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FINITE ELEMENT FREE SURFACE SEEPAGE 
ANALYSIS WITHOUT MESH ITERATION 
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SUMMARY 
An effective solution procedure for the finite element analysis of free surface seepage problems is 
presented. The solution algorithm employs a non-linear permeability description of the material and 
avoids iteration with the finite element mesh. The results and experiences obtained in the analyses of 
some problems are presented to demonstrate the usefulness of the technique. 

INTRODUCTION 

The phenomena of fluid flow or seepage through porous media is observed in various 
disciplines of engineering.''2 It appears therefore natural that, as soon as the generality of the 
finite element method of analysis was recognized, emphasis was directed to develop the finite 
element method also for analysis of seepage problems in order to obtain a more genera1 
analysis tooL3 Apart from being able to consider in an effective manner complex geometries 
and material properties, emphasis on the development of the finite element analysis pro- 
cedures is also important because of the potential of the technique for analysis of coupled 
stress and fluid flow problems.4s5 

The current practice using the finite element method in the analysis of free surface fluid flow 
through porous media is to assume a free surface, discretize the domain below the free surface 
using finite elements, solve for the flow conditions in the finite element model, and check 
whether the free surface boundary conditions are satisfied with sufficient accuracy. If the flow 
conditions at the free surface are not satisfied to a specified tolerance, the free surface is 
adjusted and the problem is resolved until the free surface flow conditions are met. Depending 
on the problems considered, some 10 to 30 iterations may be necessary in steady-state 
analysis, and in transient analysis an iteration is carried out in the time steps of the time 
response calculation. 

In the iteration for the free surface, each iteration step represents a new problem, and a new 
finite element mesh could be established in each step. However, to keep the analysis effort to a 
minimum, usually the same basic finite element mesh is employed, but the geometric locations 
of the nodal points (possibly only near the free surface) are adjusted. The disadvantages of this 
scheme are that the elements can become very distorted, thus introducing severe errors in the 
analysis, and that a relatively large computational effort is required. These disadvantages are 
particularly pronounced in three-dimensional analysis. If non-linear stress and flow conditions 
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are analysed, the change in the geometric locations of the elements introduces additional 
difficulties that arise because the internal variables of the analysis are monitored at the 
integration points of the elements which change location. To overcome these difficulties Desai 
recently proposed a scheme for analysis of unconfined seepage, in which the original finite 
element mesh is not changed and the free surface is located using a relaxation type iterative 
scheme.6 

The objective in this paper is to present a very simple but effective procedure for analysis of 
unconfined seepage conditions. In the solution the original finite element mesh is not changed, 
and the free surface conditions are incorporated by use of a non-linear permeability behaviour 
of the solid material. Various sample solutions of unconfined seepage are presented and 
discussed using the solution scheme. In this paper only steady-state conditions are considered 
and the seepage analysis is carried out decoupled from the stress analysis; however, the 
proposed technique is also applicable to the solution of other free surface flow problems. 

GOVERNING EQUATIONS OF SEEPAGE PROBLEMS 

We consider the steady-state saturated flow conditions through a dam as shown for a two- 
dimensional flow condition in Figure 1. The differential equation governing the flow in the 
porous medium is 

where k,, k,, k, are the coefficients of permeability in the x ,  y, and z principal directions of 
permeability, respectively, and 4 is the fluid total head or potential 

P 4 = z + -  
Y 
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/ IMPERVIOUS MATERIAL 

s3 
Figure 1.  Steady unconfined flow through a dam 
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In equation (2) p is the fluid pressure, y is the unit weight of fluid and z is the elevation at the 
point under consideration. The boundary conditions are: 
for the upstream and downstream faces 

for the impervious base 
ad -=0 on S3 an 

where n denotes the normal to the surface; 
for the free surface 

for the surface of seepage 

4 = z  on S5 (8) 

In the finite element analysis a variational statement of the problem is employed in which 
the essential boundary conditions, expressed in equations (3), (4), (6) and (8), are explicitly 
imposed onto the solution, and the natural boundary conditions given in equations (5) and (7) 
are satisfied in an integrated sense by specifying zero flow input on S3 and S4. The virtual-work 
principle governing the steady state seepage flow is 

J, S+’Tk+’ d V = O (9) 

where S denotes ‘variation in’, k is the permeability matrix in the principal material directions, 
i.e., 

k= 0 k,  0 [: 1 :I 
and 

For the finite element solution it is convenient to consider in equation (9) the complete 
domain of seepage including the boundaries and impose the essential boundary conditions 
(prescribed total potentials) at a later stage of solution. 
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FINITE ELEMENT FORMULATION 

An effective finite element solution is obtained using variable-number-nodes isoparametric 
elements, in which for an element with N nodes7 

N N .. 
x = C hixi, y = hiyi 

i = l  i = l  

N 
z = C hizi 

i = l  

and 

In equation (12) the xi, yi  and zi are the finite element nodal point coordinates, and the hi are 
the element interpolation functions. Similarly, in equation (13) the di  are the total potentials 
at the element nodes. Substituting the finite element assumption into equation (9) we obtain 
for the complete domain of seepage including the boundary surfaces7 

Kk+ = 0 (14) 

where 

with 

Kk = permeability matrix of total element assemblage 
4 = vector of all nodal point total potentials 
B""'= total potential gradient interpolation matrix of element m (Reference 7, p. 185) 
k'"'=permeability matrix of element m as defined in equation (10) 

To impose now the total heads prescribed on the boundaries we add high permeability 
coefficients to the diagonal elements of Kk corresponding to the boundary nodes, and specify 
flow conditions that result into the given total potentials (Reference 7, p. 187). Thus equation 
(14) is modified to yield 

(K' +K~)+=Q'  (16) 

where Kb is a diagonal matrix. The ith diagonal element in Kb is equal to zero if 4i is not 
prescribed and is otherwise equal to k ,  where k >> ki. Correspondingly, the ith entry in the 
vector Qb is equal to zero if di is not specified and is otherwise equal to kdi.  It may be noted 
that this procedure of specifying prescribed total potentials does not introduce any numerical 
difficulties in the solution of + irrespective of the magnitude of k employed, because k is only 
added to the diagonal elements of Kk. 

Considering the natural boundary conditions, it should be noted that the conditions ad/an = 
0 on S3 and S4 are imposed by not prescribing any flow normal to the surfaces in equation (9), 
and thus in equation (14). 

The solution to the seepage problem could now be obtained if the free surface S4 were 
known. The finite element discretization of the domain within the boundaries Si, i = 1, . . . , 5  
would be carried out, and the unknown nodal point total potentials could be solved using 
equation (16). However, with the location of S4 unknown, it is usual practice to assume a free 
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USE k / 1 0 0 0  FOR 
NUMERICAL 
STABILITY 
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surface, solve equation (16) with not all boundary conditions imposed, check whether all 
boundary conditions are satisfied and iterate with the free surface S4 (and thus with the finite 
element mesh) until a solution has been obtained which meets all boundary conditions. 

The basic requirement in the above finite element mesh iteration solution is that there shall 
be no flow above the q5 = z line. This requirement is satisfied by not representing the material 
above the free surface. The basis of the scheme presented here is that this requirement can be 
met more easily computationally by recasting the problem in a non-linear form, in which the 
natural boundary condition on the free surface in equation (7) is always satisfied (in an 
integrated sense) and iteration is performed to satisfy also the geometric boundary condition in 
equation (6). Assume that the complete dam is represented using a finite element dis- 
cretization, and let the permeability of the elements be: 

k 

& 

PRESSURE HEAD 

k for q5sz  
0 for q5 < z  

material permeability = 

then the elements above the free surface are effectively removed and those below the free 
surface are still active. The material permeability in equation (17) corresponds to a non-linear 
permeability as shown in Figure 2. The solution to the seepage problem can now be obtained 

/ 

ZERO PERMEABILITY 1 
AT NEGATIVE 
PRESSURE HEAD 

Figure 2. Material model employed for calculation of free surface 

using a Newton-Raphson iteration. Namely, we recognize that instead of solving equation (16) 
we now want to operate on 

F~ + F ~  - Q~ = o 
where 

Fb = Kb& (20) 

and k'"' is the non-linear pressure head dependent permeability matrix of element m. The 
elements of k'"' are zero if 4 < z and defined as in equation (10) if q5 L z .  
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The Newton-Raphson iteration for solution of equation (18) is performed in the usual 
manner: 

(21) ( & ( ; - I ) +  K b ) A + ( i ) =  Q b  - F k ( i - l ) - F b ( i - l ) .  , i = 1 , 2 ,  . . .  

and 

In practice, it is frequently more effective to use the modified Newton iteration, in which 
case the permeability matrix is only established at the beginning of the iteration and is not 
updated. Thus, we use instead of equation (21), 

(26) ( K k ( O ) + K b ) A + ( i )  = Qb - F k ( i - l ) - F b ( i - l )  

with convergence declared when ~ ~ A + ( i ) ~ ~ ~ / ~ ~ + ( i ) ~ ~ ~  =s to 1 .' 

NUMERICAL AND CONVERGENCE CHARACTERISTICS 

The proposed scheme using a non-linear pressure dependent permeability for the solution is 
directly analogous to stress analysis, in which the stiffness of the material is set to zero once 
specific stress conditions are reached.' Therefore, much of the experience available from these 
stress analyses is directly applicable to the seepage analysis. 

For the seepage analysis it is recommended to employ in two-dimensional analysis 4- to 
8-node isoparametric elements, and in three-dimensional analysis the corresponding 8- to 
21-node elements."* Also, three- or four-point Gauss integration is in most cases effective. In 
order to preserve a positive definite coefficient matrix in equation (21) it is necessary to assign 
a small value of permeability to the material instead of an exact zero permeability (use about 
k/1000 as shown in Figure 2). 

As it is usual in non-linear isoparametric finite element analysis, in the numerical integration 
the appropriate material moduli are evaluated at the integration points,' and therefore the free 
surface passes, in general, through the elements. 

For solution the modified Newton iteration in equation (26) is probably in most analyses 
most effective. To specify initial conditions in the iteration, the total head at all nodal points 
can be set equal to the maximum total potential encountered in the problem, which renders 
the analysis procedure quite analogous to elastic-plastic stress analysis with an elastic stiffness 
matrix. Also, the non-zero elements in the matrix K b  of equation (21) need only correspond to 
the surfaces S1 and SZ in Figure 1. Because of the material characteristics, convergence is 
assured, but a relatively large number of iterations may be required in some analy~es.~ For the 
problems solved in this study, good convergence characteristics have been observed, and no 
convergence acceleration factors were needed. l o  

SAMPLE SOLUTIONS 
To show the characteristics of the solution scheme we present in this section the analysis 
results and experiences obtained in the analyses of two dams. The solutions were obtained 
using the ADINAT computer program." 
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Unconfined flow through rectangular dam 

The steady-state free surface seepage through the rectangular dam shown in Figure 3 was 
analysed. The upstream and downstream water levels were maintained at sixteen and zero 
feet, respectively, and isotropic conditions with a constant permeability were assumed. 
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Figure 3. Steady-state unconfined flow through a porous block medium 

The analysis was performed with two finite element models (see Figure 4). The first model 
consisted of 16 X 16 four-node equal elements, and the second model of 8 x 8 eight-node equal 
elements. Since the free surface flow line must in this problem lie above line AB shown in 
Figure 4, to reduce computations, the elements below that line were assumed to be linear, i.e., 
possess constant permeability properties in the iteration process. For the linear and non-linear 
elements two- and three-point Gauss numerical integration, respectively, was employed. The 
solution was obtained using the modified Newton iteration, in which the matrices Kk and K b  
were calculated only once at the start of the solution. All elements in the starting iteration 
vector 4'') were taken to be equal to sixteen. 
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, nonlinear elements 
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Figure 4. Finite element-mesh used for analysis of rectangular dam 

Figure 3 shows the free surface calculated in this analysis and compares the analysis results 
with those of Herbert,12 who obtained an analogue solution, and France et a1.,13 who obtained 
a finite element solution. France et a1. employed 20 iterations adjusting the finite element 
mesh to locate the free surface. 

The four-node and eight-node element meshes used in this analysis gave the same results (to 
the degree of accuracy that can be drawn). Using the four-node element mesh, 6 iterations, 
and using the eight-node element mesh, 7 iterations were needed in the modified Newton- 
Raphson solution with to1 = 0.001. 

Unconfined seepage through another dam 

The steady-state free surface seepage through the dam shown in Figure 5 was analysed. 
Figure 6 shows the finite element mesh employed. As in the analysis of the rectangular dam, in 
this analysis linear elements were used below the line AB (shown in Figure 6) ,  two- and 
three-point Gauss integration was employed for the linear and non-linear elements, respec- 
tively, and the matrices Kk and Kb were calculated only once at the start of the modified 
Newton iteration. All elements in the starting iteration vector +(') were taken to be equal to 
four. 

Figure 5 shows the free surface calculated in this work and compares the results with those 
given by Harr,14 who obtained an analytical solution. In the modified Newton iteration 4 
iterations were employed with to1 = 0.001. 
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-12.64 f t  
If3 

Figure 6. Finite element mesh used for analysis of dam 

CONCLUSIONS 

An effective solution procedure for the analysis of free surface seepage problems has been 
presented. The method does not require iteration with the finite element mesh, but instead 
uses a non-linear pressure dependent permeability description of the material and Newton- 
Raphson iteration. In the paper the application of the technique to the analysis of some 
steady-state flow conditions is given; however, the method should also be effective in transient 
seepage analysis, and in other free surface flow problems. 
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