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FINITE ELEMENT INTERPOLATION OF NONSMOOTH FUNCTIONS

SATISFYING BOUNDARY CONDITIONS

L. RIDGWAY SCOTT AND SHANGYOU ZHANG

Abstract. In this paper, we propose a modified Lagrange type interpolation

operator to approximate functions in Sobolev spaces by continuous piecewise

polynomials. In order to define interpolators for "rough" functions and to pre-

serve piecewise polynomial boundary conditions, the approximated functions

are averaged appropriately either on d- or (d - 1 )-simplices to generate nodal

values for the interpolation operator. This combination of averaging and inter-

polation is shown to be a projection, and optimal error estimates are proved for

the projection error.

1. Introduction

The approximation of functions in Sobolev spaces by functions in finite el-

ement spaces has been well studied (cf. [3] and the references therein). One

approach is to show the approximability of the nodal, finite element interpolant

of a function. However, the nodal value of the function may not be well defined

if the function under consideration is too "rough". For example, functions in

the Sobolev space H have no pointwise value in two or more dimensions. In

[4], Clément defined an optimal-order interpolation operator using local averag-

ing (regularizing) to define nodal values for functions even in L1. However, the

interpolator does not preserve homogeneous boundary conditions naturally. By

setting boundary nodal values to zero, the modified interpolation operator posed

in [4] can solve this problem, but this approach cannot be easily generalized to

nonhomogeneous boundary data.

In this note, we propose another local averaging interpolation operator. We

restrict our attention to simplicial finite elements, although this restriction is

not essential. However, we consider general, ¿/-dimensional meshes, d > 2 ;

we assume only that the meshes are nondegenerate, i.e., we do not assume that

they are quasi-uniform. Averaging is done either on a ¿/-simplex or on a face

{{d - l)-simplex) of some ¿/-simplex. This interpolation operator preserves ho-

mogeneous boundary conditions naturally. The key point is that this operator

averages the interpolated functions on a subset (a (d— l)-simplex) of the bound-

ary of the domain for each boundary nodal value, and it is of optimal order

in approximation. We note that the interpolator is not defined for as broad a
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class of functions as that of [4], but it is defined on functions smooth enough to

have well-defined boundary values. A special case of this operator, interpolat-

ing H functions by piecewise linear functions, was considered in [8]. We can

also define an analogous interpolator for L functions, using the techniques

introduced here, that has properties similar to those of [4]. However, such an

interpolator cannot be used to satisfy boundary conditions (such conditions are

not well defined for L   functions in any case).

2. Interpolation

Let fie? be a connected, open, bounded, ¿/-dimensional domain with

polyhedral boundary. We assume that dQ is Lipschitz continuous for simplic-

ity, although many of the results presented can be extended easily to domains

with simple slits. Let C°°(Q) be functions defined on Q and having continuous
o

derivatives of any order, and let C°°(i!) be functions in C°°(Q) with compact

support in Q. We denote by L (Q) the completion of the functions in C°°(Q)

such that ||/||L (Q) := (/n \f(x)fdx)i/p is finite, by Wlp{Q) the completion of

the functions in C°°(Q) suchthat \\f\\w,içi) := (Ew</ H^VH^o))1" is finite,
o   . o

and by W (ÇI) the completion of the functions in C°°(Q) suchthat

is finite. Similarly, we define seminorms, \f\wt{a) ■= (E\n\=i llfl"/III (íí))'^-

Here, a = (a,, ... , ad) is a multi-index (each a( is a nonnegative integer)

with |q| := Etiai and D" := (d/dxi)"' ■■■{d/dxd)n". We denote W¡{Sl)

and W2(Q.) by H (Q) and H (Q), respectively, as usual. For the definition

of w'(Çi) for fractional-order /, see [1].

Let fTh be a simplicial subdivision of Í2 with maximum mesh size

h := maxdiam(Ä')

that is nondegenerate:

/<■> i\ diam(A:)
(2.1) max-—^ < yn

^     pK °

with the constant y0 independent of h . Note that we do not assume that all

simplices, K, are of comparable size (that is, the mesh need not be quasi-

uniform). Here, K denotes a ¿/-simplex, diam(A") denotes the diameter of

K and pK denotes the radius of the largest closed ball contained in K. For

simplicity, we make the assumption that the spatial variable has been normal-

ized so that diam(fi) = 1. We consider a finite element space Vh consisting of

continuous piecewise polynomials

(2.2) Vh := { v € C(£l) | v\K e PK = <?? VK e Fh}
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o

and the subspace Vh consisting of continuous piecewise polynomials with ho-

mogeneous Dirichlet boundary condition:

(2.3) y„-={vevh Ko = 0}.

Here, &r   is the space consisting of polynomials of degree r or less in d

variables.   For simplicity, we made the assumption 3Pr   = PK although the

theorems in this paper can be extended to cover cases where í?r c PK . By

(2.1), we have a family of Lagrange finite elements,

{K, PK, ZK),        K G^,

" d
which are all affine equivalent to a single reference finite element (K, ¿Pr , X)

(cf. [3]). Here, Î denotes the usual nodal variables for Lagrange interpolation

consisting of point evaluations at appropriate points ("nodes") in K, and I.K

denotes evaluations at points in K that are the affine image of those for Î.

For simplicity, we assume that K is a regular (equilateral) simplex having all

edges of length one. We note that the theorems given in this paper also cover

cases when the finite element spaces are of the form {ve^|u|r = 0}for

some r c <9Q, provided that the triangulation matches Y appropriately.

To define an interpolation operator on W (ÇI), we make use of the nodal

points, ~LK , of the standard nodal interpolation operator. Let Jf"h = {al}f=l be

the set of all interpolation nodes of !Th and {0;}/=, be the corresponding nodal

basis of Vh . We choose, for any node ai, either a ¿/-simplex or a (¿/ - 1 )-

simplex, ai, according to the type of the node, ¿z(, as follows. If at is an

interior point of some ¿/-simplex, K € 3~h , we let

(2.4) c = K.

If at is an interior point of some face (which is a (d — l)-simplex), K', of a

¿/-simplex, K , we let

(2.5) at = K!.

For the rest of the at- e. JVh , which must be on some (¿/ - 2)-simplex, there is

considerable freedom in picking rj/. We may pick any (¿/ - l)-simplex, K1,

such that ai G K', subject only to the restriction

(2.6) K' cdQ    if a,€dQ,

and we set a. = K'. We can see that the choice of a¡ in (2.6) is not unique.

The restriction K' c dQ in (2.6) for ai e dQ. is made for the purpose of

preserving homogeneous boundary conditions.

For each face (¿/ - l)-simplex, K1, of K, there is a natural restriction of

(K , PK, 1K) that defines a finite element:

(2.7) (K', PK,,1K,) = (K, PK,1K)\K,.
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Here, X^/ consists of point evaluations at the points from I.K that lie on the

face K1, and PK> — ¿Pr ~ . For example, the restriction to one dimension of a

linear, triangular, finite element would be a linear, line segment, finite element.

Since all {K, PK,'LK) are affine equivalent to a single reference element, all

(K1, PK,, ~LKi) are affine equivalent to a single, (¿/ - 1)-dimensional reference

element. Further, the nonzero functions that are restrictions of the nodal basis

functions of PK on K1 comprise the nodal basis for PK,. Moreover, (2.1)

implies that the set of all face (¿/ - 1 )-simplices,

(2.8) {K1 I K' is a face ((¿/ - 1 )-simplex) of K, for some K e ^},

is a nondegenerate family of (¿/ - l)-simplices. We remark that the converse

of the last statement is false. For example, a sequence of tetrahedra having

nondegenerate faces (with each face approaching a unit right triangle in the

limit) can degenerate into a plane; the limit is a unit square with two diagonals.

Let us denote by «, the dimension of &r and by «0(ff,) the dimension

of &>fma', i.e., either the dimension of ^_1 or n,. Let a, , = ai, and let

iai j}%\ be the set of nodal points in ai. Here, ai is defined in (2.4)-(2.6)

associated with the node ai. For the nodal basis {c/>; }"^ for aj, we have an

L (cr()-dual basis {y/¡ .}:

¿,7 = 1,2,..., N,

(2.9) / y/i j(x)<p¡ k{x)dx = 5jk.       j, k = 1, 2, ... , n
Ja,

where ôJk is the Kronecker delta. For simplicity, we let

(2.10) W, = ¥u   ^gJ^.

Therefore, we have

(2.11) f vi{X)<pj{x)dx = Su,
Ja,

where <p. is any nodal basis function of Vh .

We define an interpolation operator,

(2.12) n :    Wlp{Çï) -+Vh(Q),

by

N .

(2.13) nüO) = 5>,(*)/ VtfMQdi,
.   i Ja,

0'

where

(2.14) />1    if   p = 1       and      / > l/p   otherwise.

Here, n depends on the choices of tr, in (2.4)-(2.6), but we use the notation

n instead of n,  ,  for simplicity.
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The condition (2.14) guarantees that the nodal values, {Hv(a¡)},  are well

defined owing to the trace theorem (cf. [6] or [1]):

Wpl(Q) c L\at), i.e., |H¿1     < C(Q, ff,)\\v\\w,w,

(2.15) ■' /
VveWj(£2), i = l,...,JV\

Further, the condition (2.14) guarantees the validity of the homogeneous bound-

ary condition:

(2.16) VveWlp(Çl),    v\dCl = 0   inL\dÜ),    i.e., \\v\\L>{aa) = 0.

By the choice of ai in (2.5), (2.6) we have, from (2.13) and (2.16), that

veWlp(Çi)=>ïhj(ai) = Q   \/a¡€da,

and therefore that n preserves the homogeneous boundary condition:

(2.17) n :  Wlp(il)^Vh.

Since (2.11) implies that

(/>j(x)v(x) dx = v(a¡)   Vv e Vh,L
we conclude that n is a projection,

(2.18) Uv = v   VveVh.

We summarize the above results in the following theorem.

Theorem 2.1. Let I and p satisfy (2.14), and ¡et ^ satisfy (2.1).   Then the

operator Yl, defined in (2.13), is a projection from  W (ÇÏ)  to Vh, defined in
O   i o

(2.2), with the property that Wp(Çl) is mapped to Vh , defined in (2.3).

3. Stability

In the rest of this paper, we will use " < ..." and " ~ ..." to denote

" < C... " and " = C... ", respectively, with the constant C independent of

the mesh ^ and independent of the functions under consideration.

Let {cr} be a set of simplices that are either ¿/-or (¿/-l)-simplices satisfying

(2.1). Let ¿J be either the d- or the (d - 1 )-dimensional reference simplex, let

{<£ } be a nodal basis for à and let {^ } be the dual basis with respect to the

inner product for L (à). Suppose the affine mapping

(3.1) F (Je) = Bx + x0
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maps à one-to-one and onto some a e {cr } ; we then have (cf. [3])

11*11 < JSAÍ(

H/T1» < h° < h~[

(3.2) WB    H ̂~A"   '

,„     meas(tr)      f ^      if dim(tx) = ¿/,
det ß =-H: S <

meas(cT)     |^-i   if dim((T) = ¿ _ ,.

Here /2CT = diam(fj) and pa = diam (the largest closed ball contained in a),

with h and p defined correspondingly. Let {$.} be the nodal basis, and {y7 }

the dual basis to {$.} on ¿r :

/ i¡/j{x)<i>k{x)dx = oJk   V;, fe.

By the affine mapping defined in (3.1), it follows that

y/} {Bx + x0)(f>k(Bx + x0) det(B) dx = Sjk   V;, k.I
By the uniqueness of the dual basis and by noting 4>Ax) = <f>j(F(x)), we see

that

(3.3) fj = dctt{B)yJ   V;.

By the regularity of the family {er} (both ¿/-and (d- l)-simplices), we get the

following lemma by combining (3.3) and (3.2).

Lemma 3.1. For any node at e/t,

it  a\ ii      ii ^  ; _ dim(<x,)

(3-4) WL-v,)^

vv/iew ct; « i/z? ¿/-or (¿/ - \)-simplex associated with a¡ defined in (2.4)-(2.6),

K e ¿5£ is swc/z í/j¿2í aj c K, and y/i is defined in (2.10).   D

Let ai = K' be a (¿/ - 1 )-simplex that is the face of a ¿/-simplex, K, and let

F defined in (3.1) map the reference K onto K such that F(k') = K' and

k' is the (d - 1 )-dimensional reference simplex. Here we assume that k' is a

face simplex of K. Let us suppose that coordinates are chosen so that we can

write

(3.5) *V(*rf_i - 0) = (*,_, Vi. 0) + •*,)

(in particular, k' lies in the plane xd = 0 ). It follows from the trace theorem
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and (3.2) that

llwllii^^ldet^.^lllôll^^sldet^.,)!!!«!^,^
/

(3.6)
-Er-

fc=0

í"-lll«ll ^-   I "-' \~y II nil« I J   wnM-I/Pl     I

K     WVWw'(k)~hK      LllßH   ldet(5)l \°\w*(K

■ d-l+k-d/p.~EV
k=0

IW'V/C)

Correspondingly, we have by Holder's inequality that

(3.7)
,ii __. d-d/p,    |

Theorem 3.1. Let v e ^(Q), to / ¿z«¿/ p s¿Zí7s./>> (2.14), let <5T sírt¿s/j> (2.1)

¿z«¿/ let Ke&L. Then

inwii       <rAi""+'"iti
/V=0

Wk(SK) '(3.8)

VV/zeTe*

(3.9) SK = interior (|J {^ | Ttnk¿0,   tf,e<^})

¿z«¿/ n is defined in (2.13). In (3.8),   1 < q < oo ¿zn¿/ m is ¿7«y nonnegative

integer.

Proof. Let i7, defined in (3.1), map the reference simplex K onto K.  We

have, for any v e W™(K),

\v\wmtK) ~ WB  'if ldet(5)l   " \v\w"<ik)~hKm+q\v\w¡"(K)

where v = v(F(x)). Further,

II«"

'(*)'■

< h * hi
W"\K) ~ nK \\U\\WI''(K) >

since h < diam(Q). Without loss of generality, we may assume that the nodal

points, {ai: | 1 < i: < Az,}, comprise the nodal points for ~LK . It follows then

from (3.6)-(3.7) that, for any v G rVp{íl),

»i _m+¿ . "l

P^IIk^k) < Hinwífl,-)! 110,11^™^) S ^m+'  max H^IU-^) ̂  |nt;(¿7,)|
1=1 1=1

-ffl+í

*r+5E
1=1

"l

/ ^(xM*)¿/x <^m+? EIWIl-mIMIlV
1=1

"l   /

,*-<///>,</T    «V/T     (CT''lMI ,     *A      7WA    "nul   *~ "a:      ¿^ k II^HlV,) ~  *      2^i Z^i k      \ \w¡;(K,)
1=1 i=l /c=0

/

E^
fc=0

+í+*-í
wl<w
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where Ki is a neighboring ¿/-simplex such that oi c K¡ and SK is defined in

(3.9). Here, Lemma 3.1 was used to bound H^l^«^), and we used the fact

that (2.1) implies that K, cr, and Ki are all of comparable size, i.e., that a

nondegenerate mesh is locally quasi-uniform in two or more dimensions.   D

4. Approximability

We are going to consider ||u-ni>||5 for v e W^,(ß) and for various Sobolev

norms, || • ||s . For any K € ^ and any polynomial pe^r , we have by (2.18)

and Theorem 3.1 that

\\v-nv\\wn,{K) < \\v -p\\wn,(K) + \\Ti{p - v)\\w„(K)

Z^hK \\V    -  P\\„k{SKy

k=0

By (2.1), SK is the finite union of domains each of which is star-shaped with

respect to a ball of radius p times the diameter of SK , with p depending only

on y0 . Thus, we can apply the Bramble-Hilbert lemma in the form developed

in [5, p. 458] to the right-hand side of (4.1) to obtain, for all \/v e w'p{SK),

(4.2) Md\\v-p\\wk{S¡í)<C(d,r,y0)hl~k\v\1v,/SK),       0<k<l<r+l.

In particular, we let the domains, D., in Theorem 7.1 of [5] be the interior

of the closure of the union of pairs of simplices that share a common face.

As a consequence of (2.1), such domains are each star-shaped with respect

to a ball of radius p times the diameter of SK, where p depends only on

y0 . Because of our assumption about the regularity of dQ, SK is connected.

In view of Remark 7.2 of [5], (4.2) holds with a constant depending only on

d, r, y0 because the intersection of a pair of domains, Dj, contains one of the

simplices that make up SK and hence it contains a ball of radius y0 times the

diameter of SK , where y0 depends only on y0 in (2.1).

Combining (4.1) and (4.2) yields

(4.3) ||v - Ylv\\w,„{K) <C(d,r, y0)hK~m\v\wi(S^ .

Since

sup {carà{K e ^ | K n SK ¿ 0}}

is a constant depending only on y0 in (2.1), we easily deduce our main theorem.

Theorem 4.1. Let v e Wp'(Çï), let I and p satisfy (2.14), and let ¡Th satisfy

(2.1). Then

(4.4) (£A?,-V-nu||V.(J      SHU(n),        0<w</<r+l,
V^ "   J

where U is defined in (2.13).
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Letting m = I and applying the triangle inequality, the following corollary

is derived.

Corollary 4.1. Let v € Wp(Çï), let I and p satisfy (2.14), and let STh satisfy

(2.1). Then

\¡p

(4.5) £ ||n<, v   „,./,
rV'(Cl) .

Kef,

where U is defined in (2.13).   D

Recalling that h = max^ r diam(K), the statment of Theorem 4.1 can be

simplified as follows:

\

(4.6)     I J2 \\v-nv,,pW'"(K)

I/P

Sh' m\Mwi{Cl),       0<m<l<r+l.

Se^ )

Note that the results obtained so far easily extend to domains with simple

slits. In fact, the critical condition is that the set SK in (3.9) be connected, and

this can be arranged in such a case. We also note that if one is not interested in

preserving boundary conditions, the techniques used here can also be used to

define interpolators with optimal-order approximation properties for functions

only in L (Q.). In such a case, the o, 's are all chosen to be ¿/-dimensional

simplices containing the corresponding points, ai. That is, the nodal values

for all nodal points, ai, are defined in the way that the nodal values for nodal

points in the interior of each simplex were defined, cf. (2.4). In this way, one

obtains an interpolator with properties similar to those of [4].

5. Applications

One way that the projection operator (2.13) can be used is to treat the Dirich-

let problem for an elliptic boundary value problem,

(5.1) .4-, dx¡ V iJdx
',7=1 J

u = g   on   dQ.

Here we assume the a¡¡ are bounded, measurable functions on Q which form

a uniformly positive definite matrix a.e. on Q. Assuming g to be defined on

all of Q, and smooth enough for an interpolant, rig, to be defined, then it is

natural to define an approximant to u by seeking uh in the space

V* :={veVh\v = Tlg on dQ} = {v e Vh | v - Ylg e Vh}
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such that

(5.2) a(uh,v):=ja]Taij^j^dx = 0   VveVh.

Note that uh depends only on ng|ai2. If n is the interpolator defined in

(2.13), Tlg\dQ depends only on g\da- In particular, u furnishes an extension

to g\dn, so we may think of uh being defined using the space

Vhg = {veVh\v-UueVh},

since ng|öf2 = U.u\dn . Note that not all interpolators, e.g. [4], would necessar-

ily have this property.

We can derive error estimates using standard techniques in the natural energy

norm

(5.3) \\v\\2E:=a(v,v).

2
Ylu - uh\\E = a(Ylu - uh,Uu- uh) - a{Uu, Ylu - uh) = a(Ylu - u.Ylu- uh

Ylu-uh\\E < ||IIm-m||£.

m - "i.II ir < 2||w - n«|L.
n iic.  —     h ii/:

Since a(uh , v) = a(u, v) = 0 for v e Vh , we have

||n« - uhfE = a(Uu -uh,Uu- uh) = ,

Applying Schwarz's inequality, we find

lin«-«j£:

From the triangle inequality we thus have

M m - uA\p < 2||II ft ll£.   —       h

The error estimate (4.6) therefore implies that

II" - uhh ~ max{||al7ll¿~(rí) I i, y = 1.... , d}h'~X \\u\\H,(Q),

(5"4) 1 </<r+l.

For estimates in other Sobolev norms, see [7]. We note that n# can be defined

when standard (pointwise) interpolants may not be defined, e.g., for unbounded

or discontinuous g . Moreover, Ylg can be evaluated locally, so that the imple-

mentation of such a method is straightforward. Our techniques can be viewed

as providing a systematic way of "averaging" the boundary data in such cases.

Another application of the interpolator defined in (2.13) is to extension of

boundary data. Let us assume that ¿/ = 2 for simplicity. One can define Sobolev

spaces Wp(dÇl) for real values of s e [0, 1] provided that dQ. is Lipschitz

continuous, as we are assuming. Furthermore, there is a continuous extension

operator, E : Wp~]/p{dn) —► Wp{Çl) for I < p < oc (cf. [2] and references

therein). Composing with Tl, we obtain a map, Eh — ILE : W ~~ /p(dQ.) —►

Vh, having the property that

(5-5) WEhv\\w^çi)~\\v\\w^^oÇD-
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Moreover, let Y be any subset of öQ, and define

(5.6) rA = (Jkl<T,cr},

where <j. is defined in (2.4)-(2.6). If v is a piecewise polynomial on Y of

degree r, then (2.11) implies that Ehv - v on Yh . Thus we have an exten-

sion operator that maps piecewise polynomials on (parts of) the boundary to

piecewise polynomials on Q, that is bounded as a map from Wp~l/p(d£l) to

<(")•
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