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Abstract: The recent study was concerned with employing the finite element method for heat and
mass transfer of MHD Maxwell nanofluid flow over the stretching sheet under the effects of radiations
and chemical reactions. Moreover, the effects of viscous dissipation and porous plate were considered.
The mathematical model of the flow was described in the form of a set of partial differential equations
(PDEs). Further, these PDEs were transformed into a set of nonlinear ordinary differential equations
(ODEs) using similarity transformations. Rather than analytical integrations, numerical integration
was used to compute integrals obtained by applying the finite element method. The mesh-free
analysis and comparison of the finite element method with the finite difference method are also
provided to justify the calculated results. The effect of different parameters on velocity, temperature
and concentration profile is shown in graphs, and numerical values for physical quantities of interest
are also given in a tabular form. In addition, simulations were carried out by employing software
that applies the finite element method for solving PDEs. The calculated results are also portrayed in
graphs with varying sheet velocities. The results show that the second-order finite difference method
is more accurate than the finite element method with linear interpolation polynomial. However,
the finite element method requires less number of iterations than the finite difference method in a
considered particular case. We had high hopes that this work would act as a roadmap for future
researchers entrusted with resolving outstanding challenges in the realm of enclosures utilized in
industry and engineering.

Keywords: non-Newtonian fluid; thermal radiations; finite element method; finite difference method;
Matlab solver bv4c

1. Introduction

The extensive manufacturing and industrial applications have made studying bound-
ary layer non-Newtonian fluid much more substantial for the research scholars. Several
processes such as reparating plastic polymers, hot rolling, cooling metallic plates, drilling
muds and assembling optical fibers have followed the principles of boundary layer non-
Newtonian fluid. Scientists have suggested integral and rate models for boundary layer
studies as a single model is not enough to cover the versatility of properties. The given
study comprises the Maxwell fluid model, which is the subclass of the rate type model and
is used to determine the effect of relaxation time.

The most stimulating area in applied sciences is the non-Newtonian fluid flow, which
has attracted many scholars due to its extensive medical and engineering applications
(Rivlin and Ericksen [1]). This fluid exhibits several alternating properties such as variable
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rheological parameters and a non-singular constitutive equation, making it unreliable.
Therefore, scientists have suggested different models, (i) differential type, (ii) rate type and
(iii) integral type [2,3], to well fathom med the non-Newtonian fluid flow. Maxwell fluid is
the liquid that depicts qualities such as improved elasticity and viscosity [4,5], making it
more enigmatic in fluid dynamics. The Maxwell fluid model is the subclass of rate type
fluid model and can anticipate stress relaxation. Generalization of Maxwell material is the
Upper Convected Maxwell (UCM) model for the case of large deformation using the upper
convected time derivative.

Initially, Maxwell investigated the viscoelastic effect of air [6], which Mukhopadhyay
and Bhattacharyya [7] extended by examining an uneven Maxwell fluid flow study across
a stretching sheet with a chemical reaction. Nadeem and his colleagues later discovered
the viscoelastic fluid flow influenced by the Cattaneo–Christov theory and Newtonian
heating across an exponentially stretched sheet. Further modification to [8] was performed
in Nadeem et al. [9] by introducing thermal stratification to the boundary layer flow of
Maxwell fluid using the Cattaneo–Christov theory. Some exponential work was conducted
by khan et al. [10]. His work was profound due to the slip conditions applied to stretching
sheets with mas transfer and chemically active Maxwell fluid. Details related to boundary
layer flow can be traced [11,12].

Extensive research on the MHD fluid flow results from its excessive industrial ap-
plications that fascinated several research scholars [13–16]. During the last few decades,
MHD flow through parallel channels gained the focus of many scientists. Ref. [17] was
the first who prepared the homotopy analysis method (HAM) and investigated the MHD
flow of an upper convected Maxwell (UCM) fluid using a porous stretching sheet. Raftari
and Yildirim [18] modified the work conducted by Hayat et al. [17] and invented a novel
technique model referred to as a homotopy perturbation method (HPM). Sajid et al. [19]
proposed a rotating flow instead of a non-rotating one. They purposely estimated the im-
proved performance of UCM due to the rotation parameter, which controlled the boundary
layer’s thickness, hence advancing the study. Comparatively, the analytical studies are
given by Hayat et al. [17] and Raftari and Yildirim [18]. MHD flow across a stretching sheet
was studied by Abel et al. [20] using the fourth-order Runge–Kutta method. The findings
of the above studies were confined to the no-slip boundary condition imposed along with
the flat plate, which was further improved by Abbasi and Rahimipetroudi [21], who con-
sidered the slip boundary condition of a UCM Maxwell fluid via HPM. Nadeem et al. [22]
added dimensions to the Maxwell fluid model that enhanced the complexity and effi-
ciency of a Maxwell fluid’s MHD boundary layer flow with nanoparticles. Moreover,
Afify and Elgazery [23] introduced a chemical reaction into their model, extending the
Nadeem et al. [22] study.

The magnetic field now removes non-metallic substances from molten metals, purify-
ing metals from non-metallic turbidity. In this regard, magnetohydrodynamic fluid has a
separate fan base as it is used in several industrial procedures, such as extracting metals
from their ores and removing petrol from their reservoirs. Electrically conductive fluids
are used in power generators, cancer treatment, MRI, heat exchangers and many more
applications. When investigating non-Newtonian fluid flow, Sarpakaya [24] is regarded
as a pioneer. Turkyilmazoglu [25] suggested extending this work by inoculating variable
viscosity and studying the turbulent convective MHD fluid flow.

Turkyilmazoglu [26] discovered different solutions for two types of viscoelastic fluid
using MHD slip flow across the stretching surface. Dhanai et al. [27] investigated Sisko
nanofluid and applied variable MHD flow and energy transfer solutions combined with
convective boundary conditions. Ellahi et al. [28] examine Hall’s current MHD Jeffrey
fluid flow effect. He prepared his study on the rectangular duct. Ahmad and Nadeem
introduced the introduction of nanotubes to MHD fluid flow [29] with the combined effect
of Cattaneo–Christov heat flux theory. A similar flow was examined by Farooq et al. [30].
The researcher studied an MHD flow of Maxwell fluid via a nanomaterial stretched surface.
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Details of MHD flow of Carreau fluid based on Cattaneo–Christov flux theory can easily be
spotted in [31,32].

A new focus on mass heat flow has brought experts together, and they discovered
that it could be used in a wide range of fields such as air conditioning, electronic device
cooling and nuclear reactor cooling. It can also be used to desalinate water and in the food
and pharmaceutical industries. Initially, the Fourier [33] and Fick [34] laws were used for
interpreting mass and heat flow best, but later on, scientists observed some limitations
of these laws, which could affect the studies. One of the most scavenging drawbacks is
forming a parabolic type of equation. Javed and Nadeem [35] utilized two concentric
cylinders to observe Casson fluid’s mass and energy flow. Double stratified second-grade
fluid flow was studied by Mallawi and colleagues [36] using the Riga plate heat flux model
and thermal radiation. A review of the literature [37,38] revealed the focus of various
scholars on heat transfer of turbulent nanofluid flow to minimize the energy consumption
in a solar collector.

The study of Darcy–Forchheimer flow of Reiner–Philippoff nanofluid over the stretch-
ing sheet was investigated in [39] with the involvement of Motile microorganisms. The
effects of heat source/sink and melting phenomenon were also considered. The Matlab
solver was considered to solve the obtained dimensionless equations. The results confirmed
that rising thermophoresis and Schmidt number values enhanced the heat transfer coeffi-
cient. By changing thermophysical characteristics, entropy reduction in the thermos and
non-Newtonian nanofluid models was addressed [40]. Two types of nanofluids, namely
Copper–Engine Oil and Zinconium Dioxide–Engine Oil, were considered for the study.
The effects of different parameters on velocity, temperature and entropy distribution are
shown in graphs. The Keller–Box scheme was implemented to solve differential equations
obtained from the fluid phenomenon. A mixture model was considered to simulate a
rotating tube bundle [41]. The microchannel heat exchanger’s performance was assessed
by applying various operating factors such as Reynolds number, rotation speed and con-
centration of the nanofluid. Instead of finding numerical solutions, exact expressions for
dimensionless velocity and temperature were obtained in [42]. It was pointed out that the
Newtonian fluid flow was faster than Maxwell fluid flow.

Since the finite element method is one of the numerical methods that can be used
to find the solutions to linear and nonlinear ordinary and partial differential equations,
the recent approach to applying the method is based on Galerkin weighted residuals, and
integrals in this approach are computed using numerical Gauss–Legendre three points
formula integrations. The model for non-Newtonian fluid flow over stretching sheet is
given, and converted ODEs were solved by applying three numerical approaches. The
second applied method is the finite difference method, which is second-order accurate at
all the grid points except the last one. The numerical experiments conclude that the finite
difference method (FDM) is more accurate than the finite element method (FEM) with
linear interpolation polynomial for the considered problem.

Moreover, a Matlab solver bvp4c was also employed for solving nonlinear dimen-
sionless ODEs. The solver can be used to find solutions to problems in finite domains.
Even though the domain of the considered problem is infinite, a finite domain is chosen for
numerical purposes. The solver, in most cases, converges, but it may give an error. As a
result, an additional loop is utilized to make the procedure workable for some or all of the
cases of the problem under consideration.

2. Problem Formulation

Consider incompressible, laminar, steady, electrically conductive two-dimensional
non-Newtonian Maxwell nanofluid flow over a stretching sheet. Let the plate be stretched
with stretching velocity UW . Let x-axis be taken along the sheet and y-axis be taken perpen-
dicular to the sheet. The flow is generated by the sudden movement of the sheet towards
the positive x-axis. The fluid is embedded in a porous medium, and the permeability of this
porous medium is denoted by k. The magnetic field has strength B0 applied perpendicular
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to the sheet. Let u and v be the velocity components in x and y directions, respectively. The
fluid temperature is denoted by T, and concentration is denoted by C. Let Tw and Cw be
temperature and concentration at the plate, whereas T∞ and C∞ is the temperature and
concentration away from the plate. Under the boundary layer assumption(s), the governing
equations of this phenomenon can be expressed as:

∂u
∂x

+
∂v
∂y

= 0 (1)

u
∂u
∂x

+ v
∂u
∂y

+ λ0

(
u2 ∂2u

∂x2 + v2 ∂2u
∂y2 + 2uv

∂2u
∂x∂y

)
= ν

∂2u
∂y2 −

ν

k
u−

σB2
0

ρ
u (2)

u
∂T
∂x

+ v
∂T
∂y

= α
∂2T
∂y2 + τ

(
DB

∂C
∂y

∂T
∂y

+
DT
T∞

(
∂T
∂y

)2
)
− 1

ρcp

∂qr

∂y
+

µ

ρcp

(
∂u
∂y

)2
(3)

u
∂C
∂x

+ v
∂C
∂y

= DB
∂2C
∂y2 +

DT
T∞

∂2T
∂y2 − k1(C− C∞) (4)

Subject to the boundary conditions

u = UW = ax, v = 0, T = Tw, C = Cw when y = 0
u→ 0, T → T∞, C → C∞ when y→ ∞

}
(5)

where ν represents the kinematic velocity, λ0 represents the relaxation time, σ denotes
an electrical conductivity, ρ denotes the density of the fluid, α represents the thermal
diffusivity, τ denotes the ratio of heat capacities, DB denotes Brownian motion coefficients,
DT denotes thermophoretic diffusion coefficient, µ is the dynamic viscosity, cp is the specific
heat capacity, k1 is the ratio of reaction and qr is the Rosseland radiative heat flux. The
linearized Rosseland radiative heat flux is expressed as:

qr = −
4σ∗

3k∗
∂T4

∂y
≈ −16σ∗T3

∞
3k∗

∂T
∂y

(6)

By considering the flux qr, the corresponding term in energy Equation (3) was re-
written as:

− 1
ρcp

∂qr

∂y
=

16σ∗T3
∞

3ρcpk∗
∂2T
∂y2 (7)

where σ∗ denotes the Stefan–Boltzmann constant and k∗ denotes mean absorption coeffi-
cient. For reducing governing Equations (1)–(5) into dimensionless forms, the following
transformations are considered:

η =

√
a
ν

y, u = ax f ′(η), v = −
√

aν f (η), θ =
T − T∞

Tw − T∞
, φ =

C− C∞

Cw − C∞
,

Under the mentioned transformations, Equations (1)–(5) can be expressed into dimen-
sionless ODEs as

f ′2 − f f ′′ + λ
(

f 2 f ′′′ − 2 f f ′ f ′′
)
= f ′′′ −

(
kp + M

)
f ′ (8)

− f θ′ =
1
Pr

θ′′ + Nbφ′θ′ + Ntθ
′2 +

4
3

Rd
Pr

θ′′ + Ec f ′′ 2 (9)

− Sc f φ′ = φ′′ +
Nt

Nb
θ′′ − Scγφ (10)
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subject to the dimensionless boundary conditions

f (η) = 0, f ′(η) = 1, θ(η) = 1, φ(η) = 1 when η = 0
f ′ → 0, θ → 0, φ→ 0 when η → ∞

}
(11)

where Deborah number λ, porosity parameter kp, magnetic parameter M, Prandtl number
Pr, Brownian motion parameter Nb, thermophoretic parameter Nt, radiation parameter Rd,
Eckert number Ec, Schmidt number Sc and reaction rate parameter γ are denoted as

λ = aλ0, kp = ν
ak , M =

σB2
0

ρa , Pr =
ν
α , Nb = τDB(Cw−C∞)

ν , Nt =
τDT(Tw−T∞)

νT∞
,

Rd = 4σ∗T3
∞

k3k∗ , Ec =
U2

w
cp(Tw−T∞)

, Sc =
ν
D , γ = k1

a

The skin friction coefficient, Local Nusselt and Local Sherwood are defined as:

C f =
τw

1
2 ρU2

w
, Nux =

xqw

k(Tw − T∞ )
, Shx =

xJw

DB(Cw − C∞)

where

τw = −
[

µ
∂u
∂y
− ρλ0

(
2uv

∂u
∂x

+ v2 ∂u
∂y

)]
y=0

(12)

qw = −
(

k +
16σT3

∞
3k∗

)
∂T
∂y

∣∣∣∣
y=0

(13)

Jw = −DB
∂C
∂y

∣∣∣∣
y=0

(14)

The dimensionless form of skin friction coefficient, Local Nusselt and Sherwood
numbers can be expressed as:

R
1
2
ex C f = −2

[
f ′′ (0)− λ

(
f 2(0) f ′′ (0)− 2 f (0) f ′2(0)

)]
(15)

R−
1
2

ex Nux = −
(

1 +
4
3

Rd

)
θ′(0) (16)

R−
1
2

ex Shx = −φ′(0) (17)

where Rex = Uwx
ν .

3. Finite Element Method

Equations (8)–(11) are solved by employing the finite element method. For doing
so, let the whole domain [0, η∞] be divided into a finite number of sub-domains called
elements. Each element is a line segment containing two nodes at both ends of each element.
One node of two adjacent elements in common. The linear polynomial is interpolated in
each element. Let the length of each element be h. The ith element is comprised of two
nodes at η = ηi and η = ηi+1. Linear interpolating polynomial for f , θ and φ in ith element
can be expressed as:

f = a0 + a1η (18)

θ = b0 + b1η (19)

φ = c0 + c1η (20)

By using two points at η = ηi and η = ηi+1, Equations (18)–(20) can be expressed as:

f = ψ1 fi + ψ2 fi+1 (21)
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θ = ψ1θi + ψ2θi+1 (22)

φ = ψ1φi + ψ2φi+1 (23)

where ψ1 =
ηi+1−η

h and ψ2 = η−ηi
h .

The left node of ith element in the domain is assigned with nodal variables fi, θi and φi
with the nodal coordinate value ηi. Similarly, the right node of ith element is assigned with
corresponding nodal variables and nodal coordinates. The variables f , θ and φ appeared
in Equations (18)–(20) and are called trail functions, whereas ψ1 and ψ2 are called shape
functions. The shape function satisfies two properties. The first property of the shape
function is to satisfy the following conditions:

ψ1(ηi) = 1, ψ1(ηi+1) = 0, ψ2(ηi) = 0, ψ2(ηi+1) = 1 (24)

where ψ1 has value 1 at the left node of ith element and 0 at the right node also ψ2 have
values 0 and 1 at the left and right node of ith element, respectively. This first property is
useful for obtaining continuous solutions over the whole domain.

The second property states that the sum of the shape functions for a single element is
unity, i.e.,

2

∑
i=1

ψi(η) = 1 for all elements in the domain (25)

The advantage of this property is to ensure the constant solution within each element,
provided that the solution is the same at each node of that element.

For finding a numerical solution using Galerkin finite element method, weighted
residuals of Equations (8)–(10) were constructed. Since Equation (8) is third-order ODE, to
apply the method, it is converted into a system of two equations:

d f
dη

= f1 (26)

f 2
1 − f f ′1 + λ

(
f 2 f ′′1 − 2 f f1 f ′1

)
= f ′′1 −

(
kp + M

)
f1 (27)

The weighted residual of Equations (26), (27), (9) and (10) are given as:∫ η∞

0
ψ
(

f ′ − f1
)
dη = 0 (28)

∫ η∞

0
ψ
[

f ′′1 − λ
(

f 2 f ′′1 − 2 f f1 f ′1
)
− f 2

1 + f f ′1 −
(
kp + M

)
f1

]
dη = 0 (29)

∫ η∞

0
ψ

[
θ′′ + Pr f θ′ + NbPrφ′θ′ + Pr NTθ′

2
+

4
3

Rdθ′′ + PrEc f ′1
2
]

dη = 0 (30)

∫ η∞

0
ψ

[
φ′′ + Sc f φ′ +

Nt

Nb
θ′′ − Scγφ

]
dη = 0 (31)

Since formulations (29)–(31) are strong formulations, one of the disadvantages of
using strong forms is that these have vanished when linear interpolation is considered for
each element. Thus, in this manner, weak formulations are constructed by integrating the
second-order terms in Equations (29)–(31) as:∫ η∞

0
ψ
[

f ′ − f1
]
dη = 0 (32)∫ η∞

0

[
−ψ′ f ′1 + λ

(
2 f f1ψ + f 2ψ′

)
f ′1 + ψ

{
2λ f f1 f ′1 − f 2

1 + f f ′1 −
(
kp + M

)
f1

}]
dη = −λ f 2ψ f ′1

∣∣∣η∞

0
− ψ f ′1

∣∣η∞
0 (33)

∫ η∞

0

[
−ψ′θ′

(
1 +

4
3

Rd

)
+ ψ

{
Pr f θ′ + Pr Nbφ′θ′ + Pr Ntθ

′2 + PrEc f ′1
2
}]

dη = −
(

1 +
4
3

Rd

)
ψθ′
∣∣∣∣η∞

0
(34)
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∫ η∞

0

[
−ψ′φ′ − Nt

Nb
ψ′θ′ + ψ

{
Sc f φ′ − Scγφ

}]
dη = −ψφ′

η∞
0 −

Nt

Nb
ψθ′
∣∣∣∣η∞

0
(35)

Integrals Equations (32)–(35) are constructed on the whole domain, and these integrals
are constructed on ith element as in the forms∫ ηi+1

ηi

ψ
[

f ′ − f1
]
dη = 0 (36)

∫ ηi+1

ηi

[
−ψ′ f ′1 + λ

(
2 f f1ψ + f 2ψ′

)
f ′1 + ψ

{
2λ f f1 f ′1 − f 2

1 + f f ′1 −
(
kp + M

)
f1

}]
dη = −λ f 2ψ f ′1

∣∣∣ηi+1

ηi
− ψ f ′1

∣∣ηi+1
ηi

(37)

∫ ηi+1

ηi

[
−ψ′θ′

(
1 +

4
3

Rd

)
+ ψ

{
Pr f θ′ + Pr Nbφ′θ′ + Pr Ntθ

′2 + PrEc f ′1
2
}]

dη =

(
−
(

1 +
4
3

Rd

)
ψθ′
∣∣∣∣ηi+1

ηi

(38)

∫ ηi+1

ηi

[
−ψ′φ′ − Nt

Nb
ψ′θ′ + ψ

{
Sc f φ′ − Scγφ

}]
dη = −ψφ′

∣∣ηi+1
ηi
− Nt

Nb
ψθ′
∣∣∣∣ηi+1

ηi

(39)

From Equations (36)–(39), the following matrix–vector equations can be achieved
[
K11] [

K12] [
K13] [

K14][
K21] [

K22] [
K23] [

K24][
K31] [

K32] [
K33] [

K34][
K41] [

K42] [
K43] [

K44]


[ f ]
[ f1]
[θ]
[φ]

 =


[
R1][
R2][
R3][
R4]
 (40)

Let Ki be the coefficient matrix in Equation (40) corresponding to ith element in the
domain. Each entry in Ki is a matrix of order 2× 2, and each [Rs] is a vector of length 2 for
s = 1, 2, 3, 4. The entries of the matrix Ki are calculated from the following integrals

K11
ij =

ηi+1∫
ηi

(
ψi

d fi
dη

)
dη (41)

K12
ij =

ηi+1∫
ηi

(
ψi f1,j

)
dη (42)

K22
ij =

ηi+1∫
ηi

[
−dψi

dη

d f1,j

dη
+ λ

{
2 f f 1ψi + f

2 dψi
dη

}d f1,j

dη
+ 2λ f f 1ψi

d f1,j

dη
+ ψi

{
− f 1 f1 + f

d f1,j

dη
−
(
kp + M

)
f1,j

} ]
dη (43)

K33
ij =

ηi+1∫
ηi

−dψi
dη

dθj

dη

(
1 +

4
3

Rd

)
+ ψi

 Pr f
dθj
dη + Pr Nbφ′

dθj
dη

+Pr Ntθ′
dθj
dη + PrEc

d f1,j
dη


dη (44)

K43
ij =

ηi+1∫
ηi

[
−Nt

Nb

dψi
dη

dθj

dη

]
dη (45)

K44
ij =

ηi+1∫
ηi

[
−dψi

dη

dφj

dη
+ ψi

{
Sc f

dφj

dη
− Scγφj

}]
dη (46)

and remaining matrices are zero matrices. Where the variables have “− ” notation is kept
fixed. The bar notation terms are treated as

2λ

ηi+1∫
ηi

(
f f 1ψi

d f1,j

dη

)
dη = 2λ

ηi+1∫
ηi

[
ψ2

1 f0,1 f1,1 + ψ1ψ2 f0,1 f1,2 + ψ2ψ1 f0,2 f1,1 + ψ2
2 f0,2 f1,2

]
ψi

d f1,j

dη
dη (47)
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λ

ηi+1∫
ηi

f
2 dψi

dη

d f1,j

dη
dη = λ

ηi+1∫
ηi

[
ψ2

1 f 2
0,1 + ψ2

2 f 2
0,2 + 2ψ1ψ2 f0,1 f0,2

]dψi
dη

d f1,j

dη
dη (48)

2λ

ηi+1∫
ηi

f f 1ψi
d f1,j

dη
dη = 2λ

ηi+1∫
ηi

[
ψ2

1 f0,1 f1,1 + ψ1ψ2 f0,1 f0,2 + ψ2ψ1 f0,2 f1,1 + ψ2
2 f0,2 f1,2

]
ψi

d f1,j

dη
dη (49)

ηi+1∫
ηi

f 1ψi f1,jdη =

ηi+1∫
ηi

[ψ1 f1,1 + ψ2 f1,2]ψi f1,jdη (50)

ηi+1∫
ηi

f ψi
d f1,j

dη
dη =

ηi+1∫
ηi

[ψ1 f0,1 + ψ2 f0,2]ψi
d f1,j

dη
dη (51)

Pr

ηi+1∫
ηi

f ψi
dθj

dη
dη = Pr

ηi+1∫
ηi

[ψ1 f0,1 + ψ2 f0,2]ψi
dθj

dη
dη (52)

Pr Nb

ηi+1∫
ηi

φ′ψi
dθj

dη
dη = Pr Nb

ηi+1∫
ηi

[
ψ′1φ0,1 + ψ′2φ0,2

]
ψi

dθj

dη
dη (53)

Pr Nt

ηi+1∫
ηi

θ′ψi
dθj

dη
dη = Pr Nt

ηi+1∫
ηi

[
ψ′1θ0,1 + ψ′2θ0,2

]
ψi

dθj

dη
dη (54)

Sc

ηi+1∫
ηi

f ψi
dφj

dη
dη = Sc

ηi+1∫
ηi

[ψ1 f0,1 + ψ2 f0,2]ψi
dθj

dη
dη (55)

where
f = ψ1 f0,1 + ψ2 f0,2 (56)

f 1 = ψ1 f1,1 + ψ2 f1,2 (57)

φ′ = ψ′1φ0,1 + ψ′2φ0,2 (58)

θ′ = ψ′1θ0,1 + ψ′2θ0,2 (59)

and ψ1 and ψ2 are shape functions or components of the test function, ψ′1 and ψ′2 denote
derivatives of the shape function with respect to independent variable η. A numerical
integration based on Gauss Legendre Quadrature three-point formula is adopted to carry out
fast integration. Points in this numerical integration are the roots of third-degree polynomial

P3(x) =
1
2

(
5x3 − 3x

)
(60)

and weights in this integration 5
9 , 8

9 and 5
9 . In order to find more accurate derivatives of so-

lutions, a modified approach of the finite element method proposed in [43] was considered.
This approach employs different formulas for calculating skin friction coefficients, Local
Nusselt and Sherwood numbers. The discretization of these quantities is given as

R
1
2
ex C f = −2

[−31 f1 + 42 f1 − 3 f1
2h

+ λ

{
1 f 2
(−31 f1 + 42 f1 − 3 f1

2h

)
− 21 f11 f1

} ]
(61)

R−
1
2

ex Nux = −
(

1 +
4
3

Rd

)(−31θ + 42θ − 3θ

2h

)
(62)

R−
1
2

ex Shx =
−31φ + 42φ − 3φ

2h
(63)
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where 1 f , 1 f1, 1θ and 1φ denote the values of f , f1, θ and φ at the first grid point. The
standard or classical finite element method using first-degree polynomial provides first-
order accuracy of derivatives of solutions. In contrast, the modified approach given in [43]
provides at least second-order accuracy for derivatives of solutions subject to the condition
that the solution is at least second-order accurate.

4. Validations

Since Equations (8)–(10) are nonlinear ordinary differential equations, to handle non-
linear differential equations, an iterative procedure was adopted by fixing some quantities.
If the desired stopping criteria are fulfilled, iterations are stopped. The accuracy is checked
by finding the difference of solutions of Equations (9), (10), (26) and (27) at two consecutive
iterations and at each grid point. The stopping criteria can be expressed as∣∣∣Fk2

s,i − Fk2+1
s,i

∣∣∣ < ε (64)

where ε is a small number near zero and Fk
s,i denotes one of three dependent variables f , θ

and φ at some iteration, say k2 and at grid point i. The mesh-free study was also carried out
by constructing Table 1, which shows that the results are independent of h. Table 1 shows
the mesh-free study for the finite element method and Matlab solver bvp4c. The different
numbers of elements are considered with results computed over variations in the number
of elements, and changes in dependent variables can be seen in Table 1.

Table 1. Meshfree analysis for f , θ and φ with varying amounts of elements using = 0.9, Pr = 1.5,
Sc = 1.5, Ec = 0.4, Nb = 0.1, Nt = 0.1, Rd = 0.3, kp = 0.7, λ = 0.7, γ = 0.1.

No. of Elements/Nodes
f(0.84) θ(0.84) φ(0.84)

F.E.M bvp4c F.E.M bvp4c F.E.M bvp4c

50 0.2134 0.4341 0.7078 0.7355 0.6168 0.6034
100 0.4630 0.2942 0.8587 0.8934 0.7769 0.7509
150 0.5991 0.2190 0.9085 0.9403 0.8432 0.8172
200 0.6814 0.1738 0.9327 0.9606 0.8793 0.8556
250 0.7360 0.1439 0.9468 0.9715 0.9019 0.8807
300 0.7747 0.1227 0.9561 0.9780 0.9174 0.8984
350 0.8036 0.1069 0.9626 0.9823 0.9287 0.9115
400 0.8260 0.0948 0.9675 0.9853 0.9373 0.9216
450 0.8438 0.0851 0.9712 0.9875 0.9440 0.9297
500 0.8583 0.0771 0.9742 0.9891 0.9495 0.9362
600 0.8805 0.0650 0.9786 0.9915 0.9577 0.9462

For the verification of Matlab code and computed results from the modified finite
element method, a comparison was also made with the finite difference method. For
applying the classical approach of the finite difference method for Equations (9), (10), (26)
and (27), difference or discretization equations can be expressed in the forms:

fi − fi−1

h
=

1
2

(
f1i − f1(i−1)

)
(65)

(
1− λ f 2

I
)( f1(i+1)−2 f1i+ f1(i−1)

h2

)
= −2λ fi f1i

( f1(i+1)− f1(i−1)
2h

)
+ f 2

1i − fi

( f1(i+1)− f1(i−1)
2h

)
+
(
kp + M

)
f1i

(66)

(
1 +

4
3

Rd

)(
θi+1 − 2θi + θi−1

h2

)
= −Pr fi

(
θi+1 − θi−1

2h

)
−


Pr Nb

(
φi+1−φi−1

2h

)(
θi+1−θi−1

2h

)
−

Pr Nt

(
θi+1−θi−1

2h

)2
−

PrEc

( f1(i+1)− f1(i−1)
2h

)2

 (67)
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φi+1 − 2φi + φi−1

h2 = −Sc fi
(φi+1 − φi−1)

2h
− Nt

Nb

(
θi+1 − 2θi + θi−1

h2

)
+ Scγφi (68)

Equations (65)–(68) were solved by employing an iterative method. The iterative
method needs one initial guess and stops when the criteria are satisfied. Table 2 shows
the comparison of the classical and modified finite element method given in [43] and the
classical finite difference method for computing − f

′′
(0) with those results given in the

past research [44,45]. The modified finite element method uses second-order difference
formula for computing − f

′′
(0). The standard or classical finite element method with linear

polynomial interpolation uses the first-order difference formula.

Table 2. Comparison of presents approaches with past research for computing numerical values of
− f

′′
(0) using λ = 0 = M.

kp

−f”(0)

Ref. [45] Ref. [44]
Present

F.E.M M.F.E.M F.D.M

0.0 1.00000 1.00000 1.05175 1.13734 0.99419
0.5 1.22474487 1.01980 1.22244 1.33431 1.21340
1.0 1.41421356 1.11803 1.36634 1.50366 1.39664

5. Results and Discussions

The finite element method employed in this study for solving ordinary differential
equations is based on the Galerkin weighted residual method using weak formulations
for equations with order two. The linear elements were chosen with equal lengths. Any
numerical integration can be adopted for the computations of integrals due to quick cal-
culations. The considered finite element method uses two nodes for each element. Each
element produces a matrix–vector equation, and the assembly of each matrix equation
corresponding to each element gives a global matrix called a stiffness matrix. By comparing
the finite element method (F.E.M) with the finite difference method (F.D.M), it was con-
cluded that F.E.M consumes less time due to utilizing fewer iterations than those utilized
by F.D.M. One of the reasons behind this is the use of an iterative procedure with F.D.M.
that slows the whole procedure, and the solutions’ convergence was obtained by utilizing
many iterations. The F.E.M uses the linearized forms of nonlinear equations, and the
computations of results are also performed by solving matrix–vector equations from the
Matlab solver. The Matlab solver finds the exact solutions for matrix–vector equations,
whereas the F.D.M finds the solutions of nonlinear differential equations iteratively without
linearizing nonlinear equations.

Figure 1 shows the geometry of the considered problem. Figures 2–13 are drawn by
using the standard finite element method for solving differential Equations (9), (10), (26)
and (27) with boundary conditions (11). Figure 2 deliberates the impact of the magnetic
parameter on the velocity profile. Figure 2 shows that velocity decays by increasing
magnetic parameters. This growth of velocity profile is the consequence of resistance of
Lorenz force that enhances by increment in the magnetic parameter. The impact of the
Deborah number λ on the velocity profile is portrayed in Figure 3. The Deborah number
contains the relaxation time parameter, which states the time when the fluid obtains an
equilibrium state by applying stress. Larger values of the Deborah number give larger
relaxation time, which gives more resistivity of stress in the fluid or enhances the viscosity
of the fluid and, consequently, a slower velocity profile is obtained. The variation in porosity
parameter on velocity profile is deliberated in Figure 4. The velocity profile de-escalates by
enhancing the porosity parameter because the porosity parameter enhances the resistivity in
the flow, leading to decays in the velocity profile. Figure 5 shows the variation in the Prandtl
number on the temperature profile. The velocity profile de-escalates by rising values of the
Prandtl number. The higher Prandtl number is responsible for smaller thermal diffusivity
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because both have an inverse relationship. The slower thermal diffusivity reduces thermal
conductivity, which yields a slower temperature profile. Figure 6 shows the impact of
thermophoretic parameters on the temperature profile. The temperature profile escalates
by rising values of the thermophoretic parameter. This is due to the thermophoresis
phenomenon that tends to move the hot particles from the immediate vicinity of the plate to
its surroundings, and consequently, the temperature rises. Figure 7 deliberates the effect of
the Brownian motion parameter on the temperature profile. The temperature profile grows
by enhancing the Brownian motion parameter because the escalation in the Brownian
motion parameter is responsible for spreading the hotter particles due to the increase in
random movement of particles, which results in a temperature rise. The effect of the Eckert
number on temperature profile is portrayed in Figure 8. The temperature profile rises by
enhancing the values of the Eckert number. The increment in the Eckert number gives
rise to the temperature difference between wall and ambient temperature, and therefore
temperature rises. The effect of the radiation parameter on the temperature profile is shown
in Figure 9. The temperature rises by enhancing the radiation parameter because the energy
of the flow increases by incoming radiation. The impact of the Schmidt number on the
concentration profile is portrayed in Figure 10. The concentration profile gets down by
boosting the values of the Schmidt number. The de-escalation in the concentration profile
is the decay of mass diffusivity due to an increase in Schmidt number. Figure 11 shows the
thermophoretic parameter on the concentration profile. Rising values of thermophoretic
parameters boost the concentration profile. This happened due to the thermophoresis
phenomenon that tends to move nanoparticles from the immediate vicinity of the plate to
its surroundings, and thus concentration profile grows. Figure 12 portrays the variation
in the Brownian motion parameter on the concentration profile. The concentration profile
decays by enhancing the Brownian motion parameter. The boosting up of the Brownian
motion parameter gives the faster random movement of nanoparticles, resulting in decays
in the concentration profile. The effect of the reaction rate parameter on the concentration
profile is shown in Figure 13. From this Figure 13, it can be seen that the concentration
profile de-escalates by rising values of the reaction rate parameter because higher values
of the reaction rate parameter create impurity in the fluid responsible for decaying the
concentration profile.

Figure 1. Geometry of the problem.
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Figure 2. Effect of magnetic parameter M on velocity profile f ′ using λ = 0.1, kp = 0.1, Rd = 0.7,
Pr = 1.9, Ec = 0.1, Nb = 0.1, Nt = 0.1, Sc = 1.4, γ = 0.1.
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Figure 3. Effect of Deborah number λ on velocity profile f ′ using M = 0.5, kp = 0.5, Rd = 0.7,
Pr = 1.9, Ec = 0.1, Nb = 0.1, Nt = 0.1, Sc = 1.4, γ = 0.1.
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Figure 4. Effect of porosity parameter kp on velocity profile f ′ using λ = 0.1, M = 0.5, Rd = 0.7,
Pr = 1.9, Ec = 0.1, Nb = 0.1, Nt = 0.1, Sc = 1.4, γ = 0.1.
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Figure 5. Effect of Prandtl number Pr on temperature profile θ using kp = 0.5, M = 0.5, Rd = 0.7,
λ = 0.1, Ec = 0.1, Nb = 0.1, Nt = 0.3, Sc = 1.4, γ = 0.1.
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Figure 6. Effect of thermophoretic parameter Nt on temperature profile θ using kp = 0.5, M = 0.5,
Rd = 0.7, λ = 0.1, Ec = 0.1, Nb = 0.1, Pr = 1.9, Sc = 1.4, γ = 0.1.
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Figure 7. Effect of Brownian motion parameter Nb on temperature profile θ using kp = 0.5,
M = 0.5, Rd = 0.7, λ = 0.1, Ec = 0.1, Nt = 0.1, Pr = 1.9, Sc = 1.4, γ = 0.1.
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Figure 8. Effect of Eckert number Ec on temperature profile θ using kp = 0.5, M = 0.5, Rd = 0.7,
λ = 0.1, Nt = 0.3, Nb = 0.1, Pr = 1.9, Sc = 1.4, γ = 0.1.
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Figure 9. Effect of radiation parameter Rd on temperature profile θ using kp = 0.5, M = 0.5,
Ec = 0.4, λ = 0.7, Nt = 0.1, Nb = 0.1, Pr = 1.5, Sc = 1.5, γ = 0.1.
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Figure 10. Effect of Schmidt number Sc on concentration profile φ using kp = 0.5, M = 0.5,
Ec = 0.4, λ = 0.1, Nt = 0.1, Nb = 0.1, Pr = 1.5, Rd = 0.7, γ = 0.1.
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Figure 11. Effect of thermophoretic parameter Nt on concentration profile φ using kp = 0.5,
M = 0.5, Ec = 0.4, λ = 0.1, Sc = 1.4, Nb = 0.1, Pr = 1.5, Rd = 0.7, γ = 0.1.



Energies 2022, 15, 4713 17 of 22

Energies 2022, 15, x FOR PEER REVIEW 17 of 22 
 

 

 
Figure 11. Effect of thermophoretic parameter 𝑁  on concentration profile 𝜙 using 𝑘 = 0.5, 𝑀 =0.5, 𝐸 = 0.4, 𝜆 = 0.1, 𝑆 = 1.4, 𝑁 = 0.1, 𝑃 = 1.5, 𝑅 = 0.7, 𝛾 = 0.1. 

 
Figure 12. Effect of Brownian motion parameter 𝑁  on concentration profile 𝜙  using 𝑘 =0.5, 𝑀 = 0.5, 𝐸 = 0.4, 𝜆 = 0.1, 𝑆 = 1.4, 𝑁 = 0.1, 𝑃 = 1.5, 𝑅 = 0.7, 𝛾 = 0.1. 

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

η

φ(
η)

 

 

N
t
=0.1,0.2,0.3

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

η

φ(
η)

 

 

N
b
=0.1,0.2,0.3

Figure 12. Effect of Brownian motion parameter Nb on concentration profile φ using kp = 0.5,
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Figure 13. Effect of reaction rate parameter γ on concentration profile φ using kp = 0.5, M = 0.5,
Ec = 0.4, λ = 0.1, Sc = 1.5, Nt = 0.1, Pr = 1.5, Rd = 0.7, Nb = 0.1.
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grows by enhancing the Deborah number and magnetic parameter whereas Re−
1
2

x Nux
decays by de-escalating the Brownian motion parameter and thermophoretic parameter.

Table 3. Numerical values and comparisons of finite element methods and finite difference methods
using Pr = 1.5,= Sc, Ec = 0.4, Rd = 0.7, kp = 0.5, γ = 0.9.

λ M Nb Nt
Re

1
2
x Cf Re−

1
2

x Nux

F.E.M M.F.E.M F.D.M F.E.M M.F.E.M F.D.M

0.1 0.4 0.1 0.1 2.7109 2.9783 2.7641 0.5934 0.5765 0.3927
0.7 2.9009 3.1864 2.9978 0.5587 0.5416 0.3039
0.5 0.1 2.6790 2.9272 2.7176 0.5909 0.5742 0.3849

0.9 3.0802 3.4098 3.2292 0.5400 0.5228 0.2557
0.4 0.1 2.8385 3.1178 2.9210 0.5695 0.5525 0.3322

0.2 2.8385 3.1178 2.9210 0.5389 0.5192 0.2970
0.1 0.01 2.8385 3.1178 2.9210 0.5875 0.5708 0.3539

0.2 2.8385 3.1178 2.9210 0.5502 0.5330 0.3090

Simulations were also carried out by employing a finite element method for solving
governing equations of heat transfer of Newtonian fluid under the effects of radiations
over moving surface towards x-axis. The geometry consists of a four-sided rectangular
shape in which two sides are used as input and output, one side is a moving boundary and
the rest have a no-free boundary condition. Figures 14–16 were drawn by solving partial
differential equations with different velocities of the bottom surface. The momentum and
thermal boundary layers can be seen in Figures 14–16.

Figure 14. (a) Surface plot for velocity; (b) streamlines; (c) surface plot for temperature; (d) isothermal
contours using M = 0.5, kp = 1, Uw = 0.01.



Energies 2022, 15, 4713 19 of 22

Figure 15. (a) Surface plot for velocity; (b) streamlines; (c) surface plot for temperature; (d) isothermal
contours using M = 0.5, kp = 1, Uw = 0.05.

Figure 16. (a) Surface plot for velocity; (b) streamlines; (c) surface plot for temperature; (d) isothermal
contours using M = 0.5, kp = 1, Uw = 0.1.

6. Conclusions

The finite element method was utilized for heat and mass transfer of non-Newtonian
fluid flow over the sheet. The linear interpolation polynomials were considered in the
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application procedure of the finite element method. The results were also compared with
those given in past research and the classical finite difference method. In addition, the
simulations for heat transfer of Newtonian fluid flow model over stretching sheet were also
provided by using software that implements finite element method. By using the considered
iterative method, the classical finite difference method consumed more iterations, and it
was computationally expensive but gave better accuracy. The concluded points can be
expressed as:

• Velocity profile was de-escalated by escalating magnetic parameter, Deborah number
and porosity parameter;

• The temperature profile was grown by rising values of radiation parameters, Brownian
motion and thermophoretic parameters;

• The concentration profile was escalated by enhancing the Brownian motion and
thermophoretic parameters and de-escalating by rising Schmidt number and reaction
rate parameters.

Further, the finite element method considered in this work can be employed to solve
efficiently nonlinear problems of similar type that arise in computational fluid dynamics
with some extra effects. Following the completion of this work, it will be possible to propose
other applications for the currently employed methodology, if desired [46–49]. In addition,
the developed method is easy to use and can solve a wider range of differential equations
in both practice and theory.
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