
Progress In Electromagnetics Research, Vol. 128, 249–265, 2012

FINITE ELEMENT MATRIX GENERATION ON A GPU

A. Dziekonski*, P. Sypek, A. Lamecki, and M. Mrozowski

Wireless Communication Engineering (WiComm) Center of Excel-
lence, Department of Microwave and Antenna Engineering, Faculty
of Electronics, Telecommunications and Informatics, CUDA Research
Center for Computational Electromagnetics, Gdansk University of
Technology, Gdansk 80-233, Poland

Abstract—This paper presents an efficient technique for fast gener-
ation of sparse systems of linear equations arising in computational
electromagnetics in a finite element method using higher order ele-
ments. The proposed approach employs a graphics processing unit
(GPU) for both numerical integration and matrix assembly. The per-
formance results obtained on a test platform consisting of a Fermi
GPU (1x Tesla C2075) and a CPU (2x twelve-core Opterons), indicate
that the GPU implementation of the matrix generation allows one to
achieve speedups by a factor of 81 and 19 over the optimized single-
and multi-threaded CPU-only implementations, respectively.

1. INTRODUCTION

The utilization of graphic processing units (GPUs) in order
to reduce the simulation time is one of the most developing
trends in computational electromagnetics (CEM) [1–5]. The finite
element method (FEM) is one of the most advanced and powerful
methods for solving Maxwell’s equation and it is often used in
computational electromagnetics (CEM) [6–11]. Numerical simulations
of deterministic (driven) problems with the finite element method
include the following steps [12–14]:

(i) Discretization of a domain by applying a grid of elements.
(ii) Numerical integration — computation of the local mass (Te)

and stiffness (Se) matrices for each element.
(iii) Matrix assembly — construction of sparse global mass (T) and

stiffness (S) matrices from local matrices.

Received 3 April 2012, Accepted 28 April 2012, Scheduled 31 May 2012
* Corresponding author: Adam Dziekonski (adam.dziekonski@gmail.com).

250 Dziekonski et al.

(iv) Solution of a large system of linear equations (S − k2
0T)x = b,

where k0 is the wavenumber, b represents the excitation and x is
the vector of amplitudes of basis functions.

The simulation is usually performed for many frequencies,
therefore the solution step (iv) is executed many times and exerts a
significant influence on the overall performance of the simulation. As
a result, many efforts have been directed towards acceleration the step
of solving a large system of linear equations using direct and iterative
methods on a CPU (Central Processing Unit) and a GPU (Graphics
Processing Unit) [15–18]. However, if higher order curvilinear elements
are used, steps ((ii)–(iii), finite element matrix generation) are also
time-consuming. What is more, the performance of matrix generation
is essential in situations where the mesh changes, like for example
adaptive mesh refinement or full-wave design optimization. An
obvious way to accelerate the finite element matrix generation process
(matgen) is to parallelize numerical computations. Surprisingly, only
few papers have been published on parallelization of steps ((ii)–(iii))
that occur in the finite element method on a CPU and a GPU [19–22].

In this paper, a GPU-accelerated implementation of the finite
element matrix generation for a 9 pole microwave combline filter for the
GSM band in double precision is presented. The proposed approach
allows one to achieve 81- and 19-fold performance improvement over
CPU implementations executed with 1 and 24† threads, respectively.
This performance is obtained thanks to two levels of parallelization:
application of optimized functions (kernels) dedicated for the execution
on a GPU and the utilization of streams (GPU functions (kernels)
executed concurrently).

2. RELATED WORK

In order to provide the necessary background, we shall start
with a brief review of the efforts related to the GPU-accelerated
computations of the finite-element matrices. While none of them
concerned computational electromagnetics, they all involved similar
operations and hence are relevant to this work.

2.1. Numerical Integration

A GPU implementation in the Open Computing Language (OpenCL)
of the numerical integration in single precision has been presented
in [19]. In this paper, quadrilateral finite elements with curved (second
† one thread assigned to one CPU core.

Progress In Electromagnetics Research, Vol. 128, 2012 251

order) geometry have been considered. In the GPU implementation a
work-item is responsible for calculating one or more matrix entries
and each work-group is responsible for processing a single finite
element‡. Comparing to a CPU (Intel Xeon E5520), a GPU (GTX 285)
implementation of the numerical integration proposed in [19] allows one
to obtain the speedups by a factor of 3–6.

Another GPU implementation of the numerical integration has
been presented in [20]. In this paper, prismatic elements and shape
functions being products of 2D shape functions for triangles and 1D
shape functions in the vertical direction were considered. Authors
have faced a problem of small resources available for a single thread
on a GPU. Due to this fact the proposed GPU implementation of
numerical integration was based on the assumption that a single
finite element corresponds to a single threadblock and these individual
threads calculate sets of element stiffness matrix entries. Depending
on the approximation order, GPU (GeForce 8800 GTX) acceleration
has resulted in 4–20 times performance gain compared to a two core
CPU implementation (AMD X2).

2.2. Matrix Assembly

Issues related to matrix assembly using GPU and CPU have been
discussed in [21]. In this paper, the authors have compared matrix
assembly based on the Add to operation to a technique called LMA —
Local Matrix Approach. In the former approach, one construct a matrix
that maps the local node of the element to a global node number.
Terms of the local matrix of each element are summed into particular
terms in the global matrix using the Add to operation. The final
sparse global matrix is stored in the CRS format (Compressed Row
Storage [29]). The authors have concluded that the Add to approach is
preferable for an implementation on a CPU but not suitable for GPUs.
This is because the atomic operations have to be used on a GPU to
ensure correctness. Also, since the global matrix is stored using a
compressed format (CRS) finding the location of a particular term in
memory requires a bisection search of the sparsity structure of the
matrix. To remedy this problem, the LMA — Local Matrix Approach
dedicated for an implementation on a GPU has been proposed. LMA
omits the global assembly of stiffness matrix altogether and as a
result avoids the usage of atomic operations and bisection searches. A
GPU (NVIDIA GTX480) implementation based on the Local Matrix
Approach has been found to provide a speedup of approximately an
‡ A multiprocessor executes a CUDA thread for each OpenCL work-item and a thread
block for each OpenCL work-group (see Subsection 5.1).

252 Dziekonski et al.

order of magnitude over the 4-core Intel Xeon E5620 CPU version
based on the Add to approach.

Another two approaches to matrix assembly, dedicated for a GPU
have been presented in [22]. In this paper, 3D problems in single
precision have been considered. The first approach, called Global NZ,
takes advantage of global memory and divides computations into two
GPU functions (kernels). In the first kernel, one thread computes
the element data and in order to avoid race conditions, writes the
element data to global memory in coalesced memory transactions. In
the second kernel (reduction stage), one thread is assigned to assemble
one nonzero entire from global memory. This approach is limited by
the global memory size and its performance is adversely affected by the
fact that both kernels refer to global memory, and hence the number
of those references is doubled.

The second approach, called SharedNZ, takes advantage of
shared memory to store the element data and reduce the number of
transactions with global memory. A thread block is responsible for
assembling a set of nonzero entries of the system of equations. This
approach is limited by the shared memory size. The performance
results reported in [22] indicate that both proposed algorithms
executed on a GPU (GTX 480) yield speedups by a factor of 20 over
a CPU implementation (Intel Core Duo).

3. FEM FORMULATION AND CONSTRUCTION OF
MASS AND STIFFNESS MATRICES

The standard finite element problem is to solve the electric field vector
wave equation

∇× µ−1∇×E− ω2εE = 0 (1)

with suitable boundary conditions.
In FEM a computational domain is divided into small elements,

inside of each element the electric field is described as a linear
combination of B vector basis functions (Ni) with coefficients (ei)

E =
B∑

i=1

eiNi (2)

For each element the local mass matrix Te and stiffness matrix Se are
computed as the following volume integrals:

teij =
∫∫∫

V

NiεrNjdV (3)

Progress In Electromagnetics Research, Vol. 128, 2012 253

seij =
∫∫∫

V

(∇×Ni)µ−1
r (∇×Nj)dV (4)

The implementation presented in this paper employs curvilinear
tetrahedral elements and vector basis functions of up-to the third order
(QTCuN) [23]. This implies that B = 50 basis functions (5 of which
are linear combinations of the remaining 45 and are later rejected)
are defined for each element. High-order Gaussian quadrature was
applied [24] to evaluate integrals (3) and (4). A Gaussian quadrature
over a tetrahedron in simplex coordinates can be computed as

∫∫∫

V

f(x, y, z)dV ≈ |V | ·
Q∑

i=1

wi · f(pi) (5)

where Q denotes the number of quadrature points pi in simplex
coordinates, and wi-s are the quadrature weights. In our work, we use
Q = 81. For curvilinear elements and quadrature (5) Equations (3),
(4) can be rewritten in a matrix notation as

Te≈ 1
6

Q∑

i=1

wiNDi

(
JT

i εrJi

)
NT

Didet(Ji) (6)

Se≈ 1
6

Q∑

i=1

wiNPi

(
JT

i µ−1
r Ji

)
NT

Pi

1
det(Ji)

(7)

where Ji is a Jacobian matrix computed at point pi and NDi, NPi are
matrices of the size B × 3 storing the values of basis functions Nj and
their curls ∇×Nj computed at point pi (the integration is performed
on reference tetrahedron). If an isotropic medium is taken into account,
both εr and µ−1

r are scalars, so they can be taken outside the integral.
Similarly, if the element is rectilinear, the Jacobian Ji is constant inside
the element and both (JT

i εrJi) and (JT
i µ−1

r Ji) can be put outside the
integral to improve the efficiency. Once the local matrices have been
computed they can be assembled into a global system of equations,
resulting in large and sparse matrices S and T.

4. GSM BAND FILTER

FEM formulations presented in previous section are applied in order
to construct the global mass and stiffness matrices for a complex
electromagnetics structure of a 9 pole microwave combline filter.
The filter is designed for the GSM band and has three coaxial
cross couplings (Fig. 1). Combline resonators consist of posts with

254 Dziekonski et al.

Figure 1. Test structure — 9th order combline filter for the GSM
band with three coaxial cross couplings.

drilled holes and screws. The tetrahedral mesh of the structure was
generated with the Netgen mesher [25]. In this paper the finite element
matrix generation is performed for two meshes with 13613 and 28806
tetrahedra (see details in Table 1).

5. GPU IMPLEMENTATION OF FINITE ELEMENT
MATRIX GENERATION

In this section, a GPU-based implementation of finite element matrix
generation is described. Firstly, the most important features of
GPU programming are presented. Later, GPU implementations of the
fundamental phases of matrix generation are described.

5.1. Programming Fermi GPUs

In our research, we used NVIDIA’s Fermi Graphics Processing Units.
In this section a few concepts essential for understanding the efficiency
of computations using Fermi architecture are recalled [26].

A single GPU has many processors that execute in parallel the
same code on different data. In the Fermi architecture§ [27], 32
processors are gathered into multiprocessors. A function that is called
from a CPU (host) and executed on a GPU (device) is named a kernel.
A thread is the smallest unit of parallelization in kernels. Threads
are gathered into blocks of threads, while blocks are gathered into
grids of blocks. Threads may access a few kinds of GPU memory:
global memory (big latency, read-write), shared memory (on-chip, low
§ Fermi is the code name for the generation of a CUDA architecture introduced in 2010.

Progress In Electromagnetics Research, Vol. 128, 2012 255

GPU

Numerical Integration

Matrix Assembly

COO

CRS RESULTS

CPU

MESH

T,S

Figure 2. A basic variant of matrix generation on a GPU.

latency, limited to 16/48 kB per block), texture memory (low latency,
read-only), and registers (low latency).

Compared to previous generations of GPUs the Fermi architecture
has the following advantages [27]:

• computations in double precision are performed four times faster.
• atomic operations are performed remarkably faster (20x).
• concurrent kernel execution is possible (up to 16 different GPU

functions can be executed independently).

These features can be used to improve the performance of
FEM matrix generation either at the numerical integration or matrix
assembly stage, or both. To obtain a high efficiency of the code
execution on a GPU one should minimize the transfer between a
GPU and a CPU, use shared memory as much as possible, replace
global memory accesses with shared memory accesses and guarantee a
coalesced access to global memory [26].

5.2. Phases of Matrix Generation

In this subsection, GPU implementations of three fundamental phases
of the finite element matrix generation: numerical integration, matrix
assembly in the coordinate (COO) format, conversion from the COO
to the CRS (Compressed Rows Storage) format are described (Fig. 2).

5.2.1. Numerical Integration

In the numerical integration phase (Eqs. (6)–(7)) computations are
performed in two loops (listing 1). The outer one is over M tetrahedra,
while the inner loop involves Q iterations where Q is the number of
points in the Gauss quadrature (in our case Q = 81). In [19, 20] a
single thread block (work-group) is responsible for processing a single

256 Dziekonski et al.

finite element, which means that the outer loop is parallelized‖. In our
implementation we also parallelize the outer loop. To achieve this, 32
finite elements are assigned to be processed in parallel. This number
was selected based on the results of numerical tests which have shown
that processing more than 32 tetrahedra at one time does not improve
efficiency¶.

Listening 1: A pseudocode of the numerical integration.
// M — no. of finite elements
for (int i = 0; i < M; i++){

// Q — no. of points in Gauss quadrature
for (int q = 0; q < Q; q++){

//computation of mass matrix (Te), steps:
T1 = ND * J−T;
T2 = T1 * J;
Te += T2 * ND−T;
//computations of stiffness matrix (Se), steps:
S1 = NP * J;
S2 = S1 * J−T;
Se += S2 * NP−T; }}

Inside the inner loop there are six dense matrix-matrix products.
These products can be performed on a GPU with a function
cublasDgemm from the CUBLAS library [28]. However, the CUBLAS
library does not perform well enough for matrices the size of which
is smaller than 100 and is not a multiple of 16. Such a situation
occurs in the proposed formulations (Eqs. (2)–(7)) where the maximal
size of dense matrices is equal to 50. To overcome this problem, we
developed our own functions (kernels) to perform the dense matrix-
matrix product on a GPU for dedicated matrix dimensions. What
is more, the flexibility of the kernels was extended in order to
parallelize a Gauss quadrature. In this case Q = 81 matrix-matrix
products are performed in parallel, which is not directly possible with
a cublasDgemm function. As a result, the numerical integration, which
is performed by the inner loop in (listing 1), was replaced in our
implementation by the parallel execution of 81 thread blocks.

The next optimization step was to replace disjoint computations of
matrices T1 and T2 into one operation and do a similar thing related to
‖ The number of active blocks processed on GPU multiprocessors depends on the GPU
resources (f.e. up to 8 active blocks per multiprocessor in [19]).
¶ Particularly if a Gauss quadrature is parallelized (see. next paragraph).

Progress In Electromagnetics Research, Vol. 128, 2012 257

matrix Se. To achieve this, matrices T1 (S1) are stored in low latency
on-chip shared memory instead of global memory (Subsection 5.1).
Such a modification allows one to avoid the time-consuming writing
and reading of sub-results (matrices T1, S1) from and to the global
memory.

Finally, concurrent kernel execution was applied in such a manner
that computations related to the generation of local matrices Te and Se

were assigned to two separate streams. This Fermi architecture feature
provides a twofold parallelization — not only threads inside kernels
work in parallel, but also kernels are executed independently. What is
worth mentioning, a concurrent kernel execution has not been utilized
in any previous papers [19–22].

All in all, the code optimization described above allowed us
to achieve a significantly better performance than a CUBLAS-based
implementation (see the discussion in Section 6).

5.2.2. Matrix Generation in a Coordinate Format

In this phase, dense local matrices (Te, Se) arisen from the numerical
integration are converted to sparse global matrices (T, S). At this stage
the boundary conditions are also applied. Since the whole process is
performed on a GPU, no additional transfer (GPU ¿ CPU) between
the numerical integration and this phase is required (see Fig. 2).

One should keep in mind that matrices (T,S) are sparse and in
order to optimize the usage of memory a compression format should be
applied. One of the most commonly used formats is CRS (Compressed
Row Storage [29]). However, due to the fact that a direct matrix
assembly into the CRS format has been proven to be inefficient on
a GPU (see Subsection 2.2, [21]), we decided to divide the matrix
assembly process into two steps. Firstly, sparse matrices (T, S) are
generated and stored in the Coordinate format (COO)+ and later on
they are converted to the CRS format (Subsubsection 5.2.3). Such an
approach is different from implementations reported in [21, 22] and to
the best of the authors knowledge has not been implemented on a GPU
yet.

The matrix assembly in the COO format is performed by two
kernels. One kernel prepares information about the indices of nonzero
entries in the global matrices. The other one takes advantage of the
massive parallelization in such a manner that one thread is assigned to
assembling 8 nonzero entries in the global matrix stored in the COO
format. Moreover, a significant reduction of matrix assembly time is
+ In the COO format a sparse matrix is compressed into three vectors: I — row indices,
J — column indices, V — nonzero entries.

258 Dziekonski et al.

obtained thanks to the usage of registers and an efficient transfer to
global memory. It has to be born in mind, that while the assembly in
the COO format is much simpler and better suited to GPU than the
assembly in the CRS format, this approach has one drawback. Global
matrices (T, S) stored in the COO format include duplicates (entries
of the same coordinates (I, J) but different values (V) that appear for
finite elements of the same edge). These duplicates have to be detected
and added and we do it while converting the matrix from the COO
storage format to CRS. This conversion is required anyway, as the CRS
format is commonly used by sparse matrix solver libraries both on CPU
(Intel Pardiso [30]) and GPU (CUSPARSE Library [31]). Moreover,
for sparse matrices stored in double precision the CRS format is about
30% more efficient in terms of memory usage than the COO format.

5.2.3. COO to CRS

As mentioned in the previous subsection, the conversion has also to
guarantee the elimination of duplicates that exist in global matrices
(T, S) stored in the COO format. On a CPU this can readily be done
using the function umfpack triplet to col from the UMFPACK library
] [32]. To the best of our knowledge similar GPU procedures for the
COO to CRS format conversion with summation of duplicates to one
matrix entry have not been reported. Therefore we have developed
a multithreaded version of the UMFPACK umfpack triplet to col
function which has been optimized for execution on a GPU.

In our implementation, atomic operations are used during the
elimination of duplicates. One should be aware of the fact that
duplicates occupy about 20% of all nonzero entries (NNZ) of sparse
global matrices stored in the COO format so the number of atomic
operation is large. In previous CUDA architectures this would imply
a large performance penalty (see Subsection 5.1, and a discussion
in [21]). Fortunately, compared to previous CUDA architectures, Fermi
compatible GPUs [27] allow one to achieve 20x better performance for
atomic operations. What is more, at the beginning of the conversion
step we sort global matrices (T, S) stored in the COO format, which
leads to a significant reduction of the number of atomic operations —
from 20% of nonzero entries (NNZ) to 2N — twice the sparse matrix
size (N).

Secondly, the proposed converter overcomes the limitations of the
parallel prefix sum (scan) proposed by NVIDIA in the GPU Computing
SDK. The NVIDIA’s implementation of scan algorithm realizes a
] A function umfpack triplet to col converts the COO to the CCS format (Compressed
Column Storage [29]). However, CCS equals CRS for symmetric matrices.

Progress In Electromagnetics Research, Vol. 128, 2012 259

commonly known algorithm for short vectors whereas for large vectors
all data is divided into smaller parts for which scan is performed
independently. Our implementation modifies the parallel prefix sum
(scan) proposed by NVIDIA in such a way that the parallel prefix sum
is always performed on the whole vector.

In order to optimize the assembly procedures even further, we
assumed that matrices T and S have the same “pattern” — they have
the same row and column indices, different nonzero values††. Thanks to
this assumption, operations on indices are performed only for matrix
T during the format conversion and are mapped for matrix S. It
reduces redundant memory operations and eliminates the need for
storing vectors of row and column indices of matrix S on a GPU.

6. RESULTS

The proposed approach to the finite element matrix generation was
verified for the combline filter described in Section 4 on a test platform
consisting of:

• 1x NVIDIA’s Tesla C2075 GPU (448 cores, 6 GB).
• 2x Opteron 6174 (12 cores, 2.2 GHz) plus 64 GB RAM.

In order to provide a fair comparison, the GPU implementation
of the finite element matrix generation is compared with CPU
implementations that take advantage of the Intel MKL BLAS 1-
3 functions performed in a parallel mode, OpenMP API and the
umfpack triplet to col function from the UMFPACK as a core of the
conversion from the COO to the CRS format.

The details of test problems in double precision are given in
Table 1. With 6 GB of GPU memory, the largest problem that can
be processed in double precision involves 30000 tetrahedra. Larger
problems can be handled by sequentially processing chunks smaller
than 30000 finite elements. This mode of operation can be optimized
but this is beyond the scope of this paper and will not be discussed.

The comparison between GPU and CPU implementations of three
phases of the matrix generation is presented in Fig. 3 and Table 2. The
data presented in Fig. 3 prove that the numerical integration is the
most time-consuming phase of the finite element matrix generation on
a CPU (73%–83%). The matrix generation in the COO format and
a conversion from the COO to the CRS format occupy about 9%–
13% and 4%–18% of the whole matrix generation time on a CPU,
†† In general, matrices T and S have different patterns. We have decided to store extra zero
entries in matrix S in order to have the same pattern for both matrices. Thanks to this
modification, the conversion from the COO to the CRS format is performed much faster.

260 Dziekonski et al.

(a) (b)

(c)

Figure 3. The finite matrix generation (TEST2) — time share
required for the numerical integration (NI), matrix assembly into the
COO format (COO) and conversion from the COO to CRS format
(CRS). Test platforms GPU: (Tesla C2075) and CPU (2x twelve-core
Opterons 6174). (a) Opteron — 1 thread. (b) Opteron — 24 thread.
(c) Tesla C2075.

Table 1. Problems generated with the finite element method. NNZ —
no. of nonzero entries, N — size of sparse system of linear equations,
T — a mass matrix, S — a stiffness matrix.

Test problem TEST1 TEST2
Elements (el.) 13613 28806
S, TCOO NNZ 17791074 38749374

S, TCOO N 213984 455916
S, TCRS NNZ 14010426 30447378

S, TCRS N 213984 455916

Table 2. Average speedup of the matrix generation phases between
a GPU (Tesla C2075) and CPU (2x twelve-core Opteron 6174)
implementation, th. — number of threads in a CPU implementation.

GPU vs. CPU Tesla vs. Opteron-1th. Tesla vs. Opteron-24th.

NI 77.88 15.56

COO 261.82 53.04

CRS 35.79 35.80

Progress In Electromagnetics Research, Vol. 128, 2012 261

Table 3. Optimization of the numerical integration on a GPU (Tesla
C2075). Test problem with 13613 tetrahedral elements.

GPU

implementation
Description [sec]

Speedup vs.

CUBLAS

(A)
CUBLAS

(cublasDgemm)
33.98 −

(B)
In house

C = A ∗B
36.26 0.96

(C)
(B) for

dedicated dimensions
28.5 1.19

(D)
(C) with

parallel quadrature
2.26 16.50

(E)
(D) + joining steps

(T1, T2 → T12)
1.51 22.50

(F)
(E)

+ streams
1.37 24.68

(G)
(F) + many

tetrahedra
1.13 30.02

respectively. This picture changes when the matrix is generated on
a GPU. The numerical integration still takes up most of the matrix
generation time (87%). However, the matrix assembly into the COO
format achieves a remarkable performance — only 4% of the time of
the matrix generation. The GPU-based conversion from the COO to
CRS format that also eliminates duplicates takes about 9%.

One can notice that for each phase of the matrix generation the
GPU implementation is more effective than a CPU one (Table 2).
Comparing the performance obtained for the test platform (one Tesla
vs. two twelve-core Opterons), one may observe that the numerical
integration has been accelerated about 77.88 and 15.56 times on a Tesla
C2075 versus CPU implementations that employ 1 and 24 threads,
respectively. Moreover, for a matrix assembly into the COO format
we have achieved even better results (speedups by a factor of 261.82
and 53.04 over CPU implementations that employ 1 and 24 threads).
Finally, the GPU conversion from the COO to the CRS format that
also eliminates duplicates has allowed us to achieve about 35 fold
performance improvement over CPU implementations. Comparing
a GPU implementation to CPU implementations that employ 1 and
24 threads, the cumulative performance improvement of the matrix
assembly phase (COO+CRS) is about 105 and 41 fold, respectively.

262 Dziekonski et al.

Table 4. Performance of the finite matrix generation (th. — number
of OpenMP threads). Test platforms GPU (Tesla C2075) and CPU
(2x Opteron 6174).

Problem TEST1 TEST2
GPU — Tesla [s] 1.29 2.75

CPU — Opteron (1th.) [s] 104.92 224.50
CPU — Opteron (24th.) [s] 24.03 52.22

Speedup — Tesla vs. Opteron (1th.) 81.1 81.8
Speedup — Tesla vs. Opteron(24th.) 18.6 19.0

Since the numerical integration is the most time-consuming
phase of the finite element matrix generation, the effect of various
optimization techniques used in our GPU implementation at this
phase shall be described in details. The impact of each optimization
technique proposed in our implementation (see Subsubsection 5.2.1 for
details) on the efficiency of numerical integration can be seen from
the data collected in Table 3 (variants A-G). Let us recall, that the
baseline version implements the algorithm shown in listing 1 using
CUBLAS procedures for matrix-matrix products. This version is
denoted by letter (A). Our enhancements consisted of replacement
of CUBLAS procedure by our own implementation of matrix-matrix
product (B) and reformulation of this product for a specific matrix
dimension occurring in our operations (C), parallelization of the inner
loop (D), calculating local matrices Te (and Se) in two steps, rather
than three and application of shared memory at this stage (E),
applying streams to compute Te and Se concurrently (F), and finally,
processing many tetrahedra in parallel (G). One may notice that the
in-house implementation of matrix-matrix product achieves slightly
worse performance than functions from CUBLAS library (B). However,
the modification of the code that takes the dedicated dimensions into
consideration allows one to achieve 19% performance improvement (C).
Nevertheless, the most significant improvement is obtained thanks to
the parallelization of the Gauss quadrature (D). Moreover, the usage
of the shared memory instead of the global memory reduced the time
of numerical integration (E). A twofold parallelization obtained thanks
to the concurrent kernel execution used in (F) allowed us to achieve
further performance improvement. With many tetrahedra processed
in parallel (G), the cumulative speedup by a factor of 30.02 over the
CUBLAS based implementation has been reached.

Porting both numerical integration and the matrix assembly bore
fruits in a significant overall performance improvement of the finite

Progress In Electromagnetics Research, Vol. 128, 2012 263

element matrix generation. As shown in Table 4, the proposed GPU-
based approach outperforms the optimized CPU implementations.
With a Tesla C2075 performing computations, the sparse linear system
with 455916 of unknowns is generated in just 2.75 seconds, while the
best of CPU implementations allows obtaining the same system in
52.22 seconds (Opteron, 24 threads). All in all, the GPU-accelerated
finite element matrix generation allowed us to achieve the speedups by
a factor of 81 and 19 over CPU implementations executed on 1 and 24
threads, respectively.

7. CONCLUSION
A new effective and parallel approach for finite element matrix
generation has been described in this paper. The obtained performance
results indicate that the proposed GPU-accelerated implementation
allows one to obtain a significant reduction of the matrix generation
time in double precision. In the future, the authors will focus on the
implementation which will allow for generation of even bigger sparse
linear systems on a single GPU.

ACKNOWLEDGMENT
This work has been supported by the Polish Ministry of Science
and Higher Education and carried out within the framework of The
National Centre for Research and Development under agreement
LIDER/21/148/L-1/09/NCBiR/2010. A Tesla C2075 GPU donation
from Nvidia is also gratefully acknowledged.

REFERENCES

1. Shahmansouri, A. and B. Rashidian, “GPU implementation
of split-field finite-difference time-domain method for Drude-
Lorentz dispersive media,” Progress In Electromagnetics Research,
Vol. 125, 55–77, 2012.

2. Gao, P. C., Y. B. Tao, Z. H. Bai, and H. Lin, “Mapping the
SBR and TW-ILDCs to heterogeneous CPU-GPU architecture
for fast computation of electromagnetic scattering,” Progress In
Electromagnetics Research, Vol. 122, 137–154, 2012.

3. Gao, P. C., Y. B. Tao, and H. Lin, “Fast RCS prediction using
multiresolution shooting and bouncing ray method on the GPU,”
Progress In Electromagnetics Research, Vol. 107, 187–202, 2010.

4. Banasiaka, R., Z. Yeb, and M. Soleimanic, “Improving three-
dimensional electrical capacitance tomography imaging using
approximation error model theory,” Journal of Electromagnetic
Waves and Applications, Vol. 26, Nos. 2–3, 411–421, 2012.

264 Dziekonski et al.

5. Jiang, W.-Q., M. Zhang, and Y. Wang, “CUDA-based radiative
transfer method with application to the EM scattering from a
two-layer canopy model,” Journal of Electromagnetic Waves and
Applications, Vol. 24, Nos. 17–18, 2509–2521, 2010.

6. Sadiku, M. N. O., Numerical Techniques in Electromagnetics,
2nd Edition, CRC, 2000.

7. Fotyga, G., K. Nyka, and M. Mrozowski, “Efficient model
order reduction for FEM analysis of waveguide structures and
resonators,” Progress In Electromagnetics Research, Vol. 127, 277–
295, 2012.

8. Klopf, E. M., S. B. Manic, M. M. Ilic, and B. M. Notaros,
“Efficient time-domain analysis of waveguide discontinuities
using higher order FEM in frequency domain,” Progress In
Electromagnetics Research, Vol. 120, 215–234, 2011.

9. Trujillo-Romero, C. J., L. Leija, and A. Vera, “FEM modeling
for performance evaluation of an electromagnetic oncology deep
hyperthermia applicator when using monopole, inverted T, and
plate antennas,” Progress In Electromagnetics Research, Vol. 120,
99–125, 2011.

10. Sun, H., Y. Wu, and Z. Ruan, “Edge-Based finite element method
analysis of the transmission characteristics in antipodal finline,”
Journal of Electromagnetic Waves and Applications, Vol. 25,
No. 4, 565–575, 2011.

11. Sun, H., Y. Wu, and Z. Ruan, “A study of transmission
characteristics in elliptic-shaped microshield lines,” Journal of
Electromagnetic Waves and Applications, Vol. 25, Nos. 17–18,
2353–2364, 2011.

12. Jin, J., The Finite Element Method in Electromagnetics, John
Wiley and Sons Inc., New York, 2002.

13. Volakis, J. L., A. Chatterjee, and L. C. Kempel, Finite Element
Method for Electromagnetics. Antennas, Microwave Circuits and
Scattering Applications, IEEE Series on Electromagnetic Wave
Theory, IEEE Press, NJ, 1998.

14. Pelosi, G., R. Coccioli, and S. Selleri, Quick Finite Elements for
Electromagnetic Waves, Artech House Inc., 2009.

15. Dehnavi, M. M., D. M. Fernandez, and D. Giannacopoulos,
“Finite-element sparse matrix vector multiplication on graphic
processing units,” IEEE Transactions on Magnetics, Vol. 46,
No. 8, 2982–2985, Aug. 2010.

16. Dziekonski, A., A. Lamecki, and M. Mrozowski, “A memory
efficient and fast sparse matrix vector product on a GPU,”
Progress In Electromagnetics Research, Vol. 116, 49–63, 2011.

Progress In Electromagnetics Research, Vol. 128, 2012 265

17. Dziekonski, A., A. Lamecki, and M. Mrozowski, “GPU
acceleration of multilevel solvers for analysis of microwave
components with finite element method,” IEEE Microwave and
Wireless Components Letters, Vol. 21, No. 1, 1–3, Jan. 2011.

18. Dziekonski, A., A. Lamecki, and M. Mrozowski, “Tuning a hybrid
GPU-CPU V-Cycle multilevel preconditioner for solving large real
and complex systems of FEM equations,” IEEE Antennas and
Wireless Propagation Letters, Vol. 10, 619–622, 2011.

19. Plaszewski, P., K. Banas, and P. Maciol, “Higher order FEM
numerical integration on GPUs with OpenCL,” Proceedings
of the International Multiconference on Computer Science and
Information Technology (IMCSIT), 337–34, Oct. 18–20, 2010.

20. Maciol, P., P. Plaszewski, and K. Banas, “3D finite element
numerical integration on GPUs,” Procedia Computer Science,
Vol. 1, No. 1, 1093–1100, 2010.

21. Markall, G., A. Slemmer, D. Ham, P. Kelly, C. Cantwell, and
S. Sherwin, “Finite element assembly strategies on multi-core and
many-core architectures,” International Journal for Numerical
Methods in Fluids, 2012.

22. Cecka, C., A. Lew, and E. Darve, “Application of assembly
of finite element methods on graphics processors for real-time
elastodynamics,” GPU Gems 3 , Jul. 2011.

23. Ingelstrom, P., “A new set of H(curl)-conforming hierarchical basis
functions for tetrahedral meshes,” IEEE Trans. on Microwave
Theory and Techniques, Vol. 54, 106–114, Jan. 2006.

24. Zhang, L., T. Cui, and H. Liu, “A set of symmetric quadrature
rules on triangles and tetrahedra,” Journal of Computational
Mathematics, Vol. 26, No. 3, 1–16, 2008.

25. Schöberl, J., “NETGEN an advancing front 2D/3D-mesh
generator based on abstract rules,” Computing and Visualization
in Science, Vol. 1, No. 1, 41–52, Jul. 1997.

26. Sanders, J. and E. Kandrot, CUDA by Example: An Introduction
to General-Purpose GPU Programming, NVIDIA Co., 2011.

27. http://www.nvidia.com/content/PDF/fermi.
28. CUBLAS Library Nvidia Co., 2011.
29. Saad, Y., Iterative Methods for Sparse Linear Systems, SIAM,

2004.
30. http://software.intel.com/en-us/articles/intel-mkl/ .
31. CUDA CUSPARSE Library, NVIDIA Co., 2011.
32. http://www.cise.ufl.edu/research/sparse/umfpack.

