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Abstract. Refined estimates for finite element or, more generally, Galerkin approxima-~
tions of the eigenvalues and eigenvectors of selfadjoint eigenvalue problems are presented.
More specifically, refined results on the asymptotic behavior of the eigenvalue and eigen-
vector errors are proved. Both simple and multiple eigenvalues are treated.

1. Introduction. In this paper we establish some refined estimates for the ap-
proximation of the eigenvalues and eigenvectors of selfadjoint eigenvalue problems
by finite element or, more generally, Galerkin methods. Suppose A is an eigenvalue
of multiplicity g of a selfadjoint problem and let M (A) denote the space of eigen-
vectors corresponding to A. Denote by || - ||z the energy norm for the problem.
Let {Sk}o<nr be the family of finite-dimensional approximation spaces employed in
the Galerkin method. A will be approximated from above by ¢ of the Galerkin
approximate eigenvalues:

A< A1 < S Anggs AZ A1, Ang

Let u, with ||u||g = 1, denote an eigenvector corresponding to A, and let up 1,.. .,
Uh,q, With ||us k|| B = 1, denote the Galerkin eigenvectors corresponding to A, 1, .. .,
Ah.q, respectively.
It is well known that
(1.1) Mir=A<C sup inf lu~-xlz, k=1,
u€M(A) XESh
lullz=1
and that there is a ux = ux(h) € M(X), with ||ux||g = 1, such that
(1.2) ||uh,k —ukHB <C sup inf ”U_X”B, k=1,...,q.

u€M(X) XESn
flullp=1

In [7], [8] Chatelin proved the following refinements of (1.1) and (1.2):
(1.3a) lu— Enullp =r{® inf |lu—xllz Yue M(A),
XESh

(13b)  |lunk — Eupglle = inf |Eunk —xllz, k=1,...,q,
XESh
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276 1. BABUSKA AND J. E. OSBORN

and
(1.3¢) IAne =N/ =7t inf |Eune—xl%  k=1,...,q
XESh

where E denotes the orthogonal projection of the energy space onto M()) and E},
the orthogonal projection onto span{uy 1,...,unq}, and where r,(ll) —lash—0,
for I = a,b,c.

The purpose of this paper is twofold. The first is to establish an estimate for

|r,(f) — 1|. We show that
(1.4) [l — 1] < dn?(n),

where n(h) is a certain measure of the approximability property of {Sy}; for the
definition of 7 see Section 3. This is done in Section 4.
In [3] the authors established the estimate
. . 2
(1.5) Aa = A= CuelAI}ff(A) xlélgh e = Il
flullp=1

which is an improvement over (1.1) and (1.3¢c) in the case of a multiple eigenvalue.
[3] also contains estimates for Ay x — A, k = 2,...,q, and for |jupk — ullg, k =
1,...,q, which are improvements of (1.1) and (1.3c) and of (1.2) and (1.3a,b),
respectively. The second purpose of the paper is to present a simplified proof and
an extension of the results in [3]. This is done in Section 5.

In Section 2 we give a precise statement of the class of eigenvalue problems
and approximation methods we will consider. Section 3 contains some background
information.

The second author would like to thank Professor Hans F. Weinberger for several
helpful discussions on the topics in this paper. )

2. Setting for the Problem. Suppose H is a real Hilbert space with inner
product (-, ') and norm |} - ||, respectively, and suppose we are given two symmetric
bilinear forms B(u,v) and D(u,v) on H x H. B(u,v) is assumed to satisfy

(2.1) |B(u,v)| < Cyllulll|v]] Vu,veH
and
(2.2) Collull®* < B(u,u) Vu € H, with Co > 0.

It follows from (2.1) and (2.2) that |lu||p = B(u,u)'/? is equivalent to |ju||. Re-
garding D, we assume

(2.3) 0< D(u,u) VO#*ueH

and that

(2.4) llullp = D(u,u)*/*

is compact with respect to || - ||, i.e., from any sequence which is bounded in || - ||,
one can extract a subsequence which is Cauchy in || - |p. For the remainder of
this paper we will use B(u,v) and || - ||p as the inner product and norm on H and

denote this space by Hp.
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EIGENVALUES AND EIGENVECTORS OF SELFADJOINT PROBLEMS 277

We then consider the variationally formulated, selfadjoint eigenvalue problem
{ Seek A (real) and 0 # u € Hpg satisfying
B(u,v) = AD(u,v) VYve€ Hpg.

Under the assumptions we have made, (2.5) has a sequence of eigenvalues

0<A <A <L /400

(2.5)

and corresponding eigenvectors

Uy, U2y ..y
which can be chosen to satisfy
(26) B(ui,uj) = )\iD(u,',’U,j) =6,'J', ’i,j= 1,2,....
The eigenvalues and eigenvectors satisfy the following well-known variational prin-
ciples:
u ) )
(27) AB(u,u;f:o k> Bk
i=1,2,....k—1
(the minimum principle)
and
k= min max B(u,u) = max B(u,u), k=1,2,...
(2.8) ViCHp ue€Vi D(u,u) weUi=span(ui,...,ux) D{u,u)
dim Vi =k

(the minimum-maximum principle).
For any A, we let
(29) M = M()) = {u: uis an eigenvector of (2.5) corresponding to Ax}.

We shall be interested in approximating the eigenpairs of (2.5) by finite element
or, more generally, Galerkin methods. Toward this end, we suppose we are given a
(one-parameter) family {Sh}o<r<i of finite-dimensional subspaces S;, C Hg, and
we consider the eigenvalue problem

{ Seek Ap, (real), 0 # up € S satisfying
B(up,v) = A\pD(up,v) Yv € Sp.

The eigenpairs (Ap, up) of (2.10) are then viewed as approximations to the eigen-
pairs (A, u) of (2.5). (2.10) is called the Galerkin method determined by the sub-
spaces {Sp} for the approximation of the eigenvalues and eigenvectors of (2.5).
We will also sometimes refer to problem (2.10) as the Galerkin approximation of
problem (2.5). (2.10) has a sequence of eigenvalues

(2.10)

0<Ar1SAr2< Sy, N=dimS,
and corresponding eigenvectors
UR,1, UR,2, -+ s Uh,N s
which can be chosen to satisfy

(2.11) B(uh,,‘, uh,]‘) = /\h'iD(uh_.', uh,]‘) = 5,‘]', i,j = 1, . ,N.
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278 1. BABUSKA AND J. E. OSBORN

The (A, j,un, ;) are referred to as the approximate eigenpairs, while (Aj,u;) are
referred to as the exact eigenpairs of (2.5). Minimum and minimum-maximum
principles analogous to (2.7) and (2.8) hold for problem (2.10); they are obtained
from (2.7) and (2.8) by replacing Hg by S, and letting k = 1,..., N. We will refer
to them by (2.7%) and (2.8"), respectively. Using (2.7) and (2.8), together with
(2.7%) and (2.8"), we see immediately that

(2.12) /\k < )\h,k7 k= 1,...,N=dimSh.
We will assume that the family {S,} satisfies the approximability assumption

(2.13) eu(h) = |lullz xiélé lu—xlls — 0 ash — 0, for each u € Hp.

It follows from (2.7), (2.8), (2.7%), (2.8"), and (2.13) that
(2.14) Ank — A as h — 0, for each k.

Finally we introduce
i U = \/Ajuy,

the exact eigenvectors normalized in || - || p, and

Th,j =V Ah,sUh;,

the approximate eigenvectors normalized in || - || p.

Throughout the paper, the specific eigenfunctions satisfying (2.6) ((2.11)) will be
denoted by u; (up,;). Thus the u; (up ;) are normalized in | - || ; @; (Wn,;) denotes
the same eigenvectors, renormalized in || - ||[p. When we denote an eigenpair by
(A, u) we will not assume any particular normalization on u. C,C;,d, and d; will
denote generic constants.

3. Preliminary Results. In this section we present several preliminary results
that will be used in the sequel. For further information on eigenvalue problems we
refer the reader to (4], 8].

(a) An Identity Relating the Eigenvalue and Eigenvector Errors. Here we present
an identity that relates the errors in eigenvalue and eigenvector approximation.

LEMMA 3.1. Suppose (A, u) is an eigenpair of (2.5), suppose w is any vector
in Hp with ||w||p =1, and let ' = B(w,w). Then
(3.1) N =2 =lw-ulf ~ Alw - ulb.
Proof. By an easy calculation,
gy Tl e - ulb = el - 2800, + il
— Mwlib + 22D (w, u) — Mullp.

Now
B(v,u) = AD(v,u) Yv € Hp,

from which we get

(3.3) B(w,u) = AD{w, u)
and
(3-4) lully = B(u,u) = AD(u,u) = Aullp.
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EIGENVALUES AND EIGENVECTORS OF SELFADJOINT PROBLEMS 279

The result follows from (3.2)-(3.4) and the relations M = |lw||% and 1 = |lw||%. O
(b) The Operators T and T},. Let

Hp = the completion of Hg with respect to || - || p.

Hp is a Hilbert space with inner product D and, since | - ||p is assumed to be
compact with respect to || - || s, Hp is compactly imbedded in Hp. (Alternatively,
we could have assumed Hg C Hp, compactly, and let D(u,v) be the inner product
on Hp.)

From Hp and Hp construct the “negative space” H_p = Hp, with norm ||| .
Then Hp C H_pg compactly, and for v € Hg, D(u,v) has a continuous extension
to u € H_p so that D(u,v) is continuous on H_g x Hp. For u € H_p, ||u||-5 =
Supyen, |D(u,v)|/||v||s. For a complete discussion of this construction we refer to

[5, pp. 31-39].
Next we introduce the operators T, Ty, : H_p — Hpg defined by

Tfe€ Hg,

(3.5) { /< Hs
B(Tf,v) = D(f,v) VYve Hp,
Thf € Sh,

(3.6) { hf € Sh
B(Thnf,v) = D(f,v) ¥Yv € Sp.

T and T}, are the solution and approximate solution operators for the “boundary
value” problem corresponding to the eigenvalue problem (2.5). It follows immedi-
ately from (2.1), (2.2), and the fact that D(f,v) is continuous on H-pg x Hp that
T and Ty, are bounded from H_g to Hg. Since Hp is compactly imbedded in Hp,
and Hp is compactly imbedded in H_pg, T is compact from Hg to Hg, from Hp
to Hp, and from H_pg to H_g. T}, is, of course, also compact on Hg, Hp, and
H_p. It is easily seen that T and T}, are selfadjoint on Hp and that T is selfadjoint
and positive definite on Hp (with respect to B(u,v)). It is immediate that T has
eigenvalues
pr =2 2 =271 > \0

and eigenvectors

Uy, U2,.. .,
and that T}, has eigenvalues
-1 -1 .
Bhy =Ap1 2 2 N = Ay N N = dim S,
and eigenvectors
Uh,1y.++yURN-

Let P;, be the orthogonal projection of Hg onto Sy; then from (3.6) we see that
T, = P,T.
Let

3.7 n(R)=||(I -~ P)T|ap—tp =T —Thlltip—us = sup inf ||Tg-x|5
gEHp XESh
llgllp=1

and

(3.8) v(h)=|(I = Pu)T|lag—tp =T — Trllip—~ns = sup inf [|Tg— x| 5.
gEHp XESn

lglls=1
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280 1. BABUSKA AND J. E. OSBORN

Several of the results in Sections 4 and 5 are stated in terms of the qualities of n
and v. We now present some properties of n and v.

LEMMA 3.2. There are positive constants Cy and Cy such that

(3.9) Cyv(h) < n(h) < Cav/v(h).

Proof. Since ||u||p < C||lul|g Yu € Hp, we have v(h) < Cn(h), which is the first
inequality in (3.9) with C; = C~!. Now consider the second inequality in (3.9).
From (3.5) and (3.6) we have

ITfls < Ifl-8, 1 TwfllB <lifl-8
and hence
(3.10) IT = Thllp_p—Hs <2,
and from (3.8) we have
(3.11) IT — Tullg—as = v(h).

We now note that H_pg and Hp are connected by a scale of Hilbert spaces. It thus
follows from (3.10), (3.11), and a result on interpolation of linear operators [5, pp.
240-242] that

n(h) = IT = Tallup—na < C2/20Y2 = Cu(h)'/?,
which is the second inequality in (3.9). O

LEMMA 3.3. We have
(3.12) ’113}) n(h) = '{1_% v(h) =0.

Proof. Because of Lemma 3.2 it is sufficient to show that lim,_o v(h) = 0. (2.13)
implies that P, — I pointwise on Hp (in fact, (2.13) is equivalent to this result).
Since T: Hg — Hp is compact, T{g € Hp: ||g||z = 1} is relatively compact in Hg,
and limp, o v(h) = 0 follows from the standard result that a family of operators
that converges pointwise on a space converges uniformly on a relatively compact
subset. O

From Lemma 3.2 we have n2 = O(v). It may happen that n? = o(v). This is

shown by the following example.
Ezample. Let

1
Hp = H}(0,1), B(u,v) = / a(z)u'v' dz,
0

and .
D(u,v) =/ uv dz,
0

where 0 < o < a(z) < B < oo. (H'0,1) is the lth-order Sobolev space and
H}(0,1) = {u € H(0,1): u(0) = u(1) = 0}.) For f € Ly(0,1), u = Tf is the
solution of

{ —(a(z)') = f(z), O0<z<],
u(0) = u(1) = 0.
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First suppose Sy = the space of C° piecewise linear functions with mesh size h
that vanish at 0 and 1 and suppose a(z) is smooth. Then we easily see that n(h) ~ h
and v(h) ~ h, so that n? = o(v). Next suppose S, = the space of C° piecewise
quadratic functions vanishing at 0 and 1. If a(z) is smooth, we see that n(h) ~ h
and v(h) ~ h%, so n% ~ v. If, on the other hand, a(z) is rough, specifically if a(z)
is such that g € Hp = L3(0,1) implies u = T'f € H%(0,1), but g € Hg = H}(0,1)
does not, in general, imply v € H*(0,1) for @ > 2, then n ~ h and v ~ h, so
n® = o(v).

From (2.13) we have

(I = Py)ullg = €u(h)|lullp = 0 Vue Hp.

The usual duality argument (cf. Aubin [1], Nitsche [10], and Oganesjan-Rukhovets
[11]) shows that ||[(I — Pr)ullp < Cn(R)||(I — Pu)ullg and ||[(I — Ppu|-p <

Cv(h)||(I— Pr)ul||g. For the sake of completeness we include proofs of these results.

LEMMA 3.4. We have

(3.13a) I(I = Po)ullp < n(h)|({ — Pu)ulls VYu€ Hp
and
(3.13b) (I = Pp)ull-g < v(h)||(I — Py)ullp Yu€ Hp.

Proof. Since P, is the orthogonal projection of Hg onto Sp,, we have
B((I — Pu)u,Tg) = B((I — Po)u,Tg—x) VX € Sh,
from which we get

(3.14) IB(I = Pu)u,Tg)| < |1 — Pu)ulls_inf [Tg—Xxl5-

From (3.5), the symmetry of D and B, and (3.14) we have
I ~ Pa)ullp = sup |D((I - Puu,g)l= sup |B((I— Pn)u,Tg)|
geEHD g€EHD
llgllp=1 llglip=1

< sup inf ||ITg—x|sl{I - Pa)ulls < n(R)II(I — Prulls,
gGHD Xesh
llgllp=1

which is (3.13a). Similarly,

NI — Pu)ull- = sup [D((I — Pr)u,9)|
gEH g
llglle=1

= sup inf ||Tg— x|Bll( — Pr)ulls =v(R)|(I — Pr)uls,
g€Hp XESn
llgll =1

which is (3.13b). O
(¢c) Preliminary Eigenvector Estimates. For i = 1,2,... let k; be the lowest
index of the ¢th distinct eigenvalue of (2.5) and suppose Ax, has multiplicity ¢;. Let
E = E()g,) be the orthogonal projection of Hp onto M(Ax,) and let Ej = Ep(Ag,)
be the orthogonal projection of Hp onto
My, = My (Ag,) = the span of the eigenvectors of (2.10)

(3.15) . .
corresponding to Ap,k; 45,5 =0,...,¢;, — 1.
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LEMMA 3.5. There is a constant C; such that

(3.16a) lu — En(Ax)ulls < Gil|(I — Pr)ulls Vu € M(Ax,),
(3.16b) lu = En(Ax)ullp S Cill(I — Pr)ullp Yu € M(Ag,),

and

(3.16¢) lu — En(Ae)ull-B < Gill(I = Pr)ull-  Yu € M(Ag,)-

Proof. Suppose the spaces Hg, Hp, and H_pg, the bilinear forms B and D, and
the operators T, T}, E, and Ej have been complexified in the usual manner. Let
Tk, be a circle in the complex plane centered at px, = /\,;1 and enclosing no other
eigenvalues of T. Then for h sufficiently small, ppx, = ’\;,}cu~--’l‘h,k.~+qs—l =
/\;,}c‘, +¢;—10 but no other eigenvalues of T}, are contained in I'x,, and

_ 1 -1
(3.17a) EOw) = 5 /F CREARE
and

_ 1 -1
(3.17b) Eh(/\k,‘) = o /Fkv(z Th) dz.

These are the usual formulas for the spectral projections associated with T and py,
and Ty and pin k;,- - - Bh k+q,—1, Tespectively (cf. [9, Section X1.9]).
Consider now the proof of (3.16a). Using (3.17) we have

v — En(Ak;Julls = I[E(Ak.) — En(Ae)]ulls

i R
2me Tk,
B
=5 | =T T =T - T) s
2T |
) B
3.18
(519 S AT R S
27 Ty, 27 bk, B
1 _ (T — Th)ulls
<— SN R P e
_27r[27rrad(rkl)]zseul‘: I(z = Tw) ™ Nl e —ta rad(T,)
o<h’
= e, sup |I(z = Ta) Mag—rsll(I = Pu)ulls Vu€ M(\,).
2€l,
o<h

In the last inequality we used the relation (T — Ty )u = (I — Py)Tu = pg, (I — Pr)u.
Now ||T — Th||Hy— 1, — O implies
Ci = pk, sup [[(z = T0) " lHu—brn < 00,

z2€ly,
0<h

so we have established (3.16a).

Now consider the proof of (3.16b). The above analysis is relative to the space
Hp (the integrals in (3.17) converge in the operator norm on Hp and
T — Thllug—H,; — 0). Since T and T, can also be considered on Hp and
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IT — ThllHp—H, — 0, we can apply the same argument in Hp. Note that the
formulas (3.17) will now define projections on Hp which are extensions to Hp of
E and E;. We thus obtain (cf. (3.18))
lu— En(k)ullp < pe, sup (2 = Tn) " lap—aoll(I = Pa)ullp Ve € M(Ax,),
Z

kg
h>0

which is (3.16b).

The proof of (3.16¢) is similar. O

Remark 3.1. It is essential in Lemma 3.5 that h is sufficiently small, meaning
small in comparison with the gap between Ay, and Ag,_1, Ag, 1. If this gap is small,
then it can happen that the approximate eigenfunction up x, associated with Ap ,
could be close to ug,—1 Or ug,4+1.

Lemma 3.5 is an eigenvector estimate since it provides an estimate for

u(an exact eigenvector) — Epu(a linear combination of approximate eigenvectors).

We note that (2.13) and (3.16) imply that Ex(Ak,): M(Ak,) = Mp(Ax,) is one-to-
one and onto for A sufficiently small.
We next prove a refinement of (3.16a) due to Chatelin (7], [8]. Inequality (3.16a)

shows that
lu — En(Ak)ulls
llu = Prulls
Chatelin showed that
lu — En(Ax)uls
lu— Phullp

=0(1) YueM(\).

— 1 as h— 0 (see (1.3a));

her argument, in fact, establishes
LEMMA 3.6 (CHATELIN). There is a constant d; such that

lu = En(Ax,)ulls
lu — Prulls

where v(h) is defined in (3.8).

(3.19) 1<

<1+4+dv(h) Yue M(A,),

Proof. For the sake of completeness, and to establish the form of the bound in
the second inequality in (3.19), we present a proof of this result.

Let Ty, = P,TP, = ThPy. Note that T}, and T}, have the same nonzero eigen-
values, that Ej(Ag,) commutes with Ty, and that T}, is selfadjoint with respect to
B. For u e M(\,),

(Th — pne, ) Paw = PaT(Py — Iu + (pk, — pin,k, ) Pru
and hence, since Ej(\g,) commutes with T,
(Th = ttn k) = En(Ax,))Pru = (I = En(Ax,))PaT (P — Du
+ (k, — k) — En(Ak,)) Pru.

Let Q be the orthogonal projection of Hp onto .# (T4 ), the null space of T. Then,
any z € #Z(I - Ep()g,)), the range of I — Ej(A,), can be written as

(3.20)

z= Z B(z,up )un; + Qz.
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Here we have used the orthogonal decomposition

Hp =R(T,) @ N (Th) = Z(Th) &N (Th)
= span{un,1,...,Un N} ® N (Th)
= span{un,1,...,un,N} A (Th).

Thus,
N
(Th — pa k)2 = > B(z,un,1)(h,i = Bhk )tnt — bh Q2
P
and hence

I(Th — wnr)2ls

N
= > |B(z,un ) |int — phok|® + lonk: 2 1Qz15
l#ki,..l,,=k,1'+q,'—l
> min{|pn; — unkl®, 5= 1., NG # kiy o ki + i = 1 lpa k|
(3.21) N
X > |B(z, un)|* + 1Q211%
Ltki e Frtaie1
_ { min{|ph k-1 = Bhk, % [0 ka1 — el loni PHI2IE, 122
| min{lunk, = vn |2 lun g, (B2l i=1

Since pp,; — pj (cf. (2.14)) for each j as b — 0,

{ min{|un k,—1 = Brk % a1 = pag ) ek, 22,
min{|pnk, = k| len e ?} i=1,
. { min{|pe, -1 — e, 2 ki1 — w2 Lok 12 3 122,
min{|pk, _/“k1|2’|l‘k|l2}v =1,
=62 ash—0,

from (3.21) we get
WTh — bnk)zllB 2 6illzlz Yz € Z(I - Ep(Ax,)) and
(3.22)

Y small h,

where §; > 0 depends only on the gap between g, and pg,—1, ik, +1. Combining
(3.20), (3.22), and the fact that I — E,(\k,) and P, are orthogonal projections, we
have

(I ~ En(Ax,))Prulls
< 67N = En(Ax,))PaT(Py — Du+ (pk, — ph k) — En(Ax,))Prulls
< 67T (Po = D?ull + |k, — ik, NI — En(Ak,))PrullB},
from which we get
(I = En(Ax,))Paullp < dillT(Pr = I)|| s~ Hsll(Pr — Dulls

(3.23)
=dill(Pr — DT||gg—asll(Pn — Iull 5.
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In the last equality we used the fact that (P, — I} and T are selfadjoint and that
the norm of an operator and its adjoint are equal.
(3.23) implies
(I = En(Ac)Pr)ulls — I(1 = Prulls| < (I — En(Ax,)) Prulls
< dil|(Pn = DT||Hp— s |(Pr — Dulls,
and hence
(I = En(Ax)Pr)ulls

(3.24) 1B = Dils

1 <di||(Pn — DT Hg—Hs-

We easily see that
I(I = Pr)ulls < (I — En(Ax,))ulls < I(I = En(Ak,)Pr)ulls,
and thus

NI = En(Ak))ulls _ (I = En(Ak,)Pr)ulls
3.25 1< L < L .
(3.25) 1B - Dulls I - Pa)ulls
Combining (3.24) and (3.25), we have

0 < I = EnQe))ulls _ | o I~ Ex(Ae)Pr)ullz _
= |(Pr—Dulls = (Pa=TullB
Sdi|(Pn - DT ||pg—Hp VuEM()\ki).

Recalling that ||(Pn — I)T||y—Ha; = v(h), we obtain the desired result. O

Remark 3.2. (3.19) should be compared with (4.20), which provides a stronger
estimate for certain special u’s in M(Ag,).

Lemmas 3.5 and 3.6 show that starting from any exact eigenvector u we can
construct Ep (Mg, )u, a linear combination of approximate eigenvectors that is close
to u. One can also start with an approximate eigenvector and construct a close
exact eigenvector. We present another result of Chatelin [7], [8]; see (1.3b).

1

LEMMA 3.7 (CHATELIN). There is a constant d; such that

llun,; — E(Ax;)un ;B
3.26) 1 < 2 L 2
(3-26) 1 < 15 00 Juny — ECw,)unglls

Proof. Observing that
E(Ak,) = En(A)Pr = (E(Ak,) = En(Ak,))Pa + E(Ax,)( = Fh),

< 1+d,l/(h), ] = ki,' .. ,ki‘HIi"l-

we obtain
IE(Ak;) = En(Ak)Prallag—mp < |E(Ak,) — En(Mk)|Hs—H5
+HEM k)T — Po)llHg—Hs-
We easily see that
NE(Ak )T = Pi)llas—rs = (I = Pa)E(Ak ) Hp—Hs

sup ||({ — Pu)E(Ax,)ulls
u€EHpg

llulls=1
=Xk, sup |[({ — Po)TE(A,)ullp < Ak, v(h),
a2
Ul =
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and by a slight modification of estimate (3.18) we have
IEAk,) — En(Me )l Hpg—He < Cr(h).
Thus,
(3.27) I1Ek;) = En(Ak)Pallag—np < Cv(h).
Next note that
{I = [En(Ak)Pr — EQ)]Hun,; — E(Ak,)un ;) = [En(Ae)Pa — IJE(A, )un ;.
Hence, using (3.24) and (3.27), we have

lun,s = EQw)unslle < I = [Er(Ak,)Pr = EQw )}l Hp—Hs
X |[En(Aki) P — I|E(Ak, Jun,;ll B
|[En(Ak;) P — I E(Ak,)un,sllB
T 1 |En(Ak)Pr — EQ)lp— 15
< (L+di)|(Pr — DE(QAk,Jun,jliB
- 1-Cv ’

which implies the second inequality in (3.26). The first is immediate. 0O

(d) Relation Between Eigenvector Error in||-|| s, ||-|lp, and ||-||-5- In Subsection
3.(b) we noted that ||(I — Pr)ullp < n(R)|{(I = Puu|lp and ||(I — Prlu|l-5 <
v(h)||(I — Pp)u||g. In this subsection we establish similar results for the eigenvector
error.

Fori=1,2,... and j = k;, ..., ki + g — 1, let W} € M()y,) satisfy Ep(Ax,)u} =
Up,;. We know from the discussion in Subsection 3.(c) that ﬁ;' exists and is unique
for h small. From (3.13a) and (3.16b) we have

1@ =T jllp = @ - Ea(A,) @0 |p < Cn(W)|I(I = Po)al||
< Cin(h) 1@} — n 4l 5,

or
P — Up,y

(3.28a) M < Cin(h).
3 —unjllB

It follows immediately (by scaling) that
u —up,

(3.28b) uy = unsllo Cin(h),

luy = unslls ~

where u? € M(Ay,) satisfies Ep(Ae,)ul = up ;. (Recall that |[@,u)p = 1 and
llujnllg = 1.) Similarly, from (3.13b) and (3.16¢) we get

[} — T sll-5

(3.29a) £ < Cu(h)
@) — un;ll5
and
Bl
(3.29b) ey ~wnsll-z iy

llu} ~ un;lls
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By Lemma 3.1 we know that
Mg = Mg = llu=Tn ;B — i llw = Tn,5llD

- | — @nill%
= lu—T,ll% {1 =k 2 L Vu e M(Ag,).
’ v — @513
As u varies over M(Ag,) it is clear from (3.30) that ||u — Hh,j”%/“u - Hh’j”% is
minimized for that % that minimizes ||u — @y ;||%, namely for uo = E(A,)n ;.
Thus we have

(3.30)

IEQk)8rs = Bnslp e — s ;o

(3.31a) — — S
IE(k)@r; —Tnlls = [k —un s

< Cin(h).

We, of course, also get

E(A
(3.31b) “ ( k; )uh] uh]”D < C ( )
IEk,Juns — un;llB ~
Estimates (3.31) are similar to (3.28), but involve a different pairing of approximate
and exact eigenvectors.

Remark 3.3. Pierce and Varga [12] proved eigenvector estimates in || - || p, and
Bramble and Osborn [6] established them in || - || 5.

4. Precise Asymptotic Estimates for the Eigenvalue and Eigenvector
Error. In this section we use the notation introduced in Subsection 3.(c}, i.e., we
let k; be the lowest index of the ¢th distinct eigenvalue of (2.5) and assume A, has
multiplicity g;.

(a) The Figenvalue Error. For 1 = 1,2,... and § = ki,... ki + ¢ — 1 fixed,
Chatelin (7], 8] has shown that

(Ang = Aie) [ Ak
(I = Po)E(Ae, Jun | 5/I1E(k, Jun 51 [C

We now prove a refinement of (4.1) (cf. (1.3c) and (1.4)).

(4.1)

— 1 ash — 0 (cf. (1.3¢)).

THEOREM 4.1. Fori=1,2,... there is a constant d; such that

(’\h,j = Ak, )/ Ak, _
1T = Po)EQuk, Jun 115/ 1 E (e Jun. 1

J=ki ..., ki +qi — 1, where n(h) is defined in (3.7).

(4.2) 1} < din®(h),

Proof. Let u = E(\g,)un, ;. We have
(kk, = pn.g)B(uw,un ;) = B(Tu, up ;) — B(u, Thun ;)
= B(u,(T — Th)un,;) = B(T(I — Pn)u,up ;)
(4.3) = B(T(I — Py)u,u) + B(T(I — Pp)u,up; —u)
= B(T(I — Px)*u,u) + B(T(I — Py)u,up ; — u)
= pk, B((I = Pa)u, (I — Pa)u) + D((I — Pp)u,un; — u).
Using the fact that B(u,up ;) = B(u, E(Ak,)un ;) = ||u[|%, (4.3) can be written as

A A 1
2Bk = (1 = Prulls + DU = Pa)u g — ).
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Dividing by ||(I — Px)ul|%, multiplying by A, ;, and subtracting 1 from both sides,

we find
(/\hj_/\k-)/’\k- /\h ‘—/\k. D((I—Ph)u,uhj—u)
(4.4) : o — 1= R ’
I = Pu)ull/llull} Ak, M - Poulg
From (4.1) or the standard, well-known results for eigenvalue approximation we
have
2
A — Ak,
I—E<di | sup (- Pa)ulls
ki ueM(,\ki)
lulls=1
(4.5) 2
=di | VA, sup  ||(I - Pu)Tulls
uGM()\kl.)
llu)lp=1

<dn*(h), =k kitgi—1,
from (3.13a) we have
(4.6) (I = Pr)ullp < n(A)I(I ~ Pa)ull s,
and from (3.26) and (3.31b) we have
llun,s = ullp = |lun,; — E(Ak, Jun,llp
< din(h)|lun,; — EQAk,Jun5ll8 = din(h)I|(I = Pr)ulls.
Combining (4.4)-(4.7), we obtain

(Ang = M)/ Mo
(I = Pr)ull%/llull}

(4.7)

An,g | DI ~ Pr)u,up ; — u
(I — Pr)ul|%

Ans (I — Pu)ullpllun,; — ullp
<din? + =L ) < d;n?,
i 17 - Payul i

1| <din*(h)+

the desired result. 0O
Remark 4.1. Formula (4.4) is due to Chatelin [7], [8] and is used by her to prove
(4.1). Using eigenvector estimates in || - || ((3.26)), one can prove

(Ang = M)/ A,
(T = Pa)E(ur,Jun I/ 1 EOk, Jun ;1%

Inequality (4.2), which was proved using eigenvector estimates in || - ||p ((3.31b)
together with (3.26)), is an improvement over this result since, as we saw in Sub-
section 3.(b), 7 may be of higher order than v.

Theorem 4.1 relates the eigenvalue error (An; — Ak,)/Ak, to ||(I — Pu)ul|%,
with u = E(Ax,;)un,;. We now prove a result that relates the eigenvalue error to
NI = Pa)ulls/llulll, where u € M(Ax,) and Ep(Ag,)u = upy, ie., u = ul, as
defined in Subsection 3.(d).

-1 S d,ll(h)

THEOREM 4.2. Fori1=1,2,... there is a constant d; such that

(Anj = A )/ Ak,
(I = Pr)ull%/|lull’

where u € M(Ay,) satisfies Ep(Ag,)u = up ;.

(48) -1 Sd‘lnz(h)’ ].:kiv"'aki_*_q’i—l’
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Proof. With u € M(A,) satisfying Ep(Ax,)u = up,;, we have

(Bk; = pn,5)B(u,up ;) = B(Tu,un ;) — B(u, Thun ;)
= B(T(I — Pp)u,u) + B(T(I — Pp)u,up,j — u)
= pi,||(I = Pu)ulls + B(T(I — Pu)u, up,; — u),

from which we get, as above,

(Ang = Ak )/ Ak 1= 2= M D(U - PaJu,uny —u)
(T = Pa)ull B/ En Ak, Jullh Ak, T - Pu)ulh

It follows from (3.13a) and (3.16b) that

(4.10) llun,; = ullp < dinll(1 — Pu)ul|s.

Combining (4.5), (4.6), (4.9), and (4.10), we obtain
(Mg = M)/ Ak

(4.9)

— 1| < din?(h),
= Pl 1 En (e ol i < dir'(h)
from which we get
(An,j = Ak} Ak, lull% 2 flull2
(4.11 od : <din*(h)——B—x.
VT Bl G~ TEGwag | < 4 OB el

Since u = (u — Ep(Ax,)u) + En(Ak,)u is an orthogonal decomposition in Hg, we

have

lulld = llu = Ea (o ulll + 1 Ea Ok, Jull
and hence
(412) lel, e BaQw)ull3

[En (k. Jully 1B (A, Jull B
Using (3.16a) and (2.13) we see that
llu = En(,)ull®
I En (A )ulll
Combining (4.11), (4.12), and (4.13), we get the desired result. O
(b) The Eigenvector Error. Let ¢ = 1,2,... and let j = k;,... ki +¢; — 1 be

fixed, and consider %y, ; and E(Ak, Uy, ; (recall that |G, j||p = 1). We showed in
Subsection 3.(d) (see (3.31a)) that

(4.13) < Cel(h) < Cn2(h).

(4.14) IE(A&)Br,; — Un,;llp < din(R)IE(Ak, )Th,; — Tn,;]l5-
From Lemma 3.1 we have
(4.15) Mg = M, = |E(Ak)8h s — Tnsll B — M| Bk, )Bh g — Tn,jllD-
Combining (4.14) and (4.15), we obtain
Mg = M 2 |Ee)h,5 — Tn,sl5(1 ~ din®(R)),
which implies

IEe)Bh,; = Bngll Mg = M,

(4.16) (T = POEG @15 = (T = Po)EOw, Yan ;|1 5(1 — din?)
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Since Ty ; = E(Ax,)8n,; + (Gn,; — E(Ak,)%n,;) is an orthogonal decomposition in
Hp, we have
1= [|EQw,)Tn,s 5 + lEn,; — E(, )T ;1lD-
From this, (3.26), and (4.14) we get
1 < |EAk, )T 5|5 + din®|(Pr — DE(Ax,)8n,5115
(4.17) _ IEQOw,)an,11%
Ak,

Now, combining (4.2), (4.16), and (4.17), we have

(1 +d1‘7)4).

| E(Ak,)Th,5 — TnsllB
(I = Pr)E(Ak,)Tn,jllB

< { (Arg = Ak)/ Ak o Lt din* }1/2
= LI = PO)EO)Tn 5115/ IIEO,)Tn 511 1 - din?
(1 + d,‘T]4

1/2
< {(1+dm2) 1—d»n2)} < [1+din®]? < 1+ din?(h).

We summarize this (cf. (1.3b) and (1.4)) in

THEOREM 4.3. Fori=1,2,... there 1s a constant d; such that

|E(Ak,)8r,; — UnllB
(I — Pr)E(Ax,)%n,5llB

In (4.18), Uy ; can be replaced by up ;.

(4.18) 1< <1+dm?(h), j=ki...,ki+q-L

Remark 4.2. The result (4.18) is stronger than (3.26) since 72 may be of higher
order than v.
Next consider %y ; and ! (recall that u} € M(Ay,) satisfies Ex(Ax, )T} = Uh,;)-
We know (see (3.28a)) that
|} = Bnsllp < din(R)||B} —Un,;l 5.
This, together with Lemma 3.1, yields
Mg = M = 1T = Tn gl — M 1T} —TnsllD
> ||} ~ Tn,5l|B(1 — din?),
which implies
I - Pu)atll} ~ I = Pa)agl3(1 - din?)
_ (Ang = Ak)/ Ak,
(I = Pa)ay I3 (1 — dZn)/|lm} 1%

Finally, combining (4.8) and (4.19), we have

@} —an ;0% < Ahg — Ak

(4.19)

1@} —@n.jlls < (1+dm2
Tl - Pa)ul|ls T \1—din?

This result (cf. (1.3a) and (1.4)) and the related result (3.19) are summarized in

1/2
) <1+din*
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THEOREM 4.4. Fori=1,2,... there is a constant d; such that

—h = h h
(4.20) 1< W@} —Bn;lle @} — En(Ax,)%; |l

< i = il < 1+d;in%(h),
10— Poatls T =Pl (R)

J=ki.. . ki+q¢ -1

The inequalities (4.20) remain valid of Uy ; s replaced by up, ; and ﬁ;’ by u;‘ There
13 a constant d; such that

lu = En(Ax,)ulls
l(u = Pr)ulls

Remark 4.3. We have restated (3.19) in (4.21) because it is related to (4.20) and
it is the strongest known result of its specific type. It should be noted that (4.21) is
true for all u € M(Ag,), whereas (4.20) is valid only for u = H;‘, J=ki, ... kitq—1.
However, for these u’s, (4.20) is stronger than (4.21).

Remark 4.4. The eigenvector estimates (4.18) and (4.20) were obtained from the
eigenvalue estimates (4.2) and (4.8), respectively, via Lemma 3.1, which provides
an estimate for the eigenvector error in terms of the eigenvalue error. Estimates
for eigenvector error in terms of eigenvalue error can be found in Weinberger [13].

Remark 4.5. See [2], [4] for a numerical study of the reliability of the results of this
section—which are of an asymptotic nature—as a guide to practical computations,
which often take place in the preasymptotic phase.

(4.21) 1< <14+dyv(h) forallue M(Ag,).

5. An Additional Result for Multiple Eigenvalues. Estimate (1.3c) im-
plies that

infyes, |E(Ak; )unk = x|
A o /\ < C XESh i 1T B
ok T ke = IE(Ak: Jun kB

and estimate (4.8) shows that
Ak, = Ak, < C inf lu—xlB/llullf,
XESk

where u € M(\g,) satisfies Ex(Ak,) = upk,. In {3], Babudka and Osborn proved
the stronger result (cf. (1.5))
. . 2
Ahke; = Ak, < Cueﬁ?(f,\k,.) Jnf Jlu=xl5
llullp=1
(as well as similar estimates for Ap ; — Ax,, 7 = ki +1,...,k; + ¢ — 1, and for
the eigenvector errors), which shows that A, x, — A, the error in the approximate
eigenvalue closest to Ag,, is governed by the approximability of the exact eigenvector
corresponding to Ag, that can be best approximated by S,. In this section we give
a simplified proof of the results of [3], which in addition provides information on
C (the results in [3] only established that C is a constant), and we estimate the
eigenvector error in || - ||p and || - ||-B.
As above, for 7 = 1,2,... suppose k; is the lowest index of the sth distinct
eigenvalue of (2.5) and let ¢; be its multiplicity, i.e., suppose

M 1tgi-1 = A1 < Agy = A1 = = A=t < Aigy = Akgs -
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Let
i(h) = inf inf -
&i,5(h) ueiln(,\k,.) xlélS;. lu—xlls
B( ) ||u“§(=1 }=0
UUp, k)= =B(u Uk, +5-2)=
(5.1) = inf eu(h), i=1,...,¢,
ueM(/\ki)
flull =1
B(u,uh_ki)=...=B(u,uh,ki+1_2)=0
where M(\g,) is defined in (2.9). The restrictions
B(u,up k) = = B(u, up k;+j-2) =0
are considered vacuous if 7 = 1. We note that they are equivalent to
B(u,E(/\ki)uh‘l) =0, l=Fki....;k; +75 -2,

and to
B(Eh(/\k‘.)u,uh’l)zﬂ, l="Fki...,ki+7—2.
THEOREM 5.1 (cf. (1.5)). Fori=1,2,... there is a function C;(h) and a
constant C;, with

(5.2) Ci(h) <1+ d;v(h), d; = constant,

such that

(5.3) (Akiti—1 = M)/ Ak, S Cs(R)eZ;(R),  F=1,...,4,

and such that the eigenvectors uy,us,... of (2.5) can be chosen so that (2.6) s
satisfied and such that

(5.4) lunki+si-1 = uki+j-1llp < Ci(h)esi(R),  j=1,...,4,

(5.5a) lunki+j—1 = Uki+j-1llp < Cin(h)eiz(R),  F=1,...,4,

and

(5.5b) lun k-1 — vkiti-1ll-B < Civ(h)eii(h),  7=1,...,4q,

where n(h) and v(h) are defined in (3.7) and (3.8).

Proof. Let 7 and j, with ¢ = 1,2,... and 7 = 1,...,¢;, be fixed. Note
that eu(h) < Ak, v(h) for all u € M(Xg,) and ¢;;(h) < Agv(h), 7 = 1,...,q.
Let u € M(Ag,) with B(u,unk,) = -+ = B(u,unk,+5-2) = 0 and ||ul|lp = 1.
Now apply (2.7*) and Lemma 3.1 with (A u) = (A,,u/||En(Ax,)ullp) and w =
En(Mk;)u/||En(Ak,)ullp- Since

B(E'h()\k,.)u,uh,,) = 0, l= l, P ,k:,' - l,
by the orthogonality of the approximate eigenvectors, and
B(Eh(/\k.-)ua ’uh_[) = B(u,uh,l) =0, l=Fk; ... k; 4+ -2,

by the assumption on u, we have
E'h(/\k,.)u Eh(/\k. )u ) A\
— Mk,

Mits=t = e S B (nEh(Ak‘.)unD’ 1Ex (e ol
_ B Ow)u = ulll = A I En(Ak)u — ull}
B IER(Ak,)ulld
| En(Ak,)u — ull}
NER (e, Jull3,

(5.6)
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From (3.19) we have
(5.7) 1En(Ak)u —ullp < (14 dv)|lu - Prul 5.
From (3.13) and (3.16b) we see that

Ex (e ullo = A1 = I Ea (e )ullp = lullo|
< |Ern(Ak)u — ullp < dllu — Prullp
< dnllu — Prullp = dn(h)eu(h),
which shows that
1 L _dneu(h) 2
(5.8) X [ En (O, Jullh " IBa (O )ull
< 1+dne,(h) <1+dnv.

IA

Combining (5.6)-(5.8), we get

o) Ohert )/ S (14 )04 )l Pl
' < (14 dv)|u — Prull%.

Now since (5.9) holds for all u € M(Ag,) with B(u,up) =0,1 = ki,... ki+75-2,
and ||u||p = 1, we have

(Ani+i—1 = Ak [ Ak
2

< (1+du(h inf nf Il —
< (1+dv(h)) weilb) Jof [lu—Xxlis
llullz=1
B(u,u;.,k‘.)=~--=B(u,uh_k‘,+j_2)=0
= (1+div(h)el; (),

which is (5.3) with C;(h) = 1+d;v(h). Thus (5.2) and (5.3) have both been proved.

Remark 5.1. The minimum principle (2.7%) and Lemma 3.1 lead to a particularly
simple proof of a result slightly weaker than (5.3) for the case 1 = j = 1. It follows
immediately from these two results that

Phu Phu )
A - M <B s - A
ML= (wwmonmmw !
[|1Pou = ulll = M| Pou -l _ [|Pau — ull}
= < Yu € M(A;),
1Pl 1Pl ‘
and hence
o Pu—u}
Al =AM /A < inf ——=2 < C;(h)ey11(h),
( h,1 l)/ 1 —tilefl\l'f(xl) /\1”Phu||2D = l( ) l,l( )
ul|lg=1

where C;(h) — 1.

Now consider (5.4) and (5.5). Let 7 = 1,2,... and j = 1,...,¢; be fixed. Let
u’h,k.-f-j—l € M(’\k.) SatiSfy Eh(Aki)u;ci+j—1 = Up,ki+j5—1 (u;c'-+j—1 = uﬁﬁ.]’_p
where “2.- +5—1 was introduced in Subsection 3.(d)). Applying Lemma 3.1 with

uf i
() = ()\k“_"ﬁi_l_.> and w= _Uhkitizl
lun k;+5-1llD llun k,+5-1llD
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we get
2
Uh,ki+5—1 Uk, 4j-1
Ahkiti—1 — Ak = -
(5.10) lunki+i-1llo  llunk+5-1llD g
. 2
o || rkemr Ukt j1 '
Munrie+i-1llp Nunk+i-1llpiip
From (3.28b) we have
(5.11) Ntk 4j—1 = Uhkiti-1llD < Cn(R)|[whe, =1 — Un k51 B

(5.10) and (5.11) yield

[1 = A, C?n?(h)
lunk+i-1lB

which, together with (2.11), (2.12), and (5.3), yields

Ahkiti—1 = Aky = ]||Uh,k.-+j—1 T

(Mkitj—1 — Ay ) /2
“u;c,-+j—1 _uh,k,'+j—1”B < 1/2 — .
’\h{k.‘+j—l[l - ’\kiC2n2]l/2

(5.12) < _ M Ti(h)eis(h)
RN ot &

Séi(h)ei,j(h)v ]: 1)"'7qi7

where, because of (5.2), C;(h) <1+ d;v(h). (5.12) shows that the U, 451 Satisfy
estimates (5.4). The inequality (5.12), together with (3.28b) and (3.29b), shows
that the uj ., satisfy estimates (5.5). They will not in general, however, be
orthonormal with respect to B, so that (2.6) may not be satisfied.

It remains to modify the u}c,,ﬂ-_l, i.e., replace “;c.»+j-1 by ug,4j—1, in such a
way that (2.6) and (5.4) and (5.5) hold. We proceed by induction on 5. Let j = 1.
If we define ug, = u} /||uj, ||B, we have ||luk, || = 1, so that (2.6) is satisfied. From
(5.12) we have

k- ll = 1 = [+l 45-1 = un g IB]2 = 1

(5.13) o Mkags = unki+i-1llB

- 2

< Cre; j, 1=1,...,q,
and hence
luk, = un ke < luk, — vl + lluk, — unk.lls
< lluk,lls = 1 + lluk, — unkllB
< Cuein + Ci(h)nes1 < Ci(h)eia(h),
where C;(h) < 1+d;v(h), which is (5.4) for j = 1. Using (3.9), (5.13), and the fact
that the uj_, ;_, satisfy (5.5a), we get
lluk, = unkllp < llue, — i, I + lluk, — unillp
= 25 Pl s = 1+ lluk, = un el
< Crein +Cneiy < Cin(h)eia(h),
which is (5.5a) for j = 1. A similar estimate establishes (5.5b) for j = 1.
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Next suppose j = 2. Let uy = uj_,, — B(uj ,,uk,)uk,. Using (5.4) for j =1,
(5.5b) for j =1, (5.12), and the facts that (5.5b) holds for the u} .. , and that
€i,1 < €i,2, we have
|B(w, 410 k) < [ B(Uk, 41 — Uhko+1, )|

+ | B(Uh,i+1 = U, 410 Uiy — Un k)|
+ |B(u;c,»+1’uk,- — Up k)]
= A, [D(th, 11 — U kit1, Uk,
+ | B(th ki1 — Yk, 415 Uy = Uh,k,)|
+ /\k.-+l|D(u;c,-+17uk.- — U k,)|
(5.14) < Al 41 = ki1l - Blluk il
+ llunke+1 — vk, 1l Bllue, — vk llB
+ Mgl 1l Blluk, — un k. ll-5
< Melluk, 41 — hkot1ll-B
+ [Jun ki1 = U, q1llBlluk, — un iz
+ Mo (1 + [[uk, 41 = v k1]l B) lue, — vk ll-B
< CI/Ei,Q + 6,‘(h)6@26¢(h)€1)1 + Cu@(h)si,l
< Cv(h)e; 2(h),
and hence
(5.15) 41 = sl = Bl 1, u8,)] < CulBes(h).
Now set ug,+1 = uy, ,,/||uf, ;5. Combining (5.12), (5.13), and (5.15), we obtain

k41 — vnk+1llB < (k41 — e 1llB + Uk, 41 — Unki+1llB
= |lluk,+1llB = 1} + lluk, +1 — unk+1llB
< lluk, 1118 = U + 2l 41 — Yk, 411l + e, 41 — vnki+1llB
+ Cl/[-,‘i,z(h) + CUE,‘,z(h) + 61‘(’1.)5}',2 (h)
< Ci(h)ei2(h),
where C;(h) < 1 + d;v(h), which is (5.4) for 7 = 2.
Now consider (5.5a) for 7 = 2. Using (5.13), (5.14), (5.15) and the fact that the
Uy, ;-1 satisfy (5.5), we have

luk+1 — v kr1lip < luk,41 — vk 41llp + luk, 41 — nk+1llD

—1/2
=2 Pl o B = 1+ w41 — g +1llD

~1/2 —1/2
<Ak / [k, +11lB = 1} + A, / fluk, 11 — vk, 1B

+ [k, +1 = U ki+1llD + 1Bk, 41, uk [k, I
+ Creig+ Creio+Cneja+ Cre; o
< Cineia(h),
which is (5.5a) for 7 = 2. The proof of (5.5b) is similar.

Continuing in this manner we get (2.6), (5.4), and (5.5) for j = 1,...,¢;. This
completes the proof. 0O
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THEOREM 5.2. Fori=1,2,... there is a function CA',-(h) with

PN

(5.16) Ci(h) 2 1 —dv(h), d; > 0 constant,

such that

(5.17) Ahkitio1 = M)/ Ak, 2 Ci(R)e2;(R),  j=1,....q,
and

(5.18) lunkiti-1 = vkirs-1lle 2 Ci(R)eis(h),  7=1,....q.

Proof. First consider (5.18) for j = 1. It is immediate that

Up k. — Uk, > inf inf — =¢;1(h).
lleh i, "‘”B—ueM(,\k,.)xleS,.“u xlls = €i,1(h)

lulls=1
Thus for j = 1, (5.18) holds with C;(k) = 1.
Now suppose 7 = 2. Since
B(uk, 11, Uhki) = B(We, 415 En(Ak,)un k,)
= B(En(Ak, )k, 41> Uh k) = B(Un k41, un k) =0,

we see that
! . .
Up ki+1 — UL, > inf inf |lu— =g; 2(h).
lunk+1 — Uk, 41llB 2 weifin ) xesh” xlls = €:,2(h)
Nulls=1
B(u,uh'ki)=0

Combining this result with (5.13) and (5.15), we get

lun k41 = Uk, +1l|B
2 llunki+1 = Yk, g1l = k41 — w1 llB = lluk, 41— uk41llB
2 ||uh,ki+l - “;c.+1||B - 2”"2&1 - u;cl,-+1“B - |||“;ci+1||3 -1
> (1 —dv)ei2(h),
which is (5.18) for j = 2. Continuing in this manner, we get (5.18) for j = 1,...,¢.
Now consider (5.17). From Lemma 3.1, (5.5a), and (5.18) we see that

llunkiti—1 = vk 45105
(Ahkeiti—1 = Ak, ) Ak, = —= :
’ Ak llun ki +5-10%

lunki+i-1 — vk4i-1l15
lenki+5-111%

A —
> JJ:\':—]I(U —dv)® - A, Cin?)el

which implies (5.17). O
Remark 5.2. Note that in Theorems 5.1 and 5.2 we have shown that

(Ahkei+i—1 = Ak, )/ Ak,

-1
e?_j(h)

< dwv(h),

whereas in Theorems 4.1 and 4.2 we showed that
‘ (Mg = Ak )/ Ak, B
(T = Pa)E(Ak, Jun 5115/ E(Ak, Jun ;1%

1‘ S din2(h‘)1
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and
(’\h,j - Akz’)/Aki

17 = Pr)ullB/llulh
for u € M(/\k,-) with Eh()\k‘.)u = Up,j.
Remark 5.3. For a computational illustration of the results in this section see

(3], 4)-

-1 < dinz(h)a
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