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Abstract: In this paper, we consider the stationary double-diffusive natural convection model, which
can model heat and mass transfer phenomena. Based on the fixed point theorem, the existence and
uniqueness of the considered model are proved. Moreover, we design three finite element iterative
methods for the considered problem. Under the uniqueness condition of a weak solution, iterative
method I is stable. Compared with iterative method I, iterative method II is stable with a stronger
condition. Moreover, iterative method III is stable with the strongest condition. From the perspective
of viscosity, iterative method I displays well in the case of a low viscosity number, iterative method II
runs well with slightly low viscosity, and iterative method III can deal with high viscosity. Finally,
some numerical experiments are presented for testing the correctness of the theoretic analysis.

Keywords: double-diffusive natural convection; finite element discretization; iterative methods;
viscosity; uniqueness condition

1. Introduction

The double-diffusive natural convection model, which does not only incorporate
the velocity vector field as well as the pressure field, but also contains the temperature
field and the concentration field, has been widely used in scientific, engineering and
industrial applications such as nuclear design, cooling of electronic equipment, aircraft
cabins, insulation with double pane windows, and so on. For greater understanding
of the physical background, authors can refer to [1–3]. In recent years, the impact of
nanofluid on free convection heat transfer was investigated by researchers in [4]. The free
convective flow of a Nano-Encapsulated Phase Change Material (NEPCM) suspension
in an eccentric annulus was investigated numerically in [5]. The authors obtained that
the volume fraction of the NEPCM particles and Stefan number effect the thermal and
hydrodynamic characteristics of the suspension. The effect of the arrangement of the tubes
in a multi-tube heat exchanger during the solidification process was considered in [6],
which focused on the natural convection effect in phase change material in this research.

Let Ω ⊂ R2 be a open bounded domain with a Lipschitz continuous boundary ∂Ω
and ∂Γ is a subset of ∂Ω, u = (u1, u2) denotes the velocity field, p is the fluid pressure, T is
the temperature, C is the concentration, g = (0, 1) is the gravitational acceleration vector, fi
is the forcing function, i = 1, 2. Moreover, n represents the outer normal vector, ν > 0 is the
viscosity, Da is the Darcy number, γ > 0 is the heat diffusivity, Dc is the mass diffusivity,
βT and βC are the thermal and solutal expansion coefficients.

The governing equations of this double-diffusive natural convection model are pre-
sented as follows [7].
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−ν
( ∂2u1

∂x2 + ∂2u1
∂y2

)
+
(
u1

∂u1
∂x + u2

∂u1
∂y
)

= −D−1
a u1 − ∂p

∂x , in Ω,

−ν
( ∂2u2

∂x2 + ∂2u2
∂y2

)
+
(
u1

∂u2
∂x + u2

∂u2
∂y
)

= βTT + βCC− D−1
a u2 − ∂p

∂y , in Ω,
∂u1
∂x + ∂u2

∂y = 0, in Ω,

−γ
(

∂2T
∂x2 + ∂2T

∂y2

)
+
(
u1

∂T
∂x + u2

∂T
∂y
)

= f1, in Ω,

−Dc
(

∂2C
∂x2 + ∂2C

∂y2

)
+
(
u1

∂T
∂x + u2

∂T
∂y
)

= f2, in Ω,
u = 0, on ∂Ω,
T = 0, C = 0, on ∂Γ,

∂T
∂n = ∂C

∂n = 0, on ∂Ω\∂Γ.

(1)

Many numerical studies were made concerning the double-diffusive natural convec-
tion model. A projection-based stabilized finite element method for steady-state natural
convection problem was considered in [8]. A stabilized finite element error analysis for the
Darcy–Brinkman model of double-diffusive convection in a porous medium was discussed
in [9]. An efficient two-step algorithm for the steady-state natural convection problem
was presented in [10]. The melting process of a nano-enhanced phase change material in a
square cavity was investigated in [11]. In numerical test, the author used the Galerkin finite
element method to solve the dimensionless partial differential equations. Based on the idea
of curvature stabilization, Çıbık et al. [12] discussed a family of second order time stepping
methods for the Darcy–Brinkman equations. A decoupled finite element method called
the modified characteristics method was considered in [13]. Rajabi et al. performed the
detailed uncertainty propagation analysis and variance-based global sensitivity analysis
on the widely adopted double-diffuse convection benchmark problem of a square porous
cavity with horizontal temperature and concentration gradients in [14]. In [15], the mixed
convection heat transfer of AL2O3 nanofuid in a horizontal channel subjected with two
heat sources was considered. In [16], the curvature-based stabilization method was consid-
ered for double-diffusive natural convection flows in the presence of a magnetic field and
unconditionally stable and optimally accurate second order approximations were obtained.
There are several works devoted to the efficient numerical methods for the treatment of
nonlinear problems. For example, several iterative methods for the 2D steady penalty
Navier–Stokes equations were presented and discussed in [17]. He et al. [18] discussed
a combination of two-level methods and iterative methods for solving the 2D/3D steady
Navier–Stokes equations. Some iterative finite element methods for steady Navier–Stokes
equations with different viscosities were discussed in [19]. Furthermore, the authors refer
to the Oseen method [20], the Newton method [21] and the Euler implicit-explicit meth-
ods [22]. Recently, Huang et al. [23] have considered and analyzed the Oseen, Newton
and Stokes iterative methods for the 2D steady Navier–Stokes equations. He et al. [24]
considered and analyzed three iterative methods for the 3D steady MHD equations.

The main work in this paper is to design, analyze, and compare three iteration methods
to solve nonlinear equations based on the finite element discretization. Then, we will show
the performance of these numerical methods in both theoretical analysis and numerical ex-
periments. By setting σ = mα2ν−2N(γ−1‖ f1‖−1 + D−1

c ‖ f2‖−1) + mα2ν−1N̄(γ−2‖ f1‖−1 +

D−2
c ‖ f2‖−1), we obtain the conclusion that the three iterative methods are stable and con-

vergent as σ ∈ (0, 1
4 ). Iterative method I and II are valid as σ ∈ [ 1

4 , 1
3 ) and only iterative

method I runs well as σ ∈ [ 1
3 , 1).

In this paper, by developing some techniques and using some ideas in [7], we prove the
existence and uniqueness with a different method, then we obtain a different uniqueness
condition. Furthermore, we propose and analyze iterative methods I and III. In addition
to this, we use iterative method II to computer a smaller viscosity than them in numerical
experiments. Compared with He et al. [24], although the iterative methods are the same,
the considered problems are different.

The paper is organized as follows. In Section 2, we describe the considered problem
and some mathematical preliminaries. In the next section, we prove the existence and
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uniqueness of the weak solution to the considered equations. Then, we analyze stability
and iterative error estimates of three iterative methods in Section 4. In Section 5, we show
some numerical experiments to verify the correctness of theoretical results. In the last
section, conclusions are presented.

2. Preliminaries

In this section, we present some basic notations and properties for the stationary
double-diffusive natural convection problem. First, for 1 ≤ q ≤ ∞ and m ∈ N+, we use
standard notations for Sobolev space Wm,q(Ω) and Lebegue space Lq(Ω). In particular,
L2(Ω) norm and its inner product are denoted by ‖ · ‖0 and (·, ·). Moreover, for f , an
element in the dual space of H1(Ω), its norm is defined by

‖ f ‖−1 = sup
ψ∈H1(Ω)

|( f , ψ)|
‖∇ψ‖0

.

Next, we introduce the functional spaces associated with the velocity, the pressure, the
temperature, and the concentration:

X = {u ∈ H1(Ω)2 : u|∂Ω = 0}, W = {ψ ∈ H1(Ω) : ψ|∂Γ = 0},

Q = {s ∈ H1(Ω) : s|∂Γ = 0}, M =

{
q ∈ L2(Ω) :

∫
Ω

qdx = 0
}

.

Then, we define the following particular subspace of the velocity space X

V =

{
v ∈ X :

∫
Ω

qdiv vdΩ = 0, ∀q ∈ M
}

.

Moreover, define several continuous bilinear forms a0(·, ·), a1(·, ·), a2(·, ·) and d(·, ·)
on X× X, W×W, Q×Q and X×M, respectively,

a0(u, v) = ν(∇u,∇v), ∀u, v ∈ X, a1(T, ψ) = γ(∇T,∇ψ), ∀T, ψ ∈W,

a2(C, s) = Dc(∇C,∇s), ∀C, s ∈ Q, d(q, v) = (q, div v), ∀v ∈ X, ∀q ∈ M.

Further, denote three skew-symmetric trilinear forms:

c0(u, v, w) = ((u · ∇)v, w) +
1
2
((div u)v, w)

=
1
2
((u · ∇)v, w)− 1

2
((u · ∇)w, v), ∀u, w, v ∈ X,

c1(u, T, ψ) = ((u · ∇)T, ψ) +
1
2
((div u)T, ψ)

=
1
2
((u · ∇)T, ψ)− 1

2
((u · ∇)ψ, T), ∀u ∈ X, T, ψ ∈W,

c2(u, C, s) = ((u · ∇)C, s) +
1
2
((div u)C, s)

=
1
2
((u · ∇)C, s)− 1

2
((u · ∇)s, C), ∀u ∈ X, C, s ∈ Q.

Please note that the bilinear form d(·, ·) is continuous on X × M and satisfies the
inf-sup condition [25]: there exists a positive constant β0 such that

sup
v∈V

|d(q, v)|
‖∇v‖0

≥ β0‖q‖0, ∀q ∈ M.

The trilinear forms [18] satisfy

c0(u, v, w) = −c0(u, w, v), |c0(u, v, w)| ≤ N0‖∇u‖0‖∇v‖0‖∇w‖0, (2)
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and

c1(u, T, ψ) = −c1(u, ψ, T), c2(u, C, s) = −c2(u, s, C),

|c1(u, T, ψ)| ≤ N1‖∇u‖0‖∇T‖0‖∇ψ‖0, |c2(u, C, s)| ≤ N2‖∇u‖0‖∇C‖0‖∇s‖0,
(3)

where Ni > 0, i = 0, 1, 2, are three constants defined as N0 = supu,v,w∈X
|c0(u,v,w)|

‖∇u‖0‖∇v‖0‖∇w‖0
,

N1 = supu∈X,T,ψ∈W
|c1(u,T,ψ)|

‖∇u‖0‖∇T‖0‖∇ψ‖0
, and N2 = supu∈X,C,s∈Q

|c2(u,C,s)|
‖∇u‖0‖∇C‖0‖∇s‖0

.
Furthermore, we recall the Poincaré inequality [25]

‖u‖0 ≤ α‖∇u‖0, ∀u ∈ H1(Ω), (4)

where α is a positive constant depending on Ω.
The variational form of the model (1) is presented as follows: find (u, p, T, C) ∈

X×M×W ×Q such that for all (v, q, ψ, s) ∈ X×M×W ×Q
a0(u, v) + c0(u, u, v) + D−1

a (u, v)− d(p, v) + d(q, u) = (βTTg + βCCg, v),
a1(T, ψ) + c1(u, T, ψ) = ( f1, ψ),
a2(C, s) + c2(u, C, s) = ( f2, s).

(5)

3. Existence and Uniqueness

This section gives the existence and uniqueness of (5), which is crucial to consider the
discrete scheme.

Theorem 1. There exists at least a solution pair (u, p, T, C) ∈ X × M ×W × Q which satis-
fies (5) and

‖∇T‖0 ≤ γ−1‖ f1‖−1, ‖∇C‖0 ≤ D−1
c ‖ f2‖−1,

‖∇u‖0 ≤ ν−1mα2(γ−1‖ f1‖−1 + D−1
c ‖ f2‖−1).

(6)

Proof. First, for u ∈ X, it is easy to see that a1(·, ·) + c1(u, ·, ·) and a2(·, ·) + c2(u, ·, ·) are
continuous, elliptic bilinear forms of W ×W and Q×Q, respectively. Hence, according to
the Lax–Milgram theorem, there exists a unique solution T ∈ W to the second equation
of (5), and a unique solution C ∈ Q to the third equation of (5). The theorem will be proved
if we can show that there is at least a solution u ∈ X in the first equation of (5).

Secondly, a0(·, ·) is a continuous and elliptic bilinear form on X× X. Using (2) and (4)
we obtain

|−c0(u, u, v) + (βTTg + βCCg, v)| ≤
(

N0‖∇u‖2
0 + mα2(‖∇T‖0 + ‖∇C‖0)

)
‖∇v‖0,

where m = |g|max{|βT |, |βC|}. Then, we define a mapping A : X → X by A(u) = w1
where

a0(w1, v) + D−1
a (w1, v) = −c0(u, u, v) + (βTTg + βCCg, v), ∀v ∈ V. (7)

Clearly, u is a solution of the first equation of (5) with v ∈ V, if it is a solution of
A(u) = u. Using the Leray-Schauder Principle [26], A(u) = u has at least one solution
u ∈ X, if (a) A is completely continuous; (b) there exists M1 > 0 such that for every
λ ∈ [0, 1] and v ∈ X with λAv = v, v satisfies the bound ‖∇v‖0 ≤ M1.

Assume u1, u2 ∈ X and subtract the equations obtained from (7) with u = u1 and
u = u2. Then, set w = A(u2)− A(u1) and choose v = w to yield

a0(w, w) + D−1
a (w, w) =− c0(u2 − u1, u2, w)− c0(u1, u2 − u1, w)

+ (βT(T2 − T1)g + βC(C2 − C1)g, w).
(8)
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Moreover, in order to estimate ‖∇(T2 − T1)‖0 and ‖∇(C2 − C1)‖0, we substitute T1 and T2
in the second equation of (5) and subtract the ensuing equations to obtain

a1(T2 − T1, ψ) = −c1(u2 − u1, T2, ψ)− c1(u1, T2 − T1, ψ).

Taking ψ = T2 − T1 and using (3) we obtain

‖∇(T2 − T1)‖0 ≤ γ−1N1‖∇(u2 − u1)‖0‖∇T2‖0. (9)

Analogously, we have

‖∇(C2 − C1)‖0 ≤ D−1
c N2‖∇(u2 − u1)‖0‖∇C2‖0. (10)

Further, combining (9) and (10), we obtain the bound of (8) as follows

‖∇w‖0 ≤ ν−1
(

N0‖∇u1‖0 + N0‖∇u2‖0 + mα2(γ−1N1‖∇T2‖0 + D−1
c N2‖∇C2‖0)

)
‖∇(u2 − u1)‖0.

Hence, A is completely continuous.
Now, we prove (b). If λ = 0, then v = 0 and ‖∇v‖0 = 0. Assume λ ∈ (0, 1] and v ∈ X

satisfies λAv = v. Then, from (7), we have

λ−1a0(v, v) + λ−1D−1
a (v, v) = −c0(v, v, v) + (βTTg + βCCg, v).

Using (2) and (4), we arrive at

‖∇v‖0 ≤ ν−1λmα2(‖∇T‖0 + ‖∇C‖0).

Thirdly, setting ψ = T in the second equation of (5), we have

γ‖∇T‖2
0 + c1(u, T, T) ≤ ‖ f1‖−1‖∇T‖0.

Thus, applying (3) leads to
‖∇T‖0 ≤ γ−1‖ f1‖−1.

Similarly, taking s = C in the third equation of (5), we obtain

‖∇C‖0 ≤ D−1
c ‖ f2‖−1.

Moreover, choosing v = u in the first equation of (5) and using (4), we arrive at

ν‖∇u‖2
0 + c0(u, u, u) ≤ mα2(‖∇T‖0 + ‖∇C‖0)‖∇u‖0,

which combines with the above two equations to give

‖∇u‖0 ≤ ν−1mα2(γ−1‖ f1‖−1 + D−1
c ‖ f2‖−1).

The proof is completed.

Theorem 2. Assume that (u, p, T, C) ∈ X×M×W ×Q is a solution pair of (5). If ν, Dc, γ, C
and T satisfy the following uniqueness condition

0 < σ := mα2ν−2N0(γ
−1‖ f1‖−1 + D−1

c ‖ f2‖−1) + mα2ν−1(γ−2N1‖ f1‖−1 + D−2
c N2‖ f2‖−1) < 1,

then (u, p, T, C) is unique solution pair of (5).

Proof. Suppose (u1, p1, T1, C1) is also a solution pair of (5) and u1 6= u, p1 6= p, T1 6=
T, C1 6= C, then
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a0(u1, v) + c0(u1, u1, v) + D−1
a (u1, v)− d(p1, v) + d(q, u1) = (βTT1g + βCC1g, v),

a0(u, v) + c0(u, u, v) + D−1
a (u, v)− d(p, v) + d(q, u) = (βTTg + βCCg, v),

(11)

for all (v, q) ∈ X×M.
Now, choosing v = u− u1 and q = p− p1, we obtain

a0(u− u1, u− u1) + D−1
a (u− u1, u− u1)

= −c0(u− u1, u, u− u1) + (βT(T − T1)g + βC(C− C1)g, u− u1).

Hence, applying (4), (9), (10), Theorem 1 and the uniqueness condition, we have

ν‖∇(u− u1)‖2
0 ≤

(
N0‖∇u‖0 + mα2(γ−1N1‖∇T‖0 + D−1

c N2‖∇C‖0)
)
‖∇(u− u1)‖2

0

< ν‖∇(u− u1)‖2
0,

a contradiction. Hence, u1 = u, T1 = T, C1 = C.

4. Several Iterative Methods Based on the Finite Element Discretization

In this section, we propose three iterative methods for the double-diffusive natural
convection model. Then the stability and convergence of these iterative methods are
considered. First, let 0 < h < 1 denote the mesh size which is a real positive parameter and
Kh = {K :

⋃
K⊂Ω K̄ = Ω̄} be a uniform partition of Ω̄ into non-overlapping triangles. Next,

given a Kh, we consider the finite element spaces Xh, Mh, Wh and Qh

Vh = {vh ∈ V ∩ C0(Ω̄)2 : vh|K ∈ P2(K)2, ∀K ∈ Kh},
Mh = {qh ∈ M ∩ C0(Ω̄) : qh|K ∈ P1(K), ∀K ∈ Kh},
Wh = {ψh ∈W ∩ C0(Ω̄) : ψh|K ∈ P2(K), ∀K ∈ Kh},
Qh = {sh ∈ Q ∩ C0(Ω̄) : sh|K ∈ P2(K), ∀K ∈ Kh},

where Pi(K) represents the space of the order polynomial on the set Kh, i = 1, 2. Please note
that the Taylor-Hood element Xh ×Mh satisfies the following discret inf-sup condition

sup
v∈Xh

|d(q, v)|
‖∇v‖0

≥ β‖q‖0, ∀q ∈ Mh,

where the constant β > 0 is independent of h.
With the above notations, the finite element scheme for the natural convection problem

is defined as follows: find (uh, ph, Th, Ch) ∈ X×M×W ×Q such that
a0(uh, v) + c0(uh, uh, v) + D−1

a (uh, v)− d(ph, v) + d(q, uh)
= (βTThg + βCChg, v),

a1(Th, ψ) + c1(uh, Th, ψ) = ( f1, ψ),
a2(Ch, s) + c2(uh, Ch, s) = ( f2, s),

(12)

for all (v, q, ψ, s) ∈ Xh ×Mh ×Wh ×Qh. The following stability and convergence results of
the numerical solutions to (12) are showed.

Theorem 3. ([7,8,26,27]) Let (u, p, T, C) ∈ (H3(Ω)2 ∩X)× (H2(Ω)∩M)× (H3(Ω)∩W)×
(H3(Ω) ∩ Q). Under the assumption of Theorem 2, the numerical solution pair (uh, ph, Th, Ch)
to (12) satisfies

‖∇Th‖0 ≤ γ−1‖ f1‖−1, ‖∇Ch‖0 ≤ D−1
c ‖ f2‖−1,

and
‖∇uh‖0 ≤ ν−1mα(γ−1‖ f1‖−1 + D−1

c ‖ f2‖−1).
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Moreover, the following error estimate holds

‖∇(u− uh)‖0 + ‖(p− ph)‖0 + ‖∇(T − Th)‖0 + ‖∇(C− Ch)‖0

≤ch2(‖u‖3 + ‖p‖2 + ‖T‖3 + ‖C‖3),

where c is a positive constant depending on h.

In the following part of this section, we propose and analyse three iterative methods.

Iterative method I. Find (un
h , pn

h , Tn
h , Cn

h ) ∈ Xh ×Mh ×Wh ×Qh such that
a0(un

h , v) + c0(un−1
h , un

h , v) + D−1
a (un

h , v)− d(pn
h , v) + d(q, un

h)
= (βTTn

h g + βCCn
h g, v),

a1(Tn
h , ψ) + c1(un−1

h , Tn
h , ψ) = ( f1, ψ),

a2(Cn
h , s) + c2(un−1

h , Cn
h , s) = ( f2, s),

(13)

for all (vh, q, ψ, s) ∈ Xh ×Mh ×Wh ×Qh.

Iterative method II. Find (un
h , pn

h , Tn
h , Cn

h ) ∈ Xh ×Mh ×Wh ×Qh such that
a0(un

h , v) + c0(un−1
h , un

h , v) + c0(un
h , un−1

h , v)− c0(un−1
h , un−1

h , v) + D−1
a (un

h , v)
−d(v, pn

h) + d(un
h , q) = (βTTn

h g + βCCn
h g, v),

a1(Tn
h , ψ) + c1(un−1

h , Tn
h , ψ) + c1(un

h , Tn−1
h , ψ)− c1(un−1

h , Tn−1
h , ψ) = ( f1, ψ),

a2(Cn
h , s) + c2(un−1

h , Cn
h , s) + c2(un

h , Cn−1
h , s)− c2(un−1

h , Cn−1
h , s) = ( f2, s),

(14)

for all (v, q, ψ, s) ∈ Xh ×Mh ×Wh ×Qh.

Iterative method III. Find (un
h , pn

h , Tn
h , Cn

h ) ∈ Xh ×Mh ×Wh ×Qh such that
a0(un

h , v) + c0(un−1
h , un−1

h , v) + D−1
a (un

h , v)− d(pn
h , v) + d(q, un

h)
= (βTTn

h g + βCCn
h g, v),

a1(Tn
h , ψ) + c1(un−1

h , Tn−1
h , ψ) = ( f1, ψ),

a2(Cn
h , s) + c2(un−1

h , Cn−1
h , s) = ( f2, s),

(15)

for all (v, q, ψ, s) ∈ Xh ×Mh ×Wh ×Qh.
For the above three iterative methods, the initial guess (u0

h, p0
h, T0

h , C0
h) ∈ Xh ×Mh ×

Wh ×Qh is defined by solving the following equations
a0(u0

h, v) + D−1
a (u0

h, v)− d(p0
h, v) + d(q, u0

h) = (βTT0
h g + βCC0

hg, v),
a1(T0

h , ψ) = ( f1, ψ),
a2(C0

h, s) = ( f2, s),
(16)

for all (v, q, ψ, s) ∈ Xh ×Mh ×Wh ×Qh.
Now, we will establish the stability and iterative error estimates of the presented

iterative methods for the double-diffusive natural convection model. For the sake of
simplicity, let (en, ηn, ξn, δn) = (uh − un

h , ph − pn
h , Th − Tn

h , Ch − Cn
h ).

Theorem 4. Under the assumptions of Theorem 3, (un
h , pn

h , Tn
h , Cn

h ) defined by iterative method I
satisfies

‖∇un
h‖0 ≤ ν−1mα2(γ−1‖ f1‖−1 + D−1

c ‖ f2‖−1),

‖∇Tn
h ‖0 ≤ γ−1‖ f1‖−1, ‖∇Cn

h‖0 ≤ D−1
c ‖ f2‖−1,

(17)



Entropy 2022, 24, 236 8 of 23

for all n ≥ 0. Furthermore, the following iterative error bounds hold

‖∇en‖0 ≤ σnν−1mα2(γ−1‖ f1‖−1 + D−1
c ‖ f2‖−1),

‖∇ηn‖0 ≤ 4β−1σnmα2(γ−1‖ f1‖−1 + D−1
c ‖ f2‖−1),

‖∇ξn‖0 ≤ σnγ−1‖ f1‖−1, ‖∇δn‖0 ≤ σnD−1
c ‖ f2‖−1,

(18)

for all n ≥ 0.

Proof. First, the induction method is used to consider the stability of iterative method I.
Setting (v, q, ψ, s) = (u0

h, p0
h, T0

h , C0
h) in (16) leads to∥∥∥∇T0

h

∥∥∥
0
≤ γ−1‖ f1‖−1,

∥∥∥∇C0
h

∥∥∥
0
≤ D−1

c ‖ f2‖−1,∥∥∥∇u0
h

∥∥∥
0
≤ ν−1mα2(

∥∥∥∇T0
h

∥∥∥
0
+
∥∥∥∇C0

h

∥∥∥
0
)

≤ ν−1mα2(γ−1‖ f1‖−1 + D−1
c ‖ f2‖−1).

(19)

which shows that (17) holds for n = 0.
Next, assuming that it holds for n = k, we prove that it is valid for n = k + 1.

Taking (v, q, ψ, s) = (uk+1
h , pk+1

h , Tk+1
h , Ck+1

h ) in (13) with n = k + 1 and applying (2), (3)
and (4) yield ∥∥∥∇Tk+1

h

∥∥∥
0
≤ γ−1‖ f1‖−1,

∥∥∥∇Ck+1
h

∥∥∥
0
≤ D−1

c ‖ f2‖−1,∥∥∥∇uk+1
h

∥∥∥
0
≤ ν−1mα2(

∥∥∥∇Tk+1
h

∥∥∥
0
+
∥∥∥∇Ck+1

h

∥∥∥
0
).

Hence, we finish the induction method.
Moreover, we consider the iterative error estimates of iterative method I. Making use

of (12) and (13) yields the error equations

a0(en, v) + c0(un−1
h , en, v) + c0(en−1, uh, v) + D−1

a (en, v)− d(ηn, v) + d(q, en)

= (βTξng + βCδng, v),

a1(ξ
n, ψ) + c1(un−1

h , ξn, ψ) + c1(en−1, Th, ψ) = 0,

a2(δ
n, s) + c2(un−1

h , δn, s) + c2(en−1, Ch, s) = 0.

(20)

Setting ψ = ξn, s = δn in the second and the third equation of (20) and using (3), (17),
and Theorem 3, we obtain

‖∇ξn‖0 ≤ N1γ−2‖ f1‖−1

∥∥∥∇en−1
∥∥∥

0
, ∀n ≥ 1,

‖∇δn‖0 ≤ N2D−2
c ‖ f2‖−1

∥∥∥∇en−1
∥∥∥

0
, ∀n ≥ 1.

(21)

Then, taking (v, q) = (en, ηn) in the first equation of (20) and using (2), (4), (17), (21) and
Theorem 3, we arrive at

ν‖∇en‖0 ≤N0

∥∥∥∇en−1
∥∥∥

0
‖∇uh‖0 + mα2(‖∇ξn‖0 + ‖∇δn‖0)

≤N0

∥∥∥∇en−1
∥∥∥

0
ν−1mα2(γ−1‖ f1‖−1 + D−1

c ‖ f2‖−1)

+ mα2(N1γ−2‖ f1‖−1 + N2D−2
c ‖ f2‖−1)

∥∥∥∇en−1
∥∥∥

0
.

Hence, using uniqueness condition, we have

‖∇en‖0 ≤ σ
∥∥∥∇en−1

∥∥∥
0
≤ σn

∥∥∥∇e0
∥∥∥

0
, ∀n ≥ 1. (22)
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Furthermore, subtracting (16) from (12), we obtain

a0(e0, v) + c0(uh, uh, v) + D−1
a (e0, v)− d(η0, v) + d(q, e0) = (βTξ0g + βCδ0g, v),

a1(ξ
0, ψ) + c1(uh, Th, ψ) = 0,

a2(δ
0, s) + c2(uh, Ch, s) = 0.

Applying (4), the Theorem 2 and the Theorem 3, we obtain∥∥∥∇ξ0
∥∥∥

0
≤N1γ−2ν−1mα2(γ−1‖ f1‖−1 + D−1

c ‖ f2‖−1)‖ f1‖−1 ≤ γ−1‖ f1‖−1,∥∥∥∇δ0
∥∥∥

0
≤N2D−2

c ν−1mα2(γ−1‖ f1‖−1 + D−1
c ‖ f2‖−1)‖ f2‖−1 ≤ D−1

c ‖ f2‖−1,∥∥∥∇e0
∥∥∥

0
≤N0ν−3m2α4(γ−1‖ f1‖−1 + D−1

c ‖ f2‖−1)
2

+ N1γ−2ν−1m2α4(γ−1‖ f1‖−1 + D−1
c ‖ f2‖−1)‖ f1‖−1

+ N2D−2
c ν−1m2α4(γ−1‖ f1‖−1 + D−1

c ‖ f2‖−1)‖ f2‖−1,

≤ν−1mα(γ−1‖ f1‖−1 + D−1
c ‖ f2‖−1),

(23)

which combines with (21) and (22), we arrive at

‖∇en‖0 ≤ σnν−1mα2(γ−1‖ f1‖−1 + D−1
c ‖ f2‖−1),

‖∇ξn‖0 ≤ N1γ−2‖ f1‖−1σn−1ν−1mα2(γ−1‖ f1‖−1 + D−1
c ‖ f2‖−1)

≤ σnγ−1‖ f1‖−1,

‖∇δn‖0 ≤ N2D−2
c ‖ f2‖−1σn−1ν−1mα2(γ−1‖ f1‖−1 + D−1

c ‖ f2‖−1),

≤ σnD−1
c ‖ f2‖−1,

for all n ≥ 0.
Finally, applying the discrete inf-sup condition, from the first equation of (20) with

q = 0, the error estimate of the pressure can be stated as follows.

‖ηn‖0 ≤β−1
(

ν‖∇en‖0 + N0

∥∥∥∇un−1
h

∥∥∥
0
‖∇en‖0 + N0

∥∥∥∇en−1
∥∥∥

0
‖∇uh‖0

)
+ β−1

(
mα2(‖∇ξn‖0 + ‖∇δn‖0)

)
≤β−1(σnmα2(γ−1‖ f1‖−1 + D−1

c ‖ f2‖−1)

+ N0ν−2m2α4(σn + σn−1)(γ−1‖ f1‖−1 + D−1
c ‖ f2‖−1)

2

+ mα2σn(γ−1‖ f1‖−1 + D−1
c ‖ f2‖−1)

)
≤4β−1σnmα2(γ−1‖ f1‖−1 + D−1

c ‖ f2‖−1),

for all n ≥ 0.

Theorem 5. Under the assumptions of Theorem 3, suppose that the following condition (the strong
uniqueness condition)

0 < σ <
1
3

, (24)

holds. Then (un
h , pn

h , Tn
h , Cn

h ) generated by iterative method II satisfies

‖∇Tn
h ‖0 ≤

4
3

γ−1‖ f1‖−1, ‖∇Cn
h‖0 ≤

4
3

D−1
c ‖ f2‖−1,

‖∇un
h‖0 ≤

4
3

ν−1mα2(γ−1‖ f1‖−1 + D−1
c ‖ f2‖−1),

(25)
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for all n ≥ 0. Furthermore, the following iterative error bounds hold

‖∇en‖0 ≤
(

9
5

σ

)2n−1
ν−1mα2(γ−1‖ f1‖−1 + D−1

c ‖ f2‖−1),

‖∇ηn‖0 ≤
119
45

β−1
(

9
5

σ

)2n−1
mα2(γ−1‖ f1‖−1 + D−1

c ‖ f2‖−1),

‖∇ξn‖0 ≤
(

9
5

σ

)2n−1
γ−1‖ f1‖−1, ‖∇δn‖0 ≤

(
9
5

σ

)2n−1
D−1

c ‖ f2‖−1,

(26)

for all n ≥ 0.

Proof. Combining with (19) and (23), it is found that (25) and (26) hold for n = 0.
Supposing that (25) and (26) hold for n = k, we shall prove that they are valid for
n = k + 1.

Subtracting (14) from (12), we obtain the error equations

a0(en, v) + c0(un−1
h , en, v) + c0(en, un−1

h , v) + c0(en−1, en−1, v) + D−1
a (en, v)

− d(v, ηn) + d(en, q) = (βTξng + βCδng, v),

a1(ξ
n, ψ) + c1(un−1

h , ξn, ψ) + c1(en, Tn−1
h , ψ) + c1(en−1, ξn−1, ψ) = 0,

a2(σ
n, s) + c2(un−1

h , δn, s) + c2(en, Cn−1
h , s) + c2(en−1, δn−1, s) = 0.

(27)

Setting (v, q, ψ, s) = (en
h , ηn

h , ξn
h , δn

h ) in (27) with n = k + 1 and applying (2), (3), (4)
and the assumptions on n = k, we have∥∥∥∇ξk+1

∥∥∥
0
≤ N1γ−1

∥∥∥∇ek+1
∥∥∥

0

∥∥∥∇Tk
h

∥∥∥
0
+ N1γ−1

∥∥∥∇ek
∥∥∥

0

∥∥∥∇ξk
∥∥∥

0

≤ 4
3

N1γ−2‖ f1‖−1

∥∥∥∇ek+1
∥∥∥

0
+ N1γ−1

∥∥∥∇ek
∥∥∥

0

∥∥∥∇ξk
∥∥∥

0
,∥∥∥∇δk+1

∥∥∥
0
≤ N2D−1

c

∥∥∥∇ek+1
∥∥∥

0

∥∥∥∇Ck
h

∥∥∥
0
+ N2D−1

c

∥∥∥∇ek
∥∥∥

0

∥∥∥∇δk
∥∥∥

0

≤ 4
3

N2D−2
c ‖ f2‖−1

∥∥∥∇ek+1
∥∥∥

0
+ N2D−1

c

∥∥∥∇ek
∥∥∥

0

∥∥∥∇δk
∥∥∥

0
,

(28)

and

ν
∥∥∥∇ek+1

∥∥∥
0
≤N0

∥∥∥∇uk
h

∥∥∥
0

∥∥∥∇ek+1
∥∥∥

0
+ N0

∥∥∥∇ek
∥∥∥2

0
+ mα2(

∥∥∥∇ξk+1
∥∥∥

0
+
∥∥∥∇δk+1

∥∥∥
0
)

≤4
3

N0ν−1mα2(γ−1‖ f1‖−1 + D−1
c ‖ f2‖−1)

∥∥∥∇ek+1
∥∥∥

0
+ N

∥∥∥∇ek
∥∥∥2

0

+ mα2(
4
3

N1γ−2‖ f1‖−1

∥∥∥∇ek+1
∥∥∥

0
+ N1γ−1

∥∥∥∇ek
∥∥∥

0

∥∥∥∇ξk
∥∥∥

0
)

+ mα2(
4
3

N2D−2
c ‖ f2‖−1

∥∥∥∇ek+1
∥∥∥

0
+ N2D−1

c

∥∥∥∇ek
∥∥∥

0

∥∥∥∇δk
∥∥∥

0
).

(29)

Moreover, imply the strong uniqueness condition (24) on (29), we obtain

∥∥∥∇ek+1
∥∥∥

0
≤9

5
N0ν−1

(
9
5

σ

)2k+1−2
ν−2m2α4(γ−1‖ f1‖−1 + D−1

c ‖ f2‖−1)
2

+
9
5

ν−1mα2N1

(
9
5

σ

)2k+1−2
ν−1mα2γ−2(γ−1‖ f1‖−1 + D−1

c ‖ f2‖−1)‖ f1‖−1

+
9
5

ν−1mα2N2

(
9
5

σ

)2k+1−2
ν−1mα2D−2

c (γ−1‖ f1‖−1 + D−1
c ‖ f2‖−1)‖ f2‖−1

≤
(

9
5

σ

)2k+1−1
ν−1mα2(γ−1‖ f1‖−1 + D−1

c ‖ f2‖−1).

(30)
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Hence, making use of (30), we rewrite (28) as

∥∥∥∇ξk+1
∥∥∥

0
≤4

3
N1γ−2‖ f1‖−1

(
9
5

σ

)2k+1−1
ν−1mα(γ−1‖ f1‖−1 + D−1

c ‖ f2‖−1)

+ N1γ−1
(

9
5

σ

)2k+1−2
ν−1mα(γ−1‖ f1‖−1 + D−1

c ‖ f2‖−1)γ
−1‖ f1‖−1

≤
(

9
5

σ

)2k+1−1
γ−1‖ f1‖−1.

∥∥∥∇δk+1
∥∥∥

0
≤4

3
N2D−2

c ‖ f2‖−1

(
9
5

σ

)2k+1−1
ν−1mα(γ−1‖ f1‖−1 + D−1

c ‖ f2‖−1)

+ N2D−1
c

(
9
5

σ

)2k+1−2
ν−1mα(γ−1‖ f1‖−1 + D−1

c ‖ f2‖−1)D−1
c ‖ f2‖−1

≤
(

9
5

σ

)2k+1−1
D−1

c ‖ f2‖−1.

(31)

Combining the first equation of (27) with n = k + 1 and q = 0 and the discrete inf-sup
condition, we have∥∥∥ηk+1

∥∥∥
0
≤β−1(ν

∥∥∥∇ek+1
∥∥∥

0
+ N0

∥∥∥∇ek+1
∥∥∥

0

∥∥∥∇uk
h

∥∥∥
0
+ N0

∥∥∥∇ek
∥∥∥2

0
)

+ β−1
(

mα2(
∥∥∥∇ξk+1

∥∥∥
0
+
∥∥∥∇δk+1

∥∥∥
0
)
)

≤β−1

(
ν

(
9
5

σ

)2k+1−1
ν−1mα2(γ−1‖ f1‖−1 + D−1

c ‖ f2‖−1)

+ N0

(
9
5

σ

)2k+1−1
ν−1mα2(γ−1‖ f1‖−1 + D−1

c ‖ f2‖−1)

× 4
3

ν−1mα2(γ−1‖ f1‖−1 + D−1
c ‖ f2‖−1)

+ N0

(
9
5

σ

)2k+1−2
ν−2m2α4(γ−1‖ f1‖−1 + D−1

c ‖ f2‖−1)
2

+ mα2

((
9
5

σ

)2k+1−1
γ−1‖ f1‖−1 +

(
9
5

σ

)2k+1−1
D−1

c ‖ f2‖−1

))

≤119
45

β−1
(

9
5

σ

)2k+1−1
mα2(γ−1‖ f1‖−1 + D−1

c ‖ f2‖−1).

(32)

Furthermore, subtracting (16) from (14) with n = 1 that

a0(u1
h − u0

h, v) + c0(u0
h, u1

h − u0
h, v) + c0(u1

h, u0
h, v) + D−1

a (u1
h − u0

h, v)− d(v, p1
h − p0

h)

+ d(u1
h − u0

h, q) = (βT(T1
h − T0

h )g + βC(C1
h − C0

h)g, v),

a1(T1
h − T0

h , ψ) + c1(u0
h, T1

h − T0
h , ψ) + c1(u1

h, T0
h , ψ) = 0,

a2(C1
h − C0

h, s) + c2(u0
h, C1

h − C0
h, s) + c2(u1

h, C0
h, s) = 0.

(33)

Then, taking ψ = T1
h − T0

h in the second equation of (33), we observe that∥∥∥∇(T1
h − T0

h )
∥∥∥

0
≤ N1γ−1

∥∥∥∇u1
h

∥∥∥
0

∥∥∥∇T0
h

∥∥∥
0
,

and ∥∥∥∇(C1
h − C0

h)
∥∥∥

0
≤ N2D−1

c

∥∥∥∇u1
h

∥∥∥
0

∥∥∥∇C0
h

∥∥∥
0
.
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Moreover, setting v = u1
h − u0

h in the first equation of (33), we obtain∥∥∥∇(u1
h − u0

h)
∥∥∥

0
≤ν−1N0

∥∥∥∇u1
h

∥∥∥
0

∥∥∥∇u0
h

∥∥∥
0

+ ν−1mα2(
∥∥∥∇(T1

h − T0
h )
∥∥∥

0
+
∥∥∥∇(C1

h − C0
h)
∥∥∥

0
)

≤N0ν−2mα2(γ−1‖ f1‖−1 + D−1
c ‖ f2‖−1)

∥∥∥∇u1
h

∥∥∥
0

+ ν−1mα2(N1γ−2‖ f1‖−1 + N2D−2
c ‖ f2‖−1)

∥∥∥∇u1
h

∥∥∥
0

≤σ
∥∥∥∇u1

h

∥∥∥
0
.

(34)

Combining (14) with n = 1 and using (34), we obtain∥∥∥∇T1
h

∥∥∥
0
≤γ−1N1

∥∥∥∇(u1
h − u0

h)
∥∥∥

0

∥∥∥∇T0
h

∥∥∥
0
+ γ−1‖ f1‖−1

≤γ−2N1σ‖ f1‖−1

∥∥∥∇u1
h

∥∥∥
0
+ γ−1‖ f1‖−1,∥∥∥∇C1

h

∥∥∥
0
≤D−1

c N2

∥∥∥∇(u1
h − u0

h)
∥∥∥

0

∥∥∥∇C0
h

∥∥∥
0
+ D−1

c ‖ f2‖−1

≤D−2
c N2σ‖ f2‖−1

∥∥∥∇u1
h

∥∥∥
0
+ D−1

c ‖ f2‖−1,∥∥∥∇u1
h

∥∥∥
0
≤ν−1N0

∥∥∥∇(u1
h − u0

h)
∥∥∥

0

∥∥∥∇u0
h

∥∥∥
0
+ ν−1mα2(

∥∥∥∇T1
h

∥∥∥
0
+
∥∥∥∇C1

h

∥∥∥
0
)

≤ν−2N0σ
∥∥∥∇u1

h

∥∥∥
0
mα2(γ−1‖ f1‖−1 + D−1

c ‖ f2‖−1)

+ ν−1mα2(γ−2N1σ‖ f1‖−1

∥∥∥∇u1
h

∥∥∥
0
+ γ−1‖ f1‖−1

+ D−2
c N2σ‖ f2‖−1

∥∥∥∇u1
h

∥∥∥
0
+ D−1

c ‖ f2‖−1)

≤σ2
∥∥∥∇u1

h

∥∥∥
0
+ ν−1mα2(γ−1‖ f1‖−1 + D−1

c ‖ f2‖−1).

In view of the strong uniqueness condition (24), we arrive at∥∥∥∇u1
h

∥∥∥
0
≤ 9

8
ν−1mα2(γ−1‖ f1‖−1 + D−1

c ‖ f2‖−1),∥∥∥∇T1
h

∥∥∥
0
≤ 9

8
γ−1‖ f1‖−1,

∥∥∥∇C1
h

∥∥∥
0
≤ 9

8
D−1

c ‖ f2‖−1.

Next, taking (v, q, ψ, s) = (un
h , pn

h , Tn
h , Cn

h ) in (14) with n ≥ 2, and using (2), (3)
and (26), we obtain

‖∇Tn
h ‖0

≤γ−1c1(un
h − un−1

h , Tn−1
h − Tn

h , ψ) + γ−1‖ f1‖−1

≤γ−1N1

∥∥∥∇(en−1 − en)
∥∥∥

0

∥∥∥∇(ξn−1 − ξn)
∥∥∥

0
+ γ−1‖ f1‖−1

≤γ−1N1

((
9
5

σ

)3
+

9
5

σ

)2

ν−1mα2(γ−1‖ f1‖−1 + D−1
c ‖ f2‖−1)γ

−1‖ f1‖−1 + γ−1‖ f1‖−1

≤γ−1N1

((
3
5

)3
+

3
5

)2

ν−1mα2(γ−1‖ f1‖−1 + D−1
c ‖ f2‖−1)γ

−1‖ f1‖−1 + γ−1‖ f1‖−1

≤4
3

γ−1‖ f1‖−1.

Similarly, we obtain

‖∇Cn
h‖0 ≤

4
3

D−1
c ‖ f2‖−1.
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Finally, it has

‖∇un
h‖0

≤ν−1N0

∥∥∥∇(en−1 − en)
∥∥∥2

0
+ ν−1mα2(‖∇Tn

h ‖0 + ‖∇Cn
h‖0)

≤ν−1N0

∥∥∥∇(en−1 − en)
∥∥∥2

0
+ ν−1mα2(γ−1N1

∥∥∥∇(en−1 − en)
∥∥∥

0

∥∥∥∇(ξn−1 − ξn)
∥∥∥

0
+ γ−1‖ f1‖−1)

+ ν−1mα2(D−1
c N2

∥∥∥∇(en−1 − en)
∥∥∥

0

∥∥∥∇(δn−1 − δn)
∥∥∥

0
+ D−1

c ‖ f2‖−1)

≤ν−1N0

((
3
5

)3
+

3
5

)2

ν−2m2α4(γ−1‖ f1‖−1 + D−1
c ‖ f2)‖−1)

2

+ ν−1mα2(γ−1N1

((
3
5

)3
+

3
5

)2

ν−1mα2(γ−1‖ f1‖−1 + D−1
c ‖ f2‖−1)γ

−1‖ f1‖−1 + γ−1‖ f1‖−1)

+ ν−1mα2(D−1
c N2

((
3
5

)3
+

3
5

)2

ν−1mα2(γ−1‖ f1‖−1 + D−1
c ‖ f2‖−1)D−1

c ‖ f2‖−1 + D−1
c ‖ f2‖−1)

≤4
3

ν−1mα2(γ−1‖ f1‖−1 + D−1
c ‖ f2‖−1).

The proof is completed.

Theorem 6. Under the assumptions of Theorem 3, suppose that the following condition (the
stronger uniqueness condition),

0 < σ <
1
4

, (35)

holds. Then (un
h , pn

h , Tn
h , Cn

h ) defined by the iterative method III satisfies

‖∇un
h‖0 ≤ 2ν−1mα2(γ−1‖ f1‖−1 + D−1

c ‖ f2‖−1),

‖∇Tn
h ‖0 ≤ 2γ−1‖ f1‖−1, ‖∇Cn

h‖0 ≤ 2D−1
c ‖ f2‖−1,

(36)

for all n ≥ 0. Furthermore, the following iterative error bounds hold

‖∇en‖0 ≤ (3σ)nν−1mα2(γ−1‖ f1‖−1 + D−1
c ‖ f2‖−1),

‖∇ηn‖0 ≤ 5β−1(3σ)nmα2(γ−1‖ f1‖−1 + D−1
c ‖ f2‖−1),

‖∇ξn‖0 ≤ (3σ)nγ−1‖ f1‖−1, ‖∇δn‖0 ≤ (3σ)nD−1
c ‖ f2‖−1,

(37)

for all n ≥ 0.

Proof. From (19) and (23), it is obvious that (36) and (37) hold for n = 0. Supposing
that (36) and (37) hold for n = k, we shall prove that they are valid for n = k + 1.
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Setting (v, q, ψ, s) = (un
h , pn

h , Tn
h , Cn

h ) in (15) with n = k + 1 and using (2), (3), (4)
and (36), we obtain that∥∥∥∇Tk+1

h

∥∥∥
0
≤γ−1N1

∥∥∥∇uk
h

∥∥∥
0

∥∥∥∇Tk
h

∥∥∥
0
+ γ−1‖ f1‖−1

≤γ−1N12ν−1mα2(γ−1‖ f1‖−1 + D−1
c ‖ f2‖−1)2γ−1‖ f1‖−1 + γ−1‖ f1‖−1

≤2γ−1‖ f1‖−1,∥∥∥∇Ck+1
h

∥∥∥
0
≤D−1

c N2

∥∥∥∇uk
h

∥∥∥
0

∥∥∥∇Ck
h

∥∥∥
0
+ D−1

c ‖ f1‖−1

≤D−1
c N22ν−1mα2(γ−1‖ f1‖−1 + D−1

c ‖ f2‖−1)2D−1
c ‖ f2‖−1 + D−1

c ‖ f2‖−1

≤2D−1
c ‖ f2‖−1,∥∥∥∇uk+1

h

∥∥∥
0
≤ν−1N0

∥∥∥∇uk
h

∥∥∥2

0
+ ν−1mα2(

∥∥∥∇Tk+1
h

∥∥∥
0
+
∥∥∥∇Ck+1

h

∥∥∥
0
)

≤ν−1N0

∥∥∥∇uk
h

∥∥∥2

0
+ ν−1mα2(γ−1N1‖∇um

h ‖0

∥∥∥∇Tk
h

∥∥∥
0
+ γ−1‖ f1‖−1)

+ ν−1mα2(D−1
c N2

∥∥∥∇uk
h

∥∥∥
0

∥∥∥∇Ck
h

∥∥∥
0
+ D−1

c ‖ f1‖−1)

≤ν−1N04ν−2m2α4(γ−1‖ f1‖−1 + D−1
c ‖ f2‖−1)

2

+ 4ν−2γ−2m2α4N1(γ
−1‖ f1‖−1 + D−1

c ‖ f2‖−1)‖ f1‖−1

+ ν−1mα2γ−1‖ f1‖−1 + ν−1mα2D−1
c ‖ f2‖−1

+ 4ν−2D−2
c m2α4N2(γ

−1‖ f1‖−1 + D−1
c ‖ f2‖−1)‖ f2‖−1

≤2ν−1mα2(γ−1‖ f1‖−1 + D−1
c ‖ f2‖−1).

Hence, (36) is valid for n = k + 1. Consequently, subtracting (15) from (12) yields

a0(en, v) + c0(un−1
h , en−1, v) + c0(en−1, uh, v) + D−1

a (en, v)− d(ηn, v) + d(q, en)

= (βTξng + βCδng, v),

a1(ξ
n, ψ) + c1(un−1

h , ξn−1, ψ) + c1(en−1, Th, ψ) = 0,

a2(δ
n, s) + c2(un−1

h , δn−1, s) + c2(en−1, Ch, s) = 0.

(38)

Now, choosing ψ = ξn, in the second equation of (38) and using (3), (36), (37) and
Theorem 3, we can deduce that

‖∇ξn‖0

≤2N1γ−1ν−1mα2(γ−1‖ f1‖−1 + D−1
c ‖ f2‖−1)

∥∥∥∇ξn−1
∥∥∥

0
+ N1γ−2‖ f1‖−1

∥∥∥∇en−1
∥∥∥

0

≤2N1γ−1ν−1mα2(γ−1‖ f1‖−1 + D−1
c ‖ f2‖−1)(3σ)n−1γ−1‖ f1‖−1

+ N1γ−2‖ f1‖−1(3σ)n−1ν−1mα2(γ−1‖ f1‖−1 + D−1
c ‖ f2‖−1)

≤(3σ)nγ−1‖ f1‖−1, ∀n ≥ 1.

(39)

Similarly, one has

‖∇δn‖0

≤2N2D−1
c ν−1mα2(γ−1‖ f1‖−1 + D−1

c ‖ f2‖−1)
∥∥∥∇δn−1

∥∥∥
0
+ N2D−2

c ‖ f2‖−1

∥∥∥∇en−1
∥∥∥

0

≤2N2D−1
c ν−1mα2(γ−1‖ f1‖−1 + D−1

c ‖ f2‖−1)(3σ)n−1D−1
c ‖ f2‖−1

+ N2D−2
c ‖ f2‖−1(3σ)n−1ν−1mα2(γ−1‖ f1‖−1 + D−1

c ‖ f2‖−1)

≤(3σ)nD−1
c ‖ f2‖−1, ∀n ≥ 1.

(40)
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Moreover, taking (v, q) = (en, ηn) in the first equation of (38) and using (2), (4), (36),
(37) and the Theorem 3, we find that

‖∇en‖0 ≤ν−1N0

(
ν−1mα2(γ−1‖ f1‖−1 + D−1

c ‖ f2‖−1)
)∥∥∥∇en−1

∥∥∥
0

+ 2ν−1N0

∥∥∥∇en−1
∥∥∥

0
(ν−1mα2(γ−1‖ f1‖−1 + D−1

c ‖ f2‖−1)

+ mα2ν−1(2γ−1ν−1mα2(γ−1N1‖ f1‖−1 + D−1
c N2‖ f2‖−1)

∥∥∥∇ξn−1
∥∥∥

0

+ N1γ−2‖ f1‖−1

∥∥∥∇en−1
∥∥∥

0

)
+ mα2ν−1(2D−1

c ν−1mα2(γ−1N1‖ f1‖−1 + D−1
c N2‖ f2‖−1)

∥∥∥∇δn−1
∥∥∥

0

+ N2D−2
c ‖ f2‖−1

∥∥∥∇en−1
∥∥∥

0

)
≤3ν−1N0(3σ)n−1ν−2m2α4(γ−1‖ f1‖−1 + D−1

c ‖ f2‖−1)
2

+ mα2ν−1
(

N1γ−2‖ f1‖−1(3σ)n−1ν−1mα2(γ−1‖ f1‖−1 + D−1
c ‖ f2‖−1)

+ 2γ−1ν−1mα2(γ−1N1‖ f1‖−1 + D−1
c N2‖ f2‖−1)(3σ)n−1γ−1‖ f1‖−1

)
+ mα2ν−1

(
N2D−2

c ‖ f2‖−1(3σ)n−1ν−1mα2(γ−1‖ f1‖−1 + D−1
c ‖ f2‖−1)

+ 2D−1
c ν−1mα2(γ−1N1‖ f1‖−1 + D−1

c N2‖ f2‖−1)(3σ)n−1D−1
c ‖ f2‖−1

)
≤(3σ)nν−1mα2(γ−1‖ f1‖−1 + D−1

c ‖ f2‖−1), ∀n ≥ 1.

(41)

Finally, combining the first equation of (38) with q = 0 and the discrete inf-sup
condition, the error estimate for the pressure can be stated as follows

‖ηn‖0 ≤β−1(ν‖∇en‖0 + N0

∥∥∥∇un−1
h

∥∥∥
0

∥∥∥∇en−1
∥∥∥

0
+ N0

∥∥∥∇en−1
∥∥∥

0
‖∇uh‖0

+ mα2(‖∇ξn‖0 + ‖∇δn‖0)
)

≤β−1(ν(3σ)nν−1mα2(γ−1‖ f1‖−1 + D−1
c ‖ f2‖−1)

+ N0(3σ)n−1ν−1mα2(γ−1‖ f1‖−1 + D−1
c ‖ f2‖−1)2ν−1mα2(γ−1‖ f1‖−1 + D−1

c ‖ f2‖−1)

+ N0(3σ)n−1ν−1mα2(γ−1‖ f1‖−1 + D−1
c ‖ f2‖−1)mα2(γ−1‖ f1‖−1 + D−1

c ‖ f2‖−1)

+ mα2(3σ)n(γ−1‖ f1‖−1 + D−1
c ‖ f2‖−1)

)
≤5β−1(3σ)nmα2(γ−1‖ f1‖−1 + D−1

c ‖ f2‖−1).

5. Numerical Experiments

In this section, several numerical experiments are presented to compare these iter-
ative methods for the considered equations. We use the public finite element software
FreeFem++ [28].

5.1. An Analytical Solution Problem

For numerical implementations, the iterative tolerance is 1.0× 10−5. The first issue to
be considered here is to compare these iterative methods for the stationary double-diffusive
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natural convection in the case of Ω = [0, 1]× [0, 1] ∈ R2, to reveal the relationship between
the iterative methods and the viscosity. We consider the following exact solutions.

p(x, y) = cos(πx) cos(πy),

u1(x, y) = 2π sin2(πx) sin(πy) cos(πy),

u2(x, y) = −2π sin(πx) sin2(πy) cos(πx),

T(x, y) = u1(x, y) + u2(x, y),

C(x, y) = u1(x, y)− u2(x, y).

(42)

Set the Darcy number Da = 1, the thermal expansion coefficient βT = 1, the solutal
expansion coefficient βC = 1, the heat diffusivity γ = 1, the mass diffusivity Dc = 1 and
ui = 0, T = 0, C = 0 on ∂Ω, i = 1, 2. The forcing function fi can be calculated using (42),
i = 1,2. We use a fixed value of mesh size h = 1

64 , and perform tests for the values of the
viscosity coefficients going from ν = 1 to ν = 1.0× 10−4.

We compare the numbers of iteration and the computational time in Table 1. This
table shows that all iterative methods run well in the case of ν = 1. When the viscosity
number increases to ν = 1.0× 10−2, iterative method III is divergent. Finally, iterative
methods II and III can not export the data with ν = 1.0× 10−4, iterative method I is still
convergent. From a computational point of view, the calculation time of iterative method
I and iterative method II is similar. However, iterative method II saves about 30% of
calculation time compared iterative method III when ν = 1. Iterative method II saves about
35% of calculation time compared with iterative method I when ν = 1.0× 10−2. We can
conclude that iterative method III is the simplest method for a high viscosity number. The
iterative method II is a fast and high accuracy method for a slightly lower viscosity number.
Iterative method I is stable under uniqueness condition of weak solutions in the case of
the lowest viscosity number. For three iterative methods, the relative error estimates are
presented in Tables 2–4.

Table 1. CPU-time in second (iterative step) needed to reach the convergence tolerance.

Scheme ν= 1 ν = 1.0× 10−2 ν = 1.0× 10−4

I 50.696 (4) 174.857 (14) 424.661 (41)
II 49.432 (4) 112.317 (6) —
III 78.703 (7) — —

Table 2. Comparison of three iterative methods using P2 − P1 − P2 − P2 (h = 1
64 and ν = 1).

Scheme ‖∇(u−un
h)‖0

‖∇u‖0

‖p−pn
h‖0

‖p‖0

‖∇(T−Tn
h )‖0

‖∇T‖0

‖∇(C−Cn
h)‖0

‖∇C‖0

I 0.000717912 0.000206301 0.000359132 0.00094964
II 0.000717912 0.000206303 0.000359132 0.00094964
III 0.000717912 0.000206251 0.000359145 0.000949645

Table 3. Comparison of three iterative methods using P2 − P1 − P2 − P2 (h = 1
64 and ν = 1.0× 10−2).

Scheme ‖∇(u−un
h)‖0

‖∇u‖0

‖p−pn
h‖0

‖p‖0

‖∇(T−Tn
h )‖0

‖∇T‖0

‖∇(C−Cn
h)‖0

‖∇C‖0

I 0.000738137 0.000200965 0.000359132 0.00094964
II 0.000738136 0.00020096 0.000359132 0.00094964
III — — — —
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Table 4. Comparison of three iterative methods using P2 − P1 − P2 − P2 (h = 1
64 and ν = 1.0× 10−4).

Scheme ‖∇(u−un
h)‖0

‖∇u‖0

‖p−pn
h‖0

‖p‖0

‖∇(T−Tn
h )‖0

‖∇T‖0

‖∇(C−Cn
h)‖0

‖∇C‖0

I 0.00759437 0.000203286 0.000359133 0.000949641
II — — — —
III — — — —

5.2. The Cavity Problem

In this numerical experiment, we assume that the boundary conditions satisfy [7,9]

T = 1, C = 1, u = 0 at x1 = 0,

T = −1, C = −1, u = 0 at x1 = 1,
∂T
∂n

= 0,
∂C
∂n

= 0, u = 0 at x2 = 0,

∂T
∂n

= 0,
∂C
∂n

= 0, u = 0 at x2 = 1,

(43)

and set Da = 1, βT = 1, βC = 1, γ = 0.1, Dc = 0.01, fi = 0 and the mesh size h = 1
64 ,

i = 1, 2. Moreover, the convergence tolerance is set to equal 1.0× 10−6. The domain with
its boundary conditions is illustrated in Figure 1. We present the velocity streamlines, the
pressure isobars, the isotherms and the isoconcentration lines for different values of the
viscosity coefficients ν = 1.0, ν = 1.0× 10−3, ν = 1.0× 10−4.

Then, we show numerical velocity streamlines, isobars of pressure, isotherms, and
isoconcentration lines obtained by three iterative methods with different viscosity numbers.
We plot these results in Figures 2–5. From these graphs, we obtain that the values of
viscosity not only heavily impact on the velocity streamlines and the isobars, but also affect
the isotherms and the isoconcentration lines. In fact, three iterations run well with ν = 1.0.
However, iterative method III cannot run with ν = 1.0× 10−3 while iterative method II
cannot export the data with ν = 1.0× 10−4.

To consider the independency of mesh in a square cavity, we use iterative method I to
calculate the model (1) under different mesh sizes. The results are presented in Figure 6.
We can see that there is no difference in the calculation results under different mesh sizes,
so we can verify the independence of the mesh size.
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Figure 1. Velocity streamlines of iteration method I (the first line), iteration method II (the second
line) and iteration method III (the third line) with different viscosity coefficients 1.0 (the first column),
1.0× 10−3 (the second column) and 1.0× 10−4 (the third column). Da = 1, βT = 1, βC = 1, γ = 0.1,
Dc = 0.01.
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Figure 2. Pressure isobars of iteration method I (the first line), iteration method II (the second line)
and iteration method III (the third line) with different viscosity coefficients 1.0 (the first column),
1.0× 10−3 (the second column) and 1.0× 10−4 (the third column). Da = 1, βT = 1, βC = 1, γ = 0.1,
Dc = 0.01.
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Figure 3. Isotherms of iteration method I (the first line), iteration method II (the second line) and
iteration method III (the third line) with different viscosity coefficients 1.0 (the first column), 1.0× 10−3

(the second column) and 1.0× 10−4 (the third column). Da = 1, βT = 1, βC = 1, γ = 0.1, Dc = 0.01.
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Figure 4. The computational domain with its boundary conditions.
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Figure 5. Cont.
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Figure 5. Isotherms of iteration method I (the first line), iteration method II (the second line), iteration
method III (the third line) with different viscosity coefficients 1.0 (the first column), 1.0× 10−3 (the
second column) and 1.0× 10−4 (the third column). Da = 1, βT = 1, βC = 1, γ = 0.1, Dc = 0.01.
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Figure 6. Velocity streamlines (the first line) and pressure isobars (the second line) of iteration method
I with different mesh size h = 1

16 (the first column), h = 1
32 (the second column) and h = 1

64 (the third
column). ν = 1, Da = 0.01, βT = 100, βC = 100, γ = 0.1, Dc = 0.1.

6. Conclusions

In conclusion, for solving stationary double-diffusive natural convection equations,
three iterative methods have their own advantages under different viscosity numbers. In
the case of 0 < σ < 1

4 , all methods can export data. Moreover, in the case of 1
4 ≤ σ < 1

3 ,
iterative method I and II can run well. Finally, in the case of 1

3 ≤ σ < 1, only iterative
method I can export data.

From the perspective of physical applications, these finite element iterative methods
can be used to simulate different double-diffusive natural convection models, such as the
aluminum oxide nanofluid natural convection heat transfer, the natural convection flow
of a suspension containing nano-encapsulated. Furthermore, some different boundary
conditions of these models with some different calculation areas should be considered,
such as the T-geometry enclosure porous cavity, L-geometry cavity, and porous cavity.
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Nomenalature

a bilinear form w mapping difference
A a mapping W temperature space
c trilinear form x dimensionless coordinate
C concentration X velocity space
Da Darcy number y dimensionless coordinate
Dc mass diffusivity Greeksymbols
e iterative error of velocity βT thermal expansion coefficient
f forcing function βC solutal expansion coefficient
g gravitational acceleration vector β positive constant
h mesh size γ heat diffusivity
H dual space ψ test function for temperature
k iterative step σ uniqueness condition
K triangular region λ constant[0,1]
L Lebegue space ν viscosity
m m = |g|max{|βT |, |βC|} α Poincaré constant
M pressure space η iterative error of pressure
n iterative step δ iterative error of concentration
N constant ξ iterative error of temperature
p fluid pressure Subscript
P polynomial i 1,2
q test function for pressure h finite element discretization
Q concentration space
s test function for concentration
T temperature
u velocity field
v test function for velocity
V subspace of the velocity space
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