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Introduction. The energy norm is the natural norm with which to work in the finite-
element (Rayleigh-Ritz) method, and it is already a classical result (see for instance
[1]) that in this norm the error e = u — u in the finite-element solution u is bounded by

\\e\\m < chv+1~m \\u\\p+1 (1)

where u, h, p, c and m denote the exact solution, the diameter of the element, the degree
of the complete polynomial in the shape functions, a positive coefficient independent
of h and u, and the order of the differential equation involved, respectively.

The passage from the readily available and general energy (||-||m) error estimates
to the uniform (||-||o) error estimates can be accomplished via Rayleigh's principle.
With this

ll*llo < \ IMU , (2)CO

co being the fundamental frequency of the structure. But since ||-||m includes m de-
rivatives and H-llo none, we suspect that Eq. (2) furnishes too pessimistic bounds.
Indeed, by a clever trick, Nitsche [2] obtained, under some restrictions on the smoothness
of the exact solution, a sharper bound on ||e||0 than that obtained from Eq. (2).

Pointwise upper and lower bounds on the exact solution of second- and fourth-order
problems in two and three dimensions were derived by Diaz and Greenberg [3, 4], Fujita
[5], Maple [6], Washizu [7], Prager [8, p. 350], and Bramble and Payne [20]. These
bounds were derived with the essential help of Green's function, and are expressed in
terms of approximate solutions obtained with the Rayleigh-Ritz method using the
principles of minimum potential energy and minimum complementary energy (or any
admissible functions for these principles).

Concerning the pointwise error bounds on the finite-element (Rayleigh-Ritz) solu-
tion, Kantorovich and Krylov [9] obtained for the two-dimensional Dirichlet (fixed-
membrane) problem solved with polynomial trial functions

||e||«, < 0 (||e||i log172 ||e||i) (3)

where for the domain D

||e||» = sup \e\. (4)
D

Shultz [10] inferred from this that for a rectangular domain discretized with multivariate
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elements of order p (shape functions include a complete polynomial of degree p)

||ef|„ < Oih" log1/2 h) (5)

which for p = 1 agrees (except for log172 h) with the result of Nitsehe [11].
Making use of Sobolev's embedding theorems, Mikhlia [12] and Zlamal [13] obtained

for the plate-bending problems (m = 2) that

||e|U < c ||l||2 , (6)
and therefore according to Eq. (1)

||e||„ < OQT1). (7)

Johnson and McLay [14] proved that for the two-dimensional elasticity problem
in a rectangular domain discretized by bilinear (p — 1) elements, the error in the nodal
displacements is bounded by 0(h1/2). In this paper we:

i. derive pointwise bounds on the error in the finite-element solution and its
derivatives (displacements and strains) in the interior of linear, bilinear and quadratic
elements employed in the discretization of Poisson's equation in two and three
dimensions.

ii. extend Markov's theorem [15] to two and three dimensions. This will permit
us to relate the pointwise error in the displacements to the pointwise error in the strains.

iii. derive pointwise bounds on e and its derivatives in the case of second-order
problems in two and three dimensions.

iv. discuss the pointwise accuracy of the finite element solution in the presence of
singularities.

v. derive a general bound on \u(P) — u(P)\ in terms of \\u — u\\m and ||t> — v\\m ,
v being the response function to a unit impulse (point load) at P.

vi. apply this bound to obtain better pointwise bounds on e, in the case of a thin
plate, than that given by Eq. (7).

vii. show that with bilinear {p = 1) elements the best ||-||i approximation to a
quadratic polynomial and with bicubic (p = 3) elements the best 11 • 112 approximation
to a quartic polynomial are the interpolates (i.e. no error at the nodes). This indicates
that with these elements a higher rate of convergence can be expected for the nodal
values than for ||£||<» .

2. Energy theorems. The problems best suited for the method of finite elements are
those which can be variationally expressed as the search for the minimum of the quad-
ratic functional (say total potential energy)

t(v) = \a(v, v) - (/, v) (8)

over the class of functions v satisfying some essential (kinematic) boundary conditions,
and for which a(v, v) < oo. In the case of a fixed membrane, for instance, occupying
the domain D

(u, v) = / {ujvx + w„0 dx dy, (9)
J D

whereas for the simply supported, clamped or free plate

a(u, v) = / (uxlvxx + 2uxvvxv + u„yvvv) dx dy. (10)
J D
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In both cases

(u, v) = ) uv dx dy. (11)
J D

Since a(v, v) is positive definite for all functions v excluding the rigid-body modes, we
can choose it as a norm

a(v, v) = |MU2. (12)

The minimization of ir(v) yields

a(u, v) = (/, v) (13)

where, again, u denotes the exact solution and v any function satisfying the essential
boundary conditions for which a(v, v) < °o. Eq. (13) is the mathematical statement
of the principle of virtual displacements. If u denotes the finite element solution, then
corresponding to Eq. (13) we also have

a(u, P) = (/, v). (14)

Eqs. (13) and (14) result in

a(u — v) = 0 (15)

and in

yielding

from which we get

tr(w) = a{u,u) = -Uf, u),

tt(u) = —$a(u,u) = — §(/, u),
(16)

7r(u) — 7t(m) = \a{u — u, u — u) (17)

(/, u) > (/, m). (18)

Choosing / in Eq. (18) to be a point load (a delta function, an impulse) at P, we get
from this equation that

u(P) > u(P). (19)

The Cauchy-Schwarz inequality

v)l < INI- IMU (20)
is also of central importance here. Using this inequality, we prove the following theorem.

Theorem. Consider the 2mth-ordor elliptic equation

Lu = / in D, (21)

u satisfying:
i. some essential (kinematic) boundary conditions on dD1 .

ii. some natural (dynamic) boundary conditions on dD2 . Consider also the auxiliary
value problem
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Lv = 5(P) in D (22)

where S(P) is a unit impulse (point load) at P and where v satisfies the condition that
integration by parts of a(u — u, v) gives rise to no boundary terms. If u and v are the
finite-element solutions of u and v, then

|u(P) - u(P)I < \\u - u\\m\\v - t\\m . (23)

Proof. According to Eq. (15),

a(u — u, v) = a(u — u, v — v). (24)

Hence from Eq. (20) we get

|a(u — u, v)\ < \\u — u\\m \\v - (>\\m . (25)

Integrating a(u — -u, v) by parts while recalling the particular choice of homogenous
boundary conditions imposed on v leads to

|(u — u, Lv)| < ||u — u\\m ||d - v\\m , (26)

from which Eq. (23) follows.

3. Second-order problems, pointwise convergence of displacements and strains in
the interior of the elements. Consider the boundary-value problem

uxx + w„„ = 0 in D, _

u = u* on dD,

Suppose that this has been approximately solved with finite elements and that the
solutions thus obtained is u. We wish to bound & = u — u as well as ex and ev. To this
end we write Eq. (20) in the form

\a(6, i>)| < ll^ll, IMIi • (28)
We draw in D an interior circle of radius a occupying the domain oj (see Fig. 1) and
choose v in Eq. (28) to be such that

vIX + vvu = 0 in D - oj, ^

vxx + vvv = 1/ira2 in w.

Since e = 0 on dD, integration by parts of a(£, v) results in

—2 [ e dx (hi
ira

< ||e||i ||f||i • (30)

Let co be confined now to the interior of linear or bilinear elements. In this case both
u and u are harmonic inside w and by the mean value theorem we get that at the center
C of CO

|e(C)| < Hell, [1 + 4 log (d/a)]1/2/(8r)I/2 (31)

where d denotes the diameter of D. For the center C of an inscribed circle we thus get

| e(C) | < 0(h log172 h). (32)
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Fig. 1. The domain D is triangulated. A circle of radius a occupying the domain a is inscribed inside
an element.

The treatment of the corresponding three-dimensional problem

uxx + w„„ + uIZ = 0 in D, ^

u = u* on 3D,

is entirely analogous to that of the plane problem except that in this case the circle is
replaced by a sphere of radius a and v is chosen so as to satisfy

+ vvv + yzz = 0 in Z) - co, ^

Vzx + vvv + = —3/4tt a in co.

It follows that if the sphere co is confined to the interior of linear or trilinear elements,
then at the center C

|e(C)| < Hell, (3c?/ 10a - l/4)1/2/(8d)1/2, (3.5)

or at the center of an inscribed circle,
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\e(C)\ < 0(h1/2). (36)

For bounding ex (or e„) we start with

|(£* , f)| < lle.llo |M|o (37)
which, since ||ex||0 < ||e||i , becomes

|(ex , w)| < ||e||i IHIo • (38)

We choose v to be

V = l/co inside a>,

v = 0 outside w,
(39)

co being the volume of a sphere of radius a inside D. In the case of quadratic (p = 2)
elements both ux and ux are harmonic inside the element and we get from Eqs. (38)
and (39) that for the center C of an inscribed circle in the plane

\De{C)\ < 0(h), (40)
whereas for the inscribed sphere in three-dimensional second-order elements

\De(C)\ < 0(h1/2), (41)

in which D stands for first-order differentiation.

4. Pointwise convergence of the finite-element solution and its derivatives in two-
and three-dimensional second-order problems. Before proceeding to the pointwise
estimates we need to extend Markov's theorem to two and three dimensions. This
theorem states that if u is a polynomial of degree n in the interval (xa , Xi) then the
derivative ux of u is bounded by

2v
||Mi||»> < IM|oo (42)

where h = xi — x0 and

MU = sup \u |. (43)
To<x<X\

Let u(x, y) be a polynomial of degree n in the trapezoid as in Fig. 2a with a small
basis h'. We will prove here that

9«2
IklU < llMll» • (44)

For this we introduce the notation ||m||„,» meaning ||xt||„ on y = constant. If
occurs at the point (x, y) then

IklU < I ML- • (45)
But since ||w||„ > ||m||„,co and since h' < h we readily get from Eq. (45) the result in
Eq. (44).

From the trapezoid we pass on to the triangle and divide it into three trapezoids
A, B, C as in Fig. 2b, with bases and hi/2, h2 and h.2/2, h3 and h3/2. The remaining
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^ *

Fig. 2. (a) Trapezoidal domain with small basis h' and (b) a triangular domain divided into a trapezoid
A and a triangle A'.



156 ISAAC FRIED

three triangles with bases hx/2, h2/2 and h3/2 we denote by A', B' and C. We also
introduce the three directions 1, 2 and 3 parallel to the sides of the original triangles
and seek to bound the three derivatives u,i , i = 1, 2, 3, in these three directions. Since
all three directions are equivalent we concentrate on only one of them, say 3. From
Eq. (44) we have that

n II ^ ^n2 ..llw.ilU.oo ̂ IMU,« >

4 nI |w,2| Ib.oo < ll«IU.- > (46)

4 n2
llM,3||c,= ^ jn 3

where ||m|[AiCO means ||m||» in A. Also

IMIe.co < ||w||„ , ||w||b.» < ||m||» and ||m|U,» < ||«||. (47)

and since C' C A, C' C B

llw.zllc' ,<o | [^, 2 [ | B , Co , I |w,l||c" ,a> ̂  ||M.i||a.® • (48)

If we denote by a,, the interior angle between directions i and j, then

U.3 = (sin a23u.i + sin a13M,2)/sin a12 , (49)

and therefore

||m.3||c\» < (||w,i||<7',» + ||M,2||e-,„)/|sin a12|, (50)

and consequently we get from Eq. (48) that

An
< I I (r + r1) IHI- • (si)|sin a12| \/ti h-J

Since | ,3||„ can be either in C or C', Eqs. (46) and (51) result in
n 2 -i

\W .11- < -^T ||m|L 1=1,2,3 (52)sin 6 h

where h and 6 are the smallest side and angle, respectively, in the triangle. We draw
attention once more to the fact that in Eq. (52) u is a polynomial of degree n.

Further extension of Markov's theorem to the third dimension is entirely analogous
to that into two dimensions and we do not intend to dwell on it here.

We use Eq. (52) to bound the derivatives of e in terms of e and h. By Taylor's
theorem the exact solution u can be separated into

u = P + R and ux = Px + R' (53)

where P is a polynomial of degree q and R and R' the remainders. Since the finite-
element solution u is polynomial inside each element we have that

IIi — Px||„ < | ||w — P||„ (54)

where c is a positive coefficient independent of h. Eq. (54), combined with Eqs. (52)
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and (53), leads to

IK - m*IU < | ll« — w||» + | ||fl||. + Hfl'IU > (55)

or, with the notation Dmu for the mth derivative of u,

||fl||. < chQ+1 ||J50+1m|U , llfl'll- < ch° ||2)*+,tt||. . (56)
Eq. (55) can be rewritten now concisely as

||DI|U < cj/i"1 ||e|U + cji" 11^'wlU • (57)
This equation is of central importance here since it permits us to bound the error in
the derivatives (strains) in term of the error in the displacement u.

Having established the bound in Eq. (57) we proceed to the estimation of ||e[|<» .
Consider the second-order boundary value problem

-E7 + bu = / in D, (58)
»,j=l OX J-

u = u* on dD

with b > 0 and ku positive definite. Here

a(u, v) = / I 2 ki,uxtvxj + buv) dV. (59)

By the argument of the previous section we obtain also here

I1/CO Ja
edV < Ml I kill (60)

where co is again a sphere of radius a centered around C. Since e is continuous we can
expand it around C in the form

e = 6(C) + r$r(p) (61)

where 0 < p < r. Thus

or

- [ edV < 6(C) + - [ rer dV
|C0 J u O) Ju

- [ edV\ > \e(C) | - - f rer d\
0) Jw CO J a

(62)

(63)

and consequently

|e(C)| < Hell, IHI. + a ||D«||... . (64)
If the sphere is allowed to wander over the complete domain D (there is no problem
at the boundary since e can be extended outside by e = 0) then with Eq. (57) we get

11e||„ < 11e|11 ||w||i + c,ah_1 11^||„ + c2ahq ||Z)°+1w||„ . (65)

Suppose first that u is regular enough that ||Dpm||» < °°. We choose then q + 1 = p
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and Cidh_1 = 5, and since ||£||i ||t>||i = 0{hv log1/2 h), Eq. (65) yields

11 e||„ < 0(h" log1/2 h) (66)

in the plane, and
II4I- < 0{hv~in) (67)

in space.

In order to observe what happens in the case of a singularity consider the case
u — 0(rl/2). The full energy rate of convergence can be regained in this case by quad-
ratically varying the mesh size around the singularity [16]. If we denote by N, the
radial number of elements then

||*||i INI. < 0(JVr-* log1/2 a). (68)
The smallest mesh size is 0(Nr~3) and therefore

||<5|U < CiNrlog a + c2aNT~3 11e||„ + c3aNr~3" ||D,I+1w||00 . (69)

Since we assumed u = 0(r1/2) we select q + 1 = 0, a = Nr~ and obtain from Eq.
(69) that

||e|U < 0(iVr-plog1/2A^r), (70)

which means that e converges everywhere even at the singular point. Concerning the
convergence of De (i.e. strains and stresses), we see from Eq. (57) that even though
||D!||„ becomes unbounded at the singularity the bound on it decreases as we move
away from the singular point (i.e. if ||D°+1w||„ is replaced by ||Z)<,+1m||d., D' being the
domain D minus the neighborhood of the singular point).

5. Fourth-order problems. For the clamped plate problem

V4w = / in D, ^

u = 0, u„ = 0 on dD,

where n is normal to dD, we have

v — r2 log r + <7 (72)

where g is regular. It can be shown by direct computations (see also [16]) that for this v

||f _ 0||a < ch log172 h (73)

and we thus obtain from Eq. (23) that if the shape functions inside the element include
a complete polynomial of degree p then

11 e| |co < 0{hv log172 h). (74)

If u is regular we also obtain from Eq. (57) that

| |Z)"*e| |„ < 0{hv~m log172 h). (75)

6. Accuracy of nodal values. The discretization-energy error analysis is essentially
reduced [17] to the question of how well an element of order p (shape functions include



FINITE-ELEMENT METHOD 159

a complete polynomial of degree p) can approximate a polynomial of degree p + 1.
It is appropriate therefore to introduce the best energy fit—the closest an element of
order p can energetically approach a polynomial of degree p + 1 (or any other smooth
function) without any interelement continuity constraints.

To fix ideas consider first a first-order string element inside which the displacement
function u is given by

u = a0 + avx, 0 < x < h. (76)

Since u is linear we assume the true solution u to be the quadratic u = ax2/2 and seek
the best energy fit by minimizing

||u — xt| |x2 = f (at — ax)2 dx (77)
Jo

with respect to a, . This minimization yields di = ah/2 and the best energy fit is with
the element parallel to the interpolate, and

min ||u — m||i2 = T%a2h3. (78)

It is not difficult to show that the best energy fit in the case of a spring is with the elements
parallel to the interpolate. Indeed, by minimizing

||w — u\\2 = [ (ux — <h)2 dx (79)•'ii

with respect to a, we get

ai = (u(x2) — u(x i))/(x2 — xt). (80)

For the cubic beam element with

U = a0 -f aiX + a2x2 + a3x3, 0 < x < h, (81)

the best energy fit is obtained by minimizing

||w — m||22 = [ (uxx — 2a2 — 6a3x)2 dx (82)
J 0

with respect to both a2 and a3, yielding also that here the best energy fit is the interpolate
such that at the nodal points u = U and ux = u, . Choosing u in Eq. (82) to be the
quartic u = <m4/24 we get

min | \u — m||22 = ri-oah*. (83)

Since the interpolate is variationally admissible and since the finite-element solution
is, according to Eq. (17), the best in the energy, the actual finite-element solutions
for the beam and string will be the interpolates with no discretization errors [18, 19]
for the nodal values u and ux .

The displacement U inside a bilinear membrane element is given by

u — a0 + a{x + a2y + a3xy, 0 < x < h, 0 < y < h, (84)

and we assume therefore that

u = %a„x2 + axxy + \a2y2. (85)
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The best energy fit in this case is obtained from the minimization of

||m — u\\i = / / [(«<)£ + a\y — — a3y)2 + (<*iX + a2y — a2 — a3z)2] dx dy (86)
Jo Jo

with respect to , a2 and a3 , yielding

ctj = ^otoh, a2 — ^oc2hj ct3 — oil . (87)

Thus also for the bilinear element the best energy fit to the quadratic is the interpolate
with no errors at the nodes, and

min IIu — m||22 = iV^ao2 + a22). (88)

Repeating the same analysis for the first-order triangular, first-order membrane element,
we readily verify that for this element the best energy fit is not the interpolate.

The bicubic plate bending element (with four nodal points at the corners and with
the four nodal values u, ux , uv , uxv at each node) includes a complete polynomial of
the third degree. We therefore assume u to be the quartic

1 4 I 1 3 11 2 2 I 1 3 1 1 4 /or\\u = 2ioc0x + 2a>x V + 2«2-c y + 5«3xy + iriony ■ (89)

The same computations that we carried out earlier in this section yield also that for this
element the best energy fit to the quartic is the interpolate such that u = u, u, = ux ,
u„ = and uxy = uzy at the corners, and

min ||u — m||22 = rlo^6(ao2 ~l" «/)• (90)

We conclude from the analysis of this section that:
i. In bilinear membrane elements the rate of convergence of the nodal values can

be expected to be higher than that of ||^||<» .
ii. The nodal accuracy of the bilinear element is higher than that of the first-order

triangular element.
iii. The rate of convergence of u, ux , u, and uxy at the nodes of bicubic plate bending

element can be expected to be higher than that of 11 e| |„ .
iv. The points where the most accurate stresses occur can be found by locating

the points where the derivatives in the best energy fit agree with those in the fitted-to
higher-order polynomial. In tensor product elements these happen to be Gauss points.
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