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SUMMARY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Starting from continuum mechanics principles, finite element incremental formulations for non-linear static 
and dynamic analysis are reviewed and derived. The aim in this paper is a consistent summary, comparison, 
and evaluation of the formulations which have been implemented in the search for the most effective procedure. 
The general formulations include large displacements, large strains and material non-linearities. For specific 
static and dynamic analyses in this paper, elastic, hyperelastic (rubber-like) and hypoelastic elastic-plastic 
materials are considered. The numerical solution of the continuum mechanics equations is achieved using 
isoparametric finite element discretization. The specific matrices which need be calculated in the formulations 
are presented and discussed. To demonstrate the applicability and the important differences in the formulations, 
the solution of static and dynamic problems involving large displacements and large strains are presented. 

INTRODUCTION 

In non-linear dynamic finite element analysis involving large displacements, large strains and 
material non-linearities, it is necessary to resort to an incremental formulation of the equations 
of motion. Various formulations are used in practice (see References). Some procedures are 
general and others are restricted to account for material non-linearities only, or for large displace- 
ments but not for large strains, or the formulation may only be applicable to certain types of 
elements. Limited results have been obtained in dynamic non-linear analysis involving large 
displacements and large strains. 

Currently, the general purpose non-linear finite element analysis program NONSAP is being 
developed at the University of California, Berkeley.z An important aspect in the development 
of the program is to assess which general finite element formulation should be implemented. 

In dynamic analysis numerical time integration of the finite element equations of motion is 
required. Extensive research is currently being devoted towards the development of stable and 
accurate integration schemes. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1.5,20.31 However, it need be realized that a proper evaluation and 
use of an integration method is only possible if a consistent non-linear finite element formulation 
is used. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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The earliest non-linear finite element analyses were essentially based on extensions of linear 

analyses and have been developed for specific applications (for a comprehensive list of References, 
see the books by Oden33 and Z i e n k i e ~ i c z ~ ~ ) .  The procedures were primarily developed on an 
intuitive basis in order to obtain solutions to the specific problems considered. However, to 
provide general analysis capabilities using isoparametric (and related) elements a general formula- 
tion need be used. The isoparametric finite element discretization procedure has proved to be 
very effective in many applications, and lately it has been shown that general non-linear formula- 
tions based on principles of continuum mechanics can be efficiently implemented. 

Basically, two different approaches have been pursued in incremental non-linear finite element 
analysis. In the first, static and kinematic variables are referred to an updated configuration in 
each load step. This procedure is generally called Eulerian, moving co-ordinate or updated 
formulation. Murray and Wilson,28 Felippa,' Yaghrnai3' Yaghmai and P O P O V , ~ ~  Farhoomand,' 
Sharifi and P O P O V , ~ ~  Yamada,41 Stricklin and many others,38 Heifitz and Co~ tan t ino , '~  
Belytschko and Hsieh6 have presented some form of this formulation. 

In the second approach, which is generally called Lagrangian formulation, all static and 
kinematic variables are referred to the initial configuration. This procedure is used by Oden,32.33 
Marca1,26 Hibbitt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet a1,16 Larsen," M~Namara ,~ '  Sharifi and Y a t e ~ , ~ '  Stricklin and many 
 other^,^^.^' Haug and P0wel1.l~ A survey paper of the Lagrangian formulation in static analysis 
was presented by Hibbitt et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal," where it is stated that additional research is required for use of 
an equivalently consistent updated formulation. 

I t  is apparent that with the different formulations available, in the development of a general 
purpose non-linear dynamic analysis program a decision need be made on the procedure to be 
used. An important consideration is that using any formulation based on continuum mechanics 
principles, in which all non-linear effects are included, the same results should be obtained in the 
analyses. Stricklin and many others, discussed a moving co-ordinate formulation and a Lagrang- 
ian formulation and pointed out that the latter is more general and computationally more 
effi~ient.~' Yamada compared an Eulerian and Lagrangian formulation and predicted for a 
simple truss structure a maximum difference of about 25 per cent in the  displacement^.^' Dupuis 
and many others, analyzed arches using the Lagrangian and an updated formulation and also 
calculated a much different response by either formulation.' 

The purpose of this paper is to present and compare in detail the general formulations that 
have been implemented in program NONSAP, and to show their general applicability in non- 
linear static and dynamic analysis. The formulations are termed total Lagrangian and updated 
Lagrangian formulations and they are based on the work of the authors cited above. For specific 
solutions in this paper, elastic, hyperelastic, and hypoelastic materials are considered. 

The procedures are derived from the basic principle of virtual work and are valid for non-linear 
material behaviour, large displacement$ and large strains. I t  is pointed out that, in theory, there 
is no difference in the formulations. Any differences in the numerical results arise from the fact 
that different descriptions of material behaviour are assumed, and if the material constants are 
transformed appropriately, identical numerical results are obtained. Therefore, the question of 
which formulation should be used merely depends on the relative numerical effectiveness of the 
methods. In the paper specific attention is directed to the numerical efficiency of either formula- 
tion. 

To demonstrate the applicability and the important differences in the formulations, the 
numerical operations required for solution are studied and a variety of sample solutions are 
presented. These include the large displacement static and dynamic analysis of a cantilever, 
the large displacement and large strain static and dynamic analysis of a rubber-like material 
and the static and dynamic, elastic and elastic-plastic large displacement analysis of arches and 
shells. 
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FORMULATION OF THE CONTINUUM MECHANICS 
INCREMENTAL EQUATIONS OF MOTION 

Consider the motion of a body in a Cartesian co-ordinate system as shown in Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. The 
aim is to evaluate the equilibrium positions of the body at the discrete time points zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, At, 2 At, 

3 A t , .  . . , where At is an increment in time. Assume that the solution for the kinematic and static 
variables for all time steps from time 0 to time t, inclusive, have been solved, and that the solution 
for time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt + At is required next. It is noted that the solution process for the next required equi- 
librium position is typical and would be applied repetitively until the complete solution path 
has been solved. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

CONFIGURATION 
AT TIME zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

=- 
0 X l , t K 1 , t + A + X I  

Figure 1. Motion of body in Cartesian co-ordinate system 

Nomenclature 

I t  is useful at this point to lay out the notation which will be employed. 
The motion of the body is considered in a fixed Cartesian co-ordinate system, Figure 1, in 

which all kinematic and static variables are defined. 
The co-ordinates describing the configuration of the body at time 0 are Ox,, Ox2, Ox3, at time t 

are ‘xl ,‘x2, ‘x3, and at time t + A t  are ‘ + A ‘ ~ l ,  r + A ‘ ~ 2 ,  r + A r ~ 3 ,  where the left superscripts refer to the 
configuration of the body and the subscripts to the co-ordinate axes. 

The notation for the displacements of the body is similar to the notation for the co-ordinates; 
at time t the displacements are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA‘ui, i = 1,2, 3 and at time [ + A t  the displacements are ‘+Afu i ,  
i = 1,2 ,3  ; therefore 

The unknown increments in the displacements from time t to t + At are denoted as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
u .  = t + A ‘ ~ i - f ~ i :  j = 1, 2, 3 
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During motion of the body, its volume, surface area, mass density, stresses and strains are 

changing continuously. The specific mass, area and volume of the body at times 0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt and t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ At 
are denoted by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOp, ‘ p ,  r + A f p :  ‘ A ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA‘ A ,  r + A f A  : and OV, V, r + A r V  : respectively. 

Since the configuration of the body at time t + A t  is not known, the applied forces, stresses and 
strains are referred to a known equilibrium configuration. In analogy to the notation used for 
co-ordinates and displacements a left superscript indicates in which configuration the quantity 
(body force, surface traction, stress,. . .) occurs; in addition, a left subscript indicates with respect 
to which configuration the quantity is measured. 

The surface and body force components per unit mass at time t + At,  but measured in con- 
figuration t ,  are 

Considering stresses, the Cartesian components of the Cauchy stress tensor at time t + A t  are 
denoted by ‘+“.si, (since Cauchy stresses are always referred to the configuration in which they 
do occur = and the Cartesian components of the 2nd Piola-Kirchhoff stress 
tensor corresponding to the configuration at time t + A t  but measured in configuration at time t 
are denoted by r+AiSij. 

Considering strains, the Cartesian components of Cauchy’s infinitesimal strain tensor referred 
to the configuration at time t + A t  are denoted by r + A r e i j ;  and the Cartesian components of the 
Green-Lagrange strain tensor using the displacements from the configuration at time t to the 
configuration at time t + A t ,  and referred to the configuration at time t are denoted by 

The reference configurations, which will be used for applied forces, Kirchhoff-Piola stresses 
and Green-Lagrange strains, are those at time 0 and at time t .  

In the formulation of the governing equilibrium equations derivatives of displacements and 
co-ordinates need be considered. In the notation adopted, a comma denotes differentiation 
with respect to the co-ordinate following, and the left time subscripts indicate the configuration 
in which this co-ordinate is measured ; thus, for example, 

r + A : , f k ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, 2, 3. 

Principle of virtuul displacements 

With the notation having been explained briefly, consider again the body in Figure 1. Since 
the solution is known at all discrete time points 0, At, 2 A t , .  . . , t ,  the basic aim of the formulation 
is to establish an equation of virtual work from which the unknown static and kinematic variables 
in the configuration at time t + At can be solved. Since the isoparametric displacement based finite 
element procedure shall be employed for numerical solution, the principle of virtual displace- 
ments is used to express the equilibrium of the body in the configuration at time t + A t .  The 
principle of virtual displacements requires that 

s i j  6 f + A r e i j  du = r+ArB s. + A t v r  + Ar 

where r+Ar9 is the external virtual work expression, 

(2) 

In equations (1) and (2) 6u, is a (virtual) variation in the current displacement components 
r + A r u k ,  and h f+Are i j  are the corresponding (virtual) variations in strains, i.e. 

r + A r  r + A r  p r + A r  f k  6u, dc s r + A r V  

r+ArB = 1 :~ ; : t k6ukr+Afda+ 
t + At* 

6r + A r e i j  = + A r u i , j +  I + A r U j , i )  
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I t  need be noted that in equation ( 1 )  and the equations to follow the summation convention of 
tensor notation is implied. 

Equation ( 1 )  cannot be solved directly since the configuration at time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt + A t  is unknown. 
A solution can be obtained by referring all variables to a known previously calculated equilib- 
rium configuration. For this purpose, in principle, any one of the already calculated equilibrium 
configurations could be used. In practice, however, the choice lies essentially between two different 
formulations, namely, the total Lagrangian formulation (T.L.) and the updated Lagrangian 
(U.L.) formulation, which are presented in the following sections. 

Total Lagrangian formulation 

Lagrangian formulation and has been used a great deal in static analysis. 1 4 , 1  6 , 2 6 . 3 8  

at time 0 of the body. The applied forces in equation ( 2 )  are evaluated using 

The formulation called here total Lagrangian (T.L.) formulation is generally referred to as 

In the formulation all variables in equations ( 1 )  and (2) are referred to the initial configuration 

where i t  is assumed that the direction and magnitude of the forces ' + A $ L  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo p ' + . ~ , f L  are inde- 
pendent of the specific configuration at time t + A t .  Loading conditions that depend on the 
deformations will be considered later. 

The volume integral of Cauchy stresses times variations in infinitesimal strains in equation ( 1 )  
can be transformed to givezs 

where 
to the configuration at time t + A t  but measured in the configuration at time 0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Cartesian components of the 2nd Piola-Kirchhoff stress tensor corresponding zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

( 5 )  

and 6 r + A d ~ i j  = variations in the Cartesian components of the Green-Lagrange strain tensor in the 
configuration at time t + A t ,  referred to the configuration at time 0, 

r + A r  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 o&ij = 64 (' + " ;M i .  j + ' + Ad. j.i + + A;.,., ' + A&, j )  

I t  should be noted that the integral of Piola-Kirchhoff stresses times variations in the Green- 
Lagrange strains is defined over the initial configuration at time 0 of the body. 

Substituting the relations in equations (3) and (4) into equations (1) and (2) ,  the following 
equilibrium equation for the body in the configuration at time t + At but referred to the configura- 
tion at time 0 is obtained, 
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where '+AtB is now calculated using 

Since the stresses and strains zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA' + A d ~ i j  are unknown, for solution, the following incremental 

(9) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(10) 

where isij and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd q j  are the known 2nd Piola-Kirchhoff stresses and Green-Lagrange strains in 
the configuration at time t. Using the displacement definition of the Green-Lagrange strain 
tensor. it follows from equation (10) that d " % ~ ~ ~  = docij and 

decompositions are used 

'+A'S.. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1J = ; S i j + o S i j  

( + A ' & . .  0 1 1  = o i j + o & i j  '& 

O E i j  = o' i j+ OVli j  (1 1) 

where 

oeij = t ( ou i . j +  ouj.i+ duli,i ou,,j+ 0Uk.i  d u r , j )  

O ' l i j  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 Ouk . i  0'k.j 

(12) 

(13) 

The incremental 2nd Piola-Kirchhoff stresses ,Sij are related to the incremental Green- 
Lagrange strains O ~ i j  using the constitutive tensor OCijrs, i.e. 

O s i j  = O C i j r s  OErs  (14) 

Equation (7) can now be written as 

OCijrs o ~ r s  'do + dSi j  d0qij 'do = '+A'B - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(15) I, 
which represents a non-linear equation for the incremental displacements ui .  

Updated Lagrangian formulation 

Most updated formulations previously used are approximate in that they are restricted to 
small strains or even constant strain conditions within each finite element used for numerical 
solution.6,28 However, Yaghmai introduced a general procedure, and the U.L. formulation 
given here is largely based on his 

In the U.L. formulation all variables in equations ( 1 )  and (2) are referred to the configuration 
at time t ,  i.e. the updated configuration of the body. By an analogous procedure to the derivation 
of the T.L. formulation, equation (1) is in this case transformed to 

r 

where ' +A :S i j  = Cartesian components of the 2nd Piola-Kirchhoff stress tensor and = 

Cartesian components of the Green-Lagrange strain tensor from the configuration at time t 
to the configuration at time t + A t  and referred to the configuration at time t. The quantities 
r + A : S i j  and are defined by equations (5) and (6), respectively, if the superscript and subscript zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
'0' is replaced by ' t '  and displacements are measured from the configuration at time t .  Since 
deformation independent loading is considered '+A'W is evaluated as in the T.L. formulation. 
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The incremental stress decomposition used in this case is 

where I t i j  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Cartesian components of the Cauchy stress tensor and ‘Sij = Cartesian components 
of the 2nd Piola-Kirchhoff stress increment tensor referred to the configuration at time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt .  Con- 
sidering the strain increments the followingrelations hold 

r E i j  = t e i j + r V i j  

where 

The constitutive relation between stress and strain increments used now is 

and equation (16) can be rewritten as 

J ‘Cijrs S&‘do+ tij zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS , q i j  ‘dv = ‘tij dreij ‘dv (23) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
‘V J., ‘ J., 

which, as equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 1  5), is a non-linear equation in the incremental displacements ui .  

Linearization of equilibrium equations 

It should be noted that equations (1 5) and (23) are, theoretically, equivalent and provided the 
appropriate constitutive relations are used, the equations yield identical solutions. However, 
as will be seen, the finite element matrices established for solution are different. 

The solution of equation (15) and of equation (23) cannot be calculated directly, since they are 
nonlinear in the displacement increments. Approximate solutions can be obtained by assuming 
that in equation (15) o&ij  = oeij and in equation (23) l ~ i j  = ‘ei j .  This means that, in addition to 
using = doeij  and S,cij = S,eij, respectively, the incremental constitutive relations employed 
are 

and 
J i j  = O C i j r s  O e r s  (24) 

r s i j  = t c i j r s  rers (25)  

FINITE ELEMENT SOLUTION 

In the T.L. formulation the approximate equilibrium equation to be solved is 

OCijrs Oers Soeij Odu + dSi j  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASoqi j  Odv = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI, os i j  ‘ Soeij I, 
whereas in the U.L. formulation the equation is 

tij S,qij ‘du = ‘+Ar9 - (27) 
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Equations (26) and (27) are linear equations in the incremental displacements and are used as the 
basis for isoparametric finite element a n a l y ~ i s . ~ ' , ~ ~  Referring to the standard procedures for 
assembling the structure matrices, attention need only be given to the derivation of the matrices 
corresponding to a single element. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Finite element matrices 

In the isoparametric 
using 

element solution the co-ordinates and displacements are interpolated zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk =  1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt 

N N 

'ui = k k r ~ f ;  U i  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 h , ~ :  
k =  1 k =  1 

i = 1, 2, 3 (28) 

i = 1,2, 3 (29) 

where 'xf is the co-ordinate of nodal point k corresponding to direction i at time t ,  '1.41 is defined 
similarly to 'xf, 17, is the interpolation function corresponding to nodal point k ,  and N is the 
number of element nodal points.43 

Using equations (28) and (29) to evaluate the displacement derivatives required in the integrals, 
equation (26) becomes, considering a single element 

( d K L + 6 K N L ) ~  = '+A'R-dF (30) 

where dKLu, ~KNLu and dF are obtained from the finite element evaluation of Jov OCijrs oer, x 
hoeij 'du, JC," dS,, h,v],, Odu, and Jov $,, hoeii Odu, respectively, i.e. 

The vector ""R in equation (30) is obtained from the finite element evaluation of equation (8)  
in the usual way.43 In the above equations, dB, and dBN, are linear and non-linear strain- 
displacement transformation matrices, ,C is the incremental material property matrix, $3 is a 
matrix of 2nd Piola-Kirchhoff stresses, and ,$ is a vector of these stresses. All matrix elements 
correspond to the configuration at time t and are defined with respect to the configuration 
at time 0. 

Similarly, the finite element solution of equation (27), which was obtained using the U.L. 
formulation, results into 

(34) (:KL + :KN,)u = ' '"R - :F 

where 
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and 

DEFORMATION DYNAMIC ANALYSIS 

:F zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= l, :BI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA‘Z ‘dv 

In Equations (35) to (37) the elements of the linear and non-linear strain-displacement trans- 
formation matrices :BL and :BNL, respectively, and the elements of the incremental material 
property matrix ‘C correspond to and are defined with respect to the configuration at time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
‘t is a matrix and ‘Z is a vector of Cauchy stresses in the configuration at time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt .  

It should be noted that the elements of the matrices in equations (30) to (37) are functions of 
the natural element co-ordinates and that the volume integrations are performed using a co- 
ordinate change from Cartesian to natural ~ o - o r d i n a t e s . ~ ~  Table I gives the strain-displacement 
and stress matrices used for two-dimensional (plane stress, plane strain and axisymmetric) 
analysis in the U.L. and T.L. formulations. Figure 2 shows the 4 to 8 variable-number-nodes 
element that has been used in the sample  solution^.^ 

Figure 2. Two-dimensional element shown in the global ‘x, -‘x2 plane 

Dynamic analysis 

In dynamic analysis, the applied body forces include inertia forces. Assuming that the mass 
of the body considered is preserved, the mass matrix can in both formulations be evaluated 
prior to the time integration using the initial configuration at time 0 as reference. Employing the 
standard finite element formulation to evaluate the element mass matrix,43 the incremental 
equilibrium equation for a single element in the T.L. formulation is 
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Table I. Matrices used in two-dimensional analysis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

~~~ ~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Total Lagrangian formulation 

Incremental strains zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
OEl I = 0 U I . I  +du, , ,  o u l , 1 + d u 2 . 1  o u 2 . 1  + t [ ( o u l . l ) 2 + ( o U 2 , 1 ) 2 1  

OE22 = o u 2 , 2 + d u 1 , 2  O U 1 . 2 + d U 2 . 2  o u 2 . 2  + f [ ( o U 1 . 2 ) 2 + ( O U 2 . 2 ) 2 1  

0 8 1 2  = t [ o u I . 2 + 0 ~ 2 . l l + f [ d ~ 1 , 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAou1.2+du2,1 O U 2 . 2 + d U I . Z  0 U I . l  + d u 2 , 2  O U 2 , l l + t [ O U 1 . 1  O U l . 2 + 0 U 2 . 1  o u 2 . 2 1  

(axisymmetric analysis) 

where 

Linear strain-displacement transformation matrix 
Using 

oe = dBLu 

where 

oeT = [oei I 0 e 2 2  20e12 oe33l; 

and 

0 3 L  = 03L.o f O B L 1  

dBL0 = 

where 
N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

ur = l + A ' u ~ - ' u ~ ;  OX1 = 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh, Ox; ; N = number of nodes 
ah zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

k =  1 
oh,,j = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 ' 

d o x j  

4 3 0 -  1 0 0 

." I l l  Oh, , ,  I 2 1  O h , , ,  

' ' ' I 1 2  OhN.2  I 2 2  OhN,2 

'.. ( I l l  OhN.2+112 O h , , , )  ( I 2 1  O h N . 2 + h 2  

0 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN 

Non-linear strain-displacement transformation matrix 

2nd Piola-Kirchhoff stress matrix and vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 -  ,s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 

$33 

Updated Lagrangian formulation 

& I 2  = t [ r ~ l . 2 + ' ~ 2 . l l + t [ r ~ 1 . 1  rul.2+'~2.1 P2.21 

(axisymmetric analysis) 

where 
aui 
a t x j  

= - 

Linear strain-displacement transformation matrix 

Using 

where 

:BL = 

re = :B,u 

- 'I. 0 . . .  " 0  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA'X 
1% 

h2 0 - 
'X 

h1 0 
'3 
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Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI-continued 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu; = ' + A ' u ~ - ' u ~ ;  'xi = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf h,'.w: ; N = number of nodes 

1 h . j  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAalxj zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

Non-linear struin-displacement transformation matrix 

$ 1 . 1  0 $2.1 rh3 .1  ' " r h N . I  

i h I . 2  ih2 .2  i h 3 . 2  ' '  ' rhN.Z 

0 [ h i , ,  0 1h2.1  0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlh3.1 . . .  thN.I 

0 i h l . 2  0 & 2 , 2  0 h 3 . 2  . .  thN,2  1" 0 5 0  - " 3  0 . . .  h " 0  
'X 'X 1 'X 'X 

Cuuchy stress matrix and stress oector 

0 

'712 0 

' 7 2 2  

0 

0 _j; 
0 

'533 

1- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t =  Ij] 

and in the U.L. formulation this equation is 

(:KL+:KNL)u = f+AfR-iF-M U (39) 

where f+Afii  is a vector of the element nodal point accelerations at time t + At, and M is the element 
mass matrix calculated at time 0. In integrations (38) and (39), damping effects defined by a 
matrix C have been i g n ~ r e d . ~  

Equilibrium iteration 

It is important to realize that equations (38) and (39) are only approximations to  the actual 
equations to be solved in each time step, i.e. equations (7) and (16), respectively. Depending 
on the non-linearities in the system, the linearization of equations (15) and (23) may introduce 
errors which ultimately result into solution instability. For this reason it may be necessary to 
iterate in each load step until, within the necessary assumptions on the variation of the material 
constants and the numerical time integration, equations (7) and (16) are satisfied to a required 
tolerance. The equation used in the T.L. formulation is 

(40) (:K, + :KNL) A d '  1 )  - - f+AtR-'+%F('-l)-M f + A t i j ( i )  i = 1, 2 , 3 . .  . 

+ Adi ) .  where f + A f  ( i )  - l + A f u ( i -  1)  u -  
It should be noted that for i = 1 equation (40) corresponds to equation (38), i.e. A d 1 )  = u, 

r + A r . . ( l )  U = f + A f "  > u  I+AL (0) = f u, and f+AiF(o) = dF. 

The calculation of the acceleration approximation '+A'U(i) depends on the time integration 
scheme used. 

The vector of nodal point forces equivalent to the element stresses, '+%F('), is the finite element 
evaluation of j,," '+.!$;j' 8+%~$)  Odr, where the superscript ( i )  shows that stresses and strains are 
evaluated using L + A r ~ ( i ) .  Since 6 L + A ; ~ i j  = ~ ( 8 0 u i , j + 8 0 u j , i + f + A ~ u k , i  8ouk, j+L+%uk, j  8ouk,i), the 
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in which the matrices zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA“$Bf) and 
but are defined for time t + A t  and iteration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(i), respectively. 

,S correspond to the matrices dB, and ds in Table I ,  

In the U.L. formulation the equation used for a single element with equilibrium iteration is 

in which the ith displacement and acceleration approximations are calculated as above and 
r+ArF IS the finite element evaluation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt + A t  ( i ) ’  

where :Ii:Bg) and correspond to the matrices :B, and ‘i in Table I, respectively, but are 
defined for time t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ At and iteration (i), respectively. 

It may be noted that the equilibrium iterations correspond to a modified Newton iteration 
within each load step.43 Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 summarizes the step-by-step algorithm used. For details on 
the Wilson 8 and Newmark integration schemes see References 4, 5, 31. 

Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11. Summary of step-by-step integration 

Initial calculations 
1. Form mass matrix M ; initialize Ou, ‘1, ‘ii 
2. Calculate the following constants : 

nitem 2 3 ;  to1 < 0.01 ; 

Wilson zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 method : 8 2 1.37, usually 8 = 1.4, T = 8 At 

a,  = 615, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa ,  = 615 a, = 2 

a3 = a,/@ 

ab = At12 

Newmark method : 8 = 1.0,6 2 0.50, a 2 0.25 (0.5 + S)’, T = Af  

a,  = l/(a At2) 

a3 = uo u4 = - a ,  u5 = -a2 

ab = At(1-6) u,  = 6 A t  

in static analysis 8 = I and go to A. 

a4 = -a , /@ 

a ,  = At2/6 

a5 = 1 - 318 

a ,  = l /(a At) a, = 1/(2a)- 1 

3. Calculate mass contribution to effective stiffness matrix : K = a,M 

For each time step 

A. Calculation of Displacement increment 
(i) If a new stiffness matrix is to be formed, calculate and triangularize ‘K : 

‘K = x + K ;  = LDLT 

(ii) Form effective load vector : 

‘ +‘R = ‘R + 8(““R - ‘R) +M(a, ‘u+a, ‘ i i -  ‘F 
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Table 11-continued 

(iii) Solve for displacement increments using latest D, L factors: 

L D L T ~  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ + r f i  

(iv) I f  required, iterate for dynamic equilibrium; then initialize do) = u, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi = 0 
(a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi = i + l  
(b) Calculate ( i  - I)st approximation to accelerations and displacements : 

t + x ( i - l )  - - a o u ~ i - l ~ ~ a l ~ ~ ~ a z r ~ ~  t + r  u -  ( i - I )  - ~ ~ + , , ( i - l )  

(c) Calculate ( i -  I)st effective out-of-balance loads : 
I +rf i ( i -  I )  = IR + O(I+ AIR - IR )  - M I  + rh(i- I - I + rF(i  - I ) 

(d) Solve for ith correction to displacement increments : 
LDLT Au(il = I + rf i ( i  - I I 

(e) Calculate new displacement increments : 
u ( i - 1 )  +Au(" 

( f )  Iteration convergence if ~ ~ A U ( ~ ) ~ ~ ~ / ~ ~ U ( ~ ) + * U I I ~  < to1 

If convergence: u = di) and go to B; 

If no convergence and i < nitem: go to (a); otherwise restart using new stiffness matrix and/or a 
smaller time step size. 

B. Calculate new accelerations, velocities zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand displacements 
Wilson 0 method : 

I + A ' i i  = a,u+a,~i+a, ' i i  

u + t i )  r+At"  = r"+a6(1+AI-  

I + A1 u = ' ~ + A t ' U + a , ( ' ~ ~ ' U + 2 ' i i )  

Newmark method : 
I + AI.. u = a,u+a,'i+a,'ii 

l + A l U  = l u + a 6 1 i i + a , f + A l -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU 

t + A r  u = 'U+U 

CONSTITUTIVE RELATIONS 

An important aspect in the solution of non-linear problems is the calculation of the constitutive 
tensors, which define the stress-strain matrices in the finite element evaluations. In the iso- 
parametric finite element discretization it is necessary to evaluate the stress-strain matrices 
at the element integration points, and they are required for the calculation of the element stiffness 
matrices and stress vectors. 

Linear elasticity and hyperelasticity 

T.L. formulation the stress-strain relations are' 
Elastic and hyperelastic materials are relatively easy to deal with in practical analyses. In the 

dsij = d c i j r s  &rs (44) 

where isij is the 2nd Piola-Kirchhoff stress tensor, &,, is the Green-Lagrange strain tensor and 
dCijrs is the material property tensor in the configuration at time t .  The relation in equation (44) 
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can be written for all configurations at time 0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAt, 2 A t , .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . 
tutive relation equivalent to equation (44) is 

. In the U.L. formulation the consti- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
‘T..=‘c.. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi j  1 i j r s  ‘& rs (45) 

in which ‘ T ~ ~  is the Cauchy stress tensor, ‘E, ,  is the Almansi strain tensor and :Cijrs is the material 
property tensor at time t. 

Considering linear elasticity dCijrs and :Cijrs are both constant and defined in terms of the 
Young’s moduli and Poisson’s ratios of the material. However, it should be noted that specifying 
constant iCijrs is equivalent to using a material tensor dCijrs, which is deformation dependent, 
and vice uersa ; namely the following relations exist 

(46) 
P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 0  

P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

d l c m n p q  = 7 %m,i 9 x n . j  i C i j r s  1Xp . r  1 x q . s  

The constitutive relations in equations (44) and (45) are used in the evaluation of the element 
stress matrices and stress vectors (see Table I), i.e. total 2nd Piola-Kirchhoff and Cauchy stresses 
are calculated directly from total Green-Lagrange and Almansi strains, respectively. However, 
in the calculation ofthe linear strain stiffness matrices at time t ,  tangent material property tensors 
are required. In the T.L. and U.L. formulations the relations considered are Jij = OCijrs o ~ r s  and 
Jij = tCijrs ‘ E , ~ ,  respectively, in which, for linear elasticity, 

Considering hyperelasticity the stress-strain relations are derived from the strain energy 
function. 11*19*33 In this study the constitutive relations defining isij and oCijrs in terms of the 
Green--Lagrange strain at time t for a rubber-like material in plane stress conditions have been 
d e r i ~ e d . ~ . ‘ ~  Therefore, to use the U.L. formulation, it is necessary to transform isij and OCijrs 
to ‘zij and ‘Ci jrsr respectively, as expressed in equations (5) and (47). 

It is important to note that in the analysis of elastic and hyperelastic materials identical 
numerical results are obtained using the T.L. and U.L. formulations provided the material 
tensors are related as given in equations (46) and (47). Also, since the material constants are 
independent of the history of solution, analysis errors result only from the isoparametric finite 
element formulation and the time integration scheme, provided equilibrium iterations are 
performed. Therefore, in the analysis of elastic and hyperelastic materials the analysis errors 
are quite similar to those in small displacement linear elastic analysis. 

Hypoelasticity including elastoplasticity 

For hypoelastic materials the constitutive tensors relate increments in stresses to increments 
in deformations.” Since the constitutive relations depend, in general, on the stress and strain 
history, the use of a material law corresponding to the T.L. or the U.L. formulation must depend 
to a large degree on the possibility of performing experiments to obtain the appropriate material 
constants. In this context it should be noted that a great deal ofadditional research is still required 
to formulate and evaluate appropriate material constants for hypoelastic materials, in particular, 
for the identification of large strain behaviour. 19,22,23 Although the formulations presented 
below are applicable to large strain conditions, in actual practical analysis the material law is 
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most likely to be defined only for small  strain^.^ An important such case here included is the 
elastic-plastic material behaviour characterized using the flow theory, which can be used in 
the analysis of large displacement but small strain problems. 

Using the T.L. formulation, hypoelastic material behaviour can be described using equation 
(14), i.e. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

O s i j  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA== OCijrs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA08,s (14) 

in which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAoCijrs depends on the history of the Green-Lagrange strains and 2nd Piola-Kirchhoff 
stresses. The stresses at time t + At are calculated using equation (9), i.e. 

(9) 

In the analysis using equations (14) and (9) it is assumed that the material tensor OCijrs is 
evaluated in the same way as in small displacement analysis, but the stress and strain variables 
of the T.L. formulation are used to define the history of the material. A main advantage of adopt- 
ing this material description is that it is relatively simple to use. Namely, assume that a subroutine 
to calculate the material law in small displacement analysis has been written ; then the same 
program would also calculate OCijrs in large displacement analysis by simply using Green- 
Lagrange strains and 2nd Piola-Kirchhoff stresses to define the stress and strain history. 

Similarly to equation (14), in the U.L. formulation hypoelastic material behaviour may be 
described using equation (22), i.e. 

f+JrS.. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlJ = ;Sij+osij 

J i j  = rc.. ijrs r & rs (22) 

in which lCijrs is defined by the history of Cauchy stresses and the accumulation of the instan- 
taneous plastic strain increments. The constitutive relation in equation (22) may be more appeal- 
ing than the T.L. material law in equation (14) since physical stress components are used to 
define the material constants, and r ~ r s  approximated by lers can kinematically be understood to 
be the addition of elastic and plastic strain increments, just as in small displacement analysis. 
Having calculated ,Si j  ,from the relation J i j  = Cijrs ersr the Cauchy stresses at time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt +At  are 
obtained using equation (1 7), i.e. 

(17) t + A t s . .  = '.r..+ s.. 
f I J  ij r I J  

and the transformation 
r + A i  

(50) 
r + A r T  - pi +Arx  , f + A r S , .  r + Ar 

I S,L I IJ I X r , j  
-- 

sr rP 

A third possibility is to characterize the material behaviour using a stress rate which is defined 
with respect to the current moving co-ordinates within the time interval t to t+At ." . '5*16 ,23  

The stress rate used must be invariant with respect to rigid body rotations, and one possibility 
is to use the Jaumann stress rate, which, at time t ,  is defined as 

where D/Dt denotes time derivative with 'xi, i = 1,2,3, kept constant, 

D 'r?. = c.. - e 
lJ ' l J r S  Dt' Is 



LARGE DEFORMATION DYNAMIC ANALYSIS 369 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ p j  are the Cartesian components of the spin tensor, 

Equations (51) to (53) need to be considered in the evaluation of the tangent stiffness matrix 
and in the calculation of the current stress conditions. The constitutive tensor relating the Jau- 
mann stress rate tensor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA‘z; to the incremental strain rate tensor (D/Dt),e,, is calculated in the 
same way as in small displacement analysis, but using Cauchy stresses to define the history of the 
material. In the evaluation of the linear strain tangent stiffness matrix, instead of equation (22), 
the following approximate relation may be used, 

Dir i j  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA‘Cijrs ie,s (54) 

where D signifies ‘discrete increment in’, and therefore Diers = ,e,,. Considering the calculation 
of Cauchy stresses at time t+At, it is important to use equations (51) to (53) in small 
enough increments of time. In elastic-plastic analysis it is in any case necessary to evaluate the 
stress increments by numerical integration of the elastic-plastic material law times the strain 
increments, and it is efficient to include equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(51) in this integration. 

In this study the T.L. material description using equations (14) and (9) and the U.L. material 
descriptions given in equations (22), (17), (50) and in equations (51) to (54) have been implemented. 
The U.L. formulations will be referred to as U.L. with transformation, U.L.(T), and U.L. with 
Jaumann stress rate, U.L. (J), respectively. The calculation of the elastic-plastic material constants 
and stress vectors in the T.L., U.L.(T) and U.L.(J) formulations is presented in detail in Reference4. 

In the above enumeration it was assumed that the solution procedure, namely the T.L. or U.L. 
formulation, is chosen according to the definition of the constitutive tensor. Since the constitutive 
tensor is dependent on stress and strain quantities, it is expedient to use the specific incremental 
finite element formulation, for which the material law is defined. If this is not done, it is necessary 
to evaluate the required stress and strain quantities for the calculation of the material constants 
and transform the constitutive relations using equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(46) or equation (47). 

DEFORMATION DEPENDENT LOADING 

So far it has been assumed that the loads are independent of the configuration of the body. 
In practice, therefore, the external loads for each step can be calculated and stored on back-up 
storage before the actual time integration is carried out. However, when the structure undergoes 
large displacements or large strains it may be necessary to  consider the externally applied loads 
to be configuration dependent. 

An important type of loading, which may need to be considered as deformation dependent, 
is pressure loading.33 In this case the loading to be used in the T.L. formulation is 

and in the U.L. formulation 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA‘n, = component zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi of the normal n in the configuration at time t ,  and similarly for time 0, 
and r+A‘p = surface pressure in the configuration at time t+At. Equation (55) can be written 
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in the form 

and similarly equation (56) becomes 

where in both formulations the first integral enters the load vector and, assuming that r + A t ~ i , k  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 

the second integral contributes to the system tangent stiffness matrix. It should be noted 
that this is a non-symmetric contribution to the stiffness matrix, and is therefore, in practice, 
computationally inefficient to handle. Using equilibrium iterations, it appears more efficient, 
at least when pressures are reasonably small, to neglect the contribution of the pressure loads 
to the stiffness matrix. In the iteration the loads are then evaluated as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa O x i  Oni0da and -' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 
____ 

, + A t  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( j )  t + A t p m  
P a x k  

I + A I  ( j )  I+AIda(j) 
nk 

in the T.L. and U.L. formulations, respectively, where the right superscript ( j )  indicates the 
configuration of the iteration. It is seen that although the same approximations are involved 
in both formulations, the U.L. formulation requires less numerical operations and seems more 
natural to use. 

SAMPLE SOLUTIONS 

All solutions presented in the following have been obtained using the algorithm presented in 
Table 11, in which the selected parameters were to1 = 0.001, nitem = 15, 8 = 1.4, 6 = 0.50 and 
u = 0.25. No attempt was made to optimize the solution times by selecting the most effective 
load step increments. In the dynamic analyses, nearly always one or two equilibrium iterations 
were sufficierit in each time step and the computer time used was in all analyses rather small. 

The time step used in an analysis is denoted by At and was selected as a reasonable fraction 
of the fundamental period, Tf, of the structure at time 0. In all dynamic analyses zero initial 
conditions on the displacements, velocities and accelerations were assumed. 

For the finite element discretization 4- or 8-node two-dimensional elements have been 
employed (Figure 2). The material properties given have always been assumed to be defined 
corresponding to the specific formulation used for solution. 

Large displacement static and dynamic analysis of a cantilever 

The cantilever in Figure 3 under uniformly distributed load was analyzed using the T.L. and 
U.L. formulations. The cantilever was idealized using five 8-node plane stress elements. 

Static solutions were obtained for the loading retaining its vertical direction, and for the 
loading remaining perpendicular to the top and bottom surfaces of the cantilever, i.e. deformation 
dependent follower loading. In the finite element solution the follower loading can be defined 
by specifying the direction of the nodal loads to pass through two nodal points, the co-ordinates 
of which are updated in each load step. In this specific analysis, the top and bottom surface nodal 
points of the cantilever have been used to define the direction of the loading. In addition to the 
U.L. and T.L. formulations also the U.L.(T) and U.L.(J) formulations have been used in the 
solution for deformation independent loading, in order to assess the accuracy that may be 
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Figure 3. Cantilever under uniformly distributed load zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
expected in elastic-plastic analysis. It is seen that, to the precision possible to show in Figure 4, 
the T.L., U.L., U.L.(T) and U.L.(J) solutions predict the same response (although the same zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE and v 
have been used in each analysis, Figure 3) and that excellent agreement has been obtained with 
an analytical solution 

J 

2 

9 
0 
I- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 

E 
V 
w 
-I lL 

w 
n 

reported by H01den.I~ 

I I I I / I  

10 
0 .o 

0 2 4 6 8 

LOAD PARAMETER K =  

Figure 4. Large deflection analysis of cantilever under uniformly distributed load 

For the dynamic analysis the T.L. formulation was selected. Figure 5 shows the results obtained 
using the Newmark integration scheme. It is seen that the solution predicted using a time step 
At z Tf/42, where T, is the fundamental period of the cantilever, is significantly different from 
the solution obtained with the smaller time step At zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz T,/126, unless equilibrium iterations are 
used. An average of 4 iterations per time step were required. The analysis therefore shows the 
importance of using equilibrium iterations in the response calculations of this structure, unless 
a small time step, At, is used. 

It should be noted that a main characteristic of the cantilever is that the structure stiffens with 
increasing displacement, which, as shown in Figure 5, results in a substantial decrease in ampli- 
tude and effective period of vibration. It is the stiffening of a structure that can result in con- 
vergence difficulties in equilibrium i t e r a t i ~ n . ~  
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Figure 5. Large displacement dynamic response of cantilever under uniformly distributed load, Newmark method 
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Static large displacement analysis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof a spherical shell 

The clamped shallow spherical shell in Figure 6 subjected to uniform pressure was analyzed 
using a finite element idealization of eight 8-node elements. 

Figure 6 shows the load deflection curve predicted using the T.L. formulation. In the analysis, 
36 load steps with an average of about 3 to 4 equilibrium iterations in each step were used. 
The results are compared with an analytical solution of Kornishin and Isanbaeva,2’ and a finite 
element solution of Yeh.42 As shown, good agreement between the different solutions has been 
obtained. Since equilibrium iterations were performed in the present solution, the oscillating 
behaviour at the beginning of the post-buckling range in Yeh’s solution was not obtained. 

The U.L. formulation gave almost indistinguishable results to those of the T.L. formulation. 

Static and dynamic large displacement analysis of a second spherical shell 

The spherical shell subjected to a concentrated apex load shown in Figure 7 was analyzed 
for static and dynamic response. 

Figure 7 shows the static load-deflection response predicted in this study and by Stricklin3’ 
and Mes~al l .~ ’  Good agreement between the different solutions has been obtained. In the present 
solutions, the T.L. and U.L. formulations were used and no equilibrium iterations have been 
performed. In addition, to assess the accuracy that may be obtained in elastic-plastic analysis, 
the U.L.(T) and U.L.(J) formulations have been used. Figure 8 compares the T.L. response predic- 
tions with two U.L.(T) and U.L.(J) solutions. It is seen that the U.L.(T) and U.L.(J) solutions 
approach the T.L. solution as the load steps become smaller. 

The dynamic response calculated using the Wilson 6 integration method when the apex load 
is applied as a step load is shown in Figure 9. It is observed that for this problem the differences 
between the solutions using equilibrium iteration and not iterating for equilibrium are small. 
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Figure 6. Load-deflection curve for a shallow spherical shell 

The much larger response and effective period predicted in the non-linear analysis is a result 
of the softening behaviour of the structure with increasing load. It should be noted that in the 
analysis of this highly non-linear shell no difficulties were encountered using the Wilson or the 
Newmark integration methods, and practically identical results were ~ b t a i n e d . ~  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Large displacement static buckling analysis of an arch 

The clamped circular arch shown in Figure 10 was analyzed for buckling due to a single 
static load using the T.L. and U.L. formulations with equilibrium iterations. 

Figure 10 shows the calculated load-deflection curve of the arch. The differences in the displace- 
ments calculated using the U.L. and T.L. formulations were less than two per cent. The solutions 
were obtained using 28 load steps with an average of two to three equilibrium iterations per step. 

The same arch was also analyzed by Mallet and Berke, who used four 'equilibrium-based' 
elements.24 Dupuis and many others, analyzed the arch with curved beam elements, and used 
this example to demonstrate the convergence of their Lagrangian and 'updated' formulations.' 
In the latter formulation only the nodal points were updated, but -not the geometry within the 
elements. As shown in Figure 10, the results are very sensitive to the number of elements used 
and are not satisfactory. Dupuis and many others, also compared the calculated results with 
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Figure 7. Load-deflection curves for spherical shell 

experimental results by Gjelsvik and Bodner,I2 whose predicted buckling load is about 10 
per cent lower than that calculated by Mallet. However, it need be realized that an arch with a 
parameter 1 = 11.6 is already influenced by antisymmetric buckling modes, which, although 
possible in the experiment, have not been taken account of in t h e a n a l y ~ e s . ~ ~  The results obtained 
in this study are therefore satisfactory. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Elastic dynamic snap buckling of a second arch 

A dynamic buckling analysis of the circular arch shown in Figure 11 was carried out. The 
material of the arch was assumed to be isotropic linear elastic. 

In the analyses the T.L. formulation was used. The uniformly distributed pressure load was 
applied as a step load. The time step to fundamental period ratio, At/T, ,  was approximately 1/70. 

The arch is an example of Humphreys’ analytical and experimental investigation, who solved 
the governing differential equation using an analogue computer. l 8  Humphreys concluded that 
the buckling load of this arch is not influenced by antisymmetric modes. 

Figure 12 shows the displacement response predicted in this study using the Wilson 8 integra- 
tion scheme. The solution obtained by Humphreys is also shown. In the Figure, the deflection 
ratio A defined as 

average normal deflection w 

average rise of arch = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH / 2  
A =  
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is used. The dynamic buckling of the arch occurs at that load level at which a sudden increase 
in the deflection ratio A is measured. Figure 12 shows that at po = 0.190 the arch oscillates about 
a position of approximately A = 0.25, and that at p o  = 0.200 the arch first snaps through, and 
then oscillates about a position of approximately A = 2.5. Therefore, the buckling load predicted 
here lies betweenp, = 0.190and po = 0.200, which is about five per cent lower than that predicted 
by Humphreys. 

It should be noted that for a load larger than the buckling load, i.e. for po = 0.25, the maximum 
response increases only little. The results for p, = 0.250 are in essential agreement with 
Humphreys' results, where the slightly larger response agrees with the observation that a smaller 
buckling load was predicted in this study. The discrepancies in the results can arise from approxi- 
mations in either analysis. Humphreys' series solution is based on the assumption of shallowness, 
i.e. q and w are measured vertically, and in the series solution only a finite number of terms have 
been included. 

It is noted that in a practical analysis damping should be included and a longer time range may 
be considered as well. 

Large displacement and large strain static and dynamic analysis of a rubber sheet with a hole 

A plane stress analysis of the rubber sheet shown in Figure 13 was carried out. The purpose of 
this analysis was to test the capability of predicting static and dynamic large strain response. 

The material of the rubber sheet was assumed to be of Mooney-Rivlin type. The specific 
material constants used for the hyperelastic incompressible material were C, = 25 psi, C, = 
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7 psi. These constants are based on an analytical and experimental investigation of the rubber 
sheet by Iding.’’ The finite element mesh used in the analysis is presented in Figure 13. 

Figure 14 shows the static load deflection curves for different points on the sheet. Only five 
equal load increments with an average of four equilibrium iterations have been used to reach the 
final load position with a displacement of more than 11 in at point B. At this stage Green- 
Lagrange strains of more than 4.5 are measured, see Figure 15. The results obtained are in 
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Figure 12. Dynamic snap-through of a shallow circular arch Wilson 0 method, 0 = 1.4 
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excellent agreement with those of Iding. The results of Iding have been obtained with the com- 
puter program developed in Reference 19, but are not given in the Reference. 

The dynamic analysis was performed for the step load shown in Figure 16 using the Wilson 8 
and Newmark integration schemes with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAt/Tf  2 120. 

Figure 16 compares the displacement response predicted using the two integration methods. 
As is seen, practically the same response was calculated using the Wilson 8 and the Newmark 
methods. In addition, it should be noted that identical solutions have been obtained using either 
integration scheme and an interval of stiffness reformation of 10, 5 or 1 time steps (see Table 11). 
This should be expected, since the solution is unique for the selected time step At.  

Elastic-plastic large displacement dynamic analysis of a third spherical shell 

The dynamic response of the spherical shell in Figure 17 subjected to a distributed step pressure 
p = 600 lb/in2 was calculated. The material was assumed to obey the von Mises yield condition 
with linear isotropic hardening. The purpose of this analysis was to compare the results obtained 
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Figure 14. Static load-deflection curve zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor a rubber sheet with hole 

using the various non-linear large displacement formulations available for elastic-plastic response 
calculations. 

Figure 17 shows the dynamic response of the cap predicted using the Newmark time integra- 
tion scheme in linear analysis, materially non-linear only analysis, i.e. assuming small displace- 
ments and small strains, and combined geometrically and materially non-linear analysis. In the 
fully non-linear analysis the solutions using the T.L., U.L.(T) and U.L.(J) formulations have 
been obtained. It is observed that all three formulations predict essentially the same response. 
The reason for obtaining almost identical solutions lies partly in that the mathematical repre- 
sentation of the yield function is almost the same in the 2nd Piola-Kirchhoff stress space arid 
the Cauchy stress space. Namely, in problems of small strains but large rotations, such as in the 
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Figure 16. Displacements versus time for rubber sheet with hole. T.L. solution with equilibrium iterations 

analysis of shells, the physical components of the Cauchy stress tensor in rotated (surface) 
co-ordinates are approximately equal to the Cartesian components of the 2nd Piola-Kirchhoff 
stress tensor. 

The solutions in Figure 17 demonstrate the effect of including different degrees of non- 
linearities. It is observed that the materially non-linear only solution differs a great deal from the 
linear elastic response, and that the effect of large displacements is also significant. The decrease 
in amplitude of vibration and increase in the mean deflection of the shell when non-linearities 
are taken into account should be noted. 

The response of the cap was also calculated using the Wilson zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 method, which gave practically 
the same  result^.^ 

A comparison of the results obtained in this study with those calculated by NagarajanZ9 
is given in Figure 18. Nagarajan used degenerate isoparametric elements, in which it is assumed 
that the transverse normal stresses are negligibly small. This assumption affects the effective 
stress patterns which control plastic loading and contributes to the different response predicted 
in his study. 

CONCLUSIONS 

The objective in this paper was to review, derive and evaluate finite element formulations for 
general non-linear static and dynamic analysis which have been implemented in the search for 
the most effective p r ~ c e d u r e . ~  The formulations have been derived from general principles of 
continuum mechanics and include material, large displacement and large strain non-linearities. 
The conceptual difference between the formulations is the reference configuration that is used 
for the linearization of the incremental equations of motion. In the T.L. formulation the initial 
configuration is used as reference, whereas in the U.L. formulations, the reference configuration 
corresponds to the last calculated configuration. 
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Figure 17. Large displacement dynamic elastic-plastic analysis of spherical cap. Newmark method. 6 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.50. 2 = 0.15 

A first important observation is that provided the constitutive tensors are defined appropri- 
ately, all formulations give the same numerical results. The only advantage of using one formula- 
tion rather than the others is its better numerical effectiveness. Theory and sample analyses 
show that in small strain but large displacement analyses the differences which arise by using the 
same material constants in the formulations-because, for instance, a clear definition of the 
constants may not be available-can be expected to be small. 

With regard to the numerical operations required, Table I shows that all matrices of the 
formulations have corresponding patterns of zero elements, except for the linear strain-displace- 
ment transformation matrices. In the T.L. formulation, this matrix is full, because of the initial 
displacement effect in the linear strain terms. Therefore, the calculation of the element matrices 
requires less time in the U.L. formulations. 

An advantage of the T.L. formulation is that the derivatives of the interpolation functions 
are with respect to the initial configuration, and therefore need only be formed once, if they are 
stored on back-up storage for use in all load steps. However, in practice, the use of tape or disc to 
store and retrieve the required derivatives in each step may be more costly than simply to re- 
calculate them, and, in particular, the required storage is a problem size governing factor since 
saturation of back-up storage may be reached. Auxiliary storage considerations are particularly 
important, if a considerable amount of stress and strain history need to be stored already. 

It should be noted that the U.L. formulations are quite different from the moving co-ordinate 
formulation presented in the survey paper by Stricklin and many  other^,"^ and the updated 
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Figure 18. Large displacement dynamic elastic-plastic analysis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof spherical cap, Newmark method 

formulation, which was used in the comparative study by Dupuis and many others.’ The incre- 
mental moving co-ordinate formulation surveyed by Stricklin and many  other^,^*,'^,^^ was 
stated to be restricted to small strains and have distinct computational disadvantages. These 
conclusions do not apply to the U.L. formulations used here. The ‘updated’ formulation employed 
by Dupuis and many others, in their comparative study of this formulation versus a Lagrangian 
formulation did not give satisfactory results.’ However, using the U.L. formulation with iso- 
parametric elements as presented in this paper, the results are as good as those obtained using 
the T.L. formulation. The only errors are due to the numerical solution of the governing con- 
tinuum mechanics equations. 

In general, using both the T.L. and the U.L. formulations equilibrium iterations should be 
performed in order to ensure an accurate solution and possibly dispense with the calculation of a 
new non-linear stiffness matrix in each load step. If no equilibrium iterations are carried out, the 
linearization can introduce uncontrolled large errors. In the elastic and hyperelastic analyses 
presented here, it was possible to calculate the stresses in the configuration at time t + A t  directly 
from the corresponding total strains. Therefore, the non-linear finite element equations have been 
solved ‘exactly’ within the assumptions of the time integration scheme and the convergence limit 
of the iteration. In path dependent problems this is not possible and total stresses are calculated 
by adding increments in stresses. 

An important consideration in path dependent problems is the definition and calculation of 
the constitutive tensors, which depends on the stress and strain history. A great deal of additional 
research is still required to identify various materials. Using the T.L. formulation, the effort to 
implement a non-linear constitutive relation can, in some cases, be less than in the U.L. formula- 
tion ; however, the appropriate material constants need be available. It is the ease of implementing 
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a new material law in a general non-linear analysis program that makes the T.L. formulation 
very attractive. 

In conclusion, both the U.L. or T.L. formulations can effectively be used in a general non- 
linear analysis program. It depends largely on the program design and the material constants 
available which formulation is most effective. 

APPENDIX zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N o  ration 

The following convention for tensor and vector subscripts and superscripts is employed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: 
A left superscript denotes the time of the configuration in which the quantity occurs. 
A left subscript can have two different meanings. If the quantity considered is a derivative, the 

left subscript denotes the time of the configuration, in which the co-ordinate is measured with 
respect to which is differentiated. Otherwise the left subscript denotes the time of the configura- 
tion in which the quantity is measured. 

Right lower case subscripts denote the components of a tensor or vector. Components are 
referred to a fixed Cartesian co-ordinate system; i,j, . . . = 1,2,3. Differentiation is denoted 
by a right lower case subscript following a comma, with the subscript indicating the co-ordinate 
with respect to which is differentiated. 

' A ,  ' A ,  '+A'A = Area of body in configuration at time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, t ,  t + At zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
dCijrs, :Cijrs = Component of constitutive tensor at time t referred to configuration at 

'Ci j rs,  J i j r s  = Component of tangent constitutive tensor at time t referred to configuration 

'+"dfi,::2:f, = Component of body force vector per unit mass in configuration at time 

h, = Finite element interpolation function associated with nodal point k 
(i) = Superscript indicating number of iteration 

time 0, t 

at time 0, t 

t + At referred to configuration at time 0, t + At 

On,, 'ni, r+"'ni = Component of surface normal in configuration at time 0, t, t + At 

f + A f p  = Pressure load at time t + A t  

t+AfW = External virtual work expression corresponding to configuration at time 
t + At, defined in equation (8) 

r,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs = Natural element co-ordinates 
isij, = Component of 2nd Piola-Kirchhoff stress tensor in configuration at time 

r+A:Sij = Component of 2nd Piola-Kirchhoff stress tensor in configuration at time 
t, t + At referred to configuration at time 0 

t + A t  referred to configuration at time t 
'Sij, Jij = Component of 2nd Piola-Kirchhoff stress increment at time t 
t, t + At = time t and t + At, before and after time increment At 

referred to configuration at time 0, t + At 

figuration at time t ,  t + At 

'+Adti,:12:ti = Component of surface traction vector in configuration at time t + A t ,  

ui = Component of displacement vector from initial position at time 0 to con- 

ui = Increment in displacement component, ui = r + A ' ~ i - ' ~ i  

'u f  = Displacement component of nodal point k in configuration at time t 
uf = Increment in 'uf 

f r + A f  
ui, 
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dui,j, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Derivative of displacement component to configuration at time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt ,  t + At with 
respect to co-ordinate Oxj zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x j ,  x j  

oui, j ,  l + A r ~ i , j  = Derivative of displacement increment with respect to co-ordinate 0 xj, 
I ( + A t  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

OV, ‘L‘,‘+A‘L‘ = Volume of body in configuration at time 0, t ,  t + A t  
I + A I  

Oxi, ‘xi ,  
Ox:, ‘x:, ‘ + A 1 ~ :  = Cartesian co-ordinate of nodal point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk in configuration at time 0, t ,  t + At 

xi = Cartesian co-ordinate in configuration at time 0, t ,  t + At 

= Derivative of co-ordinate in configuration at time 0, t with respect to 
co-ordinate Ixj, O x j  

6 = Denoting ‘variation in’ 
‘eij = Component of Almansi strain tensor in configuration at time t + At,  t ,  re- 

ferred to configuration at time 0 

t + At,  t ,  referred to configuration at time 0 
= Component of Green-Lagrange strain tensor in configuration at time t + A t ,  

referred to configuration at time t (i.e. using displacements from the con- 
figuration at time t to the configuration at time t + A t )  

= Component of strain increment tensor (Green-Lagrange) referred to 
configuration at time 0, t 

I + A I  o ~ i j ,  deij = Component of Green-Lagrange strain tensor in configuration at time 

o ~ i j ,  

oeij, ‘eij = Linear part of strain incrementosij, ,eij 
oylij. = Non-linear part of strain incrementoeij, 

p ,  Ip, = Specific mass of body in configuration at time 0, t ,  t + At 
I s i j ,  r+A‘sij = Component of Cauchy stress tensor in configuration at time t ,  t + At 

‘z: = Component of Jaumann stress rate tensor in configuration at time t 

Inpi = Component of spin tensor in configuration at time t 
0 

Mutrices 

dBL, iB, = Linear strain-displacement matrix in configuration at time t referred to 

AB,,, iBNL = Non-linear strain-displacement matrix in configuration at time t referred to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
oC,lC = Tangent material property matrix at time t and referred to configuration 

iF, :F = Vector of nodal point forces in configuration at time t (referred to configura- 

dKL, :KL = Linear strain stiffness matrix in configuration at time t (referred to configura- 

i K N L , f K N L  = Non-linear strain stiffness matrix in configuration at time t (referred to 

configuration at time 0, t 

configuration at time 0, t 

at time 0, t 

tion at time 0, t )  

tion at time 0, t )  

configuration at time 0, t )  
M = Mass matrix 

r + A r R  = Vector of external loads in configuration at time t + A t  
$3, ,$ = 2nd Piola-Kirchhoff stress matrix and vector in configuration at time t and 

referred to configuration at time 0 
‘T, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA‘z^ = Cauchy stress matrix and vector in configuration at time t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

‘u, ‘+%I = Vector of displacements at time t ,  t + At 
u = Vector of increhental displacements at time t 
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