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Abstract. Refined estimates for finite element or, more generally, Galerkin approxima-
tions of the eigenvalues and eigenvectors of selfadjoint eigenvalue problems are presented.
More specifically, refined results on the asymptotic behavior of the eigenvalue and eigen-
vector errors are proved. Both simple and multiple eigenvalues are treated.

1. Introduction. In this paper we establish some refined estimates for the ap-
proximation of the eigenvalues and eigenvectors of selfadjoint eigenvalue problems
by finite element or, more generally, Galerkin methods. Suppose A is an eigenvalue
of multiplicity q of a selfadjoint problem and let M(A) denote the space of eigen-
vectors corresponding to A. Denote by || • \\b the energy norm for the problem.
Let {Sh}o<h be the family of finite-dimensional approximation spaces employed in
the Galerkin method. A will be approximated from above by q of the Galerkin
approximate eigenvalues:

A < Xh,l < ■ ■ ■ < Xh,q, A = Xh,l, ■ ■ ■ , Xh,q-
Let u, with ||u||b = 1, denote an eigenvector corresponding to A, and let Uh,i, ■ ■ ■,
«ft,«> with ||u/,,fc||j3 = 1, denote the Galerkin eigenvectors corresponding to A/14, • • • >
Xh,q, respectively.

It is well known that

(1.1) Aft,fc-A<C   sup     inf ||u-x||b,        k = l,...,q,
ueM(X) X€i>h
llttllfl=l

and that there is a uk — uk{h) € M(A), with ||ufc||s = 1, such that

(1.2) \\uh,k - uk\\B < C   sup     inf ||u-x||b,        k = l,...,q.
u6M(A) X6&/,
IMIa=i

In [7], [8] Chatelin proved the following refinements of (1.1) and (1.2):

(1.3a) \\u-Ehu\\B = rha)  inf ||«-X||b    V« € M(A),
xeSh

(1.3b)        |K,fc-.Euh,fc||fl = rj:6)  inf ||£uM - X||b,        k = l,...,q,
X€Sh
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276 I. BABUSKA AND J. E. OSBORN

and

(1.3c) \\(Xh,k-X)/X\\B = rhc) inf \\Euh,k-x\\B,        k = l,...,q,

where E denotes the orthogonal projection of the energy space onto M(A) and Eh
the orthogonal projection onto span-fuh,!,... ,Uh,q}, and where rh —> 1 as h —► 0,
for I = a,b, c.

The purpose of this paper is twofold. The first is to establish an estimate for
\r{hl) - 1|. We show that

(1.4) \rhl) - 1| < dn2{h),

where n(h) is a certain measure of the approximability property of {S/i}; for the
definition of n see Section 3. This is done in Section 4.

In [3] the authors established the estimate

(1.5) AM-A = C    inf     inf \\u-X\\%,
u£M(A) x€Sh
|H|B = 1

which is an improvement over (1.1) and (1.3c) in the case of a multiple eigenvalue.
[3] also contains estimates for Xh,k — A, k = 2,...,q, and for \\uh,k — "||b, k =
1,...,<7, which are improvements of (1.1) and (1.3c) and of (1.2) and (1.3a,b),
respectively. The second purpose of the paper is to present a simplified proof and
an extension of the results in [3]. This is done in Section 5.

In Section 2 we give a precise statement of the class of eigenvalue problems
and approximation methods we will consider. Section 3 contains some background
information.

The second author would like to thank Professor Hans F. Weinberger for several
helpful discussions on the topics in this paper.

2. Setting for the Problem. Suppose H is a real Hubert space with inner
product (•, •) and norm || • ||, respectively, and suppose we are given two symmetric
bilinear forms B(u,v) and D(u,v) on H x H. B(u,v) is assumed to satisfy

(2.1) |B(u,w)|<Ci|M|H    Vu.vGff

and

(2.2) C0\\u\\2 < B{u,u)    Vu 6 H, with C0 > 0.

It follows from (2.1) and (2.2) that \\u\\b = B{u,uyi2 is equivalent to ||u||. Re-
garding D, we assume

(2.3) 0<D{u,u)   VO^ue//

and that

(2.4) \\u\\D = D(u,u)1'2

is compact with respect to || ■ ||, i.e., from any sequence which is bounded in || • ||,
one can extract a subsequence which is Cauchy in || • ||/> For the remainder of
this paper we will use B{u,v) and || ■ \\b as the inner product and norm on H and
denote this space by Hb-
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EIGENVALUES AND EIGENVECTORS OF SELFADJOINT PROBLEMS 277

We then consider the variationally formulated, selfadjoint eigenvalue problem

{Seek A (real) and 0/tie Hb satisfying
B{u,v) =XD(u,v)    Vv€i/B.

Under the assumptions we have made, (2.5) has a sequence of eigenvalues

0 < Ai < A2 < • ■ • / +00

and corresponding eigenvectors
Ui,«2,...,

which can be chosen to satisfy

(2.6) B(ui,Uj) = XiD{ui,Uj) = 8l3,       i,j = 1,2,....

The eigenvalues and eigenvectors satisfy the following well-known variational prin-
ciples:

. B{u,u)      B{uk,uk)
Afc=      mm yr)-7 = 7^7-v,        * = 1,2,...

tn^ D,u€H? n D u'u>      D(uk,uk)(2.7) B(u,Ui)=o
»=l,2,...,fc-l

(the minimum principle)

and
B{u,u)                                   B(u,u) ,      , _

Xk =    min    max-—-- = max —-)-r,        a = 1,2,...
(2 8) VkQHB   ueVic D(U,U)       u€t//t=span(ti1 ,...,uk) D(U,u)
v       ' dimV)t=fc

(the minimum-maximum principle).

For any A/t we let

(2.9)       M = M(Ajfc) = {u: u is an eigenvector of (2.5) corresponding to A*}.

We shall be interested in approximating the eigenpairs of (2.5) by finite element
or, more generally, Galerkin methods. Toward this end, we suppose we are given a
(one-parameter) family {Sh}o<h<i of finite-dimensional subspaces 5/, C HB, and
we consider the eigenvalue problem

f Seek Xh (real), 0 / uj, 6 S/¡ satisfying
I B(uh,v) = XhD{uh,v)    VveSh.

The eigenpairs (A/^tt/,) of (2.10) are then viewed as approximations to the eigen-
pairs (A,w) of (2.5). (2.10) is called the Galerkin method determined by the sub-
spaces {Sh} for the approximation of the eigenvalues and eigenvectors of (2.5).
We will also sometimes refer to problem (2.10) as the Galerkin approximation of
problem (2.5). (2.10) has a sequence of eigenvalues

0< Xh,i < AM < ••• < Xh,N,        N = dimSh,

and corresponding eigenvectors

Uft,l,Uh,2, • • ■ ,U/i,JV»

which can be chosen to satisfy

(2.11) B{uh,„Uh,j) = Xh,iD{uh,i,uhj) = 8ij,        i,j = l,...,N.
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278 I. BABUSKA AND J. E. OSBORN

The {Xh,j,Uh,j) are referred to as the approximate eigenpairs, while (Xj,Uj) are
referred to as the exact eigenpairs of (2.5). Minimum and minimum-maximum
principles analogous to (2.7) and (2.8) hold for problem (2.10); they are obtained
from (2.7) and (2.8) by replacing HB by Sh and letting k = 1,..., N. We will refer
to them by (2.7/l) and (2.8h), respectively. Using (2.7) and (2.8), together with
(2.7h) and (2.8ft), we see immediately that

(2.12) Xk<Xhtk,        k = l,...,N = dimSh.

We will assume that the family {Sh} satisfies the approximabiüty assumption

(2.13) su{h) = Hulla1  inf ||u - x||b — 0    as h -> 0, for each u € HB.
xeSh

It follows from (2.7), (2.8), (2.7h), (2.8h), and (2.13) that

(2.14) Xh,k —> Xk    as h —» 0, for each k.

Finally we introduce

«J  = \AÏ«>:
the exact eigenvectors normalized in || • ||£>, and

uh,j = V Xh,juh,ji

the approximate eigenvectors normalized in || • \\d-
Throughout the paper, the specific eigenfunctions satisfying (2.6) ((2.11)) will be

denoted by u3 (uhj)- Thus the u¿ {uhj) are normalized in || • ||b; % («fc,¿) denotes
the same eigenvectors, renormalized in || ■ ||d- When we denote an eigenpair by
(A,u) we will not assume any particular normalization on u. C,Ci,d, and d¿ will
denote generic constants.

3. Preliminary Results. In this section we present several preliminary results
that will be used in the sequel. For further information on eigenvalue problems we
refer the reader to [4], [8].

(a) An Identity Relating the Eigenvalue and Eigenvector Errors. Here we present
an identity that relates the errors in eigenvalue and eigenvector approximation.

LEMMA 3.1. Suppose (A,u) ta an eigenpair of (2.5), suppose w is any vector
in Hb with \\w\\d = 1, and let X' = B(w,w).  Then

(3.1) X'-\ = \\w-u\\%-X\\w-u\\2D.

Proof. By an easy calculation,

\\w - u||B - A||w - u\\2D = \\w\\B - 2B(w,u) + \\u\\2B

-X\\w\\D + 2XD{w,u)-X\\u\\D.
(3-2)

Now
B(v,u) = XD(v,u)   VvgHb,

from which we get

(3.3) B(w,u) = XD(w,u)

and

(3.4) ||u||| = B{u, u) = XD(u, u) = X\\u\\2D.
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EIGENVALUES AND EIGENVECTORS OF SELFADJOINT PROBLEMS 279

The result follows from (3.2)-(3.4) and the relations A' = ||u>||B and 1 = \\w\\2D.    D
(b) The Operators T andTh. Let

Hd = the completion of Hb with respect to || • ||£>.

Hq is a Hilbert space with inner product D and, since || • ||¿5 is assumed to be
compact with respect to || ■ ||b, Hb is compactly imbedded in Hd- (Alternatively,
we could have assumed Hb C Hd, compactly, and let D(u, v) be the inner product
on HD.)

From Hd and Hb construct the "negative space" H-b = H'B, with norm || • ||_b-
Then Hd C H-b compactly, and for v €E Hb, D(u,v) has a continuous extension
to u € H-b so that D(u, v) is continuous on H-B x Hb- For u € H-b, ||«||-b =
snPv€HB \D(u'v)\/\\v\\b- For a complete discussion of this construction we refer to
[5, pp. 31-39].

Next we introduce the operators T, T/, : H-B —* HB defined by

TfeHB,
B(Tf,v) = D(f,v)   VveHB,(3.5) {

(3.6) iThfeS-
I B(Thf,v) = D(f,v)    Vv€Sh.

T and Th are the solution and approximate solution operators for the "boundary
value" problem corresponding to the eigenvalue problem (2.5). It follows immedi-
ately from (2.1), (2.2), and the fact that D(f,v) is continuous on H-b x Hb that
T and Th are bounded from H-B to HB. Since HB is compactly imbedded in Hd,
and Hd is compactly imbedded in H-B, T is compact from HB to HB, from Hd
to Hd, and from H-B to H-B. Th is, of course, also compact on Hb,Hd, and
H-B. It is easily seen that T and Th are selfadjoint on Hd and that T is selfadjoint
and positive definite on HB (with respect to B(u,v)). It is immediate that T has
eigenvalues

/ii = A1-1>/i2 = A2-1>.\0
and eigenvectors

Ui,U2,...,

and that Th has eigenvalues

«M = K\ >      > Ph,N = Afcjy,        N = dimSh,
and eigenvectors

Uh,li-- -,Uh,N-

Let Ph be the orthogonal projection of HB onto S/,; then from (3.6) we see that

Th = PhT.

Let

(3.7) !/(/») = ||(7 - Ph)T\\HD^HB = \\T - ThUo^Hs =   sup    inf \\Tg - X\\b
g£HD   xeSh
li    D = l

and

(3.8)   v(h) = \\(I-Ph)T\\HB^HB = \\T-Th\\HB^HB=   sup     inf  ||T9-x||fl.
9&HB   XGSh

llil|fl = l
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280 I. BABUSKA AND J. E. OSBORN

Several of the results in Sections 4 and 5 are stated in terms of the qualities of n
and v. We now present some properties of n and v.

LEMMA 3.2.   There are positive constants C\ and C2 such that

(3.9) Cii/(A) < v{h) < C2yMh).

Proof. Since \\u\\d < C||u||b Vu € HB, we have u{h) < Cn{h), which is the first
inequality in (3.9) with C\ = C_1. Now consider the second inequality in (3.9).
From (3.5) and (3.6) we have

\\Tf\\B < H/ll-B, ||7fc/||fl < ll/H-B
and hence

(3.10) \\T-Th\\H-B^HB<2,

and from (3.8) we have

(3.11) \\T-Th\\HB^HB=v{h).

We now note that H-B and HB are connected by a scale of Hubert spaces. It thus
follows from (3.10), (3.11), and a result on interpolation of linear operators [5, pp.
240-242] that

n{h) = \\T - T„||bd^bb < C2l'2u1'2 = Cu{h)1'2,

which is the second inequality in (3.9).    G

LEMMA 3.3.   We have

(3.12) lim n(h) = lim u(h) = 0.
fc->0 '       h^O

Proof. Because of Lemma 3.2 it is sufficient to show that lim/,_o v[h) = 0. (2.13)
implies that Ph —* I pointwise on HB (in fact, (2.13) is equivalent to this result).
Since T: Hb —> HB is compact, T{g € Hb '■ \\g\\B = 1} is relatively compact in HB,
and lim/j_o ^C1) = 0 follows from the standard result that a family of operators
that converges pointwise on a space converges uniformly on a relatively compact
subset.    D

From Lemma 3.2 we have n2 = 0{u). It may happen that r\2 = o{v). This is
shown by the following example.

Example. Let

#b = #o(0,1),        B{u,v)=       a(x)u'v'dx,
Jo

and

D(u,v) = /   uvdx,
Jo

where 0 < a < a(x) < ß < oo.    (//'(0,1) is the /th-order Sobolev space and
#¿(0,1) = {u € #'(0,1): u(0) = u(l) = 0}.)   For / 6 L2(0,1), u = Tf is the
solution of

f   - (a{x)u'Y = f{x),    0 < x < 1,
\ u(0) = u(l) = 0.
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EIGENVALUES AND EIGENVECTORS OF SELFADJOINT PROBLEMS 281

First suppose Sh = the space of C° piecewise linear functions with mesh size h
that vanish at 0 and 1 and suppose a(x) is smooth. Then we easily see that r¡{h) ~ h
and u{h) ~ h, so that n2 = o{u). Next suppose Sh — the space of C° piecewise
quadratic functions vanishing at 0 and 1. If a(x) is smooth, we see that ri(h) ~ h
and v{h) ~ h2, so n2 ~ ía If, on the other hand, a(x) is rough, specifically if a(x)
is such that g € HD = L2(0,1) implies u = Tf € H2(0,1), but g E.HB = #¿(0,1)
does not, in general, imply u € 77Q(0,1) for a > 2, then r? ~ ft and i/ ~ ft, so
r?2 = o{v).

From (2.13) we have

||(7 - Ph)u\\B = eu(ft)||u||B ^0   V«£ 77b-

The usual duality argument (cf. Aubin [1], Nitsche [10], and Oganesjan-Rukhovets
[11]) shows that ||(7 - Ph)u\\D < Cn{h)\\(I - Ph)u\\B and ||(7 - Ph)u||_B <
Cu(h)\\(I — Ph)u\\s. For the sake of completeness we include proofs of these results.

LEMMA 3.4.   We have

(3.13a) \\(I-Ph)u\\D<r,(h)\\(I-Ph)u\\B   Vu G 77ß

and

(3.13b) ||(7-Ph)u||_B<^(ft)||(7-Ph)u||B    Vue 77B.

Proof. Since Ph is the orthogonal projection of 77b onto Sh, we have

B((I - Ph)u,Tg) = B((I - Ph)u,Tg - X)    VX € Sh,

from which we get

(3.14) \B((I-Ph)u,Tg)\<\\(I-Ph)u\\B inf \\Tg - X\\B.xeij.

From (3.5), the symmetry of D and B, and (3.14) we have

||(7-P„)u||D=    sup   \D{[I-Ph)u,g)\=   sup   \B((I - Ph)u,Tg)\
gEHD geHD

II»IId=i ||fl||o=i
<    sup     inf ||TS-x||B||(7-Ph)u||B<r?(ft)||(7-Pft)u||B,

gEHD  xesh
Il9ll0=l

which is (3.13a). Similarly,

\\(I - Ph)u\\-B =   sup   \D((I-Ph)u,g)\
g&HB

\\9\\b = 1

=   sup    inf \\Tg-x\\B\\(I-Ph)u\\B = i'(h)\\(I-Ph)u\\B,
g€HB   X€Sh

!l9l|ß = l

which is (3.13b).    D
(c) Preliminary Eigenvector Estimates. For i = 1,2,... let fc¿ be the lowest

index of the zth distinct eigenvalue of (2.5) and suppose Xki has multiplicity <?¿. Let
E — E(Xki) be the orthogonal projection of 77ß onto M(AfcJ and let Eh = Eh{Xkx)
be the orthogonal projection of 77B onto

Mh = Mh{Xki) = the span of the eigenvectors of (2.10)
(3.15) corresponding to Xh,ki+j ,j =0,...,qi - 1.
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282 I. BABUSKA AND J. E. OSBORN

LEMMA 3.5.   There is a constant Ci such that

(3.16a)
(3.16b)

and

(3.16c) \\u-Eh{Xki)u\\-B<Ci\\(I-Ph)u\\-B   VueM(A*,).

II« - Eh(Xkt)u\\B < d\\(I - Ph)u\\b   Vu G M(Xki),
\u - Eh(Xki)u\\D < Ci\\(I - Ph)u\\d   Vu G M(Xki),

Proof. Suppose the spaces Hb,Hd, and 77_b, the bilinear forms B and D, and
the operators T,Th,E, and Eh have been complexified in the usual manner. Let
T^ be a circle in the complex plane centered at fiki — Xk and enclosing no other
eigenvalues of T. Then for ft sufficiently small, pktki = X^k.,... ,Hh,k¡+q,-i —
Xh~1ki+1, but no other eigenvalues of Th are contained in Tki, and

(3.17a)

and

(3.17b)

E(X"■'-¿l.'-71"1 dz

^■^¿l'2-7-»'-1 dz.

These are the usual formulas for the spectral projections associated with T and ßki
and Th and «&,*,,. - ■ ,ft,i;,+g,-i, respectively (cf. [9, Section XI.9]).

Consider now the proof of (3.16a). Using (3.17) we have

It« - Eh(Xkx)u\\B = \\[E(Xkt) - Eh(Xki))u\\B

(3.18)

- /   [{z-T)-l-{z-Thrl)uc

= t-if (z-nrHT-nKz-Tyiudz

/   (z-Tk)-l(T-Tk)-2—i
Jvk z - «fc¿27T

< ^-[2rr rad(rfc,.)] sup ||(z - Th)-'\\HB^H}'
¿3T z€rki rad(Tki]

0<h
\—11= Hki sup ||(^-Th)-1||//fl^//B||(7-Ph)u||B   VuGM(A„).

zerki
0<h

In the last inequality we used the relation (T — Tk)u — (I — Ph)Tu = ßki (7 - Ph)u.
Now ||T - Th\\HB—HB —» 0 implies

Ct = «fc, sup \\(z-T^'^Ihh^Hh < oo,
zerki
0<h

so we have established (3.16a).
Now consider the proof of (3.16b). The above analysis is relative to the space

77b (the integrals in (3.17) converge in the operator norm on 77b and
||T — Th\\HB—HB  —► 0).    Since T and Th can also be considered on 77B and
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1    as ft -► 0 (see (1.3a));

||T _ Tk\\HD->HD —* 0, we can apply the same argument in 77b- Note that the
formulas (3.17) will now define projections on 77d which are extensions to Hd of
E and Eh. We thus obtain (cf. (3.18))

\\u-Eh{Xki)u\\D<ßk, sup ||(^-Th)-1||BD^BD||(7-Ph)u||i>   VuGM(Afci),
*erki
h>0

which is (3.16b).
The proof of (3.16c) is similar.    D
Remark 3.1. It is essential in Lemma 3.5 that ft is sufficiently small, meaning

small in comparison with the gap between Xki and Xki-i,Xki+i. If this gap is small,
then it can happen that the approximate eigenfunction uktki associated with Xktki
could be close to uki-\ or uki+i.

Lemma 3.5 is an eigenvector estimate since it provides an estimate for

u(an exact eigenvector) - Eku(a linear combination of approximate eigenvectors).

We note that (2.13) and (3.16) imply that Eh{Xki): M(Xki) -> Mh{Xkt) is one-to-
one and onto for ft sufficiently small.

We next prove a refinement of (3.16a) due to Chatelin [7], [8]. Inequality (3.16a)
shows that

\\u-Eh{Xk,)u\\B = VuGM(Afci).
||«-Ph«||ß

Chatelin showed that
\\u - Eh(Xkt)u\\B

\\u- Phu\\B
her argument, in fact, establishes

LEMMA 3.6 (CHATELIN).   There is a constant di such that

(3.19) 1< II»-^(a*>IIb <i + dMh)   VuGM(Afc,),
\\U- PhU\\B

where v{h) is defined in (3.8).

Proof. For the sake of completeness, and to establish the form of the bound in
the second inequality in (3.19), we present a proof of this result.

Let Th = PhTPh = TkPk. Note that Th and T/, have the same nonzero eigen-
values, that Eh(Xkt) commutes with Th, and that Th is selfadjoint with respect to
B. For uG M(Afci),

{Tk - ßh,k,)PhU = PhT{Ph - I)u + {fik, - ßh,k,)PhU

and hence, since Eh{Xkt) commutes with Th,

(3 20)        {Th ~ /X"'fc,)(/ " Eh{Xk'))PhU = (/ - E^k,))PhT{Ph - I)u

+ («fc, - Hh,k,){I - Eh{Xki))Phu.

Let Q be the orthogonal projection of 77b onto JV{Th), the null space of Tk. Then,
any z G ¿%{l — Eh{Xki)), the range of 7 - Eh{Xki), can be written as

N
z= ]P B{z,Uh,i)uh,i + Qz.

i=i
l¿k,,...,k,-rqi-l
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284 I. BABUSKA AND J. E. OSBORN

Here we have used the orthogonal decomposition

77b =¿%{T*h)®yK{Th) =¿%{Th)®yr{Th)
= span{uftii,... ,uk>N) ®Jf{Th)

= span{uftii,.. .,uh,N} ®jr(Th).

Thus,
¿v

{Th~ Vh,ki)z= ^2 B{z,uh,i){ph,i- M/i,fcJ«h,i - Ph,kiQz,
i=ii=i

l¿ki,...,ki+q¡-l

and hence

\\{Th-ßh,k,)z\\B

N

(3.21)
x <

J2 |B(2,UM)|2|«h,i-Wh,fcj|2 + |uh,fcl|2||Q2||B
1 = 1

l¿ki,...,ki+qi-l

> min{\ßh,j -tífc,fc,|2, j = l,...,N,j / ki,...,ki +qi - l,\/j,h,ki\2}

J2 |ß(^uM)|2 + ||Q^||ß
¡=i

\t=Ki,...,ki+qi — 1 /

( mm{\(j,h,k,-i - ßh,k,\2,\ßh,kt+i - ßh,ki\2,\fih,ki\2}\\z\\B,        i>2,

\ mm{\p.h,k2-uh,kl\2,\uh,kl\2}\\z\\B,        1 = 1.

Since ph,j —* ßj (cf. (2.14)) for each j as ft —> 0,

f mm{\fih,k,-i - fik,ki \2, \Ph,ki+i - ßh,ki I2, \ßh,k, |2}, i > 2,

\ min{|u/l,fc2 - ßh,kl I2, lM/i,fci I2},        * = 1,
Í min{|ufcl_i-Ufc,|2,|ufcl+i-ufci|2,|ufc,|2},        » > 2,

I min{|ufc2 -ufcl|2,|/ifcl|2},        i = l,
= ¿2    as ft —+ 0,

from (3.21) we get

II(^-«^,)^IIb><5,N|b   Vze&{I-Eh{Xkt))and
V small ft,

where ó¿ > 0 depends only on the gap between Ufc, and pkt-\,nki+\. Combining
(3.20), (3.22), and the fact that 7 - Ek{Xki) and Ph are orthogonal projections, we
have

\\{I - Eh{Xkt))Phu\\B
< if11|(7 - £h(Afci))7VT(Pfc - I)u + {ßk, - ßh,k,){I - Eh{Xki))Phu\\B
< 6-l{\\T{Ph - I)2u\\B + K, - ßk<ki|||(7 - £h(Afcl.))Phu||fl},

from which we get

||(7 - 7i,(Afc,))Phu||B < dt\\T{Ph - I)\\hb~hb\\(Ph - 7)u||fl

= di||(Ph-7)r||i/B^„B||(Ph-7)«||B.
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In the last equality we used the fact that (P/, — 7) and T are selfadjoint and that
the norm of an operator and its adjoint are equal.

(3.23) implies

|||(7 - Eh{Xk,)Ph)u\\B - ||(7 - Ph)u\\B\ < ||(7 - Eh{Xki))Phu\\B

< di\\{Ph - 7)T||Hb^b||(P,, - 7)u||b,

and hence

||(7-£fe(Afc,)Pfe)u||B
II(^-/)«IIb <dl\\{Ph-I)T\\HB^HB.(3-24)

We easily see that

11(7 - Ph)u\\B < ||(7 - Eh{Xkx))u\\B < ||(7 - Eh{Xki)Ph)u\\B,

and thus

,,„,- ||(7-£?fc(Afc<))«||fl      \\{I-Eh{Xki)Ph)u\\B
1      ' -      \\{Ph-I)u\\B      -        \\(I-Ph)u\\b
Combining (3.24) and (3.25), we have

\\{I - Eh{Xk,))u\\B \\{I - Eh{Xk,)Ph)u\\B
-      ||(Ph-7)u||B -        \\{Ph-I)u\\B
<dl||(Ph-7)T||BB^BB    VuGM(Afci).

Recalling that \\{Pk - I)T\\hb-^hb = v(h), we obtain the desired result.    D
Remark 3.2. (3.19) should be compared with (4.20), which provides a stronger

estimate for certain special u's in M{Xki).
Lemmas 3.5 and 3.6 show that starting from any exact eigenvector u we can

construct Eh{Xki)u, a linear combination of approximate eigenvectors that is close
to u. One can also start with an approximate eigenvector and construct a close
exact eigenvector. We present another result of Chatelin [7], [8]; see (1.3b).

Lemma 3.7 (Chatelin).   There is a constant di such that

/00m   , ^ \uh,]■ — E{Xki)Uh,j\\b ^ * , j    fu\ ■      1 Ii i(3.26) 1 < 'J   -'      'J < l+d%v{h),        j = ki,...,ki+qi-1.
\\PhE(Xkt)uh,j - E(Xki)Uh,j\\B

Proof. Observing that

E{Xk,) - Eh{Xk,)Ph = {E{Xkt) - Eh{Xkt))Ph + E{Xki){I - Ph),

we obtain

\\E{Xki) - Eh{Xki)Ph\\HB^HB < \\E{Xki) - Eh{Xk,)\\HB^HB

+ \\E{Xkl){I-Ph)\\HB^HB.

We easily see that

||£(Afcj)(7 - Ph)||BB^BB = ||(7 - Ph)E{Xk,)\\HB^HB

=    sup   \\{I - Pk)E{Xki)u\\B
u£HB

||u||B = l

= Xkt    sup   \\{I - Pk)TE{Xki)u\\B < Xkiv{h),
ueHB

||u||B = l
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and by a slight modification of estimate (3.18) we have

\\E{Xki)-Eh{Xkt)\\HB^HB<Cu{h).

Thus,

(3.27) \\E{Xki) - Eh{Xkt)Ph\\HB^HB < Cu{h).

Next note that

{7 - [Eh{Xk%)Ph - E{Xkt)]}{uh,] - E{Xk,)uh,3) = [Eh{Xk,)Ph - I]E{Xki)uhJ.

Hence, using (3.24) and (3.27), we have

IK, - E{Xkl)uhJB < ||{7 - [Ek(Xki)Pk - E{Xkt)}}-1\\HB^IlB
x \\[Eh{Xk,)Ph - I]E{Xki)uhJ\B

<     \\[Eh{Xki)Ph-I}E{Xki)uhJB
l-\\Eh{Xk,)Ph-E{Xkt)\\HB-+HB
{l+diu)\\{Ph-I)E{Xkt)uhjB

\-Cv
which implies the second inequality in (3.26). The first is immediate.    D

(d) Relation Between Eigenvector Error in \\-\\B, \\-\\d, and ||-||-b- In Subsection
3.(b) we noted that ||(7 - Pfe)u||D < r?(ft)||(7 - Ph)u||B and ||(7 - Ph)u\\-B <
z/(ft)||(7-P/l)u||B. In this subsection we establish similar results for the eigenvector
error.

For i = 1,2,... and j = fc¿,... ,fc¿ + ç< - 1, let ü^ GM(AfcJ satisfy Eh{Xki)û^ =
ûh,j. We know from the discussion in Subsection 3.(c) that ü~j exists and is unique
for ft small. From (3.13a) and (3.16b) we have

II«? - ühjD = ||«? - Eh{Xki)û%\\D < Cir,{h)\\{I - Pfc)üJ||fl
<Cir){h)\\ü%-ñk,3\\B,

or

l|ü? - Ük i\\n(3.28a) J,     _3l    < Ctn{h)-
\\uj -«fcjlls

It follows immediately (by scaling) that

II"? — Uh ,11 o
(3.28b) li-'^f < CMh),

\\u]-uh,3\\B

where u? G M{Xki) satisfies Eh{Xk>)uj — Uh,3.   (Recall that Hüj./JId = 1 and
||«j,/i||b — I-) Similarly, from (3.13b) and (3.16c) we get

(3.29a) *XU-X.n      * C^h)

and

t3 -uh

|«?-«h,>||B

l|w? — Uh i\\-B(3.29b) V*-^V^ < Civ(h).
Wu3 -«/i,>l|ß
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By Lemma 3.1 we know that

Xh,j - Afc, = ||«-«hj||B - Xki\\u - Ü~h,j\\2D

(3-30) HI«-«^lll{l-Ak<|^#}    VuGM(A,).
I II«      uh,j\\B )

As u varies over Af(Afct) it is clear from (3.30) that ||u - «/».jH/j/H« - «/ij'IIb *s
minimized for that ü"o that minimizes ||u — «h^Hs, namely for uq = E{Xki)Hh,3-
Thus we have

(3.31a) l^kfy~lhiD < fi'^t < CMh).
\\E{Xki)uh,3 - uh,3\\B      ||«J-«*j||b

We, of course, also get

(3.31b) \\E{Xki)uhj-UhJ
\\E{Xki)uh,3-uh,3\\B -   in '

Estimates (3.31) are similar to (3.28), but involve a different pairing of approximate
and exact eigenvectors.

Remark 3.3. Pierce and Varga [12] proved eigenvector estimates in || ■ ||b, and
Bramble and Osborn [6] established them in || • ||_b-

4. Precise Asymptotic Estimates for the Eigenvalue and Eigenvector
Error. In this section we use the notation introduced in Subsection 3.(c), i.e., we
let fcj be the lowest index of the ith distinct eigenvalue of (2.5) and assume A¡t, has
multiplicity (7¿.

(a) The Eigenvalue Error. For i = 1,2,... and j = fc¿,..., fc¿ + g¿ - 1 fixed,
Chatelin [7], [8] has shown that

(A/ij ~ Xki)/Xkt
\\{I - Ph)E{Xkt)uh,3\\2B/\\E{Xk))uh,3\\[C2B

We now prove a refinement of (4.1) (cf. (1.3c) and (1.4)).

(4-1)       ii»     p^m.¿.   112    ,«?.   w  .11^2 -1    as ft - 0 (cf. (1.3c)).

(4.2)

THEOREM 4.1.   For t = 1,2,... there is a constant dt such that

_(A/i,, - Afc,)/Afc,_ <dtri¿(h),
\\{I - Ph)E{Xkt)uh,3\\2B/\\E(Xk,)uh,3ÏÏl

j = ki,... ,k{ + qt — 1, where n{h) is defined in (3.7).

Proof. Let u = E{Xkt)uh,3- We have

{ßki - rih,])B{u,Uh,3) = B{Tu,uh,3) - B{u,Thuh,3)

= B{u, {T - Th)uh,3) = B{T{I - Ph)u, ukJ)

(4.3) = B{T{I - Ph)u, u) + B{T{I - Ph)u, uk<3 - u)
= B{T{I - Ph)2u, u) + B{T{I - Ph)u, uh]3 - u)

= pkiB{{I - Ph)u, (7 - Ph)u) + D{{I - Ph)u,ukJ - u).

Using the fact that B{u,Uh,3) = B{u,E{Xkx)uh,3) = \\u\\2B, (4.3) can be written as

A^~Afc,||«llB = l^ll(/ - ^)«H2B + D{{I - Ph)u, UkJ - U).
Ah,]Ak, "le,
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Dividing by ||(7 - P/i)u||b, multiplying by Xh,3, and subtracting 1 from both sides,
we find

(4.4) (A/t,j■- Afc.)/Afc, Xh,3■- Xki D{{! - Ph)u,uh,3 -u)
||(7-Pft)u||2B/||u||23 Afc,     - + Äh'3        ||(7-Ph)u||B        •

From (4.1) or the standard, well-known results for eigenvalue approximation we
have

\2

Xh'3~Xk' <dl
Xki

(4.5)

sup     ||(7-Pft)u||B
u€M(Xki)

V ll«lla=i

I
= di

< dir,2{h),

J

Afc,     sup     ||(7-Ph)Tu||B
u€M(Xki)
ll«llo=l J

J — k{,..., ki + qi — 1,

from (3.13a) we have

(4.6) ||(7 - Ph)u||D < n{h)\\{I - Ph)u\\B,
and from (3.26) and (3.31b) we have

||«h,j - «||d = \\uh,j - E{Xki)uh,3\\D

< din{h)\\uh,3 - E{Xk,)uhj\\B = dir,{h)\\{I - Ph)u\\B.

Combining (4.4)-(4.7), we obtain

(4.7)

{Xkt3 - AfcJ/Afc,
||(7-Ph)u||2B/||u||29

- 1 < H n2(h\ 4- *h,j\D{{I - Ph)u,Uh,3 - U\S o-iV (n) H-hTT-p ^   mo-
\\{I - Ph)u\\2B

< A „2  ■   Aftj||(7-Pfc)n||p||mt,,--ti||p o
^ «t'/   "i                 ¡777     5^;   ¡To"                 — "¿'/ >

\\{I-Ph)u\\B
the desired result.    D

Remark 4.1. Formula (4.4) is due to Chatelin [7], [8] and is used by her to prove
(4.1). Using eigenvector estimates in || • ||b ((3.26)), one can prove

_(Aft,j - Xki)/Xki < div{h).
\\{I-Ph)E{Uki)uh,3\\2Bl\\E{Xkt)uh,3\\2B

Inequality (4.2), which was proved using eigenvector estimates in || ■ ||b ((3.31b)
together with (3.26)), is an improvement over this result since, as we saw in Sub-
section 3.(b), rf may be of higher order than v.

Theorem 4.1 relates the eigenvalue error {Xh,3 - Xki)/Xki to ||(7 - Ph)u\\2B,
with u = E{Xki)uh,3. We now prove a result that relates the eigenvalue error to
||(7 - Pfc)u||23/||u||23, where u G M(Afcj) and Eh{Xki)u = uh,3, i.e., u = u£, as
defined in Subsection 3.(d).

THEOREM 4.2.   For i = 1,2,... there is a constant dt such that

(4.8)
{Xh,j - AfcJ/Afc,

ll(7-p,Hiyiiu|i <d¿/?2(ft),        j = ki,...,kt+qi-l,

where u G M(AfcJ satisfies Eh{Xki)u = Uh,3-
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Proof With u G M(Afc() satisfying Ek{Xki)u = uk<3, we have

(wfci - Ph,j)B{u,uh,3) = B{Tu,uh,j) - B{u,Thuh,3)

= B{T{I - Ph)u, u) + B{T{I - Ph)u, uh,3 - u)

= ufc, ||(7 - Ph)u\\2B + B{T{I - Ph)u,uh,3 - u),

from which we get, as above,

{Xh,j - AfcJ/Afc,_ Xh,3 - Afc. D{{! - Ph)u,uh,3 -u)
ll(/-^)«ll2B/ll^(Afc,)«|lB       "       Afc,    " + A^        ||(7-Ph)u||2B

It follows from (3.13a) and (3.16b) that

(4.10) \\uh,3 - u\\D < din\\{I - Ph)u\\B

Combining (4.5), (4.6), (4.9), and (4.10), we obtain

{Xh,j - Afc,)/Afc,
||(7-Ph)u||2B/||7ih(Afc,)u||2B

-1 <diV2{h),

from which we get

{Xh,j - AfcJ/Afc,
(4.11)

||(7-P/l)u||2B/||u||2B      \\Eh{Xk,)u\\
<drf{h).

Eh{Xk,)u |2  'IBI

Since u = {u — Eh{Xki)u) + Eh{Xki)u is an orthogonal decomposition in 77b, we
have

||u||B = ||u-7íh(Afc,)u||2B + ||7í,(Afc,)u||B

and hence

(4 12Ï Mb        _i  ,   \\u-Eh{Xki)u\\l
1 '    ' \\Ek(Xki)u\\B        +     \\Eh{Xkt)u\\2B    ■

Using (3.16a) and (2.13) we see that

\\u-Eh{Xk,)u\\B s nJin s nJii
l^(Afc,)u|||(4.13) ".^y^'iw^w

Combining (4.11), (4.12), and (4.13), we get the desired result.    D
(b) The Eigenvector Error. Let i = 1,2,... and let j = fc¿,..., fc¿ + g¿ — 1 be

fixed, and consider Ukt3 and E{Xki)üh,3 (recall that ||ü/i,j||d = 1)- We showed in
Subsection 3.(d) (see (3.31a)) that

(4.14) \\E{Xk,)uhj - HhJD < dtr?(ft)||f;(Afc,)üh,J - üh,3\\B-

From Lemma 3.1 we have

(4.15) Xh,3 - A*, = \\E{Xk¡)üh,3-üh,j\\2B - Xki\\E{Xkt)üh,3 -üh,3\\2D-

Combining (4.14) and (4.15), we obtain

Xkd - Afc, > \\E{Xki)üh,j - üh,3\\2B{l - dtV2{h)),

which implies

u 1fil \\E{Xkl)ñh,j-ñh,3\\2B       _Xh,3 - Afc,_
1 ■ °> \\{I - Ph)E{Xk,)Hh,3\\2B - ||(7-Ph)£(Afc,)ïïhj||B(l-dtr?2)-
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Since Uh,3 = E{Xki)uh,3 + {uhj — E{Xki)uh,3) is an orthogonal decomposition in
Tip, we have

1 = \\E{Xki)üh,3\\2D + \\ûh,3 - E{Xk,)ñh,3\\2D.

From this, (3.26), and (4.14) we get

1 < \\E(Xki)ük¿\\l + dm2\\(Pk - I)E{Xki)nhJ2B
(4-17) JWfc>*X(lW).

Afc,

Now, combining (4.2), (4.16), and (4.17), we have

l|£(AfcJ«ft,j -«/».jIIb
\\{I - Ph)E{Xki)ühA\B

< Í_(A^-Afc,)/Afc,_     1 + ^M1/2
- 11|(7 - P.)£(Afc,KJ||2B/||7i(Afc,K,J||2B     1 - din2 j

1 /9

<{(l + d8r,2)(| + ̂ P}       £[l + 4ffi1/a<l + «W,(Ä)-

We summarize this (cf. (1.3b) and (1.4)) in

THEOREM 4.3.   For i = 1,2,...  íftere ¿s o constant di such that

(a  io\        1/     ll^(Afc¡)«h,j--«hjlls      -,    ,   J     2/L\ -77 1(4.18)     I^tjtt—p\F/\   ^    u    <! + <*<*, W,        j = fc¿,...,*i+%-l.11(7 - Ph)7!/(AfcJu/l)j||B

7n (4.18), ü/ij con 6e replaced by Uhj-

Remark 4.2. The result (4.18) is stronger than (3.26) since n2 may be of higher
order than v.

Next consider ü~h,j and ü? (recall that u? G M(Afc,) satisfies Eh{Xki)ñj — ükl3).
We know (see (3.28a)) that

II«? - «fc,il|i3 < di»7(ft)||«? - üh,3\\B.

This, together with Lemma 3.1, yields

Afcj - Afc, = ||ü? - ûh,]\\2B - Afc,||«? - üh,3\\2D

>\\üh3-üh,3\\2B{l-dtn2),

which implies

II«j -«fcj'llB_ <_Aftj - Xki
||(7 - Ph)ü% - ||(7 - PfcJ^H^l - dtr,2)

{Xk,j - AfcJ/Afc,
iie-n)«? iii(i -^)/iis?Hb'

Finally, combining (4.8) and (4.19), we have

^M^i^y^.^
||(7 - Pfc)«?||B

This result (cf. (1.3a) and (1.4)) and the related result (3.19) are summarized in
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THEOREM 4.4.   For i = 1,2,...  there is a constant d¿ such that

||«?-«hjb       ||ü?-£fe(Afc,)ü?||
||(7-Ph)ü?||B=      ||(7-P„)ûv||b

(4.20)    i<5-ïï^: =^-Ei^y <l+WWt
J — m,..., ki + qi     1.

The inequalities (4.20) remain valid ifüh,j is replaced by Uh,3 andu1} byu^. There
is a constant di such that

(4.21) 1<^%T^<1+^)    forallueM{Xk,).
\\{U - Ph)U\\B

Remark A.Z. We have restated (3.19) in (4.21) because it is related to (4.20) and
it is the strongest known result of its specific type. It should be noted that (4.21) is
true for all u G M(Afc,), whereas (4.20) is valid only for u = u?, j = ki,..., fc¿+c¿ —1.
However, for these u's, (4.20) is stronger than (4.21).

Remark 4.4. The eigenvector estimates (4.18) and (4.20) were obtained from the
eigenvalue estimates (4.2) and (4.8), respectively, via Lemma 3.1, which provides
an estimate for the eigenvector error in terms of the eigenvalue error. Estimates
for eigenvector error in terms of eigenvalue error can be found in Weinberger [13].

Remark 4.5. See [2], [4] for a numerical study of the reliability of the results of this
section—which are of an asymptotic nature—as a guide to practical computations,
which often take place in the preasymptotic phase.

5. An Additional Result for Multiple Eigenvalues. Estimate (1.3c) im-
plies that

i i    ^. „mîx€Sh\\E{Xki)uh,ki-.X\\2B
Ah,ki — *k; i: O-..     . —r ¡¡o

l|£(Afc,K,fc||B
and estimate (4.8) shows that

Ah,fc, - Afc, < C inf ||u - xI|2b/II«IIb,
x€Sh

where u G M(Afc,) satisfies Eh{Xki) = uktk(. In [3], Babuska and Osborn proved
the stronger result (cf. (1.5))

Xk,kt - Afc, < C     inf       inf ||u - xIIb
ueM(Xki)x€Sh
IMIb = i

(as well as similar estimates for A^^ — Xki, j — ki + 1,..., fc¿ + g¿ — 1, and for
the eigenvector errors), which shows that A/^fc, - Afc,, the error in the approximate
eigenvalue closest to Afc,, is governed by the approximability of the exact eigenvector
corresponding to Afc, that can be best approximated by Sh- In this section we give
a simplified proof of the results of [3], which in addition provides information on
C (the results in [3] only established that C is a constant), and we estimate the
eigenvector error in || ■ ||b and || • ||-b-

As above, for i — 1,2,... suppose fc, is the lowest index of the ith distinct
eigenvalue of (2.5) and let g¿ be its multiplicity, i.e., suppose

Afci_,+qi_! — i = Xki-i < Xki = Afci+i = ■ • • = Afc,+(j,_i < Afc,+(J, = Afc,+1.
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Let
Si,3{h)= inf uif ||u-x||b

u€M(\k> ) x€Sh
INIfl=i

B(u,uh,ki)=-=B(u,uh,kj+J-2)=0
(5.1) = inf   , eu(ft),        J = l, •••,%,

ueM(A*,)
IMIB=1

B(u,Uh,ki)=-=B(u,uh,ki+i-2)=0

where M(Afc,) is defined in (2.9). The restrictions

B{u,Uh,k.) = •■■ - B{u,Uh,ki-r3-2) = 0

are considered vacuous if j = 1. We note that they are equivalent to

B{u, E{Xki)uh,i) = 0,        I = ¡a,..., ki +j - 2,
and to

B{Eh{Xkt)u,uh,i) = 0,        1 = ki,...,ki+j -2.
THEOREM 5.1 (cf. (1.5)). For i — 1,2,... there is a function Ci {h) and a

constant d, with
(5.2) Cj(ft) < 1 + div{h),        di = constant,
such that

(5.3) (Ah,fc,+J_1-Afc,)/Afc, KCiihtâjih),        j = l,...,qt,
and such that the eigenvectors U\,u2,...   of (2.5) can be chosen so that (2.6) is
satisfied and such that

(5.4) \\uh,ki+3-i -Uki+j-iWß < Ci{h)eij{h), j = \,...,qt,
(5.5a) \\uh,k,+j-i -Ufc,+J_i||B <Cin{h)eij{h), j = l,...,qi,

and

(5.5b) \\uh,ki+3-i -uk¡+3-i\\-B < Cli^{h)eij{h),        j = l,...,qi,

where r¡{h) and v{h) are defined in (3.7) and (3.8).

Proof. Let i and j, with i = 1,2,... and j — l,...,g¿, be fixed. Note
that eu(ft) < Afc^ift) for all u G M(Afc,) and £¿,_,(ft) < Xkiu{h), j = 1,...,<7¿.
Let u G M(Afc,) with B{u,uh,k,) = ■■• = S(u,u/lifc,+:,_2) = 0 and ||u||b = 1-
Now apply (2.7h) and Lemma 3.1 with (A,u) = (Afc,,u/||7¿,/l(Afc,)u||o) and w =
Eh{Xkt)u/\\Eh{Xki)u\\D. Since

B{Eh{Xk,)u,uh,l) = 0,        l = l,...,ki-l,
by the orthogonality of the approximate eigenvectors, and

B{Eh{Xki)u,uh,i) = B{u,uh,i) = 0,        l = ki,...,ki+j-2,
by the assumption on u, we have

Eh{Xki)u        Eh{Xki)u
\Eh{Xkt)u\\D'\\Eh{Xk,)u\\D,

\\Eh{Xkt)u - u\\2B - Afc, 1174(Afc,)u - u\\2D
ll^(Afc,)«||2B

\\Ek{Xki)u-ufB

\h,k,+j-i - Afc, < B I u     .     '   ,.   , „     .     '   |,       - Afc,

(5.6)

<
|£fc(Afc>||2D    •
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From (3.19) we have

(5.7) \\Eh{Xk,)u - u\\B < (1 + du)\\u - Phu\\B.

From (3.13) and (3.16b) we see that

|||7ih(Afc,)u||B - A"1/2| = \\\Eh{Xkt)u\\D - \\u\\D\

< \\Eh{Xkt)u - u\\D < d\\u - Phu\\D
< dn\\u - Phu\\B = dn{h)eu{h),

which shows that
1

(5.8) Xki\\Eh{Xki)u\\2DT<
i2

1 + dnsu{h)
\\Eh{Xki)u\\D.

< í + dr¡su{h) < 1 + dnv.

Combining (5.6)-(5.8), we get

{Xh,kl+3-i-Xk,)/Xkt < (l+di/)a(l +dryIy)||u-P/lu||23

<(l + dzy)||u-Phu||B.

Now since (5.9) holds for all u G M(Afc.) with B{u, Uh,i) = 0, / = fc¿,.
and ||u||b = 1, we have

{Xh,ki+j-i - Afc,)/Afc,

/

, fci+j-2,

< (l-r-oV(ft)) inf
u€M(Xki)

\W\\b = 1
\B(u,uh,ki)=-=B{u,uh:ki+j-2)=0

inf ||u-x||b
xeSh

J
= {l + dtiy{h))el3{h),

which is (5.3) with C¿(ft) = l+d¿^(ft). Thus (5.2) and (5.3) have both been proved.
Remark 5.1. The minimum principle (2.7/l) and Lemma 3.1 lead to a particularly

simple proof of a result slightly weaker than (5.3) for the case i = j = 1. It follows
immediately from these two results that

Xh>1~Xl-B{ïp%ï'ÏP^)-X

= \\Phu - u||2B - AiHPmx - u||2b ^ \\Phu - u\\%    VueM(Ai)

and hence
\\Phu\\2D

{Xhi-X^/X^     inf     "f*"    UlEv A>1       l"   l~ueM(xi)  AxllPhull2,
NIb=i

II^«II2>

<G\(ft)eM(ft),

where Ct(ft) —► 1.
Now consider (5.4) and (5.5). Let i = 1,2,... and / = 1,...,$ be fixed. Let

u'h,k,+]-i e M(Afc.) satisfy Eh{Xki)u'kx+J_1 = uh,k,+3-i «,+,_! = «fc.+j-i-
where ukt + _j was introduced in Subsection 3.(d)). Applying Lemma 3.1 with

(A,u)=(V       "fci+3"1|l   )     and
V ||U/i,fc,+j-l||D/

W
Uh,k,+3-l

IN,fc,+;7-l||D'
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we get

\h,k<+j-l — ÄkiAfc.=

(5.10)

«/t,fc,+j-i a kj+3-1

|Wh,fc,+j-l||D IIUh^.+j-illB

-A k,
«fa.fc.+j-l lkj+j-l

\Uh,k,+j-l\\D        IIW/i.fci+i-lllB D

From (3.28b) we have

(5.11) iK.+j-i - w/í.fc.+j-illD < Cv{h)\\u'kt+j-i - «/i,fc,+j-ilis-
io. 10) and (5.11) yield

A A    >[l-Afc,CV(ft)] 2
Ah,ki+j-l - Afc,  > -tj--¡72-\\Uh,ki+3-l - "ki+j-lNBi

||M/i,fc¿-|-Í-l|lB

which, together with (2.11), (2.12), and (5.3), yields

(Afe.fc.+^-Afc,)1/2
4,+j-l -«h.fcj+i-lllB < .1/2

vt,fc,+j ,11-A^V]1/2

(5.12) < X^dW^e^h)
"A^2i+J_1[l-Afc,C2r?2]V2

<Ci{h)Sij{h),        j = l,...,qi,

where, because of (5.2), C¿(ft) < 1 + d¿i/(ft). (5.12) shows that the u'k.+J_1 satisfy
estimates (5.4). The inequality (5.12), together with (3.28b) and (3.29b), shows
that the uk(+,_1 satisfy estimates (5.5). They will not in general, however, be
orthonormal with respect to B, so that (2.6) may not be satisfied.

It remains to modify the u'kj+ _,, i.e., replace u'fc,+ _x by uki+3-\, in such a
way that (2.6) and (5.4) and (5.5) hold. We proceed by induction on j. Let j = 1.
If we define uki = ufc,/||u'fc ||b, we have ||ufc, ||b = 1, so that (2.6) is satisfied. From
(5.12) we have

(5.13)
I«Uí-iIIb -1| = l[i + IKi+J-i - «m,+;-iIII]1/2 -1|

<   K-ri-I-»M<+J--lH^   < Cvei   . J =1, •••,%,

and hence

||«fc¡ - Uh,ki \\b < IK, - u'fc, ||b + IK. - uh,k, \\b
< UK, Ils -il + IKj -«h.fcJlß
< Ci/ehi +Cl{h)nettl < Cl(ft)e¿,i(ft),

where C¿(ft) < 1 + div{h), which is (5.4) for j = 1. Using (3.9), (5.13), and the fact
that the u'k.+]_1 satisfy (5.5a), we get

IK, - «h.fc.Hc < IKi - u'ki\\D + |K, - «h,fc,||ß-
= Afc,1/2IIK,Hß -i| + IK, -uh,k,\\D
< CvelA + Cr¡eíA < Cír?(ft)e¿ii(ft),

which is (5.5a) for j = 1. A similar estimate establishes (5.5b) for j = 1.
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Next suppose j = 2. Let ukt = u'k.+1 - B{u'k.+1,uki)uki. Using (5.4) for j = 1,
(5.5b) for j = 1, (5.12), and the facts that (5.5b) holds for the ufcj+,_i and that
£i,i < £¿,2) we have

\B{u'k.+1,uki)\ < \B{u'kt+1-uhiki+1,uki)\

+ \B{uh,ki + i -u'k.+1,uki -uhifc,)|

+ \B{u'kt+1,uki -uh,ki)\

= Afc,|D(u'fc,+1 - uh,k,+i,ukx)\

+ \B{uh,ki+i -«fci+i.Wfci -«fc.fcJI
+ Xki+i\D{u'ki+1,uki -uh,ki)\

,r ... < Afc,||u'fci+1 -uh,ki+i\\-B\\ukt\\B
^■U> j_ii 'il   u n+ |K,fc, + l -«fci + l||B||Wfc, -Uh,ki\\B

+ Afci + lllw^ + illBllMfci -Uh,k>\\-B
< Afcju'fc^j -Uft,fci + 1||_B

+ |K,fc, + l - W^ + lHslltifci -«/i./cJIb
+ Afci(l + |Ki+i -umí+iIIb)IKí -«Mill-B

< Cvei>2 + C¿(ft)£,,2Cí(ft)£¿ii + CuCl{h)ei<i
< Cv{h)et,2{h),

and hence

(5.15) |K,+1 -u'fc',+1 ||b = |ß(u'fc,+1,ufc,)| < GV(ft)£,,2(ft).

Now set Ufci+1 = «fci+i/||ufc',+1||B. Combining (5.12), (5.13), and (5.15), we obtain

|K< + 1 - "h.fci + lllB < |K¿ + 1 - «fc'. + llls + lK'i + 1 - «ft.fci + lllB
= IK..+illB-i| + iK+i-tifcA+1||B
< IIK.+iIIb -1| + 2|K,+1 - ufc,+1||B + |K,+1 - uh)fcj+i||B

+ CWi,2(ft) + Ci/eii2(ft) + Ci(ft)ei)2(ft)

<Cl{h)eia{h),

where C¿(ft) < 1 + diu{h), which is (5.4) for j — 2.
Now consider (5.5a) for j = 2. Using (5.13), (5.14), (5.15) and the fact that the

u'k.+3_1 satisfy (5.5), we have

IK.+i -«h.fc.-nllc- < IK,+i -«fcj+illD + ||«fci+i -uhtki+i\\D
- x—l/2i|.   «

"fc. K, + iIIb - l| + IKi + l -Uk,ki + l\\D
^   <-l/2i||    / m ,|    .    x —1/2 m    ;/ / ||
^Afc.    |||«fci+i||B-l| + Afc.    |K,+1 -Ufc,+1||B

+ ll«fc, + l-«/i,fc,-rl||D + |5(Wfc1 + l>«fc,)lll«fc.l|D
+ Ci/elt2 + Cveh2 + Cneit2 + GVe¿,2

< Cine^2{h),

which is (5.5a) for j = 2. The proof of (5.5b) is similar.
Continuing in this manner we get (2.6), (5.4), and (5.5) for j = 1,. . .,<ft. This

completes the proof.    D
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THEOREM 5.2.  For ¿ = 1,2,... there is a function G¿(ft) with

(5.16) Ci (ft) > 1 — div{h),        di > 0 constant,

such that

(5.17) (AMl+J-i - Afc,)/Afc, > Ct{h)el3{h),        j = l,...,qt,

and

(5.18) \\uh,ki+3-i-uki+j-i\\B>Ci{h)£ij{h),        j=l,...,qi.

Proof. First consider (5.18) for j = 1. It is immediate that

IK.fc. -«fcillB>      inf       inf ||u-x||s=^,i(ft).
u€M{Xki) x€Sh
II«IIb=i

Thus for j = 1, (5.18) holds with ¿i(ft) = 1.
Now suppose j = 2. Since

^(«fci-l-D«'»,*.-) = ^«'fc. + l'^ÍAfc.W.fc.)
= 5(7i/l(Afci)u'fc,+1,U)l,fc,) = Btuh.fc.+^u^fcJ =0,

we see that

||«fc.*,.+i-«fci + il|B>     Jrf   .     in| Il«-Xl|ß = ^,2(ft).
u€M(Xkj)    x€i>),
Hls = l

B(«,uh,t,)=0

Combining this result with (5.13) and (5.15), we get

IK,fc,+i _ «fci+ills
> |K,fc, + i - w'fc. + ills - IK. + l - «'fc'. + ills - lK, + i - «fci+l||ß
> |K,fc,+1 -ufc, + 1||B -2|Ki + 1 -u'fc', + 1||B - HK. + iHb - 1|
> (1 -dji/)e,,2(ft),

which is (5.18) for j = 2. Continuing in this manner, we get (5.18) for j = 1,..., g¿.
Now consider (5.17). From Lemma 3.1, (5.5a), and (5.18) we see that

a i   wi    _ IK.fc.+j-i -Ufc.+j-illg
(Ahtk,+j-i - Afc.i/Afc, - -r—¡77-¡71-Afc.lK.fc.+j-illk

\\Uh,ki+j-l - Ukt+3-i\\2D

\\Uh,kt+3-l\\D

Xh,k,+j-i ,n       ,    v2
\fc,

((l-div)2-XkiCtf)el,;

which implies (5.17).    D
Remark 5.2. Note that in Theorems 5.1 and 5.2 we have shown that

{Xh,k,+j-l - Afc,)/Afc,  _

whereas in Theorems 4.1 and 4.2 we showed that

{Xh,j - AfcJ/Afc,_

< dif{h),

\\{I - Ph)E{Xk,)uh,3\\2B/\\E{Xk,)uh,3\\2B
< dtf72(ft),
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and
(Afe,j - AfcJ/Afc,_<dr,2(h)

\\{i - Ph)u\\2B/\H2B      **■»<*>•
for u G M(Afci) with Eh{Xki)u = uh,3-

Remark 5.3.  For a computational illustration of the results in this section see
[3], [4].
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