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Abstract

Anisotropic material with inextensible fibers introduce constraints in the mathematical

formulations. This is always the case when fibers with high stiffness in a certain

direction are present and a relatively weak matrix material is supporting these fibers. In

numerical solution methods like the finite element method the presence of

constraints—in this case associated to a possible fiber inextensibility compared to a

matrix—lead to so called locking-phenomena. This can be overcome by special

interpolation schemes as has been discussed extensively for volume constraints like

incompressibility as well as contact constraints. For anisotropic material behaviour the

most severe case is related to inextensible fibers. In this paper a mixed method is

developed that can handle anisotropic materials with inextensible fibers that can be

relaxed to extensible fiber behaviour. For this purpose a classical ansatz, known from

the modeling of volume constraint is adopted leading stable elements that can be

used in the finite strain regime.

Keywords: Anisotropic material, Finite element analysis, Mixed methods, Constraints

Background

Many different approaches were developed over the last decade to formulate finite ele-

ments for anisotropic material with inextensible fibers. The problem is the high stiffness

ratio between fiber andmatrixmaterial with the limit case of inextensible fibers where this

ratio tends to infinity. This is physically related to the exact fulfilment of the kinematic

constraint associated with the inextensibility of fibers in certain directions.

Generally the method of Lagrange multipliers provides a possibility to fulfil such con-

straints for small andfinite deformations. In this paper the Lagrangemultiplier approach is

employed tomodel anisotropicmaterial behaviour at finite strains. Furthermore a relaxed

version, i.e., the perturbed Lagrangian formulation, is used to model extensible fibers as

well. Boundary value problems that incorporate extreme constraints cannot be solved

using the finite element method with standard displacement interpolations. This leads to

well known locking phenomena.

The main source of locking problems is that the mathematical formulation has to deal

with constraints or is set up such that constraints are fulfilled approximately, like in penalty

or other relatedmethods. These problems arewell-analyzed for geometrically linear prob-
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lems in the case of volume constraints, see e.g. [4,13,28,30]. They were investigated in

the mathematical community quite early, see [3,7], and are now well understood lead-

ing to the Babuska–Brezzi (BB) condition. It can be employed to investigate the stability

behaviour of mixed finite elements in the linear range. Within nonlinear problems the BB

condition can only be used at certain stages of the analysis, see e.g. [9].

Different strategies were pursued in computational mechanics over the last years in

order to circumvent locking effects. It became evident that element ansatz functions

that interpolate the deformation or displacement field within an element with first order

shape functions (bi- or tri-linear interpolation) do not converge properly when applied to

problems with constraints like incompressibility or distinct anisotropic material behav-

iour. Thus different variational formulations were explored in order to construct finite

elements that can be used for problems with constraints. Approaches include reduced

integration and stabilization, see e.g. [31] for the linear case. Many variants can be found

in the literature. It was shown that the reduced integration has to be used together with

stabilization and can be extended to nonlinear problems, see e.g. [6,17] leading to elements

that are in general locking free for incompressibie deformations. Additionally these ele-

ments are very efficient due to reduced integration. However stabilized elements rely on

artificial stabilization parameters and thus the numerical solution can depend on theses

parameters in certain cases.

Formulations, based on themixed variational principle ofHu-Washizu, were developed,

e.g. see Simo and co-workers who introduced the enhanced strain elements first for the

geometrically linear, e.g. see [24] and then for large deformations, [22,23]. However, these

elements depict non-physical instabilities at certain deformation states.

Othermixed finite element formulations, that are stable, performwell in the framework

of small deformations and isotropy, e.g. see [5,8]. Extensions to problems undergoing

finite deformations are discussed in [1,2] for the case of incompressibility. For finite strain

anisotropicmaterial behavior it is evenmore complex to find good finite element formula-

tions. Many classical approaches that were designed for fiber-reinforced materials depict

non-physical behavior, see e.g. [12,27]. Discussions related to the correct formulations

of the mathematical model for anisotropic behaviour can be found in e.g. [11,18]. These

authors state that all fiber-related terms have to be provided in the energy by the complete

deformation tensor and not by its isochoric part.

Reduced integration schemes using a special stabilization have been successfully applied

to the simulationof composite reinforcedmaterial, seeHamila andBoisse [10].Also special

interpolations eliminated locking behaviour for composite materials, see ten Thjie and

Akkerman [26]. Still many researchers use Hu-Washizu-based displacement, dilatation

and pressure formulations, early introduced for incompressible materials by [25], for

nearly incompressible materials with highly stiff fibers (like in arterial walls), see [29] and

the references therein. However for strongly anisotropic material with inextensible fibers

these approaches have limited performance, especially at finite strains.

A new formulation was presented in [21] who introduced a novel finite element

formulation that is developed especially for anisotropic materials, based on isotropic

tensor functions as discussed in [19,20]. There the constraints, associated with the

anisotropy, are controlled by an additional deformation measure. A second-order ten-

sorial Lagrange-multiplier was introduced via a discontinous ansatz. This approach

offers the opportunity to reduce the interpolation order of the anisotropic part and
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thus is able to relax the constraints due to anisotropy. This formulation leads to a sta-

ble methods for the solution of problems with anisotropic materials undergoing large

strains.

In this paper a different approach is followed. Here the constraint of inextensibility in

fiber directions is formulated as a constraint and also as a limiting case. For this purpose

a constraint equation is introduced within a Lagrange multiplier scheme. This allows

to select ansatz functions as well for the displacement field in fiber direction as for the

fiber forces. Additionally a perturbed Lagrangian formulation is introduced to relax the

constraint condition and to be able to introduce real fiber stiffnesses. Since it can happen

that fibers buckle locally when subjected to a compressive force a special form of the

constraint is introduced that acts only for tension states. Furthermore this formulation

can be used to enforce strain states in fiber direction that can be associatedwith e.g.muscle

contractions in biomechanics applications or specific piezoelectric effects in fibers.

The performance of the developed element formulations is compared to existing for-

mulations using benchmark problems. All numerical results were obtained with the

AceGen/AceFEM system developed in [14–16].

Anisotropic material with inextensible fibers behaviour at large strain

In this section a summary of the continuum mechanics background is provided for the

formulation of problems exhibiting anisotropic response in finite elasticity. The formu-

lation is reduced to the necessary equations that are needed to formulate the problem in

AceGen. This omits many derivations since automatic differentiation is used. All formu-

lations are presented with respect to the initial configuration. The formulation accounts

for transversely isotropic material behaviour by using a mixed approach. It is assumed

that the material is not extendable in the given fiber direction a.

Continuummechanics

Let us introduce the deformation ϕ(X, t) which maps points of the initial configuration

to the current or deformed configuration. This deformation can be computed using the

coordinates of the initial configuration and the displacement field: ϕ(X, t) = X + u(X, t).

Using this deformation map, the deformation gradient can be computed as

F = Gradϕ(X, t) = Grad (X + u(X, t)) = 1 + H, (1)

where H = Gradu(X, t). Note that the volume change J is defined as the determinant of

the deformation gradient: J = det F.

Based on the deformation gradient the Cauchy-Green tensor can be formulated as

C = FT F. (2)

Based on these kinematical quantities one can formulate a strain energy function for

hyperelastic materials. The following isotropic strain energy functionW iso can be used to

describe the behaviour of the isotropic part of the material:

W iso(u) =
μ

2
( trC − 3 − 2 log J ) +

λ

4
( J2 − 1 − 2 log J ), (3)

where μ and λ are the Lame constants, see e.g. [28]. Any other strain energy function that

describes hyperelastic material behaviour can be selected as well.
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Kinematical anisotropic constraint

The enforcement of the constraint that ensures that the material does not extend in the

direction a leads to the following condition

a · E a = 0, (4)

where E is the Green-Lagrangian strain tensor

E =
1

2
(FTF − 1) =

1

2
(C − 1). (5)

Since it is simpler to work with the right Cauchy Green tensor C = FTF this constraint

can be written as

2 a · E a = a · (C − 1) a = a · Ca − 1 for ‖a‖ = 1 (6)

Furthermore we can write, by substituting the structural tensorM,

a · Ca = C · M = tr[CM ] with M = a ⊗ a. (7)

It is easy to show that tr[CM ] yields the stretch in direction of a. Thus

λ2c = tr[CM ] (8)

which in case of a fiber constraint in the direction of a leads to λ2c = 1.

Lagrangemultiplier formulation

Based on these kinematical relations different constraints and associated forms of a

Lagrange multiplier approach can be formulated:

• One constraint. The Lagrange multiplier term related to the constraint of a material

that is not extendable in the direction a yields with (7)

W tiL(C, σc) = σc (tr[CM ] − 1) (9)

where σc is the Lagrangianmultiplier that physically represents the fiber stress related

to the constraint.

• Several constraints. For more than one constraint direction one can introduce nc

additional directional unit vectors ai and associated structural tensorsMi and refor-

mulate (9)

W tiL(C, σc i) =
nc

∑

i=1

σc i (tr[CMi ] − 1) (10)

• Constraints for tensiononly. In case that the response of the fiber systemonly occurs

in tension states (9) can be re-written by using theMacauley bracket: 〈x〉 = 1
2 (x+‖x‖).

This choice yields

W tiL(C, σc) = σc 〈tr[CM ] − 1〉α (11)

where α is a positive integer that can be selected in the range (1, . . . , 4).

• Constraints for a given stretch. If a stretch λ̄c is prescribed in a certain direction a,

then one can formulate, using (8), the constraint

W tiL(C, σc) = σc ( tr[CM ] − λ̄2c ). (12)



Wriggers et al. Adv. Model. and Simul. in Eng. Sci. (2016) 3:25 Page 5 of 18

Now one of the four variants ofW tiL(C, σc), discussed above, can be used to formulate

the final form of the strain energy

W (C(u), σ ) = W iso(C(u)) + W tiL(C(u), σc). (13)

All of the additions W tiL(C, σc) to the strain energy (3) lead to a pure mixed form since

unknowns are the displacement field u and the fiber stresses σc.

Perturbed Lagrangian formulation

Additionally there is the possibility to use a so called perturbed Lagrangian formulation

which can be stated as follows

W (C, σ ) = W iso(C) + W tipL(C, σ ). (14)

with

W tipL(C, σc) = σc (tr[CM ] − 1) −
1

2Cc
σ 2
c (15)

here again Cc is a penalty parameter. For Cc → ∞ (15) reduces to (13). The perturbed

Lagrangian formulation leads in the continuous version to a penalty method, but for

different ansatz spaces for σC and the displacement field u it can lead to a different finite

element scheme.

The perturbed Lagrangian formulation can also be used to introduce a fiber stiffness that

is related to the physical behaviour of the fiber. In that case Cc has a physical meaning.

Penalty formulation

Penalty methods provide a formulation that can approximate constraint equations by

introducing a penalty term related to the constraint. The associated formulations includes

the constraint (8) in the strain energy as follows

W p(C) = W iso(C) + W pen(C). (16)

with

W pen(C) =
Cc

2
(tr[CM ] − 1)2 (17)

here Cc is a penalty parameter. For Cc → ∞ (15) it can be shown that the constraint is

fulfilled exactly.1 The penalty formulation can also be used to introduce a certain fiber

stiffness that is related to the physical behaviour of the fiber. In that case Cc has a physical

meaning.

Mixed element formulation

For the mixed interpolation tetrahedral and hexahedral elements are selected and com-

pared. For both element formulations a quadratic interpolation for the displacement field

u and a linear interpolation for the mixed variable σc is selected. This choice is motivated

by the classical mixed formulation for the incompressibility constraint. For anisotropic

material with inextensive fiberss the variable σc is the stress component related to the

constraint, e.g. the stress in direction of a.

1It is well known that ill-conditioning can occur when a large penalty parameter Cc is selected. Thus in practise the

penalty formulation is only able to approximately enforce the constraint condition (8).
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Note that in the mixed form for the incompressibility with the constraint (J − 1), that

is related to the determinant of F, a cubic function of the components of the deformation

gradient describes this constraint. In the case of the constraint (9) for anisotropicmaterials

this function is only a quadratic formof the components of the deformation gradient. Thus

it is not obvious that the same choice for the interpolation of σc will be sufficient.2

For the formulation of the mixed finite element we start from Eq. (9). Thus one has to

compute the structural tensorM that depends on the vector a providing the direction of

anisotropy. Vector a is defined as a unit vector

a = {ax, ay, az} /

√

a2x + a2y + a2z . (18)

Now ansatz functions for the displacement field and the Lagrangian multiplier (fiber

stress) σc have to be formulated. The quadratic shape functions that approximate the

displacement field

ue =
nu
∑

I=1

NI (ξ , η, ζ )uI (19)

are given below

• for a tetrahedron with 10 nodes (nu = 10)

N1 = (2ξ − 1)ξ , N2 = (2η − 1)η, N3 = (2ζ − 1)ζ , N4 = (2κ − 1)κ ,

N5 = 4ξη, N6 = 4ηζ , N7 = 4ζ ξ , N8 = 4ξκ , N9 = 4ηκ , N10 = 4ζκ , (20)

with κ = 1 − ξ − η − ζ and

• a hexahedron with 27 nodes (nu = 27)

NI (ξ , η, ζ ) = NI (ξ )NI (η)NI (ζ ) (21)

with I = 1, . . . , 27. NI (s) is given for the vertex nodes by

NI (s) =
1

2
(1 − sI )[s(s − 1)] +

1

2
(1 + sI )[s(s + 1)]

for s being either ξ , η or ζ . Here sI is related to a specific coordinate of a vertex node of

the hexahedron in the space of the reference coordinates (ξ , η, ζ ) with ξI = {−1,+1},
ηI = {−1,+1} and ζI = {−1,+1}, see Fig. 1. For the mid nodes the shape function

NI (s) are given by

NI (s) = (1 − s2)

with ξI = 0, ηI = 0 and ζI = 0.

Furthermore, the linear shape functions for the interpolation of the Lagrangemultiplier

σc are defined for the tetrahedron with respect to the four edge nodes (nσ = 4)

Nσ 1 = ξ , Nσ 2 = η, Nσ 3 = ζ , Nσ 4 = κ (22)

and for the hexahedron with respect ot the eight edge nodes (nσ = 8 and K = 1, . . . , 8) as

Nσ K =
1

8
(1 + ξ ξK )(1 + η ηK )(1 + ζ ζK ) (23)

2In the linear case both conditions, while being different, yield a linear dependence on the components of the displace-

ment gradient. Thus there the choice of using the same ansatz function for the pressure (incompressibility) and the

fiber stress (anisotropy) is justified.
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Fig. 1 Nodes of the quadratic tetraedral and hexahedral element

these will be used to interpolate the Lagrange multiplier (fiber stress) σc related to the

constraint within the element

σc =
nσ
∑

K=1

Nσ K (ξ , η, ζ ) σK . (24)

Furthermore we need to define the coordinates within the finite element to formulate the

isoparametric mapping. With ζζζ = (ξ , η, ζ ) it follows

Xe =
nu
∑

J=1

NJ (ζζζ )XJ . (25)

Based on this ansatz functions the deformation gradient within an element e is computed

via

Fe = 1 + Gradue =
nu
∑

I=1

uI ⊗ J−T
e ∇ζ NI (26)

with the Jacobian of the isoparametric map

Je =
nu
∑

I=1

XI ⊗ ∇ζ NI .

Now the Jacobian Je of the deformation gradient Fe is obtained within the element by

Je = det Fe. Furthermore the Cauchy-Green tensor Ce and the trace of Ce M can then be

computed at the element level. The latter quantity is needed to formulate the constraint

(7).

In this contribution we will employ the tool AceGen to produce the finite element code.

With all these kinematic quantities, one of the above strain energies, e.g. in (14) can be

formulated. This is sufficient when AceGen is used to derive the element residual vector

and the tangent matrix. The essential part of the AceGen code, related to the perturbed

Lagrangian formulation is shown in Fig. 2.

Examples

Several numerical examples are considered to show the performance of the new formu-

lation for different loading cases. In these examples the following discretization schemes

are compared:
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Fig. 2 Part of the AceGen code for the mixed element based on a perturbed Lagrangian formulation for

transverely anisotropic material

• Tetrahedral elements for the constraint formulation (9), (10), (11) and (12) with

quadratic ansatz functions (21) for the deformations and linear ansatz, see (23), for

the Lagrangian multiplier σc. These elements are labeled T2-A1 in the following.

• Tetrahedral elements for the perturbed Lagrangian formulation (15) with quadratic

ansatz functions (20) for the deformations and linear ansatz, see (22), for the

Lagrangian multiplier σc. These elements are labeled T2-A1-P in the following.

• Hexahedral elements for the constraint formulation (9), (10), (11) and (12) with

quadratic ansatz functions (20) for the deformations and linear ansatz, see (22), for

the Lagrangian multiplier σc. These elements are labeled H2-A1 in the following.

• Hexahedral elements for the perturbed Lagragngian formulation (15) with quadratic

ansatz functions (21) for the deformations and linear ansatz, see (23), for the

Lagrangian multiplier σc. These elements are labeled H2-A1-P in the following.

For comparison reasons standard displacement elements were formulated as well as ele-

ments based on the penalty method (16). These elements are

• Tetrahedral elements based on the quadratic ansatz functions (20) for the deforma-

tions. These elements are labeled T2, and the associated penalty ones T2-P.

• Hexahedral elements based on the quadratic ansatz functions (21) for the deforma-

tions. These elements are labeled H2, and the associated penalty ones H2-P.

All examples are subjected to loads that lead to finite deformation strain states.

Cook’s membrane problem

An example that will show a clear anisotropic response is the Cook’s membrane problem

of a tapered cantilever beam, clamped at the left end. The structure is loaded at the right

end by a constant vertical load, as depicted in Fig. 3.
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Fig. 3 Initial configuration of the cantilever beam

The selected dates for the Lame constants are μ = 500 and λ = 1000. The direction of

anisotropy is given by a = 1√
3
{1, 1, 1}. In order to clamp the cantilever beam at its left end

all displacements at X = 0 were set to zero in x-, y- and z-direction. The total distributed

load is p0 = 250. It was applied in different loading steps, as will be discussed later.

Differentmeshdensitieswhere used to compute the solution, see Fig. 4 for the tetrahedra

and Fig. 5 for the hexahedra. The mesh sequence is selected such that the finer meshes

are included in the coarser meshes. This enables convergence studies that will depict

differences of the formulations. The number N denotes the mesh divison, see Table 1.

In a first computation a mesh with N = 16 was used to obtain the load displace-

ment curve for Cook’s membrane problem. The element used for this simulation was the

Fig. 4 Tetrahedral meshes of the cantilever beam with N = 2, 4, 8, 16
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Fig. 5 Hexahedral meshes of the cantilever beam with N = 2, 4, 8, 16

Table 1 Mesh density

N Mesh division

2 2 × 2 × 1

4 4 × 4 × 2

8 8 × 8 × 4

16 16 × 16 × 8

H2-A1-P formulation. The load was applied in 10 even load increments λwith	λ = 0.25.

The parameter for the perturbed formulation was selected as Cc = 106.

For the computation of the load displacement curve the vertical displacement of the

mid node (X, Y, Z) = (48, 52, 5) of the plane at the right end of the cantilever beam is

chosen which is related to the response in the direction of the load p0, see Fig. 3. The load

displacement curve is depicted in Fig. 6. Furthermore the out-of-plane displacement in

z-direction is plotted that shows the out-of-plane deformation of the cantilever beam due

to the anisotropic material.

0 0.5 1 1.5 2

0

10

20

λ

d
is

p
la
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m

en
t

uy

uz

Fig. 6 Load displacement curve: λ versus displacement components in y- and z- direction at point (48,52,5)

and deformed shape at final configuration
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The deformed mesh on the right in Fig. 6 was computed with a mesh of 16 × 16 × 8

elements which lead to a total number of 59058 degrees of freedoms. The deforma-

tion at the final configuration clearly depicts the twist in the deformed shape due to

the anisotopic constraint at large deformations. The solution was computed with sev-

eral load steps. In total eight load steps were applied for all discretizations reported in

Fig. 7. The convergence behaviour was robust, six iterations per load step were needed

for all discretizations to obtain convergence. In this solution procedure Newton type

convergence was observed. When using the automatic load stepping scheme of Ace-

FEM the total load can be applied in five load steps which reduces the total number of

iterations to 33 and thus leads to reductions in computing time by a factor of around

1.5.

A convergence study is performed for the fully constraint case, using the Lagrangian

multiplier formulation (9). The element formulations H2-A1 and T2-A1 are compared.

Figure 7 depicts the convergence of the vertical displacement at point (48,60,0).

It can be observed that the hexahedral element performs slightly better for coarse

meshes. Here one has to acknowledge that the coarsest mesh (N = 2) of the triangu-

larization for the tetrahedral elements is not symmetric and thus will have a certain bias.

Nevertheless the displacement for the coarsest mesh is close to the final result, being

approximately only 5% off.

In order to show the dependency of the solution on the penalty or fiber stiffness para-

meter Cc a series of computations were performed. The perturbed formulation (14) was

used and a mesh division of N = 8 selected.

Here it canbeobserved that the anisotropic constraint indirectionofa is not enforced for

a penalty parameterCc ≤ 10. Then there is an intermediate stagewhere the stiffness of the

fiber changes the deformation state. This is related to parameters between 10 ≤ Cc ≤ 105.

Finally from Cc > 105 on there is no further change, thus the parameter is sufficient to

enforce the constraint. Additionally we note, that for Cc > 107 the result is the same as

for the pure Lagrangian multiplier formulation (9).

2 4 6 8 10 12 14 16
20.8

21

21.2

21.4

21.6

21.8

22

Element division

u
y

T2-A1

H2-A1

Fig. 7 Convergence study, constraint case
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A convergence study is now performed for the perturbed Lagrangian formulation, see

(14). The results are compared with the penalty formulation (16) for a parameter of

Cc = 106. The results can be found in Fig. 9.

It can be seen that the penalty formulation does not converge to the same solution as the

perturbed Lagragnian formulation. Here a penalty parameter was used that is sufficient

to fulfill the constraint, see Fig. 8. Thus it is clear from Fig. 9 that the penalty formulation

locks. Furthermore it is interesting to observe that for a penalty parameter of Cc > 107

the penalty method for the H2 as well as for the T2 element diverged while the perturbed

Lagrangian formulations H2-A1-P and T2-A1-P are still robust.
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Fig. 8 Influence of the stiffness parameter Cc on the displacement components in y- and z- direction at

point (48,60,5)
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Fig. 9 Convergence study, penalty versus perturbed Lagrangian, Cp = 106
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Shear deformation of a beam

When a clamped beam is subjected to an end load then the beam will usually bend in the

direction of the loading. In case that the axial movement is constraint the beam can only

undergo shear deformations. The beam has a length of 40, a height of 4 and a thickness of

2 (in dimensionless coordinates), see Fig. 10.

The constitutive data are provided for the Lame constants: μ = 500 and λ = 1000.

The direction of anisotropy is given by a = {1, 0, 0} which enforces the constraint in x-

direction. The beam is clamped at the left end using the boundary conditions: ux = 0 for

all nodes at x = 0, uy = 0 for all nodes at x = 0 and y = 0 and uz = 0 for all nodes at

x = 0 and z = 0. The beam is loaded by a constant traction of py = 5 at the right end.

The pure shear state will now be enforced for the beam depicted on the left side of

Fig. 10. The loading is such that a small strain state occurs. This leads to a deformed state

that is reported on the right side of Fig. 10. Here the deformation is scaled by a factor of 20.

The displacement at the right side of the beam is uy = 0.467. Since the length of the beam

is L = 40 this displacement amounts to a shear deformation of γ = uy/L = 0.01168. This

result can easily be checked using the classical beam theory. Here the shear deformation

is

γB =
Q

GÂ

with Â = 5
6A, Q = py A, G = μ and A = 2 × 4 = 8 it follows γB = 0, 012 which is very

close to the computed value of γ .

For larger loads local buckling occurs. This is due to the high compressive stresses at the

bottom of the beam. The load deflection curve in Fig. 11 depicts the nonlinear behaviour

and the final deformation of the beam for a mesh with T2-A1-P elements. The deformed

Fig. 10 Undeformed and deformaed configuration of the beam

0 5 10 15 20 25 30

0

2

4

6

8

10

uy

λ T2-A1-P

Fig. 11 Load deflection curve, T2-A1-P, Cc = 106 and deformed beam
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configuration of the beam (no scaling) shows clearly near the clamping local buckles that

in the end led to the large deflection of the beam. This is related to a bending torsion state

which is triggerd by the local buckling.

It is clear that in reality an internal local buckling of the fibers will occur and thus the

formulation (11) has to be applied. This leads then to a bending of the beam without

local buckling, since fiber buckling due to compressive stresses is not present anymore.

However, since the fibers in tension cannot extend, the deflection related to (11) is smaller

than the deflection of a beam under bending without any constraints.

Rolling up of a beam

This example is related to a beam that is subjected to a prescribed stretch on its upper

part. The problem is meshed with the quadratic hexahedra H2-A1-P and the quadratic

tetrahedra T2-A1-P with Cc = 108. A stretch of λ̄c = 1 + β ǫc with ǫc = −0.05 is

prescribed in the elements of the thin upper layer. The stretch is increased within 10

equal load increments (β = 1, . . . , 10). The following boundary conditions are imposed

at the left end of the beam in order to clamp the beam at this side: ux = 0 for all nodes at

x = 0, uy = 0 for all nodes at x = 0 and y = 0 and uz = 0 for all nodes at x = 0 and z = 0,

see Fig. 12.

The selected finite element mesh is depicted on the left side of Fig. 13. The final state

of the deformation is shown on the right side of Fig. 13. It is obtained for the load factor

β = 10.

It is clear that large strain states can be imposed by the formulation (12).

The displacements ux and uy are plotted versus the load factor β in Fig. 14. It was

obtained for a mesh with N = 8 and the T2-A1-P element.

It can be conlcuded that the active enforcement of a given stretch using formulation

(12) can be applied to generate arbitray deformation states depending on the selection of

the direction vector a and the magnitude of the prescribed stretch λ̄c.

Fig. 12 Undeformed configuration of the beam for the H2-A1-P element
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Fig. 13 Undeformed and deformed mesh of the beam
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Fig. 14 Load deflection curve for the element T2-A1-P, Cc = 108

Bias extension test

A problem where tension locking can occur is the tensile test where fibers are oriented

in ±45◦ in the initial configuration. This bias-extension test was used in ten Thjie and

Akkerman [26] and Hamila and Boisse [10] to investigate behaviour of standard finite

element formulations and special interpolation techniques to avoid locking. The test is

performed on a rectangular specimen, see Fig. 15 for the finite element mesh in the initial

configuration. The length of the specimen is L = 300, its width is H = 100 and the

thickness of the specimen is T = 10. The specimen is clamped at both ends and pulled

using a constant displacement ūx = 65. In order to obtain a two-dimensional plane stress

state, as it was used in Hamila and Boisse [10], the displacements of all nodes where set

to zero in thickness direction at Z = 0. The material properties of the matrix material are

described by the Lame constants λ = 1 and μ = 1. The fiber stiffness is Cc = 4000.

When the specimen is stretched fromL toL+ūx different in-plane shear zones occur, see

Hamila and Boisse [10]. As depicted also in this paper, the computation using a standard

element formulation, here a pure displacement formulation using T2 elements, yields a

non physical deformation state, see left side of Fig. 16. On the other hand the new T2-A1
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Fig. 15 Undeformed mesh of the specimen

Fig. 16 Deformations states for T2 and T2-A1 element formulations

element yields even with a relatively coarse mesh a correct deformation pattern, which

is depicted on the right side of Fig. 16 and has the same form as described in Hamila

and Boisse [10]. The deformation of the finest mesh, see Fig. 17, actually shows also the

different shear zones.

The plot in Fig. 18 shows the mesh convergence for the T2-A1 element formulation

using N = 4, 8, 16, 32 and 64 elements per side. As can be seen the result is insensitive

with respect to the mesh size. The deviation forN = 4 is related to the fact that the mesh

cannot model the different shear zones, see Fig. 17.

It is worth noting that the final displacement can be reached with the T2-A1 element in

one single load step for all mesh sizes, while the T2 element needs about 25 load steps to

reach the final configuration. Thus the new T2-A1 element is a lot more robust than the

T2 element for such applications.

Conclusions

Finite elements for large strain anisotropic behaviourwere developed in this paper. Special

emphasis was put on a formulation that was able to enforce inextensible fiber extensions

Fig. 17 Different shear zones obtained with a T2-A1 mesh of 40960 elements
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Fig. 18 Mesh convergence of the displacement uy in the midst of the specimen

for anisotropic materials exactly using a constraint formulation. This led to a Lagrange

multiplier method with different ansatz spaces for the deformations and the Lagrangian

multipliers (fiber stresses). The mixed approach shows a robust convergence behaviour

and does not lock. A comparison with standard quadratic elements depicts the locking

behaviour of these elements when the constraint was added via a penalty term. Further-

more themixed approach led to amore robust behaviour in the iterative procedure needed

to solve the associated nonlinear problems.
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