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Finite Element Guidelines for Simulation of Delamination Dominated Failures 
in Composite Materials Validated by Case Studies 
 

 

 

Abstract The focus of this paper is on the computational modelling of progressive damage in 

composite structures of fibre reinforced laminae. A general review of modelling approaches to 

failure in the context of the finite element method is first presented, with an emphasis on models 

based on continuum damage mechanics. The way in which delamination and matrix splitting (that 

may or may not interact with fibre-tension damage) should be addressed in the framework of a 

commercial finite element code is considered next. An important feature of the analysis is it does 

not rely on customized user-subroutines but solely on the analysis capabilities of the general 

purpose software Abaqus, thus ensuring that the numerical results can be universally reproduced. It 

is shown that the finite element simulations can accurately represent the physical mechanisms 

controlling damage development and progression and reproduce a number of phenomena including 

delamination, laminate in-plane failure and behaviour at notches. The paper ends giving guidelines 

for the generalized modelling methodology using Abaqus without user-subroutines. 

 

Keywords Delamination; Finite element modelling; In-plane failure; Notched strength. 

 

 

 

1 Introduction  
 

Composite structures commonly found in aerospace, automotive and civil engineering applications 

exhibit a distinctively nonlinear behaviour. This nonlinearity can arise in various ways. The 

heterogeneous nature of the material, which consists of fibres of one material (usually carbon or 

glass) in a matrix material of another (typically a polymer resin), makes the mechanical behaviour 

complex. This observation holds with respect to the stress-strain constitutive response, with 

directionally dependent properties, and to the failure behaviour, usually of a brittle type. In addition, 

since many composite structures consist of thin plates, they are likely to undergo large deflections.  

The description of real composite behaviour is a challenge, either using experimental 

procedures, or numerical methods. In this respect, virtual tests for composite materials carried out 

by means of numerical modelling are increasingly replacing some mechanical and physical tests to 

predict and substantiate their structural performance and integrity due to recent developments in 
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software-based nonlinear finite element analysis methods, particularly in composite-specific tools. 

This includes the computational advances in fracture modelling, especially the improvement of 

cohesive models of fracture and the formulation of hybrid stress-strain and traction-displacement 

models that combine continuum and discrete material damage representations in one single 

calculation. 

 Finite element simulations as virtual tests can be performed at any scale level of the structural 

composite. Fig. 1 illustrates a composite laminate with unidirectional plies and the three different 

modelling scales: (i) the microscale (constitutive modelling of fibre and matrix), (ii) the mesoscale 

(ply level as a multiphase material), and (iii) the macroscale (the laminate is modelled as a series of 

stacked unidirectional plies). In this contribution, modelling is performed on the mesoscale at which 

the ply is considered to be a homogeneous continuum. In other words, the material is homogenized 

by smearing the behaviour of the fibres and the matrix over a single ply. Interface elements between 

plies serve as the basis to model delamination. 

 

 
Fig. 1 Modelling scales for laminates 

 

 In order to obtain meaningful and reliable finite element simulations, the analysis has to 

account for the different failure (or damage) processes, mitigation, progression and their interaction. 

Matrix-dominated processes, especially delaminations, correspond to the onset of damage in most 

composite designs, and are one of the characteristics that distinguish their behaviour from that of 

metallic structures. Delamination can occur during manufacturing or due to interlaminar stresses, 

combined with a typically low through-thickness strength. Delaminations are often seen to occur at 

stress free edges due to the mismatch in properties of the individual plies, sections with thickness 

variation, at regions subjected to out-of-plane loading, and at notches. The introduction of notches 

to composite systems leads to stress concentrations that cannot be redistributed by plastic flow as in 

ductile metals.  

These damage initiation mechanisms do not necessarily lead to loss of structural integrity. 

Further load can be accommodated due to stress redistribution over the fibres. This introduces the 

concept of progressive failure (or damage) of the composite material. In this framework, the 
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numerical models are based on critical stress/strain values that trigger failure initiation, critical 

energy release values or damage mechanics considerations that describe failure propagation, as 

explained later. As this process progresses from mesoscale and macroscale to a large composite 

structure, the result is a continuing weakening of the whole structure, up to the point where the 

structure can no longer carry more load. This process is highly nonlinear as it degrades the ply and 

the laminate stiffness and extends beyond damage initiation. 

This paper focuses on the analysis of the crucial role of delamination in determining in-plane 

strength of laminates that frequently leads to premature initiation of failure. The current study has 

been broken down into the following sections: 

 

• Section 2 reviews the main features of computational finite element modelling of failure of 

composite materials. This review is also intended to serve as a point of departure for those who 

wish to pursue the subject matter. Therefore it is designed to offer as comprehensive a coverage 

as possible of the current state-of-the-art in the subject. 

• Section 3 is concerned with (i) the application of cohesive zone interface elements to model 

delamination, and (ii) the benchmark analysis of notched composite plates, using the 

commercial finite element software Abaqus [1]. We first study delamination failures in simple 

configurations such as Double Cantilever Beam (DCB) and End Notched Flexure (ENF) tests. 

Splitting and delamination failures (and their interaction with fibre-breakage) are modelled next 

in centre notched cross-ply laminates. The numerical models include a continuum damage 

approach to intralaminar failure modelling and a cohesive zone model to represent the 

delamination behaviour at the interfaces.  A simplified procedure to ensure damage localization 

is proposed. It is shown that the proposed model clearly captures the tendency of matrix 

dominated failure to propagate in the fibre direction using a continuum modelling approach, 

without the need to explicitly model the cracks by means of interface elements as in the original 

works. When properly implemented, the proposed methodology is shown to ensure a large 

degree of objectivity with respect to finite element discretization, and, simultaneously it 

requires little or no modification to standard commercial finite element codes, such as Abaqus 

[1]. This latter aspect is particularly relevant to practising engineers in industry who are 

concerned with virtual testing related to structural integrity and damage tolerance of fibre 

reinforced polymers for safety critical structures. 

 A summary of guidelines for analysis and conclusions are presented in Sections 4 and 5, 

respectively.  
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2  Failure Analysis in the Context of the Finite Element Method 
 

The full behaviour of composite structures can be predicted with numerical finite element 

simulations. The numerical modelling of this type of problem in the elastic range is quite 

straightforward. However, the nature of failure initiation and progression to rupture, involving 

matrix, fibre and/or interface damage and fracture, makes the analysis rather complex. Loads in 

composite structures are predominantly carried by axial forces in the fibres, and the failure process 

is driven by the energy released as they are unloaded after fracture. As well as this occurring by 

fibres failing, it can also happen by matrix dominated failures, in the form of cracks and 

delamination, joining-up to produce a fracture surface without the need to break reinforcing fibres. 

The typical constitutive behaviour is characterized by an initial linear response followed by a 

second nonlinear phase of reduced stiffness that involves the formation of micro-cracks in the 

vicinity of the crack tip. The strain energy accumulated in the material specimen is released at the 

peak-load and a stable crack propagates progressively with a reduction in strength and stiffness until 

it eventually breaks. This is a typical quasi-brittle behaviour, although most polymer based matrices 

can deform plastically before damage when subjected to shear loading. This progressive damage 

modelling is carried out in three steps [2]: 

 

1. Stress analysis: the geometry of the structure being known, together with the history of loading 

and initial conditions, the fields of stress and strain are first calculated by means of strain 

constitutive equations and a numerical procedure, e.g. finite element modelling. 

2. Failure criterion or criteria: the most critical location(s) with regard to fracture is (are) 

determined and, the load corresponding to a macro-crack initiation at that point is calculated by 

integration of damage constitutive equations for the history of local stress or strain. 

3. Degradation of material properties based on damage progression models to calculate the 

evolution of that macro-crack up to the final rupture of the whole structure. 

 

This section reviews the main features of computational finite element modelling of failure of 

composite laminated structures. Some of the key concepts are considered first, including the 

element types and the material parameters. The mechanisms by which composites may fail are then 

discussed, first for intralaminar failure, and then for interlaminar delamination. The different 

approaches for the modelling of such mechanisms are also considered. Numerical aspects to the 

effective application of the progressive damage modelling are finally discussed. 
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2.1 Key Concepts 

 

2.1.1  Element Types 

 

An efficient geometric modelling has to account for the non-homogeneous and layered nature of the 

laminate. The finite element model must firstly represent the ply (or lamina) orientation, the 

stacking sequence and thickness variation, and secondly provide an adequate representation of the 

global stress field, the through-thickness stress variations, local stress concentrations and failure 

modes. The analysis has then to be treated as being three-dimensional. Solid (brick) elements with 

one layer of bricks representing each ply can be used. This option is not practical because the 

analysis would be computationally expensive to run if the layup had just more than a few plies. 

Additionally, conventional solids show an overly stiff behaviour and different effects of locking, 

especially the Poisson thickness locking effect, when used in very thin applications [3]. In practice, 

it is usual to employ shell elements, particularly in the form of continuum shells, which are elements 

that have the geometry of bricks but their kinematic and constitutive behaviour are similar to those 

of conventional shell elements. The continuum shell elements are able to reproduce reliable results 

in simulations of thin-walled structures by means of only one element over the thickness due to a 

higher-order displacement field. First approaches of this kind assumed a constant strain field over 

the thickness and can be found in Parisch [4], and Hauptmann and co-workers [5,6]. This approach 

was later extended by Remmers et al. [7] who considered an additional set of internal degrees of 

freedom to add a quadratic term to the displacement field that allows for a linear variation of the 

strain field over the thickness. 

There are displacement and stress field singularities due to combined material/geometrical 

discontinuities between plies where intralaminar stresses develop during thermo-mechanical 

loading. This can lead to discrete delamination failures. This type of failure can be physically 

captured by means of a cohesive zone approach. Cohesive interface elements are currently adopted 

as a way of modelling this type of phenomenon [8-15]. In this approach, the discontinuous 

displacement field is described by relative displacements or relative jumps between a double set of 

nodes, for the normal (opening) and the two shear modes (sliding and tearing) [16]. An important 

feature of interface elements is that they include the effect of first failure, and the subsequent 

fracture propagation by means of critical strain energy release ratios. The interface layer is usually 

considered to be of zero (or nearly zero) thickness for analysis purposes.  
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2.1.2 Material Parameters 

 

The unidirectional ply is an orthotropic material whose planes of symmetry are parallel and 

transverse to the fibre direction. The material coordinate axes are quite often designated as 1, 2 and 

3, see Fig. 2: 

 

 Axis-1 runs parallel to the direction of the fibres (longitudinal direction). 

 Axis-2 runs normal to axis-1 in the plane of the ply (in-plane transverse direction). 

 Axis-3 runs normal to the plane of the ply (through-thickness direction). 

 

 
Fig. 2 Ply coordinate system 

 

The mechanical behaviour of the materials in both continuum and interface modelling 

approaches is characterized by means of a constitutive law that includes the fundamental 

parameters. Damage-based material models for composite materials usually contain: 

 

1. A law for the elastic behaviour of the elementary ply, which is idealized as a homogeneous 

material by smearing the distinct properties of the fibre and matrix, based on the transversely 

isotropic version of Hooke’s law [17]. The relevant engineering constants are the moduli of 

elasticity in the fibre and transverse directions, E1 and E2, the longitudinal and transverse 

Poisson’s ratios, 21 and 23, the longitudinal and transverse shear moduli, G12 and G23. 

2. Longitudinal, transverse and shear strength of the lamina [18]: 

f1,T: axial strength in tension; f2,C: transverse strength in compression; 

f1,C: axial strength in compression; f1,S: shear strength in the axial direction; 

f2,T: transverse strength in tension; f2,S: shear strength in the transverse direction. 

3. Fracture energy (or fracture thoughness), Gc, in the above directions [19-21]. Gc governs crack 

growth and is defined as the work needed to create a unit area of a fully developed crack. 

 

The interface behaviour is represented by cohesive laws, first introduced by Dugdale [22] and 

Barenblatt [23] in the context of the problem of equilibrium cracks. These constitutive relations 

describe the stress-separation behaviour (also known as the cohesive traction versus jump 

1 
2 

3 

Fibres
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displacement law) of a failure process zone. In fracture mechanics, any cohesive law consists of 

three main features that are identical to the above: 

 

1. An elastic region characterized by a scalar stiffness parameter, which can be interpreted as a 

penalty factor. 

2. The interfacial strength. 

3. The area enclosed by the traction-displacement curve that is equal to the fracture toughness of 

the material. 

 

The shape assumption of the curve completes the cohesive law. Although a variety of 

geometric shapes have been proposed (e.g. Tvergaard and Hutchinson [24], Xu and Needleman 

[25], who proposed trapezoidal and exponential laws, respectively), the simple bi-linear curve 

representation (e.g. Mi et al. [8], Camanho et al. [26], Jiang et al. [14]) is usually implemented for 

modelling the cohesive behaviour. Finally, a clear distinction between the possible failure modes of 

the interface (see Fig. 3), opening (mode I), sliding (mode II) and tearing (mode III) has to be made 

as each mode is associated with distinct values for strength and fracture toughness. In practice, 

modes II and III are not easily dissociated and therefore the same interfacial strength and fracture 

energy are adopted in computational analysis.  

 

 

 

 

 

 

a) Mode I: opening b) Mode II: sliding c) Mode III: tearing 

Fig. 3 Modes of delamination failure 

 

 

2.2 Intralaminar Failure Modelling 

 

The intralaminar failure mechanism of a composite material is characterized by matrix cracks that 

run parallel to the fibres and propagate through the thickness of the laminate, rather than the 

laminae, shear in transverse or longitudinal directions, and fibre breaking cracks, as can be seen in 

Figs. 4a-c [27]. Matrix failure mechanisms are usually the first form of damage observed in 
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laminates. Fibre fracture marks the ultimate failure in a well-designed laminate. In fact, fibre 

fracture can be seen as the only desirable fracture mechanism, since the fibre reinforcement forms 

the main load carrying structure. In Figs. 4a and 4b the fracture surfaces caused by transverse 

compression and transverse shear respectively are illustrated too. The fracture angle ±35° to ±40° is 

typical for pure compression [28]. The fracture angle for pure transverse shear is approximately 

45°. This fracture behaviour is well known for brittle materials. 

 

  
Transverse tension (mode 2,T) Transverse compression (mode 2,C) 

a) Matrix failure 

  
Transverse shear (mode 2,S) Longitudinal shear (mode 1,S) 

b) Shear failure 

 

Fibre breakage  

Tension (mode 1,T)  

 
Fibre fracture in shear Micro-buckling Kinking 

Compression (mode 1,C)  

c) Fibre failure 

Fig. 4 Forms of failure (after Knops [27]) 

35° to 40°

 

45°
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Continuum damage mechanics models for the prediction of intralaminar failure are used in this 

work with a range of examples on different applications. The damage mechanics of composites is 

the modelling of the initiation and degradation phenomena at a structural analysis scale. At this 

scale, the laminate is modelled as a stacking of homogeneous layers connected by interfaces. 

Relative variations of stiffness are the damage indicators. The progressive transverse matrix 

cracking and the brittle fracture of fibres are included at the single lamina level. The damage state at 

every (1,2) point, see Fig. 2, is assumed to be uniform within the layer thickness. 

 

2.2.1 Failure Initiation Theories of a Lamina 

 

Literature presents two types of failure initiation criteria for a lamina: phenomenological and 

physically-based. Phenomenological criteria have been proposed by extending and adapting failure 

theories to account for the anisotropy in stiffness and strength, but they do not reflect the level of 

complexity that is inherent to this type of structural material. Underlying such complexity is the fact 

that composites consist of mechanically dissimilar phases, stiff elastic brittle fibres and a compliant 

yielding matrix. Physically-based criteria distinguish between states of stress not leading to fracture 

and those implying fracture.  

The Tsai-Wu interactive (phenomenological) criterion [29] is the most commonly adopted in 

research methodologies and essentially consists of a single relation for the interaction of the 

different internal stress components i in the material frame. For a general anisotropic material the 

failure surface in the stress-space has the following scalar form: 

 

 2
i i ij i j ii jj ij1 and 0     F F F F F  (1)  

 

whereby Fi, Fij are strength tensors of the second and fourth rank, respectively. The following 

contracted notation is used in the above equation: i, j = 1, 2, ... 6. 

The first failure theory that makes a clear distinction between the different lamina failure 

modes was developed by Hashin and Rottem [30], later modified by Hashin [31] to predict the 

onset of damage. This theory consists of the following expressions: 
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 (2) 

 

whereby i and ij (i, j = 1,2,3) are the principal stresses for the lamina. The failure criterion used to 

predict matrix tensile and compressive cracking includes the shear stresses that may lead to matrix 

shear failure, as can be seen in Eqs. (2c-d). The Hashin criterion is used in this research work to 

predict damage onset and governing failure mode within a ply. This criterion has been shown by 

many researchers to be easily implemented in finite element analyses and requires lamina properties 

that can be fairly easily determined on an experimental basis. Furthermore, it has provided 

numerically reliable results when applied to predict the first ply failure load in both carbon fibre and 

glass fibre composite materials. In most cases, the laminate can carry greater loads because it 

possesses damage tolerance prior to complete rupture. It is often the case that a sequence of ply 

failures occurs under increasing stresses before final rupture of the whole laminate. 

 

2.2.2 Damage Progression Models 

 

For composite structures that can accumulate damage, the use of failure initiation criteria is not 

sufficient. The rate and direction of damage propagation defines the damage tolerance of the 

structure and its final damage state. Consequently, once a failure initiation criterion is satisfied, the 

associated damage variable is different from zero and further loading will cause degradation of the 

material stiffness coefficients. The major challenge is to choose appropriate combinations of failure 

criteria and degradation models. These models can be divided into two main groups: 

 

 Heuristic models based on a ply-discounting material degradation approach [32,33]. 

 Serial / parallel mixing models based on compounding nonlinear constitutive relationships [34-

37]. 

 Progressive failure models based on continuum damage mechanics [21,38-43]. 
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The classical ply discount method assumes that a failed ply cannot take any further load. In 

reality, a fractured ply can exhibit significant load-carrying capacity. In addition, delamination 

damages are not taken into account by ply discount methods.  

Serial / parallel mixing models are able to predict the failure and post-failure behaviour of 

laminates. These models can be understood as constitutive equations managers that obtain the 

composite constitutive performance by combining the mechanical behaviour of its different 

constituents, i.e. matrix and fibres [35]. These models are able to simulate both intralaminar [34,35] 

and interlaminar [36,37] failures by means of continuum mechanics. 

The basic approach of progressive failure analysis is to assume that all material nonlinearity is 

due to damage in the form of reduced stiffness. Accordingly, the majority of existing models for 

progressive intralaminar failure analyses are based on softening constitutive models that use (i) 

scalar damage variables, or (ii) mode-specific strain energy release rates (fracture toughness) and 

total dissipated strain energy [40,44-46]. Displacements due to crack opening are smeared over a 

characteristic element, as defined in Section 2.4. The shape of the softening law is often assumed to 

be inconsequential for the prediction of fracture, provided that it is defined as a function of the 

fracture toughness [47]. 

The approach used in this research work is based on the energy requirement for the 

deterioration of stiffness within a characteristic or unit volume per unit time. It also assumes that the 

strain energy dissipates gradually as damage develops. Damage evolution laws are defined for the 

various possible failure modes (Fig. 4). Each damage evolution law includes the corresponding 

fracture toughness, representing the energy dissipated by inelastic processes in the fracture process 

zone. Guidelines for the computation of these values are summarized in [21] and [42]. 

 

2.2.3 Simulation of Progressive Damage in Abaqus 

 

The present continuum damage model in Abaqus predicts the onset and accumulation of 

intralaminar damage mechanisms, as well as final structural collapse by the propagation of a macro-

crack. For this modelling, the Hashin criteria are used for damage initiation, see Eqs. (2). The 

influence of damage on the constitutive model is based on the work of Matzenmiller et al. [39]. A 

drawback of this damage progression model is that it does not reproduce localization of tensile 

fracture properly. This aspect is of concern, and will be resolved by means of the crack band 

approach, initially developed by Bažant and Oh [48]. The crack band model uses a modification of 

the post-peak part of the constitutive law (damage progression) to enforce the energy dissipation as 

determined by experiments by a localized crack band. This simple approach will be further detailed 

in Section 2.4.  
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2.3 Interlaminar Delamination Modelling 

 

The fibre-matrix interface gives composites their structural integrity. The interface consists of the 

bond between fibre and matrix and the immediate adjacent region. The load transfer from the matrix 

to the fibre that takes place at the interface layer is primarily a mechanistic process and involves the 

interfacial bond and friction. Delamination is defined as the separation of layers from each other, as 

a consequence of shear stresses acting in planes parallel to the layers interfaces and/or tensile 

stresses acting in the through-thickness direction. This phenomenon is a typical crack growth 

problem and is treated in the framework of fracture mechanics. Today, the most popular 

computational method for the prediction of delamination between plies in laminated composites is 

based on cohesive zone models that provide a natural bridge between strength-based models and 

energy-based models for fracture, allowing delamination to be described by a single framework that 

covers a range of applications for which the strength or energy criteria alone might not be sufficient. 

Cohesive zone models describe highly localized inelastic processes by traction-separation laws that 

link the cohesive traction transmitted by a discontinuity line or surface to the displacement jump, 

characterized by the separation vector [49-51]. Independent cohesive laws are used for the opening 

mode I, and the sliding and tearing modes, II and III, i.e. the toughness and interfacial strength 

values for the three modes are different. Following the approach of Yang and Cox [52], the same 

cohesive law can be assumed for the shear modes II and III. 

The simulation of interlaminar damage will be based on the cohesive zone approach using the 

Abaqus three-dimensional cohesive element COH3D8 at the plies interfaces. The study is 

performed in quasi-static regime. The traction-separation law formulation assumes a nonzero elastic 

stiffness of the cohesive zone, which is physically motivated by the reduced stiffness of the matrix 

rich interface layer as compared to a perfect bond between matrix and fibres. From a numerical 

point of view, this elastic stiffness can be understood as a penalty-type enforcement of displacement 

continuity in the elastic range. Different guidelines have been proposed for selecting the stiffness of 

the interface. Daudeville et al. [53] calculated the stiffness in terms of the thickness and the elastic 

modulus of the interface. Camanho et al. [26] used a fixed value of 106 N/mm3 for the modelling of 

graphite fibre/epoxy matrix laminates, which is a numerical parameter large enough to ensure the 

displacement continuity at the interface. Turon et al. [54] proposed the following relationship: 

 

 3 maxK E t  (3) 

 

whereby  is a coefficient ( >> 1), and tmax is the larger of the sub-laminate thicknesses above or 

below the cohesive layer. The choice of the coefficient  has to account for the adverse effect that 
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relatively large stiffness values have (i) on the conditioning of the global stiffness matrix for 

implicit methods, and (ii) on the critical time step for explicit methods. In order to satisfy these 

requirements, Turon et al. [54] proposed a  value of 50. 

A quadratic stress criterion is used for the damage initiation criterion, i.e. to specify the 

conditions for separation in the cohesive zone model [26,55,56] and can be expressed as follows: 

 

 
2 2 2

n s t

I II III

1
f f f

       
       
    

 (4) 

 

whereby n is the stress in pure normal mode, s is the stress in the first shear direction,t is the 

stress in the second shear direction, fI, fII and fIII are the peak strength values in the same directions, 

and: 

 

 n n n n nfor 0        and      0 for 0         (5) 

 

because compressive normal stresses do not open the crack. 

Progression of damage at the interfaces is modelled using a linear softening law and a critical 

mixed mode energy behaviour based on the Benzeggagh-Kenane criterion [57], which is expressed 

by the following expression: 

 

    c I,c II,c I,c II I IIG G G G G G G


       (6) 

 

whereby Gm,c (m = I, II, III) is the total critical strain energy release rate associated with 

delamination mode m, and  is the semi-empirical criterion exponent applied to delamination 

initiation and growth. 

 

2.3.1 Numerical Aspects of Cohesive Zone Modelling  

 
In the cohesive zone modelling framework, implemented in Abaqus, two parameters are needed: the 

interfacial strength and the energy release rate, which control delamination initiation and 

propagation, respectively. 

 The use of cohesive zone models in finite element analyses requires that a very fine mesh is 

used to ensure that enough interface elements exist within the cohesive zone length at the crack tip. 

If the mesh is too coarse, the cohesive stress at the discontinuity may not even reach the interfacial 
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strength and, as a result, failure is missed. Falk et al. [50] suggest a minimum of two to five 

elements in order to perform a reliable simulation. To have an idea of the figures involved, Turon et 

al. [54] indicate that for typical graphite-epoxy or glass-epoxy composite materials, the length of 

the cohesive zone should be smaller than one or two millimetres. As a consequence, the mesh size 

required in order to have more than two elements in the cohesive zone should be smaller than half a 

millimetre. For large structural models this has the obvious consequence of a computational 

expensive solution. 

 To overcome this problem, it is common practice to use interfacial strength values that are 

lower than those determined experimentally [54,58] whilst maintaining the same fracture toughness, 

see Fig. 5. This procedure is based on an artificial increase of the cohesive zone length by reducing 

the interfacial strength and keeping the energy release rate constant. While the implications of this 

procedure have been discussed in literature for the finite element analysis of DCB and ENF 

specimens, which are designed to produce pure normal mode I and pure shear mode II 

delamination, respectively, without any intralaminar material damage, this method has been also 

applied in many other instances in which delamination interacts with matrix splitting.  

 

 
Fig. 5 Bi-linear traction-separation response (particular case: curve for mode I): variation of 

interfacial strength 
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2.4 Regularization in Quasi-Static Regime  

 

The underlying mathematical problem of damage-induced deformation localization is that of an ill-

posed boundary-value problem, i.e. a system of ordinary differential equations with solution and 

derivative values specified at different points. In general, numerical methods for analysing and 

solving ill-posed problems include a so-called regularization parameter, which controls the degree 

of smoothing (or regularization) applied to the problem. The technique involves a mathematical 

scheme called localization limiter, in order to avoid size effect and numerical instability. 

Failure occurs by progressive damage that involves strain localization processes that result in a 

sharp decrease of the load-carrying capacity. Strain localization is a concept that describes a 

deformation mode, in which the whole deformation of a structure (made from a specific material) 

occurs in one or more narrow bands, referred to as the fracture process zone. The formation of these 

bands is accompanied by a softening response, usually leading to complete collapse. The width and 

direction of localization bands depend on the material parameters, geometry, boundary conditions, 

internal stresses/strains, loading distributions and loading rate. As a consequence, numerical 

predictions using continuum damage mechanics are found to be strongly dependent on the size of 

the finite element mesh. This problem is known as spurious mesh sensitivity: the energy that is 

released by cracking damage depends on the mesh size and tends to zero in the limit of an 

infinitesimally refined mesh. The explanation for this phenomenon is rather trivial. The release of 

stored energy into the fracture front, as described by the local stress-strain relationship per unit 

volume, tends to zero when the length of the crack tends to zero. To overcome this difficulty, the 

material constitutive model has to be supplemented with some mathematical condition that prevents 

localization of smeared cracking into arbitrarily small regions [59]. Nonlocal damage theories have 

emerged as an effective means for capturing the size effects. These theories basically relate the 

stress at any point to the state of deformation within a finite volume about that point [51,60,61]. The 

simplest, and computationally most effective, type of nonlocal approach is the crack band model 

[48]. The model ensures the correct energy dissipation in a localized damage band by rescaling the 

energy of the post-localization part of the stress-strain relationship by taking the size of the finite 

elements into account [51]. The crack band model provides only a partial regularization of the 

problem, i.e. it is not a true localization limiter, as it allows the global response characteristics to be 

truly captured, but the width of the numerically resolved fracture process zone is still dependent on 

the mesh density [62]. In this context, Bažant and Oh [48] derived the following critical size l* 

(element characteristic length or length of the fracture process zone) by adjusting the energy 

dissipated by each failure mechanism M: 

 



	

  P a g e  | 16  

 M M,c*
2

M

2E G
l

f
  (7) 

 

whereby EM, GM,c and fM are the relevant modulus of elasticity, fracture energy and strength, 

respectively. The authors suggest a practical critical size of about half of that determined from Eq. 

(7). 

The crack band model performs best if the path of the fracture process zone is known in 

advance (e.g. tension failure of open hole laminates loaded in tension), and if the mesh is designed 

to coincide with this zone. 

Strain-softening constitutive models cause additional convergence problems when using global 

solution methods because the tangential matrix of the softening material ceases to be positive 

definite. This leads to lack of robustness within the equilibrium iterations. The numerical 

instabilities can be prevented by adding viscosity to the constitutive model (rate-dependent 

behaviour). The artificial viscosity regularization leads to corresponding stiffness matrices that shall 

guarantee stable equilibrium iterations. This approach was first proposed by Needleman [63] to 

overcome this type of problem when analysing fracture processes in metals. Needleman also 

showed why introducing viscous terms in damage laws could be a convenient way to regularize the 

ill-posed problems of rate-independent laws. 

In this contribution, the general framework of viscous regularization is adopted, as 

recommended by Abaqus with its composite damage model, although it involves a nonphysical rate 

dependence, and consequently additional effort in model calibration and validation. Values for this 

parameter are generally determined by using inverse modelling techniques because it cannot be 

explicitly related to any physical quantity. Both Lapczyk and Hurtado [41] and Maimí et al. [64] 

successfully implemented artificial viscosity in their continuum material models to improve the 

convergence of the numerical algorithm. Chaboche et al. [65], Gao et al. [66] and Hamitouche et al. 

[67] used viscous regularization to solve localization problems related to the application of the 

cohesive zone model. 

 

 

2.5 Nonlinear Solution Process 

 

The nature of a progressive failure methodology requires a nonlinear implicit or explicit solver to 

establish equilibrium. In implicit formulations, the current stress state and a consistent local tangent 

material stiffness matrix are needed to form the internal force vector for the residual force vector 

computation, to generate the Jacobian matrix, and to solve the set of algebraic equations at every 
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time step using a Newton-Raphson-like method. In explicit formulations, only the current stress 

state is needed to evaluate the current internal force vector in order to advance the transient solution 

forward in time. Explicit solvers do not need to form a global stiffness matrix because the linear 

equations are not solved simultaneously for the entire system (like in implicit method), but the 

stress wave propagates element-to-element (local). 

Abaqus implements both implicit (Abaqus/Standard) and explicit (Abaqus/Explicit) solvers. 

The implicit solution strategy is suitable for problems involving smooth geometric and material 

nonlinear analyses. The geometric nonlinearity is due to large strain and large rotation kinematics. 

The nonlinear material behaviour is due to the degradation of the mechanical properties of the 

laminae and the matrix rich layer between laminae to simulate intralaminar and interlaminar 

damage mechanisms. A load stepping routine is used in Abaqus/Standard. There is no restriction on 

the magnitude of the load step as the procedure is unconditionally stable. The increment size 

follows from numerical accuracy and convergence criteria. Within each increment, the equilibrium 

equations are solved by means of the Newton-Raphson method, which is stable and converges 

quadratically. In this method, for each load step, the residuals are eliminated by an iterative scheme. 

In each iteration, the load level remains constant and the structure is analysed with a redefined 

tangent stiffness matrix. The accuracy of the numerical solution is measured by means of 

appropriate convergence criteria. Their selection is of the utmost importance. Too tight convergence 

criteria may lead to an unnecessary number of iterations and a consequent waste of computer 

resources, whilst a loose tolerance may result in incorrect or inaccurate solutions. Generally 

speaking, in nonlinear geometrical analyses relatively tight tolerances specific to the problem are 

required, while in nonlinear material problems slack tolerances are admitted, since high local 

residuals are not easy to eliminate. Abaqus/Standard provides the option of including a line search 

algorithm [68] to improve the robustness of the Newton-Raphson method. 

With respect to the incremental method, a load curve is defined. Loads should be applied to the 

specimen in a displacement-control fashion that enforces a better conditioning of the tangent 

stiffness matrix when compared to the classical load-control procedure. 

Explicit schemes offer a more robust alternative for convergence for quasi-static load cases but 

may come at an even higher computational cost as smaller solution time steps are required, in 

addition to unwanted inertial effects. The time step must be less than a critical value based on the 

highest eigenvalue in the model. The stable time increment tstable is the minimum time that a 

dilatational wave takes to move across any element in the model, and is given by: 

 

 *
stable 1t l E   (8) 
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where  is the material density. The stable time steps for quasi-static explicit analyses are very 

small, of the order of 10-8 s or less, and the whole calculation process requires hundreds of 

thousands of increments. Mass scaling and damping are common approaches to assist in artificially 

reducing the computational time. Quality checks, such as the ratio of kinetic energy to internal 

energy have to be carried out to ensure that the problem is still essentially quasi-static. An 

acceptable rule of thumb is to set acceptance of this ratio to 0.01~0.05. 

 

 

 

3 Benchmark Applications  
 

The present section describes the finite element models developed in the current work. The models 

incorporate separate finite element types for laminae and interfaces to simulate damage evolution of 

combined intralaminar and delamination failures. The evolution of these two physical damage 

forms is strongly coupled. Experimental and numerical results available from literature on advanced 

composites are used for calibration and validation of the proposed models. 

 First, and for the purpose of trying to use experimental and numerical data to characterize 

cohesive material properties the DCB and ENF tests that isolate delamination behaviour are 

simulated. 

Second, notched laminates under in-plane tensile loading are considered. Two cases are 

analysed: a laminate with a centre crack, and a double edged-V-notched laminate. These are 

challenging problems in composite materials because failure involves complex mechanisms such as 

fibre breakage, matrix cracking and delamination. In addition, the laminate strength and dominant 

failure modes can depend on geometrical parameters and material properties, such as notch 

dimensions, stacking sequence and ply thickness. The detailed matrix damage development at 

notches under tensile loading, in the form of matrix splitting cracks in the plies perpendicular to the 

notch, together with narrow triangular areas of delamination, is well captured by modelling 

laminates with sharp notches, as a centre crack, or a double edge-V-notch. 
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3.1 Delamination Fracture Testing 

 
Numerical results on modes I and II fracture of glass fibre and carbon fibre unidirectional 

composites, using the DCB and ENF specimens, respectively, are presented in this section. Results 

are validated with experimental results published by Davidson and Waas [69] and Turon [13]. 

The basic configurations for the DCB and ENF test specimens are identical, as can be seen in 

Fig. 6. The only difference between the two is in how the load is applied. The specimen consists of 

a rectangular unidirectional laminate with uniform thickness, containing a nonadhesive insert at the 

midplane, which serves as a delamination initiator [70]. In the tests, the delamination between the 

two unidirectional plies will grow from the insert, which is the tip of the initial crack, to the other 

end of the specimen. To simulate the delamination smooth growth in these tests, cohesive elements 

are placed at the interface between the two plies in the finite element analyses. These elements are 

removed from the mesh when the released energy corresponds to the fracture energy of the material.  

To provide a framework against which to assess the numerical formulation, this report includes 

a set of closed-form analytical load-displacement solutions that can be found in Mi et al. [8], Harper 

and Hallett [58] and Reeder et al. [71]. These are summarized below for completeness.  

 

  
DCB ENF 

Fig. 6 DCB and ENF specimens 

 

3.1.1 Mode I Delamination  

 

As a pure mode I problem, a glass fibre unidirectional composite DCB specimen is analysed under 

displacement control. The experimental setup of Davidson and Waas [69] is simulated. The 

geometry of the specimen and the boundary conditions are illustrated in Fig. 7. Although the 

nominal cantilever thickness t is 2.5 mm, the measured thickness values varied from a minimum of 

2.3 to 2.7 mm. The initial length of the crack a0 is 50 mm. The material data assumed for the finite 

element model are given in Table 1. For the laminate, Davidson and Waas [69] give elastic 

constants E1 and 12. The remaining material properties were assumed to be those of a transverse 

isotropic material and were scaled relative to the value of E1 [72]: E2 = E1, G12 = G13 = E1/18 and G23 
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= E1/31, although a sensitivity analysis of the finite element model to the value of these parameters 

has shown their influence to be irrelevant. For the cohesive elements, the distribution of the critical 

energy release rate GI,c shows values ranging from a minimum of 1.5 N/mm to a maximum of 2.2 

N/mm and a mean value of 1.8 N/mm. The single interface stiffness value for KI, KII and KIII were 

computed by means of Eq. (3). 

 

 
Fig. 7 DCB benchmark test coupon geometry (nominal dimensions) 

 

Table 1 Material properties of the DCB specimen 

Lamina properties  Interfacial properties 

    Mean Min Max 

E1 (N/mm2) 11500  GI,c (N/mm) 1.8 1.5 2.2 

E2 (N/mm2) 11500  GII,c = GIII,c (N/mm) 3.6 ̅ ̅ 

G12 = G13 (N/mm2) 640  fI (N/mm2) 13 ̅ ̅ 

G23 (N/mm2) 370  fII = fIII (N/mm2) 20 ̅ ̅ 

12 0.3  KI = KII = KIII (N/mm3) 23000 ̅ ̅ 

 

 The material properties set out in Table 1 deserve comment. The modulus of elasticity E1 is 

relatively low for practical unidirectional glass fibre composites. Generally speaking, these type of 

laminates with 55%~60% of fibre volume content has E1  40000 N/mm2, which is approximately 

3.5 times the value specified by Davidson and Waas [69]. Although the authors do not give an 

explanation for such an unusual value, a careful analysis of the glass composite laminates tested by 

the authors shows that the actual specimen is not an unidirectional laminate. It can be seen in the 

referenced paper that the laminae have 90° fibre reinforcement towards the outer surfaces in the 

thickness direction. The fibre bridging seen in the experiments can be for a unidirectional layer at 

the mid-plane of the laminate where the crack is forced to propagate. A value for E1 of 11500 

N/mm2 can only be a real elastic modulus for the laminate if the unidirectional layer with 55%~60% 

of fibre volume content is a thin mid-plane core. There is a technical reason why the construction 

could be a three-layered sandwich having a biaxial reinforcement in the outer layers. If the laminate 
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was purely unidirectional, it would be very fragile in handling to failure by longitudinal transverse 

splitting. This specimen was certainly prepared for the fracture toughness testing. 

For the numerical analyses, a relatively fine mesh was adopted with 26520 linear shell 

continuum elements for the specimen of volume 8255 mm3 with 2.5 mm thickness, with three 

integration points along the ply thickness, and 8160 cohesive elements for the interface. This mesh 

density was chosen from a mesh convergence study for the overall load versus crosshead 

displacement to ensure that the results of the analysis were not affected by changing the size of the 

mesh. Three convergence runs were performed with constant element sizes of 1 mm, 0.5 mm and 

0.25 mm. It was found that the element side length of 0.5 mm enabled an accurate analysis of the 

global load versus displacement response and the cohesive zone stress distribution to be well 

captured. This appears consistent with previous mode I studies by Turon et al. [54]. An implicit 

finite element scheme with small displacement increments of 5×10-3 mm was used in the 

simulations. The comparison between numerical, experimental (three specimens, Sp. 1, 2 and 3) and 

analytical load versus crosshead displacement is given in Figs. 8 and 9. The actual experimental 

relationship is used to compute the mode I critical energy release rate GI,c whereas for the numerical 

and analytical analyses, this value of GI,c is input data to be able to obtain the load-deflection 

relationship. 

Fig. 8a shows the numerical simulation results (generally labelled FE in the legend to graph) 

for the maximum, nominal and minimum values for the laminate thickness t and a fixed GI,c equal to 

the mean value in Table 1. It can be seen that the crack initiation point is not well captured and the 

post-initiation curve is severely under-predicted by 30% for nominal thickness. The elastic 

behaviour is reasonably predicted when the maximum thickness value is used. This finding 

potentially highlights the poor specification of the modulus of elasticity E1. In Fig. 8b, the DCB 

thickness was fixed to the maximum value of 2.7 mm and the upper bound, mean and lower bound 

of the experimental GI,c were used. Simulations show similar elastic behaviour, i.e. prior to 

delamination initiation. The three post-initiation numerical curves run parallel but only the curve for 

t = 2.7 mm and GI,c = 2.2 N/mm shows a good agreement to the experiments. 
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a) Variation in thickness 

 
b) Variation in critical energy release rate 

Fig. 8 Load versus crosshead displacement: comparison between experimental (three 

specimens, Sp. 1, Sp. 2, Sp. 3) and numerical results 
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a) Maximum thickness of 2.7 mm 

  
b) Nominal thickness of 2.5 mm 

Fig. 9 Load versus crosshead displacement: comparison between analytical and numerical 

results using the mean value of critical energy release rate 

 

The linear analytical solution for the DCB specimen, which is considered as two single 

cantilever beams is obtained from corrected beam theory that accounts for shear and local 

deformations. The linear vertical separation of the cantilevered beam tips (or crosshead 

displacement) I, is thus given by [58,71]: 
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where P is the point load applied to the free end of each cantilever, a0 is the initial crack length 

prior to crack propagation, I is the second moment of area of each cantilever (I = wt3/12, w: width), 

and  is a correction parameter, defined as: 
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The subsequent falling part of the load-displacement relationship is given by [8]: 
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The numerical responses for different specimen thicknesses are compared with the above 

analytical solutions in Fig. 9. It can be seen from the curves plotted that the finite element solutions 

are in very close agreement with the analytical predictions. 

Some issues related with the numerical solution of the DCB problem are now considered. 

In Fig. 8a the finite element results for nominal thickness and average GI,c have been compared with 

the experiments. The experimental results are found to be 1.6 times stiffer than this numerical 

response by simple inspection of the curves. One may argue that the difference in the elastic 

responses can be solved by adopting a “corrected” value of the modulus of elasticity 

E1* = 1.6E1 = 18400 N/mm2. Fig. 10 shows the improvements obtained by this modification to input 

data. It can be seen that the numerical elastic solution agrees well with the experiments and the 

damage propagation curves follow the same trend. The finite element results for this “corrected” 

are considered for further comparisons (FE_t=2.5_GI,c=1.8_1.6E1 in the graph in Fig. 10). The 

load versus crosshead displacement behaviour for this specific case is shown in Fig. 11. Three load 

levels are identified, corresponding to the onset of delamination, the maximum load and a load level 

corresponding to 80% of the maximum load on the descending portion of the curve. Some 

modelling results for the delamination development and growth in the DCB specimen are shown in 

Fig. 12 for these three load levels. The contour plots for the variable Stiffness DEgradation Scalar 

(SDEG) [1], which indicates the state of damage in the cohesive elements and thereby provides 

insight into the damage initiation and propagation, are shown. Complete interlaminar delamination 
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is predicted when SDEG = 1. The deformed shape is also illustrated (magnification factor = 1). The 

contours show that the damage propagates from the initial flaw and that such propagation has a 

stable crack front. 

 

 
Fig. 10 Load versus crosshead displacement: comparison between experimental, analytical and 

numerical results using the “corrected” modulus of elasticity, the nominal thickness and the mean 

value of critical energy release rate 

 

 
Fig. 11 Load versus crosshead displacement: numerical response using the “corrected” modulus 

of elasticity, the nominal thickness and the mean value of critical energy release rate 
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a) Onset of delamination: P = 94 N 

 

b) Maximum load: P = 96 N 

   

c) 0.80 of the maximum load: P = 77 N 

      
Fig. 12 Evolution of mode I delamination zone in the DCB test specimen 

 

3.1.2 Mode II Delamination  

 

Mode II delamination fracture is caused by interlaminar shear that results in a sliding motion 

between two adjacent plies. To evaluate the pure mode II critical strain energy release rate, a three 

point bending apparatus is used to conduct an ENF test, as depicted in Fig. 13. Delamination  

fracture is constrained to grow between two unidirectional plies with their interface at mid-plane. 

The load is applied under displacement control and eventually a delamination crack initiates from 

the end of the pre-crack length a0 and propagates to the midspan, and further in a very sudden way. 

The specimen geometry and boundary conditions, the carbon fibre laminate and interfacial 

Completely damaged Partially damaged Undamaged 
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properties for a mode II finite element analysis are as specified in Fig. 13 and Table 2. These are 

based on experimental and numerical data presented in ref. [13]. The initial crack length a0 is 39.2 

mm. A consistent element length of 0.5 mm was again used.  

 

 
Fig. 13 ENF benchmark test coupon geometry 

 

Table 2 Material properties of the ENF specimen 

Lamina properties  Interfacial properties 

E1 (N/mm2) 122700  GI,c (N/mm) 0.97

E2 = E3 (N/mm2) 10100  GII,c = GIII,c (N/mm) 1.72

G12 = G13 (N/mm2) 5500  fI (N/mm2) 80

G23 (N/mm2) 3700  fII = fIII (N/mm2) 100

12 0.25  KI = KII = KIII (N/mm3) 106

 

The closed-form solutions for the load-carrying behaviour of the three point ENF specimen are 

obtained using the same principles as for the DCB specimen. Four curves define the load, P, versus 

deflection in the middle of the specimen, II: 
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where L represents half-length of the beam and a is the crack length. 

Fig. 14 plots the load P against the central deflection II. The numerical curve is characterized 

by an initial elastic behaviour associated with the initial crack length a0 = 39.2 mm (segment OA) 

followed by a slight reduction in stiffness corresponding to damage initiation (segment AB) up to a 

peak load of 722 N is reached (point B). A softening region (segment BC) follows on, with a rapidly 

decreasing load that attains a minimum of 607 N at point C, and corresponds to the crack length 

front reaching the half length of the beam. A final re-hardening curve (segment CD) develops with 

the crack front advancing further until the beam is completely split. There is a close agreement 

between the finite element results and the analytical solutions by Eqs. (12). However, the 

experimental results are in poor agreement with both finite element and analytical solutions for 

post-delamination initiation. Fig. 15 refers to the finite element results for mode II delamination 

fracture and identifies four load levels corresponding to (i) the onset of delamination, which is the 

elastic limit load in this specific case, (ii) minimum load in the softening branch that corresponds to 

84% of the elastic limit load, (iii) same value of the elastic limit load in the ascending branch, and 

(iv) 120% of the previous load level. 

 

 
Fig. 14 Load versus central displacement: comparison of results  
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Fig. 15 Load versus central displacement: finite element results 

 

 In Fig. 16 the delamination zone of the plate and the specimen deformed shape are shown at 

several load levels during the computation (see Fig. 15). The delamination damage (variable SDEG) 

grows uniformly with the load. The deformed shape clearly shows the relative sliding between the 

two sub-laminates as expected for the pure mode II delamination failure. 
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a) Onset of delamination: P = 720 N 

   

b) Minimum load past post-initiation of delamination: P = 605 N 

   

c) Load level equal to the elastic limit load past post-initiation of delamination: P = 720 N 

   

d) 1.20 of the elastic limit load past post-initiation of delamination: P = 720 N 

      
Fig. 16 Evolution of mode II delamination zone in the ENF test specimen 
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3.2 Notched Laminates under In-Plane Tensile Loading 

 

In-plane failure of composites may be governed by two possibilities: 

 

 Delamination and matrix cracking that coalesce to produce a fracture surface. 

 Fracture of the fibres. 

 

Whilst the second failure mode is a quasi-brittle fracture type, the first is expected to possess 

damage tolerance and is especially important at stress concentrations such as notches. Both failure 

events are analysed in this section.  

 The numerical studies presented in this section include a continuum damage model with a 

cohesive zone approach to composite modelling. Continuum damage models address the 

intralaminar failure mechanisms from a global view, where individual damage mechanisms are 

homogenized and constructed around a failure criterion. This approach is the least complex and 

uses the composite layup modeller tool within the Abaqus pre-processor to define the individual ply 

layers through the laminate thickness, each layer then being cohesively bonded together to form the 

laminate ply stack. Interface layers are assumed to have a thickness of 10-3tply, being tply the 

thickness of the ply. This dimension plays the role of a length scale and it will be shown that the 

thickness of the cohesive layer does not affect the model performance provided its value is small 

enough as compared to the ply thickness. 

 

3.2.1 Laminate of Carbon/Epoxy with a Centre Crack  

 

Here the static analysis of the delamination dominated progressive failure process in central-sharp 

notched carbon/epoxy laminates is examined and the predictions are compared with experimental 

and numerical results taken from the literature. This kind of analysis is relevant to assess the 

efficiency of a modelling strategy. In particular, perhaps the simplest (yet extremely important) 

composite layup is considered: a cross-ply laminate with a [90/0]s arrangement.  

 The dominant failure mechanisms in cross-ply laminates subjected to mechanical loading are 

(i) transverse matrix cracking in the 90° plies around the notch, (ii) splitting, i.e. longitudinal matrix 

cracking that propagates from the notch along the direction of the 0° plies, and (iii) delamination 

between the 0° and 90° plies, which consist of narrow regions elongated along the load direction 

and developing transversely from the splitting. The laminate tensile strength is usually reached as a 

result of excessive delamination. In some cases, specimens can fail by fibre breakage rather than by 

gross delamination. The role of delamination in fibre-dominated failure notched specimens is 
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analysed in Section 3.2.2. The governing failure mode naturally depends on the relative 

delamination and fibre failure stresses.  

 

Initial Results The specimen is modelled with one-quarter symmetry finite element mesh, as 

shown in Fig. 17 for the particular case of the laminate with a centre sharp crack tested 

experimentally by Spearing and Beaumont [73], and numerically by Wisnom and Chang [74] and 

van der Meer et al. [75]. (The two numerical approaches to the matrix-crack failure processes are 

different, as explained above.) The model is built up from stacked continuum shell elements, with 

each individual ply being modelled as a separate layer. Cohesive interface elements connect the two 

plies to allow for delamination damage. The in-plane mesh of the interface is the same as that of the 

ply. A monotonic longitudinal tensile load is applied in the form of an applied uniform 

displacement  in the direction of the longitudinal axis at both ends. The analysis is performed 

using a global stabilization factor of 2×10-4. 

 

 
a) Schematic 

 
b) Layup 

Fig. 17  Specimen geometry (Spearing and Beaumont [73]) 

 

 The continuum material model adopted in the commercial finite element code Abaqus for the 

analysis of progressive intralaminar failure (Section 2.2) is used in the numerical simulations. Early 

work on the progressive modelling of the splitting crack that grows from the notch tip in the 0° ply 

and the transverse cracks in the 90° ply used spring or interface elements [52,74,76,77]. This 

requires the specification of the crack in advance. More recently, van der Meer and Sluys [78] 

showed that this failure mode could be similarly captured by using continuum models that do not 

require any assumption on the crack localization and thus show a better predictive potential. Failure 

in the interface elements is modelled with the damage law presented in Section 2.3. The material 



	

  P a g e  | 33  

properties used in the current analysis are summarized in Table 3. Most parameters in the table are 

taken from refs. [73,74]. The lamina strength properties in compression and shear are taken from 

Hancox and Mayer [79]. The interfacial strength properties were reduced from those of the matrix 

by adopting a weakening factor fw, according to Puck’s guidelines [27,28]. It was found that the 

overall response for fw = 0.5 is the one closer to the experimental results, which may indicate a 

weaker interface. Other values for fw are also analysed below to provide insight on the effects of the 

chosen values on the strength behaviour of this specific notched laminate. The fracture energy 

related to fibre breakage is assumed to be 100 N/mm, in line with the values proposed by Pinho et 

al. [80]. 

 

Table 3 Lamina and interfacial properties of the laminate with a centre crack 

Elastic lamina 
properties 

 Lamina strength 
properties 

 Fracture energy  Interfacial properties 

E1 
(N/mm2) 

135000 f1,T  
(N/mm2) 

1673 G1,T,c 
(N/mm) 

100  GI,c  
(N/mm) 

0.15

E2 = E3 
(N/mm2) 

9600 f1,C  
(N/mm2) 

1500 G1,C,c 
(N/mm) 

100  GII,c = GIII,c 
(N/mm) 

0.4

G12 = G13 
(N/mm2) 

5800 f2,T  
(N/mm2) 

60 G2,T,c 
(N/mm) 

0.15  fI  
(N/mm2) 

30

G23 
(N/mm2) 

4000 f2,C  
(N/mm2) 

150 G2,C,c 
(N/mm) 

1.1  fII = fIII  
(N/mm2) 

37.5

12 0.31 f1,S = f2,S 

(N/mm2) 
75    KI = KII = KIII 

(N/mm3) 
3×105

 

The finite element mesh used in our study has a total of 63056 continuum shell SC8R elements, 

and 31258 COH3D8 cohesive elements, and is shown in Fig. 18. A preliminary analysis is run with 

the nonlinear material properties from Table 3 assigned to the plies. Although this is the most 

realistic numerical model, the actual failure behaviour cannot be captured. The damage observed 

experimentally consisted of transverse matrix cracking, delamination and longitudinal splitting [73]. 

The proposed finite element model initiates and propagates the split in the 0° ply, as shown in Fig. 

19a. Following this split, a band of localized matrix failure appears in the 90°ply, as can be seen in 

Fig. 19b. Because this process requires less energy, delamination between plies does not occur, see 

Fig. 19c. This is an unrealistic failure mode that has already been observed in numerical simulations 

by van der Meer and Sluys [77]. In order to allow delamination between plies to occur, a second 

analysis is performed under the assumption of linear behaviour in the outer 90° ply. This approach 

does not cater for the representation of transverse matrix cracks in the off-axis ply. Nevertheless, 

this mode of failure is not significant for the overall behaviour when compared to the splitting and 

delamination modes, as shown by van der Meer [81]. In Fig. 20 the final deformed mesh is shown. 
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The longitudinal split that develops at the 0° ply (top ply in the figure) can be clearly observed, as 

well as the shear mode delamination (sliding and tearing modes), see Figs. 20a and 20b, 

respectively. The tensile stress (i.e. the applied load averaged over the nominal gross cross-section) 

versus the end displacement plots for the current modelling approach are compared with the finite 

element predictions from van der Meer [81] in Fig. 21. Results are in good agreement, not 

unexpectedly as both represent acceptable formulations of the problem, and this provides validation 

for the Abaqus model used here. 

 

 
Fig. 18  Mesh of the model implemented for the analysis of the laminate with a centre crack 
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a) 0° ply  

 
b) 90° ply 

 
c) Interface (incipient delamination) 

      
Fig. 19 Damage plot of ultimate failure mechanisms (tensile strength 275 MPa) for both plies 

with continuum damage 

 

Completely damaged Partially damaged Undamaged 
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a) In-plane view 

 
b) Detail of the deformation of the two plies near the centre crack 

Fig. 20 Final deformed mesh from analysis with continuum damage 0° ply and elastic 90° ply 

(magnification factor of 5) 
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Fig. 21 Tensile stress-end displacement plot resulting from implementing the finite element 

model with continuum damage 0° ply and elastic 90° ply, and comparison with existing numerical 

data 

 

 
Fig. 22 Tensile stress-half split length plot resulting from implementing the finite element model 

with continuum damage 0° ply and elastic 90° ply, and correlation to predicted and measured 

splitting 

 

 Fig. 22 shows the (half) split length, Lsplit, i.e. the length of the discontinuity in the 0° ply which 

originates and propagates from the notch tip to each end, as a function of the tensile stress applied 
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to the specimen. Our results are compared with the experimental observations of Spearing and 

Beaumont [73] and the numerical predictions from Wisnom and Chang [74] and van der Meer [81]. 

Current predictions show a better agreement with the experiments. The current finite element model 

underestimates the strength by 1.5% and overestimates the half split length by 11%. Finally, Fig. 23 

gives split and delamination plots at incipient interlaminar failure and subsequent propagation for 

the specific stress levels and corresponding half split lengths displayed in Fig. 22 as large squares. 

The growth of delamination between the two plies is stable. The width and length of the 

delamination area is 0.65 mm and 11 mm, respectively, when the laminate strength is reached. This 

gives a predicted angle of 3.4° that compares very well to the experimentally observed angle of the 

delamination front of 3.5°. The delamination extent is consistently less than the split length and this 

is also in line with the numerical results from Wisnom and Chang [74]. The pattern of delamination 

can be roughly approximated by a triangular shape, as seen in the tests of Spearing and Beaumont 

[73]. 

 The current finite element simulations are able to mimic the most significant failure modes that 

are observed in the experiments and other numerical works. Comparisons with reported stress- 

displacement and stress-half split length validate the global behaviour predicted by the proposed 

model. Further comparisons with damage patterns confirm the accuracy of our approach for the 

modelling of matrix cracking and delamination. The model is not validated for fibre breakage as 

this was not a governing failure mode in the notched laminate analysed. 

 The notch strength reduction factor k, defined as the ratio between the actual notched laminate 

strength and the unnotched strength, is 0.5 for this specific example, which suggests that a centre 

crack with half of the laminate width has a detrimental effect in the overall resistance. 
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Stress level = 115 MPa and incipient delamination 

  
Stress level = 186 MPa and Lsplit = 3 mm 

  
Stress level = 319 MPa and Lsplit = 6.2 mm 

  
Stress level = 380 MPa and Lsplit = 9 mm 

  
Stress level = 420 MPa (laminate strength) and Lsplit = 11 mm 

 
a) 0° ply b) Interface 
Fig. 23 Split and delamination onset and propagation with applied load the damage in the 0° ply 

and in the interface at maximum (numerical) tensile strength. 

 

Completely damaged Partially damaged Undamaged 
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Numerical Interfacial Strength Sensitivity Study Simulations are now carried out for different 

weakening factors for the interface strength (or interfacial strength values) while keeping the critical 

energy release rate constant in order to develop an understanding of the interfacial effect on failure 

of notched composites. The following values of fw are selected to be 1.0 (perfect interface), 0.85 

(strong interface), 0.35 and 0.25 (weak interface). The corresponding half split length and laminate 

strength, max, are shown in Table 4. The strength ratios to the baseline model (max,base for fw = 0.5) 

are also computed. The stress level at incipient delamination, del, is given as a ratio to the laminate 

strength. It is interesting to find that the laminate strength is very much dependent on the value of 

the interfacial strength. It is also found that the laminate strength does not vary proportionately to 

that of the interface. In terms of numerical analysis, this implies that there is an optimum value for 

this property as far as longitudinal tensile test is concerned. A very strong interface may result in a 

brittle failure of the composite thereby decreasing the strength (in about 20% for this specific case). 

It is worthwhile to note that in this case there is hardly any variation in the half split length. Similar 

results are observed for very weak interfaces, for which delamination starts at lower stress levels. In 

these cases, and as expected, the split length increases. These are important points to be considered 

while selecting specific interfacial strength values for a given problem.  

 

Table 4 Effect of interfacial strength 

Model  fw  Lsplit (mm)  max (MPa)  max/max,base  del/max 

Baseline  0.5  11.0  420 1.0 0.27 

A  1.0  11.2  327 0.78 0.30 

B  0.85  11.3  343 0.82 0.29 

C  0.35  15.0  388 0.92 0.26 

D  0.25  16.5  340 0.81 0.22 

 

3.2.2 Double-Edge-V-Notched Laminate  

 

This data set is taken from the experimental work conducted by Hallett and Wisnom [82] for E-

glass/epoxy double-edge-notched cross-ply laminates. Fig. 24 shows the notched plate geometry 

and Table 5 sets out the material properties. The half of the geometry shaded in the plane view is 

modelled. 

 Experiments at Bristol University show that ultimate failure is governed by fibre breakage in the 

0° ply. Failure of the fibres starts at the notch tip and propagates across the laminate width and is 

preceded by longitudinal splitting and delamination. The laminate eventually fails in a brittle way, 

with a crack running perpendicular to the fibre direction. Initiation and progression of failure in this 
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case occurs through several competing and interacting mechanisms. The computational modelling 

now has to account for these three failure mode interactions.  

 

 
a) Schematic 

 
b) Layup 

Fig. 24 Specimen geometry (Hallett and Wisnom [82]) 

 

Table 5 Lamina and interfacial properties of the double-edge-notched laminate 

Elastic lamina 

properties 

 Lamina strength 

properties 

 Fracture energy  Interfacial properties 

E1 

(N/mm2) 

43900 f1,T  

(N/mm2) 

1060 G1,T,c 

(N/mm) 

80  GI,c  

(N/mm) 

0.25

E2 = E3 

(N/mm2) 

15400 f1,C  

(N/mm2) 

2000 G1,C,c 

(N/mm) 

100  GII,c = GIII,c 

(N/mm) 

1.8

G12 = G13 

(N/mm2) 

4340 f2,T  

(N/mm2) 

75 G2,T,c 

(N/mm) 

0.25  fI  

(N/mm2) 

56

G23 

(N/mm2) 

4340 f2,C  

(N/mm2) 

120 G2,C,c 

(N/mm) 

0.75  fII = fIII  

(N/mm2) 

75

12 3200 f1,S = f2,S 

(N/mm2) 

88    KI = KII = KIII 

(N/mm3) 

1×106

 

 A preliminary model based on a continuum damage approach for individual plies (as above, the 

off-axis ply behaves elastically) and a cohesive zone model for the interface is developed. The finite 

element mesh density used in the current study is identical to the above model. In order to trigger 

fibre fracture, the fracture energy related to fibre failure is reduced by 90% of its original value (see 

Table 5) in a 0.25 mm wide localization band at the net-tension plane [83]. This band is wider than 
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the finite elements to ensure the mesh objectivity of the results. In this model, the element sizes in 

the notch area are about 0.125 mm. 

 Figs. 25 and 26 show the global stress-strain response under the applied tensile load and the 

damage in the 0° ply and in the interface at maximum (numerical) tensile strength. The following 

observations can be made: 

 

1. The numerical response is linear until a maximum (tensile strength) is reached at which a load 

drop is observed. The tensile strength is 174 MPa. This number does not compare well against 

the measured experimental strength (267 MPa) reported by Hallett and Wisnom [82]. 

2. The interaction of matrix failure, in the form of splitting and delamination, and fibre failure 

does not agree qualitatively with the experimental observations. 

3. The failure patterns show (i) a band with fibre-tension damage (Fig. 26a), which determines the 

laminate strength, (ii) longitudinal splitting crack that grows from the notch tip (Fig. 26b), and 

also matrix cracking damage smeared out over the elements, with rows of damaged elements 

opposite the notch tip. 

4. Although the interface between the two plies delaminates (Fig. 26c), the extent of delamination 

damage is much less severe than that observed in the experiments.  

 

Clearly, the numerical model is not able to capture both global and local behaviours. The fact that 

the matrix cracking is too smeared out over the elements, rather than being a discrete crack, does 

not allow the notch to blunt and delay the onset of fibre failure. As a consequence, the predicted 

tensile strength is very low as compared to the measured value. 

 In order to solve this problem, the finite element model was reformulated to enable the 

individual representation of the damage modes. The matrix longitudinal splitting in the 0° ply is 

now forced to localize and is modelled as a strip tangent to the notch. This method is very similar to 

the localization band approach to fibre-tension damage simulation and is a relatively simple 

approach to circumvent some of the limitations of the continuum damage models when the fracture 

path is known a priori. Although the continuum description of laminate failure is still present, this 

method implies the specification of the location of splitting in advance as matrix damage is 

confined to the pre-defined strip. This strip is 0.22 mm wide in this problem (again, wider than the 

typical element size) and is assigned with the mechanical properties summarized in Table 5. The 

rest of the laminate behaves elastically. 
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Fig. 25 Tensile stress-strain plot resulting from implementing the preliminary finite element 

model with continuum damage 0° ply and elastic 90° ply, and comparison with existing 

experimental data 
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a) 0° ply: fibre-tension damage 

 
b) 0° ply: longitudinal splitting 

 
c) Interface: delamination 

      
Fig. 26 Damage plot of ultimate failure mechanisms (tensile strength 174 MPa) for 0° ply with 

continuum damage and interface 

 

The model is now able to reproduce the correct sequence of failure events (see Fig. 27): (i) 0° 

splits emanating from the notch tip at about 30% of the failure load, (ii) 90°/0° ply-interface 

delaminations (at about  50% of the failure load) and increase in length of the splits, and (iii) fibre-

tension fracture. Fig. 28 illustrates how the model also captures the correct deformation: (i) ply 

separation mainly caused by interlaminar shearing stresses, and (ii) blunting of the notch. 

 

Completely damaged Partially damaged Undamaged 
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a) Damage initiation: longitudinal splitting ( = 80 MPa) 

    

 
b) Damage progression: axial splits grow in length along the load direction and delaminations 

develop at the interface between the 90° and the 0° layers  ( = 125 MPa) 

 
c) Fibre-tension fracture and final failure ( = 255 MPa) 

      
Fig. 27 Progressive damage from analysis with continuum damage 0° ply and elastic 90° ply, and 

localized longitudinal cracking in the 0° ply  

 

Completely damaged Partially damaged Undamaged 
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Fig. 28 Final deformed mesh from analysis with continuum damage 0° ply and elastic 90° ply, 

and localized longitudinal cracking in the 0° ply 

 

 Figs. 29 and 30 plot the current finite element predictions of tensile strength versus strain and 

half split length, respectively, and compare those predictions with the experimental data [82]. The 

experimental results and model predictions show good correlation both in terms of overall trend and 

the absolute values, despite the simplifications in the idealized model. 

 

 
Fig. 29 Tensile stress-strain plot resulting from implementing the finite element model with 

continuum damage 0° ply and elastic 90° ply, and localized longitudinal cracking in the 0° ply; 

comparison with existing experimental data 
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Fig. 30 Tensile stress-half split length plot resulting from implementing the finite element model 

with continuum damage 0° ply and elastic 90° ply, and localized longitudinal cracking in the 0° ply; 

correlation to measured splitting 

 

 Contours of the calculated intralaminar damage indices at an applied pull-plate stress of 200 

MPa, equal to 78% of the ultimate strength are shown in Fig. 31. These contours have to be 

compared with identical numerical predictions by Hallett and Wisnom [82]. The agreement is, 

again, good, although the delamination patterns are slightly different. Our delaminations consist of 

narrow regions elongated along the load direction and developing transversally from the splitting, 

with a geometry slightly different from the triangular shape reported by Hallett and  

Wisnom [76,82]. Our pattern shows that the delamination at the interface also progresses to the 

centre of the laminate and to the free edge, see Fig. 32, as eventually happens when (ultimate) 

failure by the fibres occurs. 

 Overall, the current predictions for the V-notched specimen are fairly repeatable and accurate 

with respect to the experimental and numerical observations from Hallett and Wisnom [76,82]. This 

demonstrates the ability of our model to accurately predict failures in cases where the interaction 

between intralaminar and interlaminar modes is strongly coupled. 
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a) Longitudinal splitting 

    
b) Fibre fracture 

      
Fig. 31 Predicted damage at a stress level of 200 MPa from analysis with continuum damage 0° 

ply and elastic 90° ply, and localized longitudinal cracking in the 0° ply 

 

 

 
Fig. 32 Delamination pattern at final failure of the laminate 
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4  Summary of Modelling Guidance 
 

 In this study, a progressive damage approach for composite materials has been adopted using 

only the predictive capabilities of the general purpose software Abaqus. This results from a 

combination of the prediction of intralaminar damage initiation by means of the Hashin failure 

theory and a material damage model to simulate loss in the load-carrying capability of the part and 

advances the progression of damage based on mode-specific strain energy release rates. Similarly, a 

strength-based failure criterion adequately predicted the interlaminar failure which caused initial 

delamination onset. Delamination was predicted to extend by using the strain energy release rate 

analysis. The following guidelines are provided to address common problems faced by analysts 

when simulating the behaviour of cross-ply notched laminates under in-plane tensile loading: 

 

1. Interface layers should not be thicker than 10-3tply. 

2. Boundary conditions consistent with the geometric symmetry of the plates can and should be 

employed but not on the longitudinal direction as the conditions restraining movement may 

change the stress field. 

3. Loads should be applied by imposing incremental displacements, as opposed to the classical 

load control method. 

4. Global stabilization and artificial viscosity prevent numerical instabilities. The values proposed 

in this study are 2×10-4 and 1×10-5, for the two coefficients (respectively). 

5. In order to allow delamination to occur between plies in cross-ply laminates, the assumption of 

linear behaviour in the off-axis  

6. By using implicit methods, the mesh density that ensured convergence to the “actual” results 

implies a minimum element size equal to the ply thickness around the notch, corresponding to 

the element sizes adopted in our models (see Section 3.2). 

7. The split and fibre-tension localization bands width should be at least 1.25 times wider than the 

surrounding elements in the mesh. 

 

 

 

5  Concluding Remarks 
 

Computational structural modelling has been used to analyse delamination dominated failures in 

composite materials that were observed in physical and numerical tests of notched laminates of 

carbon/epoxy and E-glass/epoxy. It is shown that the proposed finite element approach is able to 
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represent all the main features of the structural behaviour. In particular, it offers a reliable 

alternative to physical testing and to complex modelling that often relies on proprietary user-

subroutines to define the material mechanical behaviour. 

 The study has highlighted the crucial role of delamination for in-plane failure by example of 

cross-ply notched laminates from the literature, where a characteristic pattern of damage initiating 

from the notch and propagating towards the loaded edge.  

 This paper expands previous research by using state-of-the-art solution techniques and 

composite modelling provided by Abaqus. It also provides guidelines and addresses common 

problems faced by analysts. 
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