

defined by the displacement field, u(x, t), which depends on position x2� and time t2 �.

The usual forward problem is to find the displacement, u(x, t), and hydrostatic stress,

p(x, t), fields that satisfy the following system,

r � � ruþ ruT
� �� �

þ rp ¼ �
d2u

dt2
in �� � ð2Þ

p ¼ � r � u in �� � ð3Þ

ei � u ¼ �ui on @�1i � � ð4Þ

ei � � ruþ ruT
� �

þ pI
� �

n ¼ �Ti on @�2i � � ð5Þ

uðx, 0Þ ¼ u0 in � ð6Þ

_uðx, 0Þ ¼ _u0 in � ð7Þ

where m(x) is the shear modulus, which depends on position, � is the density, �(x) is

a Lamé parameter, and ei are an orthonormal set of basis vectors defined on @�, the

boundary of �. Equations (2) and (3) together are the balance of linear momentum. It

should be noted that for soft tissue, the Lamé parameter, �, which is associated with the

elastic resistance to volume change, is about six orders of magnitude higher than the shear

modulus, m, which characterizes the tissue’s elastic resistance to shape change. A typical

value for � is 2.3GPa, while m is of the order of kPa, thus, �(x)� m(x). For this reason,

tissue is frequently referred to as nearly or relatively incompressible. In the case of nearly

incompressible elastic behaviour, the elastic relations should be expressed in a mixed

formulation, as given in Equations (2) and (3) where the hydrostatic stress, p, is introduced
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as an additional variable, for stability purposes when solving [25]. Furthermore, it should

also be mentioned that, in comparison to m, � and � do not vary much in soft tissue [26].

This is because � and � are associated with the resistance to volume change and the

density, respectively, and these properties, for soft tissue, are close to that of water because

soft tissue is 70–80% water. For this reason, in this work the density, �, is treated as

constant and known. Equations (4) and (5) are boundary conditions on the displacements

and tractions, and Equations (6) and (7) are initial conditions. Equations (2) and (3),

together with boundary conditions (4) and (5), and initial conditions (6) and (7) yield

a boundary and initial value problem which can be solved for the displacement and

hydrostatic stress fields if m(x), �(x), �, ŭi, �Ti, u0, and _u0 are known. Finally, for

completeness, either type of boundary condition must be specified at each location on the

boundary in each direction without overlap, i.e. @�1i[ @�2i¼ @� and @�1i\ @�2i¼; for

the time period of interest.

2.2. Direct inversion method

We use a finite element-based method for solving the inverse elastography problem for the

shear modulus and hydrostatic stress given displacement data. Let the hydrostatic stress

p(x, t) and shear modulus m(x), be approximated in terms of typical finite element basis

functions such that

pðx, tÞ � phðx, tÞ ¼ �p� �ðx, tÞ, � ¼ 1,Np ð8Þ

�ðxÞ � �hðxÞ ¼ ��� ~ �ðxÞ, � ¼ 1,N� ð9Þ

where superscript h indicates a finite-dimensional approximation, and  � and ~ � are finite

element basis functions for the hydrostatic stress and shear modulus fields, respectively.

Greek subscripts refer to finite element basis function numbers. Overbar ( - ) denotes

co-efficents of interpolating functions. The inverse problem is solved by minimizing the

residual of the equations of motion with respect to the finite-dimensional approximations

of the shear modulus and hydrostatic stress given prescribed displacements. We consider

applying this direct inversion approach in both the frequency and the temporal domains.

2.2.1. Direct inversion in the frequency domain

We can transform the governing Equations (2) and (3) from the time domain to the

frequency domain by taking the Fourier transform in time. Selecting the maximum

observed frequency component, !m, as we expect the maximum information content at this

frequency, we obtain the following equations in terms of the Fourier transforms of the

displacements, û(x,!m), and hydrostatic stress, p̂ðx,!mÞ,

r � � rûþ rûT
� �� �

þ rp̂ ¼ ��!2
mû in � ð10Þ

p̂ ¼ � r � û in �: ð11Þ

These are the same governing equations considered for the time harmonic case described

in Park and Maniatty [23].

Inverse Problems in Science and Engineering 609



We now take the weak form of Equation (10) by multiplying by an admissible test

function and integrating by parts in the usual way. Substituting in the finite-dimensional

approximations using (8) and (9), where now the interpolation in (8) is taken to be the

interpolation of the Fourier transform of the hydrostatic stress field and is a function of

space only, and introducing basis functions � �, which represent the finite element basis

functions for the test function, yields
Z

�

��� ~ � rûþ rûT
� �

þ �p� �I
� �

r � �

h i

d� ¼

Z

�

�!2
mû

� � d�þ

Z

@�2

�T � � d� ð12Þ

which is to be solved for the co-efficents of the interpolants, ��� and �p� . This results in

a system of equations of the form

½K̂� l
� �

þ ½Ĝ� p̂
� �

¼ f̂
n o

ð13Þ

where {l} and fp̂g represent the assembled co-efficents of the interpolants for the shear

modulus ��� and Fourier transform of the hydrostatic stress �p� . Matrices ½K̂�, [Ĝ], and ff̂g

are co-efficent and force matrices which are assembled from the following element

matrices (using indicial notation for clarity)

K̂e
i�� ¼

Z

�e

~ � ûi, j þ ûj,i
� �

� �, j d� ð14Þ

Ĝe
i�� ¼

Z

�e

 � � �,i d� ð15Þ

f̂ei� ¼

Z

�e

�!2
mûi

� � d�þ

Z

@�e
2i

�Ti
� � d� ð16Þ

where Roman subscripts (i, j) represent spatial degrees of freedom and ,j� @/@xj. Also,

�
e	� is a finite element in the region of interest, and @�e

2i 	 @�2i is any part of the

element boundary that also lies on the region of interest boundary. All terms in above

equations are known except the traction boundary conditions in Equation (16). In order to

solve this system, the equations associated with the unknown boundary tractions are

ignored, and a least square fit to the remaining equations for the shear modulus and

hydrostatic stress is solved. Note that the Fourier transform of the displacement field

appearing in (14) and (16) is obtained by taking the Fourier transform of the discrete

displacement data at the central frequency. By taking the Fourier transform, all the time

frames are considered and some of the noise in the data is removed. For stability, a spatial

filter is also applied to the displacement data before computing the displacement gradients,

and spatial regularization is used to weakly enforce the Fourier transform of the

hydrostatic stress to be finite and smooth. For efficiency, the system is solved on

overlapping sub-domains. For further details of the algorithm, see Park and Maniatty [23].

2.2.2. Direct inversion in a temporal domain

We solve the inverse problem for the shear modulus in the temporal domain using

a space-time finite element formulation. By integrating by parts in both space and time, we

not only reduce the spatial derivative that is taken on the data from two to one, but also
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the time derivative. Taking the weak form of Equation (2), and substituting in the finite-

dimensional approximations (8) and (9) yields

Z

�

Z tf

0

�hðxÞ ruþ ruT
� �

þ phðx, tÞI
� �

� rwh dt d�

¼

Z

�

Z tf

0

�
du

dt
�
dwh

dt
dt d�þ

Z

@�2

Z tf

0

�T � wh dtd�

�

Z

�

�
duðx, tfÞ

dt
� whðx, tfÞ �

duðx, 0Þ

dt
� whðx, 0Þ

� 	

d� ð17Þ

where whðx, tÞ ¼ �w� � �ðx, tÞ represents a finite-dimensional approximation of an admissible

test function and the time domain of interest is defined as the interval �¼ [0, tf].

For emphasis, we explicitly show that the shear modulus, mh(x), is only a function of space,

while the hydrostatic stress, ph(x, t), is a function of space and time. This results in a system

of equations of the same form as shown in (13) for the co-efficents of the interpolations for

the shear modulus ��� and the hydrostatic stress �p� . Specifically

½K� l
� �

þ ½G� p
� �

¼ ff g: ð18Þ

Matrices [K], [G] and {f} are formed by assembling the following element matrices

(using indicial notation for clarity)

Ke
i�� ¼

Z

�e

Z tef

tei

~ �ðxÞ ui, jðx, tÞ þ uj,iðx, tÞ
� �

� �, jðx, tÞdt d� ð19Þ

Ge
i�� ¼

Z

�e

Z tef

tei

 �ðx, tÞ � �,iðx, tÞdt d� ð20Þ

fei� ¼

Z

�e

Z tef

tei

�
duiðx, tÞ

dt

d � �ðx, tÞ

dt
dt d�þ

Z

@�e
2i

Z tf

0

�Tiðx, tÞ � �ðx, tÞdtd�

þ

Z

�e

�
duiðx, tfÞ

dt
� �ðx, tfÞ �

duiðx, 0Þ

dt
� �ðx, 0Þ

� 	

d� ð21Þ

where [tei, tef]	 � is the time interval and �
e	� is the spatial domain of a space-time finite

element e.

The above system of equations is to be solved for the co-efficents of the interpolations

of the shear modulus field, m, which is the goal of this work, and the hydrostatic stress

field, p, which is of less interest, but is unknown and may not be negligible. A potential

advantage of solving in the temporal domain versus the frequency domain, described in

the preceding section, is that more information content from the rich data may be used as

all frequency components, i.e. all the displacement data with time, may be considered, not

just the central frequency. The downside is that now the hydrostatic stress is a function of

both space and time, which greatly increases the number of unknowns, i.e. the vector of

co-efficents �p� is much longer because the interpolations are in space and time, even

though the parameter of interest, the shear modulus, is only a function of space. In order

to balance the efficiency while also using the time-dependent data, only a subset of the time

frames may be used. As in the frequency domain, the boundary traction term is not

known. Thus, as was done in the frequency domain, the system is solved neglecting the
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equations associated with this term (see Park and Maniatty [23] for details). Furthermore,

the time domain boundary term is less accurate, so the equations associated with this term

are also discarded. Thanks to the richness of the data, this still leaves a system of equations

with more equations than unknowns.

Several issues still need to be considered when solving the system defined by

Equations (18)–(21). First, frequently only one component of the displacement field in

a plane is measured, thus, all the components of the displacement gradient cannot be

computed. If we assume that the excitation is such that the displacements are primarily in

the plane, and using the fact that the deformation is nearly incompressible, it is possible to

reconstruct the second component of the displacement in the plane. In a similar fashion, if

two components are measured on two nearby planes, it is possible to obtain the third

displacement component. In the process of reconstructing the unknown displacement

component, we also find a smooth approximation to the known displacement components.

This process can be thought of as both filtering the data (enforcing smoothness) as well as

reconstructing one unmeasured displacement component. We accomplish this by finding

the displacement field that lies in a finite-dimensional space defined in terms of finite

element basis functions, uhi ðx, tÞ ¼ �ui� � �ðx, tÞ, that minimizes the following function at each

discrete time

FðuhÞ ¼
1

2
	1

Z

�

uhi,i


 �2

d�þ
1

2

X

nd

i¼1

	2i

Z

�

uhi, ju
h
i, j d�þ

1

2

X

nd

i¼1

	3i�ifui � umi g
Tfui � umi g ð22Þ

where 	1, 	2i and 	3i are weighting co-efficents, nd is the number of degrees of freedom (2D

or 3D) considered, �i is a switching parameter that is one if i is a component, which has

been measured and is zero otherwise, {ui} represents the assembled nodal displacements

( �ui�) for the i-th component, and fumi g are the corresponding measured displacements.

The first term in (22) enforces incompressibility and the second term enforces smoothness

on the recovered displacements. The last term in (22) forces the recovered displacements

to be close to the measured displacements for the components measured, where here, the

finite element nodal points are taken to coincide with the measurement locations. The

weighting co-efficents 	2i and 	3i have the additional subscript i to indicate that they are

not necessarily the same for different displacement components.

The weighting co-efficents, 	1, 	2i and 	3i, in Equation (22) are chosen with the

following considerations. First, only the relative values of the weighting co-efficents affect

the result. Since the tissue is nearly incompressible, and noting that �, which ‘penalizes’ the

compressibility (Equations (2) and (3)), is roughly six orders of magnitude higher than m,

we expect 	1 to be the highest weighting co-efficent to strongly enforce the incom-

pressibility, and it should not be more than six orders of magnitude higher than the other

weighting factors, both based on the physics and to avoid ill-conditioning in the resulting

system of equations. The ratio 	2i/	3i associated with the measured displacement

components represents the balance between enforcing smoothness and enforcing this

component to be close to the measurements. Thus, it should depend on the signal to noise

ratio, where it would be lower for high signal to noise ratios, and vice versa for low signal

to noise ratios. This ratio should not exceed one so that the condition of being close to the

measured data is not outweighed by smoothing. Finally, it remains to define the ratio

	2j/	2i, where j indicates the component to be reconstructed which has not been measured

and i is associated the measured component. The parameter 	2j acts as a regularization

parameter to provide stability in the reconstruction. The ratio 	2j/	2i should be between
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0.1 and 10�4 to provide stability and avoid excess smoothing. The values chosen in the

examples later were chosen by visualizing the data and choosing values that satisfied the

conditions above and gave a smooth displacement field that matched the given data well

without high spatial frequency noise.

Minimizing the above function (22) with respect to the nodal displacements results in

a linear system of equations of the following form

½H� uf g ¼ bf g ð23Þ

where the matrices [H] and {b} are formed by assembling

He
i�j� ¼ 	1

Z

�

� �,i � �, j d�þ 	2i

Z

�


ij � �,k � �,k d�þ 	3i
ij
�� ð24Þ

bei� ¼ 	3iu
m
i� ð25Þ

where 
ij represents the Kronecker delta. In addition, in order to solve for an unmeasured

component of the displacement field, a boundary condition on that displacement field

must be prescribed to prevent rigid body motion. This is accomplished by fixing a single

point. Solving for the smooth displacement field using the above formulation at each time

is quick because the system of equations in (23) is linear, and the matrix [H] is defined by

the grid. If the measurement grid is defined a priori, this matrix can be inverted a priori, so

that only back substitution is needed to find the displacements at each time.

Once the displacement components are determined, a second issue is that the

displacements must be differentiated once in space for Equation (19) and once in time for

Equation (21). The grids in space and time on which the data are measured are also used

for the finite element nodal grid. The spatial derivatives are obtained using the averaging

derivative method of Anderssen and Hegland [22]. In that procedure, the derivative at

a given location is taken to be the spatial average of the finite difference approximation

over some specified window size. The advantage of this method is that it does not increase

the variance of the derivatives. This method was also used in McLaughlin et al. [10]. Here,

the data in time is relatively smooth, so the time derivatives are directly computed using

a finite difference scheme, without local averaging.

The system defined in (18) is over-determined, but is also unstable. The instability

arises from the hydrostatic stress part of the reconstruction. This instability arises because

the governing Equation (2) is in terms of the gradient of the hydrostatic stress, and thus,

the hydrostatic stress field should only be determinate to within a constant. Furthermore,

due to the near incompressibility, even in the forward solution care must be taken to avoid

instabilities associated with the hydrostatic stress field [25]. A space-time regularization

procedure is applied to stabilize the hydrostatic stress by weakly penalizing the L2 norms

of both the magnitude and the gradients of the hydrostatic stress field. We solve for the

best shear modulus and hydrostatic stress fields fitting Equation (18) in a least squares

sense subject to the regularization on the hydrostatic stress by minimizing

min
l, p

KlþGp� fð ÞT KlþGp� fð Þ þ �1p
Tpþ

X

nd

i¼1

�2i Dipð ÞT Dipð Þ þ �3 Dtpð ÞT Dtpð Þ

" #

ð26Þ
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where �1, �2i, and �3 are regularization parameters, Di is a differential operator in space

along direction i, and Dt is a differential operator in time. Minimizing (26) yields the

following system of equations

KTK KTG

GTK GTGþ �1Iþ
P

nd

i¼1

�2iD
T
i Di þ �3D

T
t Dt

2

6

4

3

7

5

l

p

" #

¼
KTf

GTf

" #

ð27Þ

where matrix [I] is an identity matrix.

The above system of equations is dense, but can be solved efficiently on local sub-

domains within the region of interest because we are solving for interior parameters given

interior displacements. Thus, there is no alteration of the problem definition when the

whole domain is divided into multiple sub-domains, and this greatly reduces the

computational time. However, discontinuities in the solution may arise on the sub-domain

boundaries, so the sub-domains are overlapped to provide a smooth solution by averaging

the solution in the overlap region and neglecting the solution right on the boundary of the

sub-domains, which is typically not accurate due to poorly defined boundary conditions.

3. Results

The algorithms described in the preceding section are tested on an experimental data set

provided by the laboratory of Mathias Fink. The data is measured using the transient

elastography method presented in Sandrin et al. [5] on a tissue-mimicking phantom. The

phantom consists of an homogeneous background with a 5mm radius cylindrical

inclusion. It is composed of an agar-gelatine mixture with a 3% concentration of agar

powder, which is uniformly spread throughout to obtain homogeneous echogenicity. The

background has a 2% gelatine concentration, and the inclusion has a 4% concentration of

gelatine, which makes the inclusion about four times stiffer than the background.

The excitation device is composed of two parallel rods between which an ultrasound

array is placed, also in parallel (Figure 1). The two rods vibrate identically and each apply

a vertical displacement with 1mm amplitude on the top surface of the phantom.

The imaging plane is equidistant from the two rods, with the cylindrical inclusion

perpendicular to the imaging plane and vibrating rods. Due to the symmetric

configuration of the experiment, the transverse displacement vectors caused by each rod

are superimposed in the imaging plane and the out-of-imaging plane components of

the displacement cancel each other out. A linear array of 128 ultrasound transducers

acquires the RF signals at 1000 frames/s. The field of view is 41.91mm� 67.492mm with

128� 95 pixels, and 99 frames are recorded. Only the displacement along the excitation

direction is measured. See Sandrin et al. [5] for details about the experiment, but note that

the tissue mimicking phantom used in this study has a different agar-gel concentration and

size of inclusion from the phantom described in [5]. Results from the experiment with

a 60Hz central frequency of excitation are presented. The same data was also tested for

reconstructing the shear wave speed making use of the propagating wave front to compute

arrival times in McLaughlin and Renzi [13,14].

A portion of the raw data is shown in Figure 2. As shown in Figure 2, the shear waves

propagate from top to bottom, and the wave front bends when it passes through the high

speed region, where the stiff inclusion is located. Also note that the wave amplitude decays
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considerably as it propagates inside. This reduces the signal to noise ratio, making an

accurate reconstruction more challenging at increasing depths.

The accuracy and resolution of the reconstructed shear modulus, m, (and hydrostatic

stress, p) depend strongly on the precision in the calculation of the displacement gradients

in space and time, i.e. ru and ðdu=dtÞ, respectively. Thus, the spatial and temporal

resolutions of the measurements are of primary significance, in addition to the accuracy of

the measurement itself. Here, the spatial resolution (grid size) in the horizontal direction is

0.33mm and in the vertical direction is 0.718mm, and the temporal resolution is 1ms.

From our prior study for the time harmonic case in [23], we showed that data with 5%

Gaussian random noise and a spatial resolution of 1mm is sufficient to detect a 2mm

radius inclusion. The spatial resolution hear is finer, however, the noise level of the

experimental data also is higher.

In all of the reconstructions to follow, the finite element interpolation functions for the

shear modulus and the hydrostatic stress ( ~ �ðx) and  �(x, t)) are constant over each

element in space. For the temporal domain case, the hydrostatic stress interpolation is

piecewise constant in time. The displacements and weighting function interpolants � �ðx, tÞ

are linear in space and time over each finite element.

3.1. Result from frequency domain inversion algorithm

First, we show the results using the algorithm described in Section 2.2.1, where the shear

modulus reconstruction is performed in the frequency domain. A temporal Fourier

transform is performed on all 99 frames of the propagating shear wave images to extract

the time harmonic motion at a dominant frequency. Due to the visco-elasticity of the agar-

gel phantom, although not as strong as in soft tissue [27], a frequency dispersion exists. It is

caused by the frequency dependency of the speed of the propagating wave and makes the

dominant responding frequency of the object vary with spatial location. Although the

central frequency of the excitation is 60Hz, the dominant reacting frequency of the

Figure 1. Schematic of transient elastography experiment performed in the laboratory of Mathias
Fink [5]. Vibrating rods set up propagating waves. The vertical displacement component, resulting
from the propagating waves, as a function of time is recorded on the imaging plane.
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phantom is at 70.71Hz in most regions. Figure 3 shows the Fourier transformed

displacement at 70.71Hz.

Since the displacement data from the ultrasound measurement has only one-directional

component, which is parallel to the ultrasonic beam in the downward direction,

(a) (b)

(c) (d)

Figure 2. Image of raw displacement data used for this study showing propagating shear waves.
Waves propagate from top to bottom surface. Only the downward displacement component is
measured, in mm. Available in colour online.
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we reconstruct the second in-plane component (horizontal component) of the Fourier

transform of the displacement, while also smoothing the Fourier transform of the

measured component by minimimizing Equation (22). We set 	1¼ 1000, 	3x¼ 100,

	2x¼ 100 for the vertical direction, and 	2y¼ 0.1 for the horizontal direction. These

parameters strongly enforce the divergence-free constraint and the requirement that the

computed vertical displacement must be close to the measured displacement, and enforce

smoothness relatively weakly, but sufficiently to provide a stable inversion. The smoothed

displacements (Fourier transformed), ûh, for both directions are shown in Figure 4.

Despite the smoothing, note that there is still some noise in the displacements. Thus, care

must be made in differentiating the data.

As mentioned before, the gradient of the displacements are calculated by the averaging

derivative method proposed by Anderssen and Hegland [22]. The results are shown in

Figure 5. Vertical and horizontal directions are defined as X and Y directions, respectively.

A window size of 15� 7 (horizontal� vertical), about each grid point, is used in comput-

ing the spatial derivatives. In addition to the spatial smoothness, the computed strain

should satisfy the nearly incompressible behaviour, thus, Figure 5(a) and (b) should be

almost identical with opposite signs, which they are.

Using a procedure, analogous to that given in Equation (27), but in the frequency

domain, the shear modulus and hydrostatic stress fields are reconstructed. Here, the

Figure 3. Fourier transformed displacement component along downward direction from ultrasound
measurement (in mm). Although the central frequency of the excitation is 60Hz, the dominant
frequency of the time harmonic response is at 70.71Hz. Available in colour online.
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regularization parameters on the hydrostatic stress are taken to be �1¼ 10�8, �2x¼ 0.5,

and �2y¼ 0.01. Given the size and spatial resolution of the ultrasound data, which is used

for our finite element discretization for the Fourier transformed displacement field, there

are 7680 (96�80) shear modulus and the hydrostatic stress values to reconstruct (taken as

constant over each element). Note, due to the windowing for the averaging derivatives, the

domain size is reduced as derivatives cannot be computed near the edges of the domain.

The problem domain is decomposed into an array of 20� 16¼ 320 overlapping sub-

domains (Figure 6), each with 20� 20 element size, and where each subsequent sub-

domain is off-set by four elements over (or down). The shear modulus is taken as the

average reconstructed value in the overlapped regions.

Figure 9(a) shows the reconstructed shear modulus distribution. The inclusion is well-

detected, and the shear modulus, at the centre of the inclusion, and the background are

accurately reconstructed. Although the boundary of the inclusion is smeared due to the

data smoothing and averaging derivatives, which are necessary because of the large noise

level in the data, the size of the inclusion is reasonably well predicted too.

3.2. Result from temporal domain inversion algorithm

The shear modulus was also reconstructed using the space-time inversion algorithm,

described in Section 2.2.2. As in the frequency domain case, the horizontal displacement

component in the plane needs to be reconstructed, but now for each time frame of interest.

The same algorithm, which both solves for the unknown displacement component and

(a) (b)

Figure 4. Smoothed Fourier transform of the displacements as a result of the minimization of
Equation (22): (a) Smoothed vertical displacement, (b) reconstructed horizontal displacement from
vertical displacement (in mm). Available in colour online.
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finds a smooth displacement field close to the measured displacement field, is used with

	1¼ 1000, 	3x¼ 100, 	2x¼ 1 for the vertical direction, and 	2y¼ 0.1 for the horizontal

direction in Equation (22). Figure 7 shows the resulting computed displacement field at

two different times, 20 and 30ms. The vertical displacements, which coincide with the

(a) (b)

(c)

Figure 5. Strain values obtained using averaging derivative method (�10�3): (a) "xx, (b) "yy (c) "xy.
Vertical and horizontal directions are defined as X and Y directions, respectively. Available in colour
online.
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measured displacements (compare with Figure 2), are shown in Figure 7(a) and (c), and the

reconstructed horizontal displacements are shown in Figure 7(b) and (d). Note that all

colourbar scales are equal in this figure. Due to the near symmetric configuration of the

experimental setup, the horizontal displacement along the depth near the centre is near

zero. However, in all other areas, the magnitude of the horizontal displacement is non-

negligible. Also note that the smoothness requirement in (22) is only weakly enforced for

stability, so the displacements still contain some noise. This noise is compensated for in the

spatial derivative calculations using the averaging derivative method [22] with the same

window size, 15� 7, as used in the frequency domain case. The data is relatively smooth in

time, and a standard central difference is used for computing the time derivatives in

Equation (21). A snapshot of the computed strains and velocities are shown in Figure 8.

The inverse problem is solved on an array of 8� 10¼ 80 overlapping sub-domains,

each with 20� 20 spatial elements, where the sub-domains are offset by 8 elements. Note,

fewer sub-domains are used here than in the frequency domain inversion since the solution

on each sub-domain, when the temporal domain is also considered, results in

a significantly larger system, as described next.

With a space-time formulation, each sub-domain in space has an additional temporal

window. These temporal windows need to be chosen carefully due to the following

reasons. First, the propagating waves pass through each sub-domain within a few time

frames. Considering the wave speed and geometrical size of the sub-domains, six frames

are selected for each sub-domain. If more temporal frames are selected for the

Figure 6. Diagram showing domain decomposition for reconstructing the shear modulus field.
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reconstruction, it might provide better results, however, in the temporal domain, the

number of unknown hydrostatic stresses also increases with the number of time frames

as the hydrostatic stress must be resolved for each time. Thus, adding time

frames dramatically augments the problem size leading to a longer computation time.

(a) (b)

(c) (d)

Figure 7. Vertical and horizontal displacements at 20ms, ((a) and (b)) and at 30ms ((c) and (d)),
respectively (in mm). Horizontal displacement is reconstructed using Equation (22). Available in
colour online.
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(a) (b)

(c) (d)

(e)

Figure 8. Snapshot of computed strain values (�10�3) (a) "xx, (b) "yy and (c) "xy, and velocities
(mm s�1) (d) dux/dt and (e) duy/dt, where X and Y are the vertical and horizontal directions,
respectively. Available in colour online.
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Second, each sub-domain has its own temporal window since it experiences the

propagating waves at different time frames. In this study, the temporal windows were

chosen manually through observation of the propagating waves. Each of the 80 sub-

domains then requires solution of 20� 20¼ 400 unknown shear moduli and

20� 20� 6¼ 2400 unknown hydrostatic stresses. The regularization parameters chosen

to stabilize the hydrostatic stress recovery in Equation (27) are �1¼ 10�11, �2x¼ 0.01 (top

half), �2x¼ 0.1 (bottom half), �2y¼ 0.1, and �3¼ 0. Note that a higher value of �2x is used

for the lower half of the domain due to the lower signal to noise ratio as the wave

propagates deeper into the domain. Conceptually, this is similar, albeit much simpler, to

the approach used in McLaughlin et al. [10] where the regularization parameter is chosen

to be higher in the regions of lower signal to noise ratio with the goal of creating an image

of the shear modulus with a uniform variance. In that work, the regularization was

associated with the window size used in computing the derivatives. Here, the regularization

parameters were chosen to be as low as possible while still enforcing smoothness on the

hydrostatic stress field.

Figure 9(b) presents the shear modulus distribution obtained using the space-time finite

element inversion approach. The size and location of the inclusion match well the results in

the frequency domain shown in Figure 9(a). However, the shear modulus is underpredicted

in the centre of the inclusion and the boundary is not as well defined. Furthermore, the

inclusion appears more elongated in the depth direction, especially behind the inclusion.

Artifacts appear in the lower portion of the figure in the region with a low signal to noise

ratio. The primary reason for the poorer reconstruction in the temporal domain as

compared to the frequency domain is likely that only six time frames are taken for each

sub-domain for efficiency purposes, but may have insufficient information content. For

the frequency domain, all 99 frames are used, and the Fourier transform is used to extract

(a) (b)

Figure 9. Shear modulus reconstructions recovered using (a) the frequency domain inversion
algorithm, and (b) the temporal domain inversion algorithm (kPa). Available in colour online.
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out the dominant information. Furthermore, the six frames chosen were not optimized.

While more frames may have more information content, they also increase the number of

hydrostatic stress unknowns which may also lead to instability.

4. Conclusions

In this article, a finite element-based approach for directly reconstructing the shear

modulus distribution from transient displacement data measured using ultrasound is

presented. The gradient of the hydrostatic stress field is not neglected here resulting in the

additional unknown hydrostatic stress field also needing to be recovered in the algorithm.

Since the algorithm presented has the advantages of not requiring iterations and being

suitable to use on sub-regions of the domain, it is relatively fast compared to iterative finite

element-based algorithms. Two different algorithms are presented which are used to

handle the same displacement data set, one which solves in the frequency domain and the

other in the time domain. For the time domain algorithm, a space-time finite element

formulation is used where the second derivatives appearing in the governing equation in

both space and time are reduced to first derivatives through integration by parts of the

weak form.

In order to obtain a stable solution given the available ultrasound data, several steps

are taken. First, the transient ultrasound data used here consists of only a single

component of the displacement in the imaging plane, which is parallel to the direction of

the ultrasound beam. A method is presented to obtain the second in-plane component

while simultaneously finding a smooth approximation to the measured data using the

assumptions that the out of plane displacement is negligible and the displacement field is

divergence free. Second, an averaging derivative method is used to calculate the spatial

gradient of the displacement. Finally, to remove most artifacts caused by the instabilities in

the hydrostatic stress field reconstruction, the inversion algorithm used to find the shear

modulus and hydrostatic stress fields includes stabilization of the hydrostatic stress field by

simple zero and first order regularization. The sub-domain size used in the reconstruction

is selected in spatial and temporal spaces through observation of the propagating

wavefront.

The shear modulus reconstructions resulting from both the frequency and temporal

domain algorithms show the inclusion clearly and are fairly similar to each other.

However, the magnitude of the shear modulus in the centre of the inclusion from the

temporal reconstruction is a bit lower and some artifacts arise towards the bottom of the

reconstructed image due to the low signal to noise ratio at greater depths. Several issues

are brought up to explain these facts. For the solution in the frequency domain, all 99

frames are used to obtain Figure 3 which is used as raw data in the reconstruction. For the

temporal domain case, for each sub-domain only six temporal frames are used, which are

not optimized. In addition, for the solution in the frequency domain, selecting the

dominant single frequency information from the Fourier transformed data automatically

removes potentially noisy information. These facts lead to a better solution in the

frequency domain.

The results of this study can be used to guide future work leading to improvements in

both algorithms. In the frequency domain, the dominant frequency need not be the only

frequency considered. Considering additional frequencies and possibly the phase

information (see e.g. [10]) would likely lead to improved reconstructions. In the temporal
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domain, a more optimal selection of the temporal windows would improve the results. An

alternative approach, to address the large number of hydrostatic stress components in the

temporal domain recovery, is to use a reduced order model for the hydrostatic stress to

reduce the unknowns in the system equations while still allowing more temporal

information to be included. Finally, adaptive regularization, both in the averaging

derivative window size selection and in the choice of regularization parameters to stabilize

the hydrostatic stress solution, where larger regularization is used in regions of lower signal

to noise, should be investigated to optimize the reconstructions.
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