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FINITE ELEMENT HETEROGENEOUS MULTISCALE METHOD

FOR THE WAVE EQUATION

ASSYR ABDULLE∗ AND MARCUS J. GROTE†

Abstract. A finite element heterogeneous multiscale method (FE-HMM) is proposed for the
wave equation with highly oscillatory coefficients. It is based on a finite element discretization of an
effective wave equation at the macro scale, whose a priori unknown effective coefficients are computed
on sampling domains at the micro scale within each macro finite element. Hence the computational
work involved is independent of the highly heterogeneous nature of the medium at the smallest scale.
Optimal error estimates in the energy norm and the L2 norm and convergence to the homogenized
solution are proved, when both the macro and the micro scale are refined simultaneously. Numerical
experiments corroborate the theoretical convergence rates and illustrate the behavior of the numerical
method on periodic and heterogeneous media.

Key words. multiscale method, heterogeneous media, numerical homogenization, a priori error
analysis, wave equation, second-order hyperbolic problems

AMS subject classifications. 65N30,65M60,74Q10,74Q15,74Q20

1. Introduction. Wave phenomena from a wide range of applications, such as
seismic inversion, medical imaging and therapy, or the design of multiphase composite
materials are modeled by the wave equation with highly oscillatory coefficients. Yet
when waves propagate across inhomogeneous media with microscopic heterogeneities,
assumed to occur at a scale larger than atomistic, standard numerical methods, such
as finite element methods (FEM) or finite difference (FD) methods, become inefficient.
As classical numerical schemes require grid resolution of the medium downto its finest
scales, they typically lead to extremely large problem sizes although the scales of
interest, such as the wavelength, often occur at a macroscopic level,

Here we consider wave equations with highly oscillatory velocity fields, which vary
at a scale εmuch smaller than the scales of interest. For periodic or random stationary
fields, the analytic treatment of such problems usually relies on homogenization theory
[11, 13, 17], where the highly oscillatory velocity field aεis replaced by a properly
averaged (homogenized) field a0 that captures the essential macroscopic features in
the limit ǫ → 0. Unfortunately, explicit formulas for a0 are rarely available so that
numerical methods that circumvent those restrictions are needed.

Numerical methods for elliptic and parabolic homogenization problems have been
studied in many papers and various approaches have been proposed – see [2, 6, 8] and
the references therein. In contrast, the literature for the numerical homogenization of
wave equations is rather scarce. Owhadi and Zhang [30] proposed a numerical method
for the wave equation in the spirit of the so-called multiscale finite element method of
Hou et al. [25]. Their method is designed for strongly non-local media and relies on
a global change of coordinates map to transform coarse scale FE basis functions into
multiscale FE basis functions. Although quite general, that approach requires the
numerical approximation of the change of coordinates map, which is far from trivial
and rather expensive. Recently, Engquist, Holst and Runborg [18] proposed a FD
method in the framework of heterogenous multiscale methods (HMM) [19].

Here we propose a multiscale FEM for the numerical homogenization of the wave

∗Mathematics Section, École Polytechnique Fédérale de Lausanne, Switzerland, as-
syr.abdulle@epfl.ch

†Institute of Mathematics, University of Basel, marcus.grote@unibas.ch

1



2 A. ABDULLE AND M.J. GROTE

equation with heterogenous coefficients. Our method differs from [30], as it is based
on local micro computations within a macroscopic FE mesh. Thus scale separation
(e.g. random stationarity) is needed for our method to be effective. In turn we
achieve a significant reduction in the computational work, when scale separation can
be assumed. Our method also differs from [18], as it based on a FE discretization.
Moreover, we derive fully discrete optimal error estimates in the energy and in the
L2 norm. Such results constitute to the best of our knowledge the first fully discrete
error analysis (in space) for the numerical homogenization of the wave equation.

Our paper is organized as follows. In section 2 we introduce the homogenization
problem for the wave equation and recall some known analytical results. In section
3 we introduce our FE-HMM for the wave equation. The analysis of the numerical
method is given in section 4. Various numerical experiments are given in section 5
to test the behavior of the numerical method and verify the theoretical convergence
results.

Notations. Let Ω ⊂ R
d be open and denote by W s,p(Ω) the standard Sobolev space.

For p = 2 we use the notation Hs(Ω) and H1
0 (Ω), and denote by W 1

per(Y ) = {v ∈
H1
per(Y );

∫

Y
v dx = 0}, where Hs

per(Y ) is defined as the closure of C∞
per(Y ) (the subset

of C∞(Rd) of periodic functions in the unit cube Y =]0, 1[d) with respect to the Hs

norm. For a domain D ⊂ Ω, |D| denotes the measure of D. The derivatives ∂
∂t

∂2

∂t2
, . . .

are sometimes written as ∂t, ∂tt, . . . or alternatively as ∂tk . For T > 0 and B a Banach
space with norm ‖ · ‖B, we denote by Lp(0, T ;B) = Lp(B), 1 ≤ p ≤ ∞ the Bochner
space of functions v : (0, T ) → B. Equipped with the norm

‖v‖Lp(0,T ;B) =

(
∫ T

0

‖v(t)‖pB dt
) 1

p

,

the space Lp(0, T ;B) is also a Banach space – see [21] for details.

2. Model Problem. We consider the wave equation

∂ttuε −∇ · (aε∇uε) = F in Ω×]0, T [

uε = 0 on ]0, T [×∂Ω (2.1)

uε(x, 0) = f(x), ∂tuε(x, 0) = g(x) in Ω,

where aε is symmetric, satisfies aε(x) ∈ (L∞(Ω))d×d and is uniformly elliptic and
bounded, i.e.,

∃λ,Λ > 0 such that λ|ξ|2 ≤ aε(x)ξ · ξ ≤ Λ|ξ|2, ∀ξ ∈ R
d and ∀ε. (2.2)

Here ε represents a small scale in the problem, which characterizes the multiscale
nature of the tensor aε(x). Although we choose Dirichlet boundary conditions here, for
simplicity, the analysis below easily generalizes to other types of boundary conditions.

We make the following standard regularity assumptions:

F ∈ L2(0, T ;L2(Ω)), (2.3)

g ∈ H1
0 (Ω), (2.4)

f ∈ L2(Ω), (2.5)

and let E denote the Hilbert space,

E = {v; v ∈ L2(0, T ;H1
0 (Ω)), v′ ∈ L2(0, T ;L2(Ω))}, (2.6)
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equipped with the norm

‖v‖E = ‖v‖L2(0,T ;H1
0
(Ω)) + ‖∂tv‖L2(0,T ;L2(Ω)). (2.7)

Under assumptions (2.3)–(2.5), the weak form of (2.1) has a unique solution uε ∈
E. In fact, the solution is even more regular as uε ∈ C([0, T ];H1

0 (Ω)), ∂tuε ∈
C([0, T ];L2(Ω)) ([28, Chap. 3]), if redefined on a set of measure zero.

The discretization of (2.9) with FE is by now standard. Hence we seek a piecewise
polynomial solution uh(t) (of degree l) to the weak form of (2.1) in a finite dimensional
subspace of E. Classical FE convergence results for the wave equation [9] then yield
the optimal a priori error bounds

‖∂teh‖L∞(0,T ;L2(Ω)) + ‖eh‖L∞(0,T ;H1(Ω)) ≤ C

(
h

ε

)l

for the energy norm and

‖eh‖L∞(0,T ;L2(Ω)) ≤ C

(
h

ε

)l+1

, (2.8)

for the L2 norm, where eh = uε − uh and C is independent of h and ε. Hence
h < ε is needed for convergence and the computational cost thus prohibitive when
ε << 1. To overcome this difficulty, a well-known remedy is to look for a suitably
averaged equation, the homogenized equation – see below –, and approximate its
solution numerically. Unfortunately the coefficients (or homogenized tensor) of this
homogenized equation can rarely be computed analytically. In Section 3 we shall
show how to approximate numerically the effective homogenized solution without
first deriving the homogenized equation, by recovering the homogenized tensor “on
the fly” with the help of a micro solver defined on suitable sampling domains.

Homogenization theory. Following [13], we briefly review well-known results from
homogenization theory for the wave equation. Consider first the elliptic problem
associated to (2.9), that is

−∇ · (aε∇vε) = F ∈ Ω, vε = 0 on ∂Ω.

From the uniform ellipticity and boundedness of aε (2.2), we obtain by the Lax-
Milgram theorem a family of solutions {vε} (uniformly bounded independently of ε)
in H1

0 (Ω). Due to the reflexivity of H1
0 (Ω), there exists a subsequence of {vε} that

weakly converges (in H1
0 (Ω)) to a function v0. However, this procedure does not yield

a limiting equation for v0. To prove that v0 is the solution of some limiting equation,
one usually relies on the notion of G or H convergence (see [33][22],[29]), the former
being restricted to symmetric tensors.

A sequence of matrices {aε} is said to G−converge to a matrix a0 (which also
satisfies (2.2)) if for any ψ ∈ H−1(Ω) the sequence of solution {vε} of the above elliptic
problem converges weakly in H1

0 (Ω) to the solution v0 of

−∇ ·
(
a0∇v0

)
= ψ ∈ Ω, v0 = 0 on ∂Ω.

This convergence is denoted aε
G
⇀ a0. The importance of G−convergence lies in the

following compactness result [33][22],[29]: let {aε} be a sequence of matrices satisfying
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(2.2). Then there exists a matrix a0 satisfying (2.2) and a subsequence {aε
′

} which
G−converges to a0.

Consider now the wave equation (2.1) and assume that aε satisfies (2.2) and

that aε
G
⇀ a0. Then, the following convergence result holds: uε ⇀ u0 weakly* in

L∞(0, T ;H1
0(Ω)), ∂tuε ⇀ ∂tu0 weakly* in L∞(0, T ;L2(Ω)), where u0 is the solution

of the homogenized problem (2.9)

∂ttu0 −∇ ·
(
a0∇u0

)
= F in Ω×]0, T [,

u0 = 0 on ]0, T [×∂Ω, (2.9)

u0(x, 0) = f(x), ∂tu0(x, 0) = g(x), x ∈ Ω.

Let us end this short review by noting that if aε(x) has more structure (e.g. if
aε(x) = a(x, x/ε) = a(x, y) is Y -periodic in y) and if we assume additional regularity
(e.g. aij(x, y) ∈ C

(
Ω̄;W 1,∞

per (Y )
)

for all i, j = 1, . . . , d), then the entire sequence
{uε} weakly converges in the sense described above [26]. In the case of periodic
heterogeneities, explicit formulas for the homogenized tensor a0 exist, which involve
the solution of a boundary value problem, the so-called “cell-problem”.

3. Multiscale FEM for the wave equation. In this section, we propose a
multiscale FE method for the wave equation, based on the finite element heterogeneous
multiscale method (FE-HMM), introduced and analyzed for elliptic and parabolic
problems in [19, 1, 20] – see [6, 7] for a review.

3.1. FE space discretization. Macro finite element space. Let TH be a
(macro) partition of Ω in simplicial or quadrilateral elements K of diameter HK , with
H = maxK∈TH

HK ; here, for simplicity, we assume that Ω is a convex polygon. By
macro partition we mean that H >> ε is allowed. For this partition we define a
macro FE space

Sl0(Ω, TH) = {vH ∈ H1
0 (Ω); vH |K ∈ Rl(K), ∀K ∈ TH}, (3.1)

where Rl(K) is the space P l(K) of polynomials on K of total degree at most l if K is
a simplex, or the space Ql(K) of polynomials on K of degree at most l in each variable
if K a rectangle. Inside each macro element K ∈ TH , we consider for j = 1, . . . , J :

• integration points xj,K ∈ K,
• sampling domains Kδj

= xj,K + δI, where I = (−1/2, 1/2)d and δ ≥ ε,
• quadrature weights ωj,K .

Quadrature formula Let K̂ be the reference element and consider for any element of
the triangulation TH the mapping FK (a C1-diffeomorphism) such that K = FK(K̂).
For each K, we suppose that the above quadrature weights and integration points are
given by

xj,K = FK(x̂j), ωj = ω̂j,Kdet(∇FK), j = 1, . . . , J.

Here {x̂j , ω̂j} is a quadrature formula on K̂, which we assume to satisfy:

(Q1) ω̂j > 0, j = 1, . . . , J ,
∑

j∈J ω̂j |∇p̂(x̂j)|2 ≥ λ̂‖∇p̂‖2
L2(K̂)

;

(Q2)
∫

K̂
q̂(x)dx =

∑

j∈J ω̂j q̂(x̂j), ∀q̂(x̂) ∈ Rσ(K̂), where σ = max(2l− 2, l) if K̂ is a

simplicial FE, or σ = max(2l − 1, l+ 1) if K̂ is a rectangular FE.
The standard assumptions (Q1) and (Q2) about the quadrature formula ensure

that the optimal convergence rates of the FEM for elliptic problems hold, when using
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numerical integration [15, Chap. 4.1].
For l = 1 and simplicial finite elements, for instance, we can choose J = 1 and
ωj = |K|.
Micro finite element space. We consider a (micro) partition Th of each sampling
domain Kδj

in simplicial or quadrilateral elements Q of diameter hQ and let h =
maxi∈Th

hQ. For this partition we define a micro FE space

Sq(Kδ, Th) = {zh ∈W (Kδj
); zh|T ,∈ Rr(Q), Q ∈ Th}, (3.2)

where W (Kδj
) is a Sobolev space whose choice sets the boundary conditions for the

micro problems and thus determines the type of coupling between micro and macro
problems. For a periodic coupling

W (Kδj
) = W 1

per(Kδj
) = {v ∈ H1

per(Kδj
);

∫

Kδj

v dx = 0}, (3.3)

and for a coupling through Dirichlet boundary conditions

W (Kδj
) = H1

0 (Kδj
). (3.4)

Typically the sampling domains Kδj
are of size ε, that is |Kδj

| = O(εd), and
hence h < ε ≤ δ holds for the micro mesh size.

Multiscale FE Method. Find uH ∈ [0, T ]× Sl0(Ω, TH) → R such that

(∂ttu
H , vH) +BH(uH , vH) = (F (t), vH) ∀vH ∈ Sl0(Ω, TH)

uH = 0 on ∂Ω×]0, T [ (3.5)

uH(x, 0) = ΠH(f(x)), ∂tu
H(x, 0) = ΠH(g(x)), x ∈ Ω

where

BH(uH , vH) =
∑

K∈TH

J∑

j=1

ωj,K
|Kδj

|

∫

Kδj

aε(x)∇uhKj
· ∇vhKj

dx. (3.6)

Here ΠH denotes the L2− projection on Sl0(Ω, TH) and uhKj
, vhKj

are micro functions

defined on the sampling domains Kδj
, through (3.7). Note that the factor 1/|Kδj

|
gives the appropriate weight for the contribution of the integrals defined on Kδ in-
stead of K.

Micro solver. For every macro element K, we determine the additive contribution
to the macro stiffness matrix by computing the solutions to the micro-problems, uhKj

(respectively vhKj
), on each sampling domainKδj

: find uhKj
such that (uhKj

−uHlin,Kj
) ∈

Sqh(Kδj
, Th) and

∫

Kδj

aε(x)∇uhKj
· ∇zhdx = 0, ∀zh ∈ Sqh(Kδj

, Th), (3.7)

where Sqh(Kδj
, Th) is the micro FE space defined above and

uHlin,Kj
= uH(xj,K) + (x− xj,K) · ∇uH(xj,K) (3.8)
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is a piecewise linear approximation of uH ∈ Sl0(Ω, TH) about the integration point
xj,K (see [20],[6] for details).

Remark 3.1. The micro stiffness matrices for the numerical solution of (3.7)
need only be computed once for each sampling domain, while numerical quadrature is
usually needed [15, Chap. 4.1]. A detailed description of the practical implementation
of the above numerical method for elliptic and parabolic problems is discussed in [4].
Its extension to the wave equation is straightforward.

Coercivity of the FE-HMM bilinear form. We recall here two results from the
analysis of the FE-HMM for elliptic problems (see [1],[20],[6, Sect. 3.3.1] for a proof).

Lemma 3.2. Let vH ∈ Sl0(Ω, TH) and vh be the solutions (3.7) with S(Kδ) given
by (3.3) or (3.4), respectively. Furthermore consider the piecewise linear approxima-
tion vHlin of vH as defined in (3.8). Then we have

‖∇vHlin‖L2(Kδ) ≤ ‖∇vh‖L2(Kδ) ≤
√

Λ

λ
‖∇vHlin‖L2(Kδ), (3.9)

where λ,Λ are defined in (2.2).
The above result implies the following lemma.

Lemma 3.3. Assume that (2.2) and (Q1) hold. Then, the bilinear form BH(·, ·)
defined in (3.5) is elliptic and bounded, and

γ‖vH‖2
H1(Ω) ≤ BH(vH , vH), |BH(vH , wH)| ≤ Γ‖vH‖H1(Ω)‖wH‖H1(Ω), (3.10)

for all vH , wH ∈ Sl0(Ω, TH).
We emphasize that these two Lemmas require no structure assumption (as e.g. peri-
odicity) about the small scale dependence of the tensor aε.

The semi-discrete Multiscale Method. In the analysis below we shall make
use of the so-called semi-discrete multiscale method defined as follows: find ūH ∈
[0, T ]× Sl0(Ω, TH) → R such that

(∂ttū
H , vH) + B̄H(ūH , vH) = (F (t), vH) ∀vH ∈ Sl0(Ω, TH)

ūH = 0 on ∂Ω×]0, T [ (3.11)

ūH(x, 0) = ΠH(f(x)), ∂tū
H(x, 0) = ΠH(g(x)), x ∈ Ω.

This problem is similar to (3.11) except for the bilinear form B̄H(·, ·) defined for every
vH , wH ∈ Sl0(Ω, TH) as

B̄H(vH , wH) =
∑

K∈TH

J∑

j=1

ωj,K
|Kδj

|

∫

Kδj

aε(x)∇v · ∇w dx, (3.12)

where the micro functions v, w are not obtained through FE discretization but instead
are the solutions of the continuous counterpart to (3.7): find v (respectively w) such
that (v − vHlin,Kj

) ∈W (Kδj
) and

∫

Kδj

aε(x)∇v · ∇z dx = 0, ∀z ∈W (Kδj
) (3.13)

with W (Kδj
) as in (3.3) or (3.4), and vHlin,Kj

defined similarly as in (3.8). As for

BH in (3.6), one can also prove for B̄H(·, ·) that (3.9) with Sqh(Kδj
, Th) replaced by

W (Kδj
) in (3.7) holds, and thereby infer its ellipticity and boundedness. Clearly, ūH

cannot be obtained in general by a numerical method, as it involves micro functions
belonging to an infinite dimensional space, which are not explicitly known.
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4. Convergence Analysis. In this section we analyze the FE-HMM method
for the wave equation. We first present our main results, the a-priori error estimates
of our numerical method, before proceeding with the detailed analysis.

4.1. Main results. Following [6] we decompose the error ‖u0 − uH‖ as

‖u0 − uH‖ ≤ ‖u0 − uH0 ‖
︸ ︷︷ ︸

errmac

+ ‖uH0 − ūH‖
︸ ︷︷ ︸

errmod

+ ‖ūH − uH‖
︸ ︷︷ ︸

errmic

, (4.1)

where ‖ ·‖ denotes either the energy or the L2 norm. The first term on the right-hand
side of (4.1) represents the so-called macro error and involves the solution uH0 (t) ∈
Sl0(Ω, TH) of (4.2) (standard FEM with numerical integration for the homogenized
wave equation). The second term corresponds to the so-called modeling error and
involves the solution ūH(t) ∈ Sl0(Ω, TH) of (3.11). Finally, the last term represents
the so-called micro error and involves the solution uH(t) ∈ Sl0(Ω, TH) of (3.5), that is
the numerical solution of our FE-HMM method.

We postpone the analysis of the modeling and the micro errors. For the macro er-
ror, we can use standard error analysis techniques for FEM with numerical integration
– see [15] for the elliptic case, [31] for the parabolic case, and [10] for the hyperbolic
case. Consider the standard FEM with numerical integration for the homogenized
wave equation: find uH0 ∈ [0, T ]× S1

0(Ω, TH) → R such that

(∂ttu
H
0 , v

H) +B0,H(uH0 , v
H) = (F (t), vH) ∀vH ∈ S1

0(Ω, TH)

uH0 = 0 on ∂Ω×]0, T [ (4.2)

uH0 (x, 0) = ΠH(f(x)), ∂tu
H
0 (x, 0) = ΠH(g(x)), x ∈ Ω,

where B0,H(·, ·) is defined for every vH , wH ∈ Sl0(Ω, TH) by

B0,H(vH , wH) =
∑

K∈TH

J∑

j=1

ωj,Ka
0(xj,K)∇vH(xj,K)∇wH(xj,K). (4.3)

Optimal error estimates for the macroscopic error e0 = u0 − uH0 ,, where u0 is the
solution of (2.9), were proved by Baker and Dougalis [10]. They are repeated here for
the sake of completeness.

Proposition 4.1. Let uH0 be be the solution of (4.2) and u0 be the solution of
(2.9). Assume that the quadrature formula satisfies (Q1) and (Q2), the homogenized
tensor satisfies a0

ij ∈W l+1,∞(Ω), i, j = 1, . . . , d, and

∂tkF ∈ L2
(
0, T ;W l+1,q(Ω)

)
, k = 0, 1, 2.

If the solution u0 of (2.9) satisfies

∂tku0 ∈ L2
(
0, T ;W l+1,q(Ω)

)
, 0 ≤ k ≤ 3, (4.4)

then the error e0 = u0 − uH0 satisfies the estimate

‖e0‖L∞(0,T ;L2(Ω)) ≤ CH l+1

(

max
0≤k≤3

‖∂tku0‖L2(0,T ;W q,l+1(Ω))

)

. (4.5)

If the solution u0 of (2.9) satisfies

∂tku0 ∈ L2
(
0, T ;W l+1,q(Ω)

)
, 0 ≤ k ≤ 4, (4.6)
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then the error e0 = u0 − uH0 satisfies the estimate

‖∂te0‖L∞(0,T ;L2(Ω)) + ‖e0‖L∞(0,T ;H1(Ω)) ≤ CH l

(

max
0≤k≤4

‖∂tku0‖L2(0,T ;W l+1,q(Ω))

)

.(4.7)

Remark 4.2. On the right of (4.7), a term of the form

‖f − ΠHf‖H1(Ω) + ‖∂tg − ∂tΠHg‖L2(Ω) (4.8)

usually appears, while a term of the form

‖f − ΠHf‖L2(Ω) (4.9)

usually appears on the right of (4.5). Since our assumptions on u, ∂tu imply that
u, ∂tu ∈ C([0, T ];W l+1,q(Ω)) (see [21, Sect. 5.9.2]), standard approximation results
imply that (4.8) is bounded by CH l and that (4.9) is bounded by CH l+1.

We now state our main result.
Theorem 4.3. Let uH be be the solution of (3.5), u0 the solution of (2.9) and

the error eH = u0 − uH and suppose that the assumptions of Proposition 4.1 hold.
Then we have

‖∂teH‖L∞(0,T ;L2(Ω)) + ‖eH‖L∞(0,T ;H1(Ω)) ≤ C1H
l

(

max
0≤k≤4

‖∂tku0‖L2(0,T ;W q,l+1(Ω))

)

+C2 sup
K∈TH ,xj,K∈K

‖a0(xj,K) − a0
K(xj,K)‖F . (4.10)

For the L2 error, we have the estimate

‖eH‖L∞(0,T ;L2(Ω)) ≤ C1H
l+1

(

max
0≤k≤3

‖∂tku0‖L2(0,T ;W q,l+1(Ω))

)

+

C2 sup
K∈TH ,xj,K∈K

‖a0(xj,K) − a0
K(xj,K)‖F . (4.11)

Here ‖ · ‖F denotes the Frobenius norm and the constants C1 and C2 depend on
λ,Λ, T, F, f, g but not on H, h, or ε. Theorem 4.3 implies optimal convergence rates
in the L2 and H1 norms with respect to the macro meshsize H . In both estimates the
second term on the right side does not appear in standard FEM and stems from the
modeling and micro errors mentioned in (4.1). To clarify that connection, we further
decompose it as

‖a0(xj,K) − a0
K(xj,K)‖F ≤ ‖a0(xj,K) − ā0

K(xj,K)‖F
︸ ︷︷ ︸

errmod

+ ‖ā0(xj,K) − a0
K(xj,K)‖F

︸ ︷︷ ︸

errmic

.

The tensor a0(xj,K) is the homogenized tensor in (2.9) evaluated at the quadra-
ture point xj,K . The tensors ā0(xj,K) and a0

K(xj,K) (numerical approximations of
a0(xj,K)) are defined in (4.15) and (4.16), respectively, and the above error estimate
is discussed in Section 4.3. The first term of the right-hand side of the above in-
equality (errmod) is the so-called modeling error and describes how well the upscaling
procedure (multiscale method) captures the effective coefficients of (2.9). The second
term (errmic) describes the error due to the micro FEM. This term can be analyzed
without further assumptions on the spatial structure (e.g. periodicity, random sta-
tionarity), but some regularity assumptions about the oscillating tensor aε are needed
(see Remark 4.7).
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If the solutions of the micro cell problems (3.7) are sufficiently regular – see
Remark 4.7 and Lemma 4.8 below for a precise statement – errmic can be quantified
and Theorem 4.3 implies the optimal error bounds

‖∂teH‖L∞(0,T ;L2(Ω)) + ‖eH‖L∞(0,T ;H1(Ω)) ≤ C

(

H l +
(h

ε

)2q

+ errmod

)

, (4.12)

‖eH‖L∞(0,T ;L2(Ω)) ≤ C

(

H l+1 +
(h

ε

)2q

+ errmod

)

, (4.13)

where C is independent of H,h, ε. In the periodic or random stationary case errmod
can also be quantified (see Lemmas 4.10 and 4.11).

4.2. Preliminaries. First, we define the tensors a0(xj,K), ā0(xj,K), a0
K(xj,K)

mentioned previously. Following [5],[6] we consider for each vector ei, i = 1, . . . , d
of the canonical basis R

d the function ψiKδj
, solution of the micro problem similar to

(3.7) with modified right-hand side

∫

Kδj

aε(x)∇ψiKδj
∇z dx = −

∫

Kδj

aε(x)ei · ∇z dx, ∀z ∈W (Kδj
), (4.14)

where W (Kδj
) is defined in (3.3) or (3.4). Similarly we consider (4.14) in the FE

space Sq(Kδ, Th) and denote its corresponding solution by ψi,hKδj
. At each quadrature

point xj,K ∈ K, we define a so-called numerically homogenized tensor as

a0
K(xj,K) =

1

|Kδj
|

∫

Kδj

aε(x)

(

I + JT
ψh

Kδj

(x)

)

dx, (4.15)

where Jψh
Kδj

(x) is a d× d matrix with entries

(

Jψh
Kδj

(x)

)

iℓ

= (∂ψi,hKδj
)/(∂xℓ). We also

define

ā0
K(xj,K) =

1

|Kδj
|

∫

Kδj

aε(x)

(

I + JTψKδj
(x)

)

dx, (4.16)

where JψKδj
(x) is defined similarly as Jψh

Kδj

(x), but with ψi,hKδj
replaced by ψiKδj

.

By using the numerically homogenized tensor (4.15) and the results of [5] (see
also Lemmas 11 and 12 of [7]) we obtain the following useful reformulation of the
bilinear form BH(·, ·) in (3.5).

Lemma 4.4. The bilinear form BH(·, ·) defined in (3.6) can be rewritten as

BH(vH , wH) =
∑

K∈TH

J∑

j=1

ωj,Ka
0
K(xj,K)∇vH(xj,K)∇wH(xj,K). (4.17)

Likewise, we have for the semi-discrete bilinear form a similar result,
Lemma 4.5. The bilinear form B̄H(·, ·) defined in (3.12) can be rewritten as

B̄H(vH , wH) =
∑

K∈TH

J∑

j=1

ωj,K ā
0
K(xj,K)∇vH(xj,K)∇wH(xj,K). (4.18)
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4.3. A priori error analysis for the FE-HMM. In this section we prove our
main theorem. Recall that the analysis of FE-HMM methods for elliptic problems
use results from non-conforming FEM; in particular, Strang-type lemmas play an
important role [1],[20],[6],[7]. Thus we shall first derive a similar result for the wave
equation which, to the best of our knowledge, is not available in the literature. Its
proof is given in the appendix.

Lemma 4.6. Let V ⊂ H1
0 (Ω), f̂ , ĝ ∈ V , F, ∂tF ∈ L2(0, T ;L2(Ω)), T > 0, and u1,

u2 be the (unique) solutions of

(∂ttu1, v) +B1(u1, v) = (F, v), ∀v ∈ V, t ∈]0, T [

u1 = 0 on ∂Ω×]0, T [ (4.19)

u1(x, 0) = f̂(x), ∂tu1(x, 0) = ĝ(x), x ∈ Ω,

and

(∂ttu2, v) +B2(u2, v) = (F, v), ∀v ∈ V, t ∈]0, T [

u2 = 0 on ∂Ω×]0, T [ (4.20)

u2(x, 0) = f̂(x), ∂tu2(x, 0) = ĝ(x), x ∈ Ω,

respectively, where the two bilinear forms B1(·, ·), B2(·, ·) satisfy

γ1‖v‖2
H1 ≤ Bi(v, v), |Bi(v, w)| ≤ γ2‖v‖H1‖w‖H1 , i = 1, 2. (4.21)

Assume that

∂kt uj ∈ L2(0, T ;H1(Ω)), 0 ≤ k ≤ 2, j = 1, 2,

and that

|B1(v, w) −B2(v, w)| ≤ η‖v‖H1(Ω)‖w‖H1(Ω) ∀v, w ∈ V. (4.22)

Then,

‖∂t(u1 − u2)‖L∞(0,T ;L2(Ω)) + ‖u1 − u2‖L∞(0,T ;H1(Ω)) ≤ Cη, (4.23)

where C = C(γ1, γ2, T, f̂ , ĝ) is independent of η. We now prove our main result.

Proof of Theorem 4.3 By using the continuity of B0,H(·, ·) defined in (3.11) and
BH(·, ·) defined in (3.6), we have

|B0,H(vH , wH) −BH(vH , wH)|

≤
∑

K∈TH

∣
∣
∣
∣
∣
∣

J∑

j=1

ωj,K(a0(xj,K) − a0
K(xj,K))∇vH(xj,K)∇wH(xj)

∣
∣
∣
∣
∣
∣

≤ sup
K∈TH ,xj,K∈K

‖a0(xj,K) − a0
K(xj,K)‖F

√
√
√
√
∑

K∈TH

J∑

j=1

ωj,K |∇vH(xj,K)|2

·

√
√
√
√
∑

K∈TH

J∑

j=1

ωj,K |∇wH(xj,K)|2

≤ sup
K∈TH ,xj,K∈K

‖a0(xj,K) − a0
K(xj,K)‖F ‖vH‖H1(Ω)‖wH‖H1(Ω).
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Now let uH0 be be the solution of (4.2) and uH the solution of (3.5). From Lemma
4.6 we thus obtain

‖∂t(uH0 − uH)‖L∞(0,T ;L2(Ω)) + ‖uH0 − uH‖L∞(0,T ;H1(Ω))

≤ C sup
K∈TH ,xj,K∈K

‖a0(xj,K) − a0
K(xj,K)‖F , (4.24)

where C = C(λ,Λ, T ). To conclude the proof we use the triangle inequality

‖∂t(u0 − uH)‖L∞(0,T ;L2(Ω)) + ‖u0 − uH‖L∞(0,T ;H1(Ω))

≤ ‖∂t(u0 − uH0 )‖L∞(0,T ;L2(Ω)) + ‖u0 − uH0 ‖L∞(0,T ;H1(Ω))

+‖∂t(uH0 − uH)‖L∞(0,T ;L2(Ω)) + ‖uH0 − uH‖L∞(0,T ;H1(Ω)).

The last two terms of the right-hand side of this inequality can be estimated by (4.24).
For the first and second term, however, we use Proposition 4.1.

The estimate with respect to the L2 norm in (4.11) is obtained again from the
triangle inequality, the estimate in (4.5), and the obvious estimate

‖u0 − uH0 ‖L∞(0,T ;L2(Ω)) ≤ C sup
K∈TH ,xj,K∈K

‖a0(xj,K) − a0
K(xj,K)‖F ,

which follows from (4.24). �

Again, we emphasize that the result of Theorem 4.3 requires no assumption on the
spatial structure of the small-scale tensor aε(x), such as periodicity or random sta-
tionarity. As already mentioned at the end of Section 4.1, Theorem 4.3 involves the
unusual term ‖a0(xj,K) − a0

K(xj,K)‖F , which remains to be studied. To do so, we
recall the decomposition:

sup
K∈TH ,xj,K∈K

‖a0(xj,K) − a0
K(xj,K)‖F ≤ sup

K∈TH ,xj,K∈K

‖a0(xj,K) − ā0
K(xj,K)‖F

︸ ︷︷ ︸

errmod(xj,K ,K)

(4.25)

+ sup
K∈TH ,xj,K∈K

‖ā0(xj,K) − a0
K(xj,K)‖F

︸ ︷︷ ︸

errmic(xj,K ,K)

. (4.26)

Micro error. No assumptions about the spatial structure of aε are required to
analyze the micro error. Some regularity on the small scales, however, is needed.
Hence we shall assume that the solution ψiKδj

of the micro problem (4.14) satisfies

|ψiKj
|Hq+1(Kδj

) ≤ C ε−q
√

|Kδj
|, (4.27)

where C is independent of ε, of the quadrature points xj,K , and the domain Kδj
.

Remark 4.7. Without any further knowledge about the structure of the oscil-
lating tensor aε, (4.27) follows for q = 1 from classical H2 regularity results ([27,
Chap. 2.6]), provided |aεij |W 1,∞(Ω) ≤ Cε−1 for i, j = 1, . . . , d and Dirichlet bound-

ary conditions are imposed in (4.14). Note that aεij |K ∈ W 1,∞(K) ∀K ∈ TH and

|aεij |W 1,∞(K) ≤ CKε
−1 are sufficient, if the macro mesh is aligned with the (possible)

discontinuities of aε (see [5] for details).
If aε = a(x, x/ε) = a(x, y) is Y -periodic in y and δ/ε ∈ N, then (4.27) can

be established for any given q, provided that aε is sufficiently smooth, by following
classical regularity results for periodic boundary value problems (see [12, Chap. 3]
and also [3]).
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Following [5, Lemma 5.1],[7, Lemma 6], we thus obtain
Lemma 4.8. Suppose that the solution ψiKδj

of the cell problem (4.14) satisfies

(4.27). Then,

sup
K∈TH ,xj,K∈K

‖ā0(xj,K) − a0
K(xj,K)‖F ≤ C

(
h

ε

)2q

, (4.28)

where C depends only on the domain Ω, the dimension d, the constant C in (4.27)
and λ, Λ in (2.2).

Remark 4.9. We emphasize that ĥ = h/ε is independent of ε. Indeed, if we use
Nmicro elements in each space dimension for the discretization of the sampling do-
mains, we have h = δ/Nmicro and therefore ĥ = (δ/ε)·(1/Nmicro). Since δ scales with

ε, typically δ = Cε (with a constant C of moderate size), we have ĥ = (C/Nmicro).
Let Mmacro denote the number of degrees of freedom (DOF) of the macro FEM

and by Mmicro the number of DOF of the micro FEMs. Then the overall complexity is
proportional to (Mmacro)

α1 ×(Mmicro)
α2 , with suitable α1, α2 depending on the norm

for the error and the type of macro and micro FEs; in general, it is superlinear. In
contrast, the memory requirement is only proportional to Mmacro +Mmicro, because
the micro problems are independent of one another and thus can be solved one at a
time.

Coupling the macro FE method with ”fast micro solvers”, such as spectral meth-
ods, considerably reduces the computational cost of the method even further, provided
aε is sufficiently regular. This approach was proposed in [3] for elliptic problems and
can be extended to the wave equation.

Modeling error. Next, we discuss the so-called modeling error. Here structure
assumptions have to be made if we wish quantitative bounds.

Any results concerning the approximation of the homogenized tensor with arti-
ficial micro boundary conditions (e.g. Dirichlet) and oversampling could be readily
used in our analysis and would permit to estimate the modeling error in more general
situations. For simplicity, we consider the situation of a non uniformly periodic tensor
of the form

aε = a(x, x/ε) = a(x, y) Y -periodic in y, (4.29)

where we set Y = (0, 1)d. We also assume

aij(x, y) ∈ C
(
Ω̄;W 1,∞

per (Y )
)
, for all i, j = 1, . . . , d. (4.30)

We shall now distinguish two cases.
If δ/ε ∈ N, we have
Lemma 4.10. Suppose ψiKδj

is the solution of the cell problem (4.14) inW 1
per(Kδj

)

and that both (4.29) and (4.30) hold. Then,

sup
K∈TH ,xj,K∈K

‖a0(xj,K) − ā0
K(xj,K)‖F ≤ Cε, (4.31)

where C is independent of H,h, ε. Moreover if the dependence of a(x, x/ε) on the
slow variable is explicit and one collocates the slow variable of the tensor at quadra-
ture points a(xj,K , x/ε) in the FE-HMM macro bilinear form (3.5) and in the micro
problems (3.7), then in fact we have

sup
K∈TH ,xj,K∈K

‖a0(xj,K) − ā0
K(xj,K)‖F = 0. (4.32)
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Proof. The proof can be obtained following the argument of [6, Proposition 14]
and is omitted here.

If δ/ε /∈ N, we have
Lemma 4.11. Suppose ψiKδj

is the solution of the cell problem (4.14) in the space

H1
0 (Kδj

) and suppose that both (4.29) and (4.30) hold. Then

sup
K∈TH ,xj,K∈K

‖a0(xj,K) − ā0
K(xj,K)‖F ≤ C

(

δ +
ε

δ

)

. (4.33)

Proof. The proof can be obtained following the argument of [20, Theorem 3.2].

5. Numerical experiments. We shall now apply our FE-HMM to two simple
one-dimensional problems to illustrate its versatility and corroborate the convergence
rates proved in Theorem 4.3. First, we consider a model problem with a periodic
highly oscillatory medium, where the analytical solution from classical homogenization
theory is explicitly known. Second, we consider wave propagation through a highly
oscillatory but nonperiodic medium, which appears discontinuous at the macroscale;
here, we compare the FE-HMM solution with a reference solution on a highly refined
mesh. In both cases we choose the standard second-order leap-frog scheme for the
time discretization with constant step size ∆t.
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Fig. 5.1. Periodic medium. The error ‖u0 − uH‖ between the FE-HMM solution uH and the
homogenized solution u0 is shown vs. the macro mesh size H, with simultaneous refinement of H

and h: the L2-error (left) and the H1-error (right).

5.1. Periodic medium. We consider (2.9) in the unit interval Ω =]0, 1[ until
the final time T = 2 with the initial conditions f(x) = sin(πx) and g(x) = 0. The
squared velocity field

aε(x) =

√
17

4
+

1

4
sin
(

2π
x

ε

)

(5.1)

is periodic and highly oscillatory for increasingly smaller values of ε. The coefficients
are chosen such that the homogenized wave speed

√
a0 = 1; hence, the homogenized

solution is explicitly known here, u0(x, t) = sin(πxt). We now let ε = 4 · 10−4 and
consider a sequence of equidistant macro partitions TH of Ω, indexed by k = 1, 2, . . . , 6,
each with mesh size H = 0.2 · 2−k. Inside each macro interval, a single sampling
domain Kδ of diameter δ = 4 · 10−4 is centered about the mid-point; it is partitioned
into equidistant sub-intervals of size h = 0.2 δ · 2−k. Both the macro and the micro
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FE spaces consist of standard continuous piecewise linear functions with ℓ = r = 1.
We recall that the convergence rate and the computational complexity of the micro
FEMs rely on the scaled mesh size ĥ = h/ε which is independent of ε (see Remark
(4.9)).

In Figure 5.1, the L2 and the H1 errors between the exact homogenized and the
FE-HMM solutions are shown for the above sequence of meshes, with simultaneous
refinement in H and h, and a time step ∆t = 0.1 · 2−k. We observe the expected
overall convergence of order one in the H1 norm and of order two in the L2 norm,
which corroborates the theoretical bounds from Theorem 4.3.
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Fig. 5.2. Periodic medium. The error ‖u0 − uH‖ between the FE-HMM solution uH and the
homogenized solution u0 is shown vs. the macro mesh size H, while the micro mesh size h is kept
fixed: the L2-error (left) and the H1-error (right).

What if only the macro mesh size H is refined while the micro mesh size h is kept
fixed ? According to the error estimates from Theorem 4.3, we expect the second term
on the right side of (4.12) and (4.13), which involves the error due to the micro FEM,
to dominate and inhibit convergence as H tends to zero. To illustrate this behavior,
we consider four different micro meshes with mesh size h = δ · 2−(m+1), m = 1, 2, 3, 4.
Then for each fixed micro mesh, we compute the numerical solutions for the sequence
of macro meshes indexed by k = 1, 2, . . . , 11, each with mesh size H = 0.4 · 2−k and
with time step ∆t = 0.2 · 2−k. Again for ε = δ = 4 · 10−4, the results are shown in
Figure 5.2. Although choosing a smaller value for h always improves the accuracy,
our results demonstrate that overall convergence to the homogenized solution cannot
be achieved without simultaneous refinement of both the macro and the micro FE
meshes.

5.2. Heterogeneous medium. Next, we consider (2.9) in Ω =]−3, 5[ until the
final time T = 3, where the initial conditions correspond to a right-moving Gaussian
pulse,

f(x) =

{

e−
x2

σ2 x ∈ [−0.5, 0.5]

0 elsewhere
, (5.2)

with σ such that f(±0.5) equals machine precision, and

g(x) =

{
2x
σ2 e

− x2

σ2 x ∈ [−0.5, 0.5]

0 elsewhere
. (5.3)
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The squared velocity field aε(x), shown in Figure 5.3, is no longer periodic but
nonetheless highly oscillatory for increasingly smaller values of ε. It is given by

aε(x) =

{

2 +
√

2 + sin
(

2πx
ε

)
for x > 0 and x ∈ (n− 0.5, n) for a n ∈ N√

2 + sin
(

2πx
ε

)
elsewhere

. (5.4)
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a
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Fig. 5.3. Heterogeneous medium. The squared velocity aε(x) defined in (5.4) is shown for
ε = 10−3, with a partial zoom about x = 4.5.

We now set ε = 10−3 and compute the FE-HMM solution uH on a coarse mesh
with H = 10−2 and time step ∆t = 10−3. The sampling domains are of size δ =
10−3, each partitioned in equidistant sub-intervals of size h = 10−4. Again, both the
macro and the micro FE spaces consist of continuous piecewise linear functions with
ℓ = r = 1. For reference, we also compute uε by a fully resolved standard FE solution
on a highly refined mesh with H = 10−4 and ∆t = 10−5 to avoid numerical artifacts.
Due to the small size of ε we expect uε to be very close to u0 (in the L2 norm).

Both uH and uε are shown in Figure 5.4 and we observe that they essentially
coincide (at this scale) until the final time. Hence the FE-HMM is able to capture
the main features of the underlying heterogeneous medium at a much smaller com-
putational cost, and in fact independently of ε.

Finally, for the sake of comparison, we also compute the FE solution for an
averaged medium aav(x),

aav(x) =

{

2 +
√

2 for x > 0 and x ∈ (n− 0.5, n) for a n ∈ N√
2 elsewhere

, (5.5)

obtained by naive local averaging. The finite element discretization and time step are
identical to those of the reference solution. In Figure 5.5, snapshots of the reference
solution, uε, and the solution obtained by simple averaging are shown. As expected,
the effective medium aav(x) does not capture the essential features of the underlying
heterogeneous medium and hence the two solutions diverge from each other increas-
ingly with time.

6. Concluding remarks. We have presented a multiscale FE method for wave
propagation in heterogeneous media. It is based on a finite element discretization
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Fig. 5.4. Heterogeneous medium. Snapshots of uH and uε at times t = 1, 2, 3 of a Gaussian
pulse propagating through the medium from Figure 5.3, also depicted here underneath.

of an effective wave equation at the macro scale, whose a priori unknown effective
coefficients are computed on sampling domains at the micro scale within each macro
finite element. Hence the computational work involved is independent of the highly
heterogeneous nature of the medium at the smallest scale ε. Optimal error estimates
in the energy norm and the L2 norm and convergence to the homogenized solution
are proved, when both the macro and the micro scale are refined simultaneously, as
corroborated by numerical experiments.

In [20], error estimates of the modeling error with various boundary conditions
and oversampling were obtained whereas partial estimates were also derived there for
random media. Those results could be used here to estimate the modeling error term
for the wave equation in random media.

Because our FE-HMM approach leads to a standard Galerkin finite element for-
mulation at the macro scale, it immediately applies to higher dimensional problems,
complex geometry, or high-order discretizations. It also easily generalizes to more
complicated second-order hyperbolic equations, such as from electromagnetics or elas-
ticity. Our FE-HMM method and the discontinuous Galerkin HMM [5] can also be
combined with discontinuous Galerkin FE methods for the wave equation [23, 24],
which provide greater flexibility in the underlying mesh design, waive the need for
mass-lumping, and thus lead to inherently parallel fully explicit (local) time stepping
schemes [16].

At very long times, waves display a dispersive behavior as they propagate through
a highly oscillatory medium, which is not captured by standard homogenization the-
ory. Since our FE-HMM method converges to the classical homogenized solution, it
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Fig. 5.5. Heterogeneous medium. Snapshots of uε and a FE solution for a medium, obtained
through a naive averaging procedure, at times t = 1, 2, 3 propagating through the medium from Figure
5.3, also depicted here underneath.

cannot capture those long-time effects either, for which higher order corrections are
required [32, 14, 18].
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7. Appendix. Here we prove the Strang-like lemma for second-order hyperbolic
problems.

Proof of Lemma 4.6. Let w(t) ∈ V be the elliptic projection of u1(t) with respect to
B2,

B2(w(t), χ) = B1(u1(t), χ), ∀χ ∈ V, t ∈ [0, T ]. (7.1)

Hence, we immediately have

B2(w − u1, χ) = B1(u1, χ) −B2(u1, χ), ∀χ ∈ V.

Now, we let χ = w − u1 and use (4.21) and (4.22) to obtain

‖w(t) − u1(t)‖2
H1 ≤ Cη‖u1(t)‖H1‖w(t) − u1(t)‖H1 .



18 A. ABDULLE AND M.J. GROTE

Henceforth C denotes a generic constant independent of η. After integrating both
sides in time from 0 up to T , using Cauchy’s inequality [21], and dividing both sides
by ‖w − u1‖L2(0,T ;H1(Ω)), we obtain

‖w − u1‖L2(0,T ;H1(Ω)) ≤ Cη‖u1‖L2(0,T ;H1(Ω)). (7.2)

Since the bilinear forms B1 and B2 are independent of time, a similar estimate can
be derived for ∂tu1 and ∂ttu1 by differentiating (4.19), (4.20) with respect to time.
Thus we have

‖∂kt (w − u1)‖L2(0,T ;H1(Ω)) ≤ Cη‖∂kt u1‖L2(0,T ;H1(Ω)), k ≤ 2. (7.3)

We shall now estimate u2 − w with w defined by (7.1). Let

ζ(t) = u2(t) − w(t), t ∈ [0, T ]. (7.4)

Then from (4.19), (4.20), and (7.1) we observe that

(∂ttζ, χ) +B2(ζ, χ) = (F, χ) − (∂ttw,χ) −B2(w,χ)

= (∂ttu1, χ) − (∂ttw,χ), ∀χ ∈ V. (7.5)

Considering for every time t, 0 ≤ t ≤ T , χ(t) ∈ V , we thus have

B2(ζ, χ) = (∂tt(u1 − w − ζ), χ), ∀χ ∈ V,

which we rewrite as

−(∂tζ, ∂tχ) +B2(ζ, χ) =
d

dt
(β, χ) − (φ, ∂tχ), (7.6)

where

β = ∂tu1 − ∂tw − ∂tζ, φ = ∂tu1 − ∂tw. (7.7)

We now fix ξ, 0 < ξ ≤ T and define

χ̂(t) =

∫ ξ

t

ζ(s) ds, 0 ≤ t ≤ T.

Hence χ̂(t) ∈ V for 0 ≤ t ≤ T and we have

χ̂(ξ) = 0, ∂tχ̂(t) = −ζ(t), 0 < t ≤ T. (7.8)

We let χ = χ̂ in (7.6) and integrate both sides with respect to t from 0 to ξ. This
leads to

‖ζ(ξ)‖2
L2(Ω) − ‖ζ(0)‖2

L2(Ω) +B2(χ̂(0), χ̂(0)) = −2(β(0), χ̂(0)) + 2

∫ ξ

0

(φ(t), ζ(t)) dt,

where we have used (7.8) and the symmetry of B2. Since

β(0) = ∂tu1(0) − ∂tu2(0) = 0

and B2 satisfies (4.21), we find that

‖ζ(ξ)‖2
L2(Ω) ≤ ‖ζ(0)‖2

L2(Ω) + 2

∣
∣
∣
∣
∣

∫ ξ

0

(φ(t), ζ(t)) dt

∣
∣
∣
∣
∣
.
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Next, we use the Cauchy-Schwarz inequality and Young’s inequality to obtain

‖ζ(ξ)‖2
L2(Ω) ≤ ‖ζ(0)‖2

L2(Ω) +
C

δ
‖φ‖2

L2(0,T ;L2(Ω)) + Cδ‖ζ‖2
L∞(0,T ;L2(Ω)), ∀δ > 0.

Note that the constant C now also depends on T . Since the right side is independent
of ξ, we can take the supremum over 0 ≤ ξ ≤ T . For a suitable δ we thus have

‖ζ‖L∞(0,T ;L2(Ω)) ≤ C{‖φ‖L2(0,T ;L2(Ω)) + ‖ζ(0)‖L2(Ω)}. (7.9)

The initial conditions in (4.19), (4.20) and the continuous embedding ofH1(0, T ;L2(Ω))
into C0([0, T ];L2(Ω)) (Section 5.9.2, [21]) imply

‖ζ(0)‖L2(Ω) = ‖u1(0)−w(0)‖L2(Ω) ≤ C{‖u1−w‖L2(0,T ;L2(Ω))+‖∂t(u1−w)‖L2(0,T ;L2(Ω))}.

Thus from (7.3) and the definition of φ in (7.7), we can bound the left side of (7.9) as

‖ζ‖L∞(0,T ;L2(Ω)) ≤ C{‖u1 − w‖L2(0,T ;L2(Ω)) + ‖∂t(u1 − w)‖L2(0,T ;L2(Ω))}

≤ Cη{‖u1‖L2(0,T ;H1(Ω)) + ‖∂tu1‖L2(0,T ;H1(Ω))}.

Finally, since

‖u1 − u2‖L∞(0,T ;L2(Ω)) ≤ ‖u1 − w‖L∞(0,T ;L2(Ω)) + ‖ζ‖L∞(0,T ;L2(Ω))

we conclude again from (7.3) and the continuous embedding of H1(0, T ;L2(Ω)) into
C0([0, T ];L2(Ω)) that

‖u1 − u2‖L∞(0,T ;L2(Ω)) ≤ Cη{‖u1‖L2(0,T ;H1(Ω)) + ‖∂tu1‖L2(0,T ;H1(Ω))}, (7.10)

which can be further bounded in terms of f̂ , ĝ, F and T – see (Section 7.2.3, [21]) for
details.

We shall now estimate the ”energy norm” of u1 − u2. Starting from (7.4) and
(7.5) above we have

(∂ttζ, χ) +B2(ζ, χ) = (∂tt(u1 − w), χ), ∀χ ∈ V.

We let χ(t) = ∂tζ(t) and use the symmetry of B2 to obtain

1

2

d

dt

(

‖∂tζ‖2
L2(Ω) +B2(ζ, ζ)

)

= (∂tt(u1 − w), ∂tζ).

Next, we use the Cauchy-Schwarz inequality, the geometric-arithmetic mean inequal-
ity and add B2(ζ, ζ) ≥ 0 to the right side of the resulting expression. This yields

d

dt
E(t) ≤ C‖∂tt(u1 − w)‖L2(Ω) + E(t),

where the energy E is defined by

E(t) = ‖∂tζ(t)‖2
L2(Ω) +B2(ζ(t), ζ(t)).

By using Gronwall’s inequality and the fact that B2 satisfies (4.21), we obtain

sup
0≤t≤T

(
‖∂tζ(t)‖L2(Ω) + ‖ζ(t)‖H1(Ω)

)

≤ C
(
‖∂tζ(0)‖L2(Ω) + ‖∂tt(u1 − w)‖L2(0,T ;L2(Ω))‖ + ‖ζ(0)‖H1(Ω)

)
. (7.11)
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To estimate the third term on the right of (7.11), we use (4.19), (4.20) and the
continuous embedding of H1(0, T ;H1(Ω)) into C0(0, T ;H1(Ω)) [21], which implies

‖ζ(0)‖H1(Ω) = ‖u1(0) − w(0)‖H1(Ω)

≤ C{‖u1 − w‖L2(0,T ;H1(Ω)) + ‖∂t(u1 − w)‖L2(0,T ;H1(Ω))}. (7.12)

Similarly for the first term on the right of (7.11), we derive the upper bound

‖∂tζ(0)‖L2(Ω) ≤ C{‖∂t(u1 − w)‖L2(0,T ;L2(Ω)) + ‖∂tt(u1 − w)‖L2(0,T ;L2(Ω))}. (7.13)

Then we estimate the second term on the right of (7.11) together with the terms on
the right side of (7.12), (7.13) by using (7.3) with k = 0, 1, 2. Hence we can bound
the right side of (7.11) by

sup
0≤t≤T

(
‖∂tζ(t)‖L2(Ω) + ‖ζ(t)‖H1(Ω)

)
≤ Cη

2∑

k=0

‖∂kt u‖L2(0,T ;H1(Ω)).

Since u1 − u2 = u1 − w − ζ we immediately have

‖∂t(u1 − u2)‖L2(Ω) + ‖u1 − u2‖H1(Ω)

≤ ‖∂tζ‖L2(Ω) + ‖ζ‖H1(Ω) + ‖∂t(u1 − w)‖L2(Ω) + ‖u1 − w‖H1(Ω). (7.14)

To conclude, we estimate ‖∂t(u1 −w)‖L∞(0,T ;L2(Ω)) and ‖u1−w‖L∞(0,T ;H1(Ω)) as
previously from Sobolev embeddings and (7.3), which leads to

sup
0≤t≤T

(
‖∂t(u1 − u2)(t)‖L2(Ω) + ‖(u1 − u2)(t)‖H1(Ω)

)
≤ Cη

2∑

k=0

‖∂kt u‖L2(0,T :H1(Ω)).

By assumption the (weak) time derivatives in the sum are bounded. They can also

be estimated explicitly by standard energy estimates in terms of f̂ , ĝ, F and T – see
again (Section 7.2.3, [21]) for details. �
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[24] M. J. Grote and D. Schötzau, Optimal Error Estimates for the Fully Discrete Interior Penalty

DG Method for the Wave Equation, J. Sc. Computing 40 (2009), 257–272.
[25] T-Y. Hou, X-H. Wu and Z. Cai, Convergence of a multiscale finite element method for elliptic

problems with rapidly oscillating coefficients, Math. Comp. 68 (1999), no. 227, 913–943.
[26] V. V. Jikov, S.M. Kozlov, and O.A. Oleinik, Homogenization of Differential Operators and

Integral Functionals, Springer-Verlag, Berlin,1994.
[27] O.A. Ladyzhenskaya, The boundary value problems of mathematical physics, Applied Mathe-

matical Sciences, 49, Springer-Verlag New York Inc., 1985.
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