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1 Introduction

The equations of linear elasticity can be written as a system of equations of
the form
∗ This work supported by NSF grants DMS03-08347 and DMS06-09755. 9/8/06.
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Aσ = ε(u), div σ = f in Ω. (1)

Here the unknowns σ and u denote the stress and displacement fields caused
by a body force f acting on a linearly elastic body which occupies a region
Ω ⊂ Rn, with boundary ∂Ω. Then σ takes values in the space S = Rn×n

sym

of symmetric n × n matrices and u takes values in V = Rn. The differential
operator ε is the symmetric part of the gradient, (i.e., (ε(u))ij = (∂ui/∂xj +
∂uj/∂xi)/2), div denotes the divergence operator, applied row-wise, and the
compliance tensor A = A(x) : S → S is a bounded and symmetric, uniformly
positive definite operator reflecting the properties of the material at each
point. In the isotropic case, the mapping σ 7→ Aσ has the form

Aσ =
1
2µ

(
σ − λ

2µ + nλ
tr(σ)I

)
,

where λ(x), µ(x) are positive scalar coefficients, the Lamé coefficients, and
tr denotes the trace. If the body is clamped on the boundary ∂Ω, then the
proper boundary condition for the system 1 is u = 0 on ∂Ω. For simplicity, this
boundary condition will be assumed throughout the discussion here. However,
there are issues that arise when other boundary conditions are assumed (e.g.,,
traction boundary conditions σn = 0). The modifications needed to deal with
such boundary conditions are discussed in detail in [9].

In the case when A is invertible, i.e., σ = A−1ε(u) = Cε(u), then for
isotropic elasticity, Cτ = 2µ(τ +λ tr τI). We may then formulate the elasticity
system weakly in the form: Find σ ∈ L2(Ω, S), u ∈ H̊1(Ω; V) such that∫

Ω

σ : τ dx−
∫

Ω

Cε(u) : τ dx = 0, τ ∈ L2(Ω, S),∫
Ω

σ : ε(v) dx =
∫

Ω

f · v dx, v ∈ H̊1(Ω; V),

where σ : τ =
∑n

i,j=1 σijτij . Note that in this case, we may eliminate σ

completely to obtain the pure displacement formulation: Find u ∈ H̊1(Ω; V)
such that ∫

Ω

Cε(u) : ε(v) dx =
∫

Ω

f · v dx, v ∈ H̊1(Ω; V).

As the material becomes incompressible, i.e., λ →∞, this will not be a good
formulation, since the operator norm of C is also approaching infinity. Instead,
we can consider a formulation involving u and a new variable p = (λ/[2µ +
nλ]) tr σ. Taking the trace of the equation Aσ = ε(u), we find that div u =
λ−1p. Then we may write σ = 2µε(u) + pI, and thus obtain the variational
formulation: Find u ∈ H̊1(Ω; V), p ∈ L2

0(Ω) = {p ∈ L2(Ω) :
∫

Ω
p dx = 0},

such that∫
Ω

2µ ε(u) : ε(v) dx +
∫

Ω

p div v dx =
∫

Ω

f · v dx, v ∈ H̊1(Ω; V),∫
Ω

div u q dx =
∫

Ω

λ−1p q dx, q ∈ L2
0(Ω).
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This formulation makes sense even for the limit λ →∞ and in that case gives
the stationary Stokes equations. Even in the case of nearly incompressible
elasticity, one should apply methods that are stable for the Stokes equations.
Since such methods will be considered in other lectures, we will not consider
them here. Instead, we now turn to other types of weak formulations involving
both σ and u. One of these is to seek σ ∈ H(div, Ω; S), the space of square-
integrable symmetric matrix fields with square-integrable divergence, and u ∈
L2(Ω; V), satisfying∫

Ω

(Aσ : τ + div τ · u) dx = 0, τ ∈ H(div, Ω; S), (2)∫
Ω

div σ · v dx =
∫

Ω

f · v dx, v ∈ L2(Ω; V).

A second weak formulation, that enforces the symmetry weakly, seeks σ ∈
H(div, Ω; M), u ∈ L2(Ω; V), and p ∈ L2(Ω; K) satisfying∫

Ω

(Aσ : τ + div τ · u + τ : p) dx = 0, τ ∈ H(div, Ω; M),∫
Ω

div σ · v dx =
∫

Ω

f · v dx, v ∈ L2(Ω; V), (3)∫
Ω

σ : q dx = 0, q ∈ L2(Ω; K),

where M is the space of n × n matrices, K the subspace of skew-symmetric
matrices, and the compliance tensor A(x) is now considered as a symmetric
and positive definite operator mapping M into M.

Stable finite element discretizations with reasonable computational com-
plexity based on the variational formulation 2 have proved very difficult to
construct. In particular, it is not possible to simply take multiple copies
of standard finite elements for scalar elliptic problems, since the resulting
stress matrix will not be symmetric. One successful approach has been to use
composite elements, in which the approximate displacement space consists of
piecewise polynomials with respect to one triangulation of the domain, while
the approximate stress space consists of piecewise polynomials with respect
to a different, more refined, triangulation [22, 30, 24, 4]. In two space dimen-
sions, the first stable finite elements with polynomial shape functions were
presented in [10]. The simplest and lowest order spaces in the family of spaces
constructed consist of discontinuous piecewise linear vector fields for displace-
ments and a stress space which is locally the span of piecewise quadratic
matrix fields and the cubic matrix fields that are divergence-free. Hence, it
takes 24 stress and six displacement degrees of freedom to determine an ele-
ment on a given triangle. A simpler first-order element pair with 21 stress and
three displacement degrees of freedom per triangle is also constructed in [10].
All of these elements require vertex degrees of freedom. To obtain simpler ele-
ments, the same authors also considered nonconforming elements in [12]. One
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element constructed there approximates the stress by a nonconforming piece-
wise quadratic with 15 degrees of freedom and approximates the displacement
field by discontinuous linear vectors (6 local degrees of freedom). A second el-
ement reduces the number of degrees of freedom to 12 and 3, respectively. See
also [11] for an overview. In three dimensions, a piecewise quartic stress space
is constructed with 162 degrees of freedom on each tetrahedron in [1].

Because of the lack of suitable mixed elasticity elements that strongly
impose the symmetry of the stresses, a number of authors have developed
approximation schemes based on the weak symmetry formulation 3: see [22],
[2], [3], [27], [28], [29], [5], [25], [26], [21]. Although 2 and 3 are equivalent on
the continuous level, an approximation scheme based on 3 may not produce
a symmetric approximation to the stress tensor, depending on the choices of
finite element spaces.

These notes will mainly concentrate on the development and analysis of
finite element approximations of the equations of linear elasticity based on
the mixed formulation 3 with weak symmetry. Using a generalization of an
approach first developed in [8] in two dimensions and [6] in three dimensions,
and then expanded further in [9], we establish a systematic way to obtain sta-
ble finite element approximation schemes. The families of methods developed
in [8] and [6] are the prototype examples and we show that they satisfy the
conditions we develop for stability. However, the somewhat more general ap-
proach we present here allows us to analyze some of the previously proposed
schemes discussed above in the same systematic manner and also leads to a
new scheme. Before considering weakly symmetric schemes, we first discuss
some methods based on the strong symmetry formulation 2.

2 Finite element methods with strong symmetry

In this section, we consider finite element methods based on the variational
formulation 2. Thus, we let Σh ⊂ H(div, Ω; S) and V h ⊂ L2(Ω; V) and seek
σh ∈ Σh and uh ∈ V h satisfying∫

Ω

(Aσh : τ+div τ ·uh) dx = 0, τ ∈ Σh,

∫
Ω

div σh·v dx =
∫

Ω

f ·v dx, v ∈ V h.

This is in a form to which one may apply the standard analysis of mixed finite
element theory (e.g., [14, 15, 20, 18]. We note that in the case of isotropic
elasticity, if we write σ = σD + (1/n) tr σI, where trσD = 0, then ‖σ‖2

0 =
‖σD‖2

0 + (1/n)‖ trσ‖2
0 and so∫

Ω

Aσ : σ dx =
∫

Ω

[
1
2µ

σD : σD +
1

2µ + nλ
(trσ)2

]
dx.

Thus, this form is not uniformly coercive as λ → ∞. However, for all σ
satisfying
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Ω

trσ dx = 0, div σ = 0, (4)

one can show (cf. [15]) that ‖ trσ‖0 ≤ C‖σD‖0, and hence (Aσ, σ) ≥
α‖σ‖2

H(div) for all σ satisfying 4, with α independent of λ. This is what is
needed to satisfy the first Brezzi condition with a constant independent of λ.
A simple result of mixed finite element theory, giving conditions under which
the second Brezzi condition is satisfied, and that fits the methods that we will
consider here, is the following.

Theorem 2.1 Suppose that for every τ ∈ H1(Ω), there exists Πhτ ∈ Σh

satisfying∫
Ω

div(τ −Πhτ) · v dx = 0, v ∈ V h, ‖Πhτ‖H(div) ≤ C‖τ‖H(div).

Further suppose that for all τ ∈ Σh satisfying
∫

Ω
div τ · v dx = 0, v ∈ V h,

that div τ = 0. Then for all vh ∈ V h,

‖σ − σh‖0 ≤ C‖σ −Πhσ‖0, ‖u− uh‖0 ≤ C(‖u− vh‖0 + ‖σ − σh‖0).

To describe some finite element methods based on the strong symmetry
formulation, we let Pk(X, Y ) denote the space of polynomial functions on X
of degree at most k and taking values in Y .

2.1 Composite elements

One of the first methods based on the symmetric formulation was the method
of [30] analyzed in [24]. We describe below only the triangular element (there
was also a similar quadrilateral element). The basic idea is to approximate the
stresses by a composite finite element. Starting from a mesh Th of triangles,
one connects the barycenter of each triangle K to the three vertices to form
a composite element made up of three triangles, i.e., K = T1 ∪ T2 ∪ T3. We
then define

Σh = {τ ∈ H(div, Ω; S) : τ |Ti
∈ P1(Ti, S)},

V h = {v ∈ L2(Ω) : v|K ∈ P1(K, R2}.

Composite
Element q q

qq
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Thus the displacements are defined on the coarse mesh Th. By the defini-
tion of Σh|K , we start from a space of 27 degrees of freedom, on which we
impose at most 12 constraints that require that τn be continuous across each
of the three internal edges of K. In fact, these constraints are all independent.
Then, a key point is to show that on each K, τ is uniquely determined by
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the following 15 degrees of freedom (i) the values of τ · n at two points on
each edge of K and (ii)

∫
K

τij dx, i, j = 1, 2. It is then easy to check that
if

∫
K

div τ · v dx = 0 for v ∈ P1(K, R2), then div τ = 0. If we define Πh

to correspond to the degrees of freedom, then it is also easy to check that∫
K

div(τ−Πhτ) ·v dx = 0 for v ∈ P1(K, R2). After establishing the H(div, Ω)
norm bound on Πhσ, one easily obtains the error estimates:

‖σ − σh‖0 ≤ Ch2‖σ‖2, ‖u− uh‖0 ≤ Ch2(‖σ‖2 + ‖u‖2).

The use of composite finite elements to approximate the stress tensor was
extended to a family of elements in [4]. For k ≥ 2,

Σh = {τ ∈ H(div, Ω; S) : τ |Ti ∈ Pk(Ti, S)},
V h = {v ∈ L2(Ω) : v|K ∈ Pk−1(K, R2)}.

The space Σh is constructed so that if τ ∈ Σh|K , then τn will be continuous
across internal edges, and in addition div τ ∈ Pk−1(K, R2), i.e., it is a vector
polynomial on K, not just on each of the Ti.

The degrees of freedom for an element τ ∈ Σh on the triangle K are chosen
to be ∫

e

(τn) · p ds, p ∈ Pk(e, R2), for each edge e,∫
K

τ : % dx, % ∈ ε(Pk−1(K, R2)) + airy(λ2
1λ

2
1λ

2
3Pk−4(K, R)),

where the λi are the barycentric coordinates of K and

Jφ ≡ airy φ =
(

∂2φ/∂y2 −∂2φ/∂x∂y
−∂2φ/∂x∂y ∂2φ/∂x2

)
.

One can show that dim Σh|K = (3/2)k2 +(9/2)k +6. In the lowest order case
k = 2, there are 18 edge degrees of freedom and 3 interior degrees of freedom
on each macro-triangle K. For the general case k ≥ 2, it is shown that

‖u− uh‖0 ≤ Chr‖u‖r, 2 ≤ r ≤ k,

‖σ − σh‖0 ≤ Chr‖u‖r+1, 1 ≤ r ≤ k + 1,

‖div(σ − σh)‖0 ≤ Chr‖div σ‖r, 0 ≤ r ≤ k.

2.2 Non-composite elements of Arnold and Winther

We now turn to the more recent methods that produce approximations to
both stresses and displacements that are polynomial on each triangle T ∈ Th

(since there are no macro triangles, we no longer use K to denote a generic
triangle). The approach of [10] is based on the use of discrete differential
complexes and the close relation between the construction of stable mixed
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finite element methods for the approximation of the Laplacian and discrete
versions of the de Rham complex

R ⊂−→ C∞(Ω) curl−−−→ C∞(Ω; R2) div−−→ C∞(Ω) → 0.

If we assume that Ω is simply-connected, this sequence is exact (i.e., the range
of each map is the kernel of the following one). As discussed later in this paper,
many of the standard spaces leading to stable mixed finite element methods
for Laplace’s equation have the property that the following diagram commutes

R ⊂−−→ C∞(Ω) curl−−−→ C∞(Ω, R2) div−−→ C∞(Ω) → 0

id

y Ih

y Πh

y Ph

y
R ⊂−−→ Qh

curl−−−→ Σh
div−−→ Vh → 0

, (5)

where Ih, Πh, Ph are the natural interpolation operators into the correspond-
ing finite element spaces Qh, Σh, and Vh. For example, the simplest case is
when Qh is the space of continuous piecewise linear functions, Σh the space
of lowest order Raviart-Thomas elements, and Vh the space of piecewise con-
stants. The right half of the commuting diagram, involving Πh and Ph is a
key result in establishing the second Brezzi stability condition. See [7],and [9]
for further discussion of this idea.

The starting point of [10] is that there is also an elasticity differential
complex, which summarizes important aspects of the structure of the plane
elasticity system, i.e.,

P1(Ω) ⊂−→ C∞(Ω) J−→ C∞(Ω, S) div−−→ C∞(Ω, R2) → 0. (6)

Again assuming that Ω is simply-connected, this sequence is also exact. Thus
this sequence encodes the fact that every smooth vector-field is the diver-
gence of a smooth symmetric matrix-field, that the divergence-free symmetric
matrix-fields are precisely those that can be written as the Airy stress-field
associated to some scalar potential, and that the only potentials for which
the corresponding Airy stress vanishes are the linear polynomials. The result
stated above is in terms of smooth functions, but analogous results hold with
less smoothness. For example, the sequence

P1(Ω) ⊂−→ H2(Ω) J−→ H(div, Ω; S) div−−→ L2(Ω, R2) → 0 (7)

is also exact. The well-posedness of the continuous problem, i.e., that for every
f ∈ L2(Ω, R2), there exists a unique (σ, u) ∈ H(div, Ω; S)× L2(Ω, R2) which
is a critical point of (1.1), follows from this.

Just as there is a close relation between the construction of stable mixed
finite element methods for the approximation of the Laplacian and discrete
versions of the de Rham complex, there is also a close relation between mixed
finite elements for linear elasticity and discretization of the elasticity complex,
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given above. The stable pairs of finite element spaces (Σh,V h) introduced in
[10] have the property that div Σh = V h, i.e., the short sequence

Σh
div−−→ V h → 0 (8)

is exact. Moreover, if there are projections Ph : C∞(Ω, R2) 7→ V h and Πh :
C∞(Ω, S) 7→ Σh defined by the degrees of freedom that determine the finite
element spaces, it can be shown that the following diagram commutes:

C∞(Ω, S) div−−→ C∞(Ω, R2)

Πh

y Ph

y
Σh

div−−→ V h

(9)

The stability of the mixed method follows from the exactness of 8, the com-
mutativity of 9, and the well-posedness of the continuous problem.

Information about the construction of such finite element spaces can be
gained by completing the sequence 8 to a sequence analogous to 6. For this
purpose, we set Qh = {q ∈ H2(Ω) : Jq ∈ Σh}. Note Qh is a finite element
approximation of H2(Ω). Moreover, there is a natural interpolation operator
Ih : C∞(Ω) 7→ Qh so that the following diagram with exact rows commutes:

P1(Ω) ⊂−−→ C∞(Ω) J−−→ C∞(Ω, S) div−−→ C∞(Ω, R2) → 0

id

y Ih

y Πh

y Ph

y
P1(Ω) ⊂−−→ Qh

J−−→ Σh
div−−→ V h → 0

For a description of this construction, see [10]. As discussed there, under quite
general conditions, the existence of a stable pair of spaces (Σh,V h) approx-
imating H(div, Ω; S) × L2(Ω, R2), implies the existence of a finite element
approximation Qh of H2(Ω) related to Σh and V h through the diagram
above. The fact that the space Qh requires C1(Ω) finite elements represents
a substantial obstruction to the construction of stable mixed elements, and
in part accounts for their slow development. In fact, the lowest order element
proposed in [10] corresponds to choosing Qh to be the Argyris space of C1

piecewise quintic polynomials (the simplest choice). Since JQh ⊂ Σh, one
then sees that Σh must be a piecewise cubic space, and since the Argyris
space has second derivative degrees of freedom at the vertices, the degrees of
freedom for Σh will include vertex degrees of freedom, not usually expected
for subspaces of H(div;Ω).

The family of elements developed in [10] chooses for k ≥ 1, the local
degrees of freedom for Σh to be

ΣT = Pk+1(T, S) + {τ ∈ Pk+2(T, S) : div τ = 0}
= {τ ∈ Pk+2(T, S) : div τ ∈ Pk(T, R2)}, VT = Pk(T, R2).
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Now dim VT = (k + 2)(k + 1) and it is shown in [10] that dim ΣT =
(3k2 + 17k + 28)/2 and that a unisolvent set of local degrees of freedom is
given by

• the values of 3 components of τ(x) at each vertex x of T (9 degrees of
freedom)

• the values of the moments of degree at most k of the two normal compo-
nents of τ on each edge e of T (6k + 6 degrees of freedom)

• the value of the moments
∫

T
τ : φdx, φ ∈ Pk(T, R2)+airy(b2

TPk−2(T, R)).

For this family of elements, it is shown in [10] that

‖σ − σh‖0 ≤ Chr‖σ‖r, 1 ≤ r ≤ k + 2,

‖div(σ − σh)‖0 ≤ Chr‖div σ‖r, 0 ≤ r ≤ k + 1,

‖u− uh‖0 ≤ Chr‖u‖r+1, 1 ≤ r ≤ k + 1.

There is a variant of the lowest degree (k = 1) element involving fewer degrees
of freedom. In this element, one chooses VT to be the space of infinitesimal
rigid motions on T , i.e., vector functions of the form (a − by, c + bx). Then
ΣT = {τ ∈ P3(T, S) : div τ ∈ VT }.

The element diagram for the choice k = 1 and a simplified element are
depicted below.

Fig. 1. k = 1 and simplified Arnold-Winther elements

In [12], the authors obtain simpler elements with fewer degrees of freedom,
and also avoid the use of vertex degrees of freedom by developing nonconform-
ing elements. Corresponding to the choice VT = P1(T, R2), one chooses for
the stress shape functions

ΣT = {τ ∈ P2(T, S) : n · τn ∈ P1(e, R), for each edge e of T}.

The space ΣT has dimension 15, with degrees of freedom given by

• the values of the moments of degree 0 and 1 of the two normal components
of τ on each edge e of T (12 degrees of freedom),

• the value of the three components of the moment of degree 0 of τ on T (3
degrees of freedom).

Note that this element is a nonconforming approximation of H(div, Ω; S),
since although t · τn may be quadratic on an edge, only its two lowest order
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moments are determined on each edge. Hence, τn may not be continuous
across element boundaries. This space may be simplified in a manner similar
to the lowest order conforming element, i.e., the displacement space may be
chosen to be piecewise rigid motions and the stress space then reduced by
requiring that the divergence be a rigid motion on each triangle. The local
dimension of the resulting space is 12 and the first two moments of the normal
traction on each edge form a unisolvent set of degrees of freedom.

Fig. 2. Two nonconforming Arnold-Winther elements

As noted earlier, for k = 1, the corresponding space Qh is the Argyris space
consisting of C1 piecewise quintic polynomials. There is also an analogous
relationship for the composite elements discussed earlier. For the element of
[24], the space Qh is the Clough-Tocher composite H2 element and for the
element family of [4], the Qh spaces are the higher order composite elements
of [17].

Fig. 3. Qh spaces for k = 1 conforming element, nonconforming element, and
composite element of [24]

The remainder of these notes will be devoted to the development and
analysis of mixed finite element methods based on the formulation 3 of the
equations of elasticity with weak symmetry. An important advantage of such
an approach is that it allows us to approximate the stress matrix by n copies
of standard finite element approximations of H(div, Ω) used to discretize
scalar second order elliptic problems. In fact, to develop our approximation
schemes for 3, we will heavily exploit the many close connections between
these two problems. Although there is some overhead to the development,
much of the structure of these connections is most clearly seen in the language
of differential forms. Thus, we devote the next section to a brief overview of
the necessary background material.
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3 Exterior calculus on Rn

To simplify matters, we will consider exterior calculus on Rn, and summarize
only the specific results we will need.

3.1 Differential forms

Suppose that Ω is an open subset of Rn. For 0 ≤ k ≤ n, we let Λk denote the
space of smooth differential k-forms of Ω, i.e., Λk = Λk(Ω) = C∞(Ω; Altk V),
where Altk V denotes the vector space of alternating k-linear maps on V. If
ω ∈ Λk(Ω), this means that at each point x ∈ Ω, there is a map ωx ∈ Altk V,
i.e, ωx assigns to each k − tuple of vectors v1, . . . , vk of V, a real number
ωx(v1, . . . , vk) with the mapping linear in each argument and reversing sign
when two arguments are interchanged.

A general element of Λk(Ω) may be written

ωx =
∑

1≤σ(1)<···<σ(k)≤n

aσdxσ(1) ∧ · · · ∧ dxσ(k),

where the aσ ∈ C∞(Ω). If we allow instead aσ ∈ Cp(Ω), aσ ∈ L2(Ω), aσ ∈
Hs(Ω), etc., we obtain the spaces CpΛ(Ω), L2Λ(Ω), HsΛ(Ω), etc. Thus, when
n = 2, for k = 0, 1, 2, ω ∈ Λk(Ω) will have the respective forms

w, w1dx1 + w2dx2, w dx1 ∧ dx2.

To see the connection between differential forms and scalar and vector-valued
functions, we may identify w ∈ Λ0(Ω) and w dx1 ∧ dx2 ∈ Λ2(Ω) with the
function w ∈ C∞(Ω) and w1dx1 + w2dx2 ∈ Λ1(Ω) with the vector (w1, w2)
or the vector (−w2, w1) ∈ C∞(Ω; R2). The associated fields are called proxy
fields for the forms.

When n = 3, for k = 0, 1, 2, 3, ω ∈ Λk(Ω) will have the respective forms

w, w1dx1 + w2dx2 + w3dx3, w1dx2 ∧ dx3 − w2dx1 ∧ dx3 + w3dx1 ∧ dx2,

w dx1 ∧ dx2 ∧ dx3.

In this case, we may identify w ∈ Λ0(Ω) and w dx1 ∧ dx2 ∧ dx3 ∈ Λ3(Ω)
with the function w ∈ C∞(Ω) and w1dx1 + w2dx2 + w3dx3 or w1dx2 ∧ dx3 −
w2dx1 ∧ dx3 + w3dx1 ∧ dx2 with the vector (w1, w2, w3) ∈ C∞(Ω; R2). The
correspondences are listed in Table 1.

To evaluate ωx(v1, · · · , vk), we need a formula for evaluating the k-form
dxσ(1) ∧ · · · ∧ dxσ(k)(v1, . . . , vk). Rather than presenting the general case, we
note that for v, w, z ∈ Rn,

dxi(v) = vi, dxi ∧ dxj(v, w) = viwj − vjwi,

and for n = 3, dx1 ∧ dx2 ∧ dx3(v, w, z) = det(v|w|z).
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Table 1. Correspondence between alternating algebraic forms on R3

and scalars/vectors

Alt0 R3 = R c ↔ c

Alt1 R3 ∼=−→ R3 u1 dx1 + u2 dx2 + u3 dx3 ↔ u

Alt2 R3 ∼=−→ R3 u3 dx1 ∧ dx2 − u2 dx1 ∧ dx3

+u1 dx2 ∧ dx3 ↔ u

Alt3 R3 ∼=−→ R c dx1 ∧ dx2 ∧ dx3 ↔ c

For ω ∈ Altj V and η ∈ Altk V , the exterior product or wedge product ω ∧
η ∈ Altj+k V is bilinear and associative, and satisfies the anti-commutativity
condition

η ∧ ω = (−1)jkω ∧ η, ω ∈ Altj V, η ∈ Altk V.

Thus, dxi ∧ dxj = −dxj ∧ dxi and so dxi ∧ dxi = 0.
If ω =

∑n
i=1 widxi ∈ Λ1(Ω) and η ∈ Λ0(Ω), then ω ∧ η simply multiplies

each of the coefficients wi by η. If η =
∑n

i=1 ηidxi ∈ Λ1(Ω), then from the
bilinearity and antisymmetry, we have

ω ∧ η = w1η1dx1 ∧ dx1 + w1η2dx1 ∧ dx2 + w2η1dx2 ∧ dx1 + w2η1dx2 ∧ dx2

= (w1η2 − w2η1)dx1 ∧ dx2, n = 2,

ω ∧ η = (w1η2 − w2η1)dx1 ∧ dx2 + (w1η3 − w3η1)dx1 ∧ dx3

+ (w2η3 − w3η2)dx2 ∧ dx3, n = 3.

Finally, if η ∈ Λ2(Ω) = η1dx2 ∧ dx3 − η2dx1 ∧ dx3 + η3dx1 ∧ dx2, then

ω ∧ η = (w1η1 + w2η2 + w3η3)dx1 ∧ dx2 ∧ dx3.

One can give a general formula for the wedge product, which we omit here.
If ωx and ηx ∈ Λk(Ω) are given by∑

1≤σ(1)<···<σ(k)≤n

aσdxσ(1)∧· · ·∧dxσ(k),
∑

1≤σ(1)<···<σ(k)≤n

bσdxσ(1)∧· · ·∧dxσ(k),

respectively, we can define the inner products

〈ωx, ηx〉 =
∑

1≤σ(1)<···<σ(k)≤n

aσbσ, 〈ω, η〉 =
∫

Ω

〈ωx, ηx〉dx1 ∧ · · · ∧ dxn,

where dx1 ∧ · · · ∧ dxn is the volume form.
A key object in our presentation is the exterior derivative d = dk :

Λk(Ω) → Λk+1(Ω), defined by

d
∑

aσdxσ(1) ∧ · · · ∧ dxσ(k) =
∑

σ

n∑
i=1

∂aσ

∂xi
dxi ∧ dxσ(1) ∧ · · · ∧ dxσ(k).
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Table 2. Correspondences between differential forms ω on Ω ⊂ R3 and
scalar/vector fields w on Ω.

k Λk(Ω) HΛk(Ω) dω

0 C∞(Ω) H1(Ω) gradw
1 C∞(Ω; R3) H(curl, Ω; R3) curlw
2 C∞(Ω; R3) H(div, Ω; R3) div w
3 C∞(Ω) L2(Ω) 0

As we shall see below, the exterior derivative operator d corresponds to the
standard differential operators grad, curl, div, and rot.

When n = 2, if ω ∈ Λ0(Ω), then d0ω = ∂w/∂x1dx1+∂w/∂x2dx2 ∈ Λ1(Ω).
Identifying ∂w/∂x1dx1 + ∂w/∂x2dx2 with the vector (∂w/∂x1, ∂w/∂x2), d0

corresponds to grad. If instead, we identify ∂w/∂x1dx1 + ∂w/∂x2dx2 with
the vector (−∂w/∂x2, ∂w/∂x1), then d0 corresponds to curl.

If µ = w1dx1 + w2dx2 ∈ Λ1(Ω), then d1µ = (∂w2/∂x1 − ∂w1/∂x2)dx1 ∧
dx2 ∈ Λ2(Ω). If we identify w1dx1 + w2dx2 with the vector (w1, w2), then
d1 corresponds to rot. If instead, we identify w1dx1 + w2dx2 with the
vector(−w2, w1), then d1 corresponds to −div.

When n = 3, if ω ∈ Λ0(Ω), then d0ω = ∂w/∂x1dx1 + ∂w/∂x2dx2 +
∂w/∂x3dx3 ∈ Λ1(Ω). Identifying ∂w/∂x1dx1+∂w/∂x2dx2+∂w/∂x3dx3 with
(∂w/∂x1, ∂w/∂x2, ∂w/∂x3), d0 corresponds to grad. If µ = w1dx1 +w2dx2 +
w3dx3 ∈ Λ1(Ω), then d1µ = (∂w3/∂x2 − ∂w2/∂x3)dx2 ∧ dx3 − (∂w1/∂x3 −
∂w3/∂x1)dx1 ∧ dx3 + (∂w2/∂x1 − ∂w1/∂x2)dx1 ∧ dx2 ∈ Λ2(Ω). Identifying
w1dx1 + w2dx2 + w3dx3 with the vector (w1, w2, w3), d1 corresponds to curl.
Finally, if µ = w1dx2 ∧ dx3 − w2dx1 ∧ dx3 + w3dx1 ∧ dx2 ∈ Λ2(Ω), then
d2µ = (∂w1/∂x1+∂w2/∂x2+∂w3/∂x3)dx1∧dx2∧dx3 ∈ Λ3(Ω). Identifying µ
with (w1, w2, w3), d2 corresponds to div. Table 2 summarizes correspondences
between differential forms and their proxy fields in the case Ω ⊂ R3.

An important role in our analysis is played by the de Rham sequence, the
sequence of spaces and mappings given in the notation of differential forms
by:

R ⊂−→ Λ0(Ω) d0−→ Λ1(Ω) d1−→ · · · dn−1−−−→ Λn(Ω) → 0.

By introducing proxy fields and the usual differential operators, the de Rham
complex (and its L2 version) take the following forms. For Ω ⊂ R3,

R ⊂−→ C∞(Ω)
grad−−−→ C∞(Ω; R3) curl−−−→ C∞(Ω; R3) div−−→ C∞(Ω) → 0,

R ⊂−→ H1(Ω)
grad−−−→ H(curl, Ω; R3) curl−−−→ H(div, Ω; R3) div−−→ L2(Ω) → 0.

For Ω ⊂ R2, the de Rham complex becomes

R ⊂−→ C∞(Ω)
grad−−−→ C∞(Ω; R2) rot−−→ C∞(Ω) → 0,

or
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R ⊂−→ C∞(Ω) curl−−−→ C∞(Ω; R2) div−−→ C∞(Ω) → 0,

depending on whether we identify w1dx1 + w2dx2 ∈ Λ1(Ω) with the vector
(w1, w2) or the vector (−w2, w1). There are also analogous L2 complexes.

4 Basic finite element spaces and their properties

We now turn to the definition of the finite element spaces we shall use in our
approximation schemes and their properties. For this we follow the approach
developed in [9]. We begin by defining Pr as the space of polynomials in n
variables of degree at most r and PrΛ

k as the space of differential k-forms
with coefficients belonging to Pr. Let Th be a triangulation of Ω by n + 1
simplices T and set

PrΛ
k(Th) = {ω ∈ HΛk(Ω) : ωT ∈ PrΛ

k(T ) ∀T ∈ Th}, r ≥ 0

P−r Λk(Th) = {ω ∈ HΛk(Ω) : ωT ∈ P−r Λk(T ) ∀T ∈ Th}, r ≥ 1,

where P−r Λk(T ) := Pr−1Λ
k(T ) + κPr−1Λ

k+1(T ) and κ = κk+1 : Λk+1(T ) →
Λk(T ) is the Koszul differential defined for ω =

∑
σ aσdxσ(1)∧· · ·∧dxσ(k+1) ∈

Λk+1 by

κω =
∑

σ

k+1∑
i=1

(−1)i+1aσxσ(i)dxσ(1) ∧ · · · ∧ d̂xσ(i) ∧ · · ·dxσ(k+1),

where the notation d̂xσ(i) means that the term is omitted in the sum. Note
that κkκk+1 = 0, and one can show that the Koszul complex

0 → Pr−nΛn(Ω) κn−−→ Pr−n+1Λ
n−1(Ω)

κn−1−−−→ · · · κ1−→ PrΛ
0(Ω) → 0,

is exact. For Ω ⊂ R3, this complex becomes

0 → Pr−3(Ω) x−→ Pr−2(Ω; R3) ×x−−→ Pr−1(Ω; R3) ·x−→ Pr(Ω) → 0.

Comparing to the corresponding polynomial de Rham complex

0 → Pr(Ω)
grad−−−→ Pr−1(Ω; R3) curl−−−→ Pr−2(Ω; R3) div−−→ Pr−3(Ω) → 0,

we see that the Koszul differential increases polynomial degree and decreases
the order of the differential form, while exterior differentiation does exactly
the opposite.

We note that PrΛ
0(Th) = P−r Λ0(Th), r ≥ 1 and PrΛ

n(Th) = P−r+1Λ
n(Th),

r ≥ 0. Using proxy fields, we can identify these spaces of finite element dif-
ferential forms with finite element spaces of scalar and vector functions. In
Tables 3 and 4, we summarize the correspondences between spaces of finite
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Table 3. Correspondences between finite element differential forms and the clas-
sical finite element spaces for n = 2.

k Λk
h(Ω) Classical finite element space

0 PrΛ
0(Th) Lagrange elements of degree ≤ r

1 PrΛ
1(Th) Brezzi–Douglas–Marini H(div) elements of degree ≤ r

2 PrΛ
2(Th) discontinuous elements of degree ≤ r

0 P−r Λ0(Th) Lagrange elements of degree ≤ r

1 P−r Λ1(Th) Raviart–Thomas H(div) elements of order r − 1

2 P−r Λ2(Th) discontinuous elements of degree ≤ r − 1

Table 4. Correspondences between finite element differential forms and the clas-
sical finite element spaces for n = 3.

k Λk
h(Ω) Classical finite element space

0 PrΛ
0(Th) Lagrange elements of degree ≤ r

1 PrΛ
1(Th) Nédélec 2nd-kind H(curl) elements of degree ≤ r

2 PrΛ
2(Th) Nédélec 2nd-kind H(div) elements of degree ≤ r

3 PrΛ
3(Th) discontinuous elements of degree ≤ r

0 P−r Λ0(Th) Lagrange elements of degree ≤ r

1 P−r Λ1(Th) Nédélec 1st-kind H(curl) elements of order r − 1

2 P−r Λ2(Th) Nédélec 1st-kind H(div) elements of order r − 1

3 P−r Λ3(Th) discontinuous elements of degree ≤ r − 1

element differential forms and classical finite element spaces in two and three
dimensions.

Degrees of freedom for these spaces are given as follows. For the space
PrΛ

k(T ), we use∫
f

Trf ω ∧ ν, ν ∈ P−r−j+kΛj−k(f), f ∈ ∆j(T ),

for k ≤ j ≤ min(n, r + k − 1), where Trf ω denotes the trace of ω on the face
f and ∆j(T ) is the set of all j-dimensional subsimplices generated by Th. For
example, when n = 3, ∆j(T ) is the set of vertices, edges, faces, or tetrahedra
in the mesh Th for j = 0, 1, 2, 3. In this case, when j = 0, i.e., f is a vertex,∫

f
Trf ω means w(f), where w is the function associated with ω ∈ Λ0(Ω).

When j = 1, i.e., f is an edge of a tetrahedron,
∫

f
Trf ω =

∫
f

w · t dµ, where
w is the vector associated to ω ∈ Λ1(Ω) and t is the unit tangent vector to f .
When j = 2, i.e., f is a face of a tetrahedron,

∫
f

Trf ω =
∫

f
w · n dµ, where w

is the vector associated to ω ∈ Λ2(Ω) and n is the unit outward normal to f .
Finally, when j = 3, i.e., f is a tetrahedron,

∫
f

Trf ω =
∫

f
w dµ, where w is

the function associated to ω ∈ Λ3(Ω).



16 Richard S. Falk

Analogously, the degrees of freedom for the space P−r Λk(T ) are given by∫
f

Trf ω ∧ ν, ν ∈ Pr−j+k−1Λ
j−k(f), f ∈ ∆j(T ),

for k ≤ j ≤ min(n, r + k − 1). Note the key property that the degrees of
freedom for each space are defined in terms of wedge products with elements
of the other space.

An important property of these finite element spaces is that they form
discrete de Rham sequences. In fact, as shown in [9], in n dimensions, there
are exactly 2n−1 distinct sequences. When n = 2 and r ≥ 0, these are

0 → Pr+2Λ
0(Th) d0−→ Pr+1Λ

1(Th) d1−→ PrΛ
2(Th) → 0,

0 → Pr+1Λ
0(Th) d0−→ P−r+1Λ

1(Th) d1−→ PrΛ
2(Th) → 0.

When n = 3 and r ≥ 0, we have the four sequences

0 → Pr+3Λ
0(Th) d0−→ Pr+2Λ

1(Th) d1−→ Pr+1Λ
2(Th) d2−→ PrΛ

3(Th) → 0,

0 → Pr+2Λ
0(Th) d0−→ Pr+1Λ

1(Th) d1−→ P−r+1Λ
2(Th) d2−→ PrΛ

3(Th) → 0,

0 → Pr+2Λ
0(Th) d0−→ P−r+2Λ

1(Th) d1−→ Pr+1Λ
2(Th) d2−→ PrΛ

3(Th) → 0,

0 → Pr+1Λ
0(Th) d0−→ P−r+1Λ

1(Th) d1−→ P−r+1Λ
2(Th) d2−→ PrΛ

3(Th) → 0.

The first and last of these are exact sequences involving only the PrΛ
k(Th)

or P−r Λk(Th) spaces alone, while the middle two mix the two spaces. As we
shall see, to obtain mixed finite element methods for elasticity when n = 3, it
is one of these middle sequences that will play a key role.

To each of the spaces PrΛ
k(Th), we may associate a canonical projection

operator Π(= ΠTh
) : C0Λk(Ω) → PrΛ

k(Th) defined by the equations:∫
f

Trf Πω ∧ ν =
∫

f

Trf ω ∧ ν, ν ∈ P−r−j+kΛj−k(f), f ∈ ∆j(T ),

for k ≤ j ≤ min(n, r+k−1). Similarly, to each of the spaces P−r Λk(Th), we may
associate a canonical projection operator Π(= ΠTh

) : C0Λk(Ω) → P−r Λk(Th)
defined by the equations∫

f

Trf Πω ∧ ν =
∫

f

Trf ω ∧ ν, ν ∈ Pr−j+k−1Λ
j−k(f), f ∈ ∆j(T ),

for k ≤ j ≤ min(n, r + k − 1). A key property of these projection operators
is that they commute with the exterior derivative, i.e., the following four
diagrams commute.
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Λk(Ω) dk−−→ Λk+1(Ω) Λk(Ω) dk−−→ Λk+1(Ω)

Π

y Π

y Π

y Π

y
PrΛ

k(T ) dk−−→ Pr−1Λ
k+1(T ) PrΛ

k(T ) dk−−→ P−r Λk+1(T )

Λk(Ω) dk−−→ Λk+1(Ω) Λk(Ω) dk−−→ Λk+1(Ω)

Π

y Π

y Π

y Π

y
P−r Λk(T ) dk−−→ P−r Λk+1(T ) P−r Λk(T ) dk−−→ Pr−1Λ

k+1(T ).

These commuting diagrams will also play an essential role in the construction
of stable mixed finite element approximation schemes for the equations of
elasticity.

4.1 Differential forms with values in a vector space

To study the equations of linear elasticity in the language of differential forms,
we will need to use differential forms with values in a vector space. Let V and
W be finite dimensional vector spaces. We then define the space Λk(V ;W )
of differential forms on V with values in W . The two examples we have in
mind are when V = V = Rn and W = V or W = K, the set of anti-symmetric
matrices. When n = 2, ω ∈ Λk(V; V), k = 0, 1, 2 will have the respective forms(

w1

w2

)
,

(
w11

w21

)
dx1 +

(
w12

w22

)
dx2,

(
w1

w2

)
dx1 ∧ dx2,

while ω ∈ Λk(V; K) will have the respective forms

wχ, w1χdx1 + w2χdx2, wχdx1 ∧ dx2, where χ =
(

0 −1
1 0

)
.

Recalling that the 1-form w1dx1 + w2dx2 can be identified either with the
vector (w1, w2) or the vector (−w2, w1), we will have the analogous possibili-
ties in the case of vector or matrix-valued forms. Since we will be interested
in de Rham sequences involving the operator div, we choose the second iden-

tification. Hence,
(

w11

w21

)
dx1 +

(
w12

w22

)
dx2 ∈ Λ1(V; V) will be identified with

the matrix (
W11 W12

W21 W22

)
=

(
−w12 w11

−w22 w21

)
, (10)

and w1χdx1 + w2χdx2 ∈ Λ1(V; K) with the vector (−w2, w1). When n = 3,
ω ∈ Λk(V; V) will have the respective forms
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w2

w3

 ,

w11

w21

w31

 dx1 +

w12

w22

w32

 dx2 +

w13

w23

w33

 dx3,w11

w21

w31

 dx2 ∧ dx3 −

w12

w22

w32

 dx1 ∧ dx3 +

w13

w23

w33

 dx1 ∧ dx2,w1

w2

w3

 dx1 ∧ dx2 ∧ dx3.

Hence, Λ0(V; V) and Λ3(V; V) have obvious identifications with the space of
3 dimensional vectors and Λ1(V; V) and Λ2(V; V) have obvious identifications
with the space of 3 × 3 matrices (i.e, Wij = wij in both cases). In fact, in
treating the equations of elasticity on a domain Ω ⊂ Rn, we shall represent the
stress as an element of Λn−1(Ω, V). To describe Λk(V; K), it will be convenient
to introduce the operator Skw taking a 3-vector to a skew-symmetric matrix.
i.e.,

Skw(w1, w2, w3) =

 0 −w3 w2

w3 0 −w1

−w2 w1 0

 .

Then ω ∈ Λk(V; K) will have the respective forms

Skw(w1, w2, w3),
Skw(w11, w21, w31)dx1 + Skw(w12, w22, w32)dx2 + Skw(w13, w23, w33)dx3,

Skw(w11, w21, w31)dx2 ∧ dx3 − Skw(w12, w22, w32)dx1 ∧ dx3

+Skw(w13, w23, w33)dx1 ∧ dx2,

Skw(w1, w2, w3)dx1 ∧ dx2 ∧ dx3.

Note that from the above formulas, there is an obvious identification of
Λ0(V; K) and Λ3(V; K) with the space of 3-dimensional vectors and of Λ1(V; K)
and Λ2(V; K) with 3× 3 matrices (again with Wij = wij in both cases).

In the mixed formulation of elasticity, we shall need a special operator S =
Sk : Λk(V, V) → Λk+1(V, K) defined as follows: First define Kk : Λk(Ω; V) →
Λk(Ω; K) by

Kkω = XωT − ωXT ,

where X = (x1, · · · , xn)T . Then define

Sk = dkKk −Kk+1dk : Λk(Ω; V) → Λk+1(Ω; K).

Using the definition of the exterior derivative, the definition of K, and the
Leibniz rule, one can show that for any vector (v1, . . . , vk+1),
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(Skω)x(v1, . . . , vk+1)

=
k+1∑
j=1

(−1)j+1[vjω
T (v1, · · · , v̂j , · · · , vk+1)− ω(v1, · · · , v̂j , · · · , vk+1)vT

j ],

where the notation v̂j means that this argument is omitted. Thus, Sk is a
purely algebraic operator.

More specifically, we shall need this operator when k = n−2 and k = n−1.
We examine these cases below for n = 2 and n = 3. When n = 2, we get for
ω = (w1, w2)T , K0ω = (w1x2 − w2x1)χ, and after a simple computation,

S0ω = (d0K0 −K1d0)ω = −w2χdx1 + w1χdx2.

Note that S0 is invertible with

S−1
0 [µ1χdx1 + µ2χdx2] = (µ2,−µ1)T .

If ω ∈ Λ1(V; V) is given by:

ω = w1dx1 + w2dx2, w1 = (w11, w21)T , w2 = (w12, w22)T ,

then S1ω = −(w11 + w22)χdx1 ∧ dx2. If we identity ω with a matrix W by(
W11 W12

W21 W22

)
=

(
−w12 w11

−w22 w21

)
,

then we can identify S1ω with the matrix(
0 W12 −W21

W21 −W12 0

)
= W −WT ≡ 2 skw W.

When n = 3, we get for ω = w1dx1 + w2dx2 + w3dx3, with wj =
(w1j , w2j , w3j)T ,

S1ω = Skw(−w33 − w22, w12, w13)dx2 ∧ dx3

− Skw(w21,−w11 − w33, w23)dx1 ∧ dx3

+ Skw(w31, w32,−w11 − w22)dx1 ∧ dx2.

If we identify ω ∈ Λ1(V; V) with a matrix W by Wij = wij , and identify
S1ω ∈ Λ2(V; K) with the matrix U given by

U =

−w33 − w22 w21 w31

w12 −w11 − w33 w32

w13 w23 −w11 − w22

 ,

then, W and U are related by the equations

U = ΞW ≡ WT − tr(W )I, W = Ξ−1U ≡ UT − 1
2

tr(U)I.
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Hence, S1 is invertible.
If ω = w1dx2 ∧ dx3 − w2dx1 ∧ dx3 + w3dx1 ∧ dx2, then

S2ω =

 0 w21 − w12 w31 − w13

w12 − w21 0 w32 − w23

w13 − w31 w23 − w32 0

 dx1 ∧ dx2 ∧ dx3.

If we identify ω with the matrix W given by Wij = wij , then by the above,
S2ω may be identified with the matrix −2 skw W .

We easily obtain from the fact that dk+1dk = 0 and the definition Sk =
dkKk −Kk+1dk that

dk+1Sk + Sk+1dk = 0.

This identify, for k = n−2, i.e., dn−1Sn−2 +Sn−1dn−2 = 0 is the key identity
in establishing stability of continuous and discrete variational formulations of
elasticity with weak symmetry.

Note that this formula is much more complicated and also different in
different dimensions when stated in terms of proxy fields (which are reasons
why we have introduced differential forms). When n = 2 and k = 0, if we
identify ω = (w1, w2)T ∈ Λ0(Ω; V) with the vector W , then the formula
(d1S0 + S1d0)ω = 0 becomes

(div W )χ + 2 skw curlW = 0.

When n = 3 and k = 1, if we identify ω ∈ Λ1(Ω; V) with the matrix W , then
the formula (d2S1 + S2d1)ω = 0 becomes

Skw div(ΞW )− 2 skw curlW = 0.

5 Mixed formulation of the equations of elasticity with
weak symmetry

In order to write 3 in the language of exterior calculus, we will use the spaces of
vector-valued differential forms presented in the previous section. We assume
that Ω is a contractible domain in Rn, V = Rn, and K is again the space of
skew-symmetric matrices. We showed in the last section that the operator S =
Sn−1 : Λn−1(Ω; V) → Λn(Ω; K) corresponds (up to a factor of ±2) to taking
the skew-symmetric part of its argument. Setting dn−1 = d, the elasticity
problem 3 becomes: Find (σ, u, p) ∈ HΛn−1(Ω; V)×L2Λn(Ω; V)×L2Λn(Ω; K)
such that

〈Aσ, τ〉+ 〈dτ, u〉 − 〈Sτ, p〉 = 0, τ ∈ HΛn−1(Ω; V), (11)

〈dσ, v〉 = 〈f, v〉, v ∈ L2Λn(Ω; V), 〈Sσ, q〉 = 0, q ∈ L2Λn(Ω; K).

This problem is well-posed in the sense that, for each f ∈ L2Λn(Ω; V), there
exists a unique solution (σ, u, p) ∈ HΛn−1(Ω; V)×L2Λn(Ω; V)×L2Λn(Ω; K),
and the solution operator is a bounded operator
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L2Λn(Ω; V) → HΛn−1(Ω; V)× L2Λn(Ω; V)× L2Λn(Ω; K).

This will follow from the general theory of such saddle point problems [14]
once we establish two conditions:

(W1) ‖τ‖2
HΛ ≤ c1〈Aτ, τ〉 whenever τ ∈ HΛn−1(Ω; V) satisfies 〈dτ, v〉 = 0

∀v ∈ L2Λn(Ω; V) and 〈Sτ, q〉 = 0 ∀q ∈ L2Λn(Ω; K),

(W2) for all nonzero (v, q) ∈ L2Λn(Ω; V) × L2Λn(Ω; K), there exists
nonzero τ ∈ HΛn−1(Ω; V) with 〈dτ, v〉 − 〈Sτ, q〉 ≥ c2‖τ‖HΛ(‖v‖+ ‖q‖),

for some positive constants c1 and c2. The first condition is obvious (and does
not even utilize the orthogonality of Sτ). However, the second condition is
more subtle. We will verify it in Theorem 7.2 in a subsequent section.

We next consider a finite element discretizations of 11. For this, we choose
families of finite-dimensional subspaces

Λn−1
h (V) ⊂ HΛn−1(Ω; V), Λn

h(V) ⊂ L2Λn(Ω; V), Λn
h(K) ⊂ L2Λn(Ω; K),

indexed by h, and seek the discrete solution (σh, uh, ph) ∈ Λn−1
h (V)×Λn

h(V)×
Λn

h(K) such that

〈Aσh, τ〉+ 〈dτ, uh〉 − 〈Sτ, ph〉 = 0, τ ∈ Λn−1
h (V), (12)

〈dσh, v〉 = 〈f, v〉 v ∈ Λn
h(V), 〈Sσh, q〉 = 0, q ∈ Λn

h(K).

In analogy with the well-posedness of the problem 11, the stability of the
saddle point system 12 will be ensured by the Brezzi stability conditions:

(S1) ‖τ‖2
HΛ ≤ c1(Aτ, τ) whenever τ ∈ Λn−1

h (V) satisfies 〈dτ, v〉 = 0
∀v ∈ Λn

h(V) and 〈Sτ, q〉 = 0 ∀q ∈ Λn
h(K),

(S2) for all nonzero (v, q) ∈ Λn
h(V)× Λn

h(K), there exists nonzero
τ ∈ Λn−1

h (V) with 〈dτ, v〉 − 〈Sτ, q〉 ≥ c2‖τ‖HΛ(‖v‖+ ‖q‖),

where now the constants c1 and c2 must be independent of h. The difficulty
is, of course, to design finite element spaces satisfying these conditions.

We have seen previously that there is a close relation between the con-
struction of stable mixed finite element methods for the approximation of
the equations of linear elasticity and discretization of the associated elasticity
complex 6. This relationship extends an analogous relationship between the
construction of stable mixed finite element methods for Poisson’s equation
and discretization of the de Rham complex. It turns out that there is also
a close, but non-obvious, connection between the elasticity complex and the
de Rham complex. This connection is described in [19] and is related to a
general construction given in [13], called the BGG resolution (see also [16]).

The elasticity complex 6 is related to the formulation of the equations
of elasticity with strong symmetry. It is also possible to derive an elasticity
complex that is related to the equations of elasticity with weak symmetry,
again starting from the de Rham complex. In [8] (two dimensions) and [6]
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(three dimensions), such an elasticity complex is derived and a discrete version
of the BGG construction also developed. This was then used to derive stable
mixed finite element methods for elasticity in a systematic manner based
on the finite element versions of the de Rham sequence described earlier.
The resulting elements in both two and three space dimensions are simpler
than any derived previously. For example, the simple choice of P1Λ

n−1(Th; V)
for stress, P0Λ

n(Th; V) for displacement, and P0Λ
n(Th; K) for the multiplier

results in a stable discretization of the problem 12. In Figure 4, this element is
depicted in two dimensions. For stress, the degrees of freedom are the first two
moments of its trace on the edges, and for the displacement and multiplier,
their integrals on the triangle (two components for displacement, one for the
multiplier). Moreover, this element is the lowest order of a family of stable
elements in n dimensions utilizing PrΛ

n−1(Th; V) for stress, Pr−1Λ
n(Th; V) for

displacement, and Pr−1Λ
n(Th; K) for the multiplier. In fact, the lowest order

element may be simplified further, so that only a subset of linear vectors is
needed to approximate the stress. More details of this simplified element are
presented in Section 11.

Fig. 4. Approximation of stress, displacement, and multiplier for the simplest ele-
ment in two dimensions.

In the next section, we follow the approach in [9] and outline how an
elasticity complex with weakly imposed symmetry can be derived from the
de Rham complex. Since this derivation produces a sequence in the notation of
differential forms, we then translate our results to the more classical notation
for elasticity in two and three dimensions. In Section 7, we give a proof of
the well-posedness of the mixed formulation of elasticity with weak symmetry
for the continuous problem, as a guide for establishing a similar result for the
discrete problem. Based on this proof, we develop in Section 8 the conditions
that we will need for stable approximation schemes. These results are then
used to establish the main stability result for weakly symmetric mixed finite
element approximations of the equations of elasticity in Section 9 and some
more refined estimates in Section 10. The results presented in this paper are for
the case of displacement boundary conditions. An extension to the equations
of elasticity with traction boundary conditions can be found in [9].
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6 From the de Rham complex to an elasticity complex
with weak symmetry

In this section, we discuss the connection of the elasticity complex in n di-
mensions with the de Rham complex. Details of the derivation can be found
in [6] and [9] and follow the ideas in a a derivation of elasticity from the de
Rham sequence in the case of strongly imposed symmetry given in [19] in
three dimensions.

We start with the two vector-valued de Rham sequences, one with values
in V and one with values in K, i.e.,

Λn−2(Ω; K)
dn−2−−−→ Λn−1(Ω; K)

dn−1−−−→ Λn(K) → 0,

Λn−3(Ω; V)
dn−3−−−→ Λn−2(Ω; V)

dn−2−−−→ Λn−1(Ω; V)
dn−1−−−→ Λn(V) → 0,

Using the fact that these sequences are exact, one is able to show that the
sequence

Λn−3(W)
(dn−3,−Sn−3)−−−−−−−−−→ Λn−2(Ω; K)

dn−2◦S−1
n−2◦dn−2

−−−−−−−−−−−→ Λn−1(Ω; V)
(−Sn−1,dn−1)

T

−−−−−−−−−−→ Λn(W) → 0 (13)

is exact, where W = K × V. We refer to the sequence 13 as the elasticity
sequence with weak symmetry. Crucial to this construction is the fact that the
operator Sn−2 : H1Λn−2(Ω; V) → H1Λn−1(Ω; K) is an isomorphism.

We next interpret this sequence in the language of differential operators
in two and three dimensions. When n = 2, we have the sequence

Λ0(Ω; K)
d0◦S−1

0 ◦d0−−−−−−−→ Λ1(Ω; V)
(−S1,d1)

T

−−−−−−−→ Λ2(W) → 0.

Hence, if we begin with an element wχ ∈ Λ0(Ω; K) that we identify with the
scalar function w, then

d0(wχ) =
∂w

∂x1
χdx1 +

∂w

∂x2
χdx2, S−1

0 [d0(wχ)] =
(

∂w

∂x2
,− ∂w

∂x1

)T

,

d0S
−1
0 [d0(wχ)] =

(
∂2w/∂x1∂x2

−∂2w/∂x2
1

)
dx1 +

(
∂2w/∂x2

2

−∂2w/∂x1∂x2

)
dx2.

We then identity this vector-valued 1-form with the matrix(
−∂2w/∂x2

2 ∂2w/∂x1∂x2

∂2w/∂x1∂x2 −∂2w/∂x2
1

)
≡ −Jw.

To translate the second part of the sequence, we begin with an element ω =(
w11

w21

)
dx1+

(
w12

w22

)
dx2 ∈ Λ1(V; V) that we identify (as in 10) with the matrix
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W =
(

W11 W12

W21 W22

)
=

(
−w12 w11

−w22 w21

)
.

We have seen previously that −S1ω corresponds to −2 skw W . Now

d1ω =
(

∂w12/∂x1 − ∂w11/∂x2

∂w22/∂x1 − ∂w21/∂x2

)
dx1 ∧ dx2 = −div Wdx1 ∧ dx2.

Hence, modulo some constants, we obtain the elasticity sequence

C∞(Ω) J−→ C∞(Ω; M)
(skw,div)T

−−−−−−−→ C∞(Ω, K× V) → 0.

When n = 3, we have the sequence

Λ0(W)
(d0,−S0)−−−−−−→ Λ1(Ω; K)

d1◦S−1
1 ◦d1−−−−−−−→ Λ2(Ω; V)

(−S2,d2)
T

−−−−−−−→ Λ3(W) → 0.

Hence, if we begin with a pair (Skw w, µ) ∈ Λ0(W) = Λ0(Ω, K) × Λ0(Ω, V)
that we identify with the pair (w,Skw µ) ∈ C∞(Ω, V) × C∞(Ω, K), then d0

corresponds to the row-wise gradient and S0 to the inclusion of C∞(Ω, K) →
C∞(Ω, M). We have discussed previously natural identifications of Λ1(Ω; K)
and Λ2(Ω; V) with C∞(Ω; M). With these identifications, d1 corresponds to
the row-wise curl and S1 to the operator Ξ. Finally, we have also seen how
−S2 corresponds to the operator 2 skw. Since d2 corresponds to the row-wise
divergence, we obtain (modulo some unimportant constants), the elasticity
sequence with weak symmetry

C∞(V×K)
(grad,I)−−−−−→ C∞(M) curl Ξ−1 curl−−−−−−−−−→ C∞(M)

(skw,div)T

−−−−−−−→ C∞(K×V) → 0.

More details, and the extension of these ideas to more general domains, can
be found in [9].

7 Well-posedness of the weak symmetry formulation of
elasticity

As discussed in Section 5, to establish well-posedness of the elasticity problem
with weakly imposed symmetry 11, it suffices to verify condition (W2) of that
section. This may be deduced from the following theorem, which says that
the map

HΛn−1(Ω; V)
(−Sn−1,dn−1)

T

−−−−−−−−−−→ HΛn(Ω; K)×HΛn(Ω; V)

is surjective. We present the proof in detail, since it will give us guidance as
we construct stable discretizations. The proof will make use of the following
well-known result from partial differential equations.
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Lemma 7.1 Let Ω be a bounded domain in Rn with a Lipschitz boundary.
Then, for all µ ∈ L2Λn(Ω), there exists η ∈ H1Λn−1(Ω) satisfying dn−1η = µ.
If, in addition,

∫
Ω

µ = 0, then we can choose η ∈ H̊1Λn−1(Ω).

Theorem 7.2 Given (ω, µ) ∈ L2Λn(Ω; K) × L2Λn(Ω; V), there exists σ ∈
HΛn−1(Ω; V) such that dn−1σ = µ, −Sn−1σ = ω. Moreover, we may choose
σ so that

‖σ‖HΛ ≤ c(‖ω‖+ ‖µ‖),

for a fixed constant c.

Proof. The second sentence follows from the first by Banach’s theorem, (i.e.,
if a continuous linear operator between two Banach spaces has an inverse,
then this inverse operator is continuous), so we need only prove the first.

(1) By Lemma 7.1, we can find η ∈ H1Λn−1(Ω; V) with dn−1η = µ.
(2) Since ω + Sn−1η ∈ HΛn(Ω;K), we can apply Lemma 7.1 a second time

to find τ ∈ H1Λn−1(Ω; K) with dn−1τ = ω + Sn−1η.
(3) Since Sn−2 is an isomorphism from H1Λn−2(Ω; V) onto H1Λn−1(Ω; K),

we have % ∈ H1Λn−2(Ω; V) with Sn−2% = τ .
(4) Define σ = dn−2% + η ∈ HΛn−1(Ω; V).
(5) From steps (1) and (4), it is immediate that dn−1σ = µ.
(6) From (4), −Sn−1σ = −Sn−1dn−2% − Sn−1η. But, since dn−1Sn−2 =

−Sn−1dn−2,

−Sn−1dn−2% = dn−1Sn−2% = dn−1τ = ω + Sn−1η,

so −Sn−1σ = ω.

We note a few points from the proof.
(i) Although the elasticity problem 11 only involves the three spaces

HΛn−1(Ω; V), L2Λn(Ω; V), and L2Λn(Ω; K), the proof brings in two addi-
tional spaces from the BGG construction: HΛn−2(Ω; V) and HΛn−1(Ω; K).

(ii) Although Sn−1 is the only S operator arising in the formulation, Sn−2

plays a role in the proof.
(iii) We do not fully use the fact that Sn−2 is an isomorphism from

Λn−2(V; V) to Λn−1(V; K), only the fact that it is a surjection. This will
prove important in the next section, when we derive conditions for stable
approximation schemes for elasticity.

(iv) Other slightly weaker conditions can be used in some places in the
proof (a fact we also exploit in discrete versions for some choices of finite
element spaces).

8 Conditions for stable approximation schemes

To obtain stable approximation schemes, we now mimic the key structural
elements present for the continuous problem. In particular, we see that to
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establish stability of the continuous problem, we do not use the complete
exact sequences, but only the last two spaces in the top sequence and the last
three spaces in the bottom sequence, connected by the operators Sn−2 and
Sn−1.

Λn−1(K)
dn−1−−−→ Λn(K) → 0

↗ Sn−2 ↗ Sn−1 (14)

Λn−2(V)
dn−2−−−→ Λn−1(V)

dn−1−−−→ Λn(V) → 0.

Thus, we look for five finite dimensional spaces that are connected by a sim-
ilar structure, i.e., in addition to the spaces Λn

h(K) ⊂ HΛn(K), Λn−1
h (V) ⊂

HΛn−1(V), and Λn
h(V) ⊂ HΛn(V) used in the finite element method, we also

seek spaces Λn−1
h (K) ⊂ HΛn−1(K) and Λn−2

h (V) ⊂ HΛn−2(V).
To mimic the structure of the continuous problem, but taking into account

the comments made following Theorem 7.2, we require that the finite element
spaces are also connected by exact sequences, but where we introduce some
additional flexibility by inserting the L2 projection operator Πn

h and using
approximations of the operators Sn−2 and Sn−1.

Λn−1
h (K)

Πn
h dn−1−−−−−→ Λn

h(K) → 0
↗ Sn−2,h ↗ Sn−1,h (15)

Λn−2
h (V)

dn−2−−−→ Λn−1
h (V)

dn−1−−−→ Λn
h(V) → 0.

In anticipation of proving a stability result for the mixed finite element
method for elasticity that mimics that proof used in the continuous case, we
need to define interpolants into each of these finite element spaces that have
appropriate properties. The reason for the choice of the specific properties will
become apparent in the stability proof.

We first define Πn
h and Π̃n

h to be the L2 projection operators into the
spaces Λn

h(K) and Λn
h(V), respectively. We then define Πn−1

h and Π̃n−1
h to be

interpolation operators mapping H1Λn−1(K) to Λn−1
h (K) and H1Λn−1(V) to

Λn−1
h (V), respectively, and satisfying

Πn
h dn−1Π

n−1
h τ = Πn

h dn−1τ, τ ∈ (H̊1 + P 1)Λn−1(K), (16)

dn−1Π̃
n−1
h τ = Π̃n

h dn−1τ, τ ∈ H1Λn−1(V).

‖Πn−1
h τ‖ ≤ C‖τ‖1, τ ∈ (H̊1 + P 1)Λn−1(K), (17)

‖Π̃n−1
h τ‖ ≤ C‖τ‖1, τ ∈ H1Λn−1(V).

Next, we define Π̃n−2
h mapping H1Λn−2(V) to Λn−2

h (V) satisfying

‖dn−2Π̃
n−2
h %‖ ≤ c‖%‖1, % ∈ H1Λn−2. (18)
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(In 18, the exterior derivative dn−2 corresponds to the differential operator
curl.) As we shall see in the examples, in some cases these will be the canon-
ical interpolation operators we usually associate with standard finite element
spaces, while in other cases, we will need to make some modifications so that
the interpolation operators are defined on spaces of functions will less smooth-
ness than we usually assume.

The key to the derivation of the formulation of elasticity with weak
symmetry at the continuous level was the introduction of the operators
S = Sk : Λk(V) → Λk+1(K). In the reduced sequence 14, only the opera-
tors Sn−2 and Sn−1 will enter the analysis. One of the key properties of these
operators was that

dn−1Sn−2 = −Sn−1dn−2. (19)

For the discrete version of this analysis, we will need to modify the defini-
tions of Sn−2 and Sn−1 in a simple way. As a discrete analogue of the operator
Sn−1, we define Sn−1,h : Λn−1

h (V) → Λ3
h(K) by Sn−1,h = Πn

h Sn−1. As a dis-
crete analogue of the operator Sn−2, we define Sn−2,h : Λn−2

h (V) → Λ2
h(K)

by Sn−2,h = Πn−1
h Sn−2. With these definitions, we establish the following

discrete version of 19,

Πn
h dn−1Sn−2,h = −Sn−1,hdn−2. (20)

To see this, we observe that using 16 and 20,

Πn
h dn−1Sn−2,h = Πn

h dn−1Π
n−1
h Sn−2 = Πn

h dn−1Sn−2

= −Πn
h Sn−1dn−2 = −Sn−1,hdn−2.

Another key property of the operator Sn−2 was that it was invertible as
a map from H1Λn−2(V) to H1Λn−1(K). This fact was used in the prove of
stability of the weak symmetry formulation at the continuous level, although
we observed that surjectivity of this map would be sufficient. We cannot expect
invertibility of the map Sn−2,h However, a key condition to prove stability of
the finite element approximation to the weak symmetry formulation is that
Sn−2,h maps Λn−2

h (V) onto Λn−1
h (K). To ensure this condition, we will assume

that Λn−2
h (V) and Λn−1

h (K) are related by the condition.

Sn−2,hΠ̃n−2
h τ = Πn−1

h Sn−2τ, τ ∈ H1Λn−2(V). (21)

To see that this condition ensures surjectivity, note that given a function
σh ∈ Λn−1

h (K), we can find σ ∈ H1Λn−1(K) (e.g., a continuous piecewise
polynomial differential form), such that σh = Πn−1

h σ. Defining τ = S−1
n−2σ

and τh = Π̃n−2
h τ ∈ Λn−2

h (V), we find that

σh = Πn−1
h σ = Πn−1

h Sn−2τ = Sn−2,hΠ̃n−2
h τ = Sn−2,hτh.

To summarize the results of this section, we will develop stable mixed
finite element approximation schemes by finding five finite element spaces. The



28 Richard S. Falk

three spaces Λn
h(K) ⊂ HΛn(K), Λn−1

h (V) ⊂ HΛn−1(V), Λn
h(V) ⊂ HΛn(V) are

used in the method and the spaces Λn−1
h (K) ⊂ HΛn−1(K) and Λn−2

h (V) ⊂
HΛn−2(V) are auxiliary spaces crucial to the proof of stability. Associated
with each of these spaces is an operator for which we need properties 16,
17, and 18. We further assume that the five spaces are connected by the
exact sequences given in 15. Finally, we require 21, which ensures that Sn−2,h

maps Λn−2
h (V) onto Λn−1

h (K). Under these conditions, we can then prove the
following stability result for the mixed finite element method for elasticity.

9 Stability of finite element approximation schemes

Theorem 9.1 Assume that the finite element subspaces Λk
h(K) and Λk

h(V) are
connected by the exact sequences given in 15, that there are operators associ-
ated with these subspaces satisfying conditions 16, 17, 18, and that condition
21 is satisfied. Then, given (ω, µ) ∈ Λn

h(K)×Λn
h(V), there exists σ ∈ Λn−1

h (V)
such that dn−1σ = µ, −Sn−1,hσ ≡ −Πn

h Sn−1σ = ω, and

‖σ‖HΛ ≤ c(‖ω‖+ ‖µ‖), (22)

where the constant c is independent of ω, µ and h.

Before proving this theorem, we note that condition 15 immediately implies
that the first Brezzi condition (S1) is satisfied and that the second Brezzi
condition (S2) easily follows from the conclusion of the theorem.

Proof.

(1) By Lemma 7.1, we can find η ∈ H1Λn−1(Ω; V) with dn−1η = µ and
‖η‖1 ≤ c‖µ‖.

(2) Since ω+Πn
h Sn−1Π̃

n−1
h η ∈ HΛn(Ω;K), we can apply Lemma 7.1 a second

time to find τ ∈ H1Λn−1(Ω; K) with dn−1τ = ω + Πn
h Sn−1Π̃

n−1
h η and

‖τ‖1 ≤ c(‖ω‖+ ‖Πn
h Sn−1Π̃

n−1
h η‖).

(3) Since Sn−2 is an isomorphism from H1Λn−2(Ω; V) to H1Λn−1(Ω; K), we
have % ∈ H1Λn−2(Ω; V) with Sn−2% = τ , and ‖%‖1 ≤ c‖τ‖1.

(4) Define σ = dn−2Π̃
n−2
h % + Π̃n−1

h η ∈ Λn−1
h (V).

(5) From step (4), 16, step (1), and the fact that Π̃n
h is a projection, we have

dn−1σ = dn−1Π̃
n−1
h η = Π̃n

h dn−1η = Π̃n
h µ = µ.

(6) Also from step (4),

−Sn−1,hσ = −Sn−1,hdn−2Π̃
n−2
h %− Sn−1,hΠ̃n−1

h η.

Applying, in order, 20, 21, step (3), 16, step (2), and the fact that Πn
h is

a projection, we obtain
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Sn−1,hdn−2Π̃
n−2
h % = −Πn

h dn−2Sn−2,hΠ̃n−2
h %

= −Πn
h dn−2Π

n−1
h Sn−2% = −Πn

h dn−1Π
n−1
h τ = −Πn

h dn−1τ

= −Πn
h (ω + Πn

h Sn−1Π̃
n−1
h η) = −ω − Sn−1,hΠ̃n−1

h η.

Combining, we have −Πn
h Sn−1 ≡ −Sn−1,hσ = ω.

(7) Finally, we prove the norm bound. From the boundedness of Sn−1 in L2,
17, and step (1),

‖Πn
h Sn−1Π̃

n−1
h η‖ ≤ c‖Sn−1Π̃

n−1
h η‖ ≤ c‖Π̃n−1

h η‖ ≤ c‖η‖1 ≤ c‖µ‖.

Combining with the bounds in step (3) and (2), this gives ‖%‖1 ≤ c(‖ω‖+
‖µ‖). From 18, we then have ‖dn−2Π̃

n−2
h %‖ ≤ c(‖ω‖ + ‖µ‖). From 17

and the bound in step (1), ‖Π̃n−1
h η‖ ≤ c‖η‖1 ≤ c‖µ‖. In view of the

definition of σ, these two last bounds imply that ‖σ‖ ≤ c(‖ω‖+‖µ‖), while
‖dn−1σ‖ ≤ C‖Π̃n

h dn−1σ‖ = ‖µ‖, and thus we have the desired bound 22.

We have thus verified the stability conditions (S1) and (S2), and so obtain
the following quasi-optimal error estimate (see [14], [15]).

Theorem 9.2 Suppose (σ, u, p) is the solution of the elasticity system 11 and
(σh, uh, ph) is the solution of discrete system 12, where the finite element
spaces satisfy the hypotheses of Theorem 9.1. Then there is a constant C,
independent of h, such that

‖σ − σh‖HΛ + ‖u− uh‖+ ‖p− ph‖ ≤ C inf(‖σ − τ‖HΛ + ‖u− v‖+ ‖p− q‖),

where the infimum is over all τ ∈ Λn−1
h (V), v ∈ Λn

h(V), and q ∈ Λn
h(K).

10 Refined error estimates

To see more precisely the contribution to the error from each of the approxi-
mating subspaces, we now follow the theory developed in [18] and [20] for error
estimates for mixed finite element methods. Since the derivation is fairly sim-
ple and we are in an intermediate case to the general theory developed in the
references above, we present the complete derivation for the problem we are
considering.

Theorem 10.1 Suppose (σ, u, p) is the solution of the elasticity system 11
and (σh, uh, ph) is the solution of discrete system 12, where the finite element
subspaces satisfy the hypotheses of Theorem 9.1. Then

‖σ − σh‖+ ‖p− ph‖+ ‖uh − Π̃n
h u‖ ≤ C(‖σ − Π̃n−1

h σ‖+ ‖p−Πn
h p‖),

‖u− uh‖ ≤ C(‖σ − Π̃n−1
h σ‖+ ‖p−Πn

h p‖+ ‖u− Π̃n
h u‖),

‖dn−1(σ − σh)‖ = ‖dn−1σ − Π̃n
h dn−1σ‖.
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Proof. Subtracting the equations in 12 from the corresponding equations in
11, and adding and subtracting appropriate interpolants, we get the error
equations

〈A(σh − Π̃n−1
h σ), τ〉+ 〈dτ, uh − Π̃n

h u〉 − 〈Sτ, ph −Πn
h p〉

= 〈A(σ − Π̃n−1
h σ), τ〉+ 〈dτ, u− Π̃n

h u〉 − 〈Sτ, p−Πn
h p〉, τ ∈ Λn−1

h (V),

〈d(σh − Π̃n−1
h σ), v〉 = 〈d(σ − Π̃n−1

h σ), v〉, v ∈ Λn
h(V), (23)

〈S(σh − Π̃n−1
h σ), q〉 = 〈S(σ − Π̃n−1

h σ), q〉, q ∈ Λn
h(K),

where we use d as an abbreviation for dn−1. Now by 16, 〈d(σ−Π̃n−1
h σ), v〉 = 0

for v ∈ Λn
h(V) and hence by 18, d(σh − Π̃n−1

h σ) = 0. Setting

τ = σh − Π̃n−1
h σ, v = uh − Π̃n

h u, q = ph −Πn
h p,

and adding the equations, we get

C‖σh − Π̃n−1
h σ‖2 ≤ 〈A(σh − Π̃n−1

h σ), σh − Π̃n−1
h σ〉

= 〈A(σ − Π̃n−1
h σ), σh − Π̃n−1

h σ〉 − 〈S(σh − Π̃n−1
h σ), p−Πn

h p〉.

Applying standard estimates, we then obtain

‖σh − Π̃n−1
h σ‖ ≤ C(‖σ − Π̃n−1

h σ‖+ ‖p−Πn
h p‖), (24)

and hence,
‖σ − σh‖ ≤ C(‖σ − Π̃n−1

h σ‖+ ‖p−Πn
h p‖).

Next applying Theorem 9.1, with ω = ph −Πn
h p and µ = uh − Π̃n

h u, we can
find τ ∈ Λn−1

h (V) such that

Π̃n
h dτ = uh − Π̃n

h u, −Sn−1,hτ ≡ −Πn
h Sn−1τ = ph −Πn

h p,

‖τ‖HΛ ≤ c(‖ph −Πn
h p‖+ ‖uh − Π̃n

h u‖).

Making this choice of τ in 23, we get

‖ph −Πn
h p‖2 + ‖uh − Π̃n

h u‖2 = 〈A(σ − Π̃n−1
h σ), τ〉 − 〈A(σh − Π̃n−1

h σ), τ〉
+ 〈uh − Π̃n

h u, u− Π̃n
h u〉+ 〈ph −Πn

h p, p−Πn
h p〉

= 〈A(σ − Π̃n−1
h σ), τ〉 − 〈A(σh − Π̃n−1

h σ), τ〉+ 〈ph −Πn
h p, p−Πn

h p〉.

Applying standard estimates and 24, we easily obtain

‖ph−Πn
h p‖+‖uh− Π̃n

h u‖ ≤ C(‖σ− Π̃n−1
h σ‖+‖σh− Π̃n−1

h σ‖+‖p−Πn
h p‖)

≤ C(‖σ − Π̃n−1
h σ‖+ ‖p−Πn

h p‖).

Hence,
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‖p− ph‖ ≤ C(‖σ − Π̃n−1
h σ‖+ ‖p−Πn

h p‖),
‖u− uh‖ ≤ C(‖σ − Π̃n−1

h σ‖+ ‖p−Πn
h p‖+ ‖u− Π̃n

h u‖).

Finally, since 〈d(σ − σh, v〉 = 0 for v ∈ Λn
h(V), we get dσh = Π̃n

h dσ, which
establishes the last estimate of the theorem.

11 Examples of stable finite element methods for the
weak symmetry formulation of elasticity

The examples that follow are of two types. In the first two subsections, we
present choices of finite element spaces for which diagram (15) is satisfied
without the need for the additional projection Πn

h in the top sequence. These
methods make use of multiple copies of finite element spaces normally associ-
ated to the use of mixed methods for scalar second order elliptic problems. In
the final three subsections, we consider methods which require the additional
projection Πn

h in the top sequence in diagram (15). This is because the two
spaces in the top sequence are ones normally associated to stable pairs for the
approximation of the stationary Stokes equations.

11.1 Arnold, Falk, Winther families

In the approach of [8, 6, 9], the spaces are chosen for r ≥ 0 to be:

Λn−2
h (V) = P−r+2Λ

n−2(Th), Λn−1
h (V) = Pr+1Λ

n−1(Th; V),
Λn

h(V) = PrΛ
n(Th; V),

Λn−1
h (K) = P−r+1Λ

n−1(Th; K), Λn
h(K) = PrΛ

n(Th; K).

The sequences

P−r+1Λ
n−1(Th; K)

dn−1−−−→ PrΛ
n(Th; K) → 0

P−r+2Λ
n−2(Th; V)

dn−2−−−→ Pr+1Λ
n−1(Th; V)

dn−1−−−→ PrΛ
n(Th; V) → 0

are the final parts of longer exact sequences involving the Pr and P−r spaces.
Hence, 15 is satisfied without the additional projection at the end of the
first sequence. For these spaces, the canonical projection operators Πn−1

h ,
Πn

h , Π̃n−1
h , and Π̃n

h satisfy conditions 16 and 17. Although the canonical
projection operator Π̃n−2

h does not satisfy 18, since this operator is not defined
on functions in H1Λn−2(V), we can define a modification of this operator,
P̃h : Λn−2(Ω; V) → P−r+2Λ

n−2(Th; V) that does satisfy 18. The operator P̃hω
will have the same moments as ω on faces of codimension 0 and 1, but with
moments of a smoothed approximation of ω on the faces of codimension 2.
When n = 2, the issue is simply that the vertex values are not defined and
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this can be remedied by using the ideas of the interpolant of Clement. When
n = 3, additional details are provided in [6]. Thus, to satisfy the hypotheses
of Theorem 9.1, it remains to show that

Πn−1
h Sn−2P̃h = Πn−1

h Sn−2.

This is equivalent to showing that

Πn−1
h Sn−2ω = 0, ∀ω = (I − P̃h)σ, σ ∈ Λn−2(V).

Since P̃hω = 0, we have for n− 1 ≤ d ≤ min(n, r + n− 1),∫
f

Trf ω ∧ ζ = 0, ζ ∈ Pr−d+n−1Λ
d−n+2(f ; V), f ∈ ∆d(Th). (25)

Note that we have not included similar statements for the vertex degrees of
freedom when n = 2 or the edge degrees of freedom when n = 3, since we
will not need them here. We must show that 25 implies that for n− 1 ≤ d ≤
min(n, r + n− 1),∫

f

Trf Sn−2ω ∧ µ = 0, µ ∈ Pr−d+n−1Λ
d−n+1(f ; K), f ∈ ∆d(Th).

The simplest case is when r = 0. When n = 2, 25 becomes∫
f

Trf ω ∧ ζ = 0, ζ ∈ P0Λ
1(f ; V), f ∈ ∆1(Th),

which for ω = (w1, w2)T , is simply the condition∫
e

wi de = 0, i = 1, 2, e ∈ ∆1(Th). (26)

We then require that∫
e

Tre(−w2χdx1 + w1χdx2) = 0, e ∈ ∆1(Th).

But if (t1, t2) is the unit tangent to e, then by 26,∫
e

Tre(−w2χdx1 + w1χdx2) =
∫

e

(−w2t
1 + w1t

2)χ de = 0.

An analogous argument works for general r when n = 2, and the basic outline
of the proof is the same when n = 3, although in this case the operator S1 is
more complicated. The details can be found in [6].

Using Theorem 10.1, it is straightforward to derive the following error
estimates, valid for 1 ≤ k ≤ r + 1, assuming that σ, p, and u are sufficiently
smooth.

‖σ − σh‖+ ‖p− ph‖+ ‖uh − Π̃n
h u‖ ≤ Chk(‖σ‖k + ‖p‖k),

‖u− uh‖ ≤ Chk(‖σ‖k + ‖p‖k + ‖u‖k), ‖dn−1(σ − σh)‖ ≤ Chk‖dn−1σ‖k.
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11.2 Arnold, Falk, Winther reduced elements

In the reduced elements proposed in [8] (in two dimensions) and [6] (in three
dimensions), the spaces Λn

h(V), Λn−1
h (K), and Λn

h(K) remain as chosen above,
while the spaces Λn−2

h (V) and Λn−1
h (V) are modified. Thus, the reduced el-

ements have a somewhat simpler stress space than the methods described
above. The basic idea is that in the verification of condition 21 in the last
section, we did not use all the degrees of freedom of the space P−2 Λ0(Th), i.e.,
we did not use the vanishing of the edge integral of both components of ω, but
only the combination −w2t

1+w1t
2 (the normal component). Hence, instead of

the vector-valued quadratic space P2Λ
0(Th, V), we can use the reduced space

obtained from it by imposing the constraint that the tangential component on
each edge vary only linearly on that edge. This space of vector fields, which
we denote by P2−Λ0(Th, V) has been used previously to approximate the ve-
locity field in the approximation of the stationary Stokes equations (cf. [23,
p. 134 ff., 153 ff.]). Together with piecewise constants, it gives a stable finite
element approximation scheme for the Stokes equations. An element in this
space is determined by its vertex values and the integral of its normal com-
ponent on each edge. In order to complete the construction, we must provide
a vector-valued discrete de Rham sequence in which the space of 0-forms is
P2−Λ0(Th; R2). This will be the sequence

P2−Λ0(Th; V) d0−→ P1−Λ1(Th; V) d1−→ P0Λ
2(Th; V) → 0,

where it remains to define P1−Λ1(Th; V). This will be the set of τ ∈
P1Λ

1(Th; V) for which Tre(τ) · t is constant on any edge e with unit tangent t
and unit normal n. More specifically, for τ ∈ P1Λ

1(Th; R2), Tre(τ) is a vector-
valued 1-form on e of the form g ds with µ : e → R2 linear and ds the volume
form—i.e., length form—on e. If µ · t is constant, then τ ∈ P−1 Λ1(Th; V). The
natural degrees of freedom for this space are the integral and first moment of
Tre(τ) · n and the integral of Tre(τ) · t. If we use 10 to identify vector-valued
1-forms and matrix fields, then the condition for a piecewise linear matrix
field W to correspond to an element of P−1 Λ1(Th; R2) is that on each edge
e with tangent t and normal n, Wn · t must be constant on e. This defines
the reduced space Σh, with three degrees of freedom per edge. Together with
piecewise constant for displacements and multipliers, this furnishes a stable
choice of elements.

A three-dimensional simplified element can be constructed using a similar
approach. We start from the space P−2 Λ(Th; V) and see that we do not use all
the degrees of freedom to satisfy condition 21. We thus define a reduced space
P−2−Λ(Th; V) and a space P1−Λ2(Th; V) such that these spaces, together with
P0Λ

3(Th; V), form the exact sequence

P2−Λ1(Th; V) d1−→ P1−Λ2(Th; V) d2−→ P0Λ
3(Th; V) → 0.

We are then able to replace the space P1Λ
1(Th; V), which has 36 degrees of

freedom (9 per face), by the space P1−Λ2(Th; V), which has 24 degrees of
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freedom (6 per face). If we identify an element in our reduced space with a
matrix W is the manner discussed previously, then we get on each face the
six degrees of freedom:∫

f

Wn df,

∫
f

(x ·t)nT Wn df,

∫
f

(x ·s)nT Wn df,

∫
f

[(x ·t)sT −(x ·s)tT ]Wn df,

where s and t denote orthogonal unit tangent vectors on the face f . More
details can be found in [6].

11.3 PEERS

In the PEERS method [3], n = 2 and we choose

Λ1
h(V) = P−1 Λ1(Th; V) + dB3Λ

0(Th; V), Λ2
h(V) = P0Λ

2(Th; V),

Λ2
h(K) = P1Λ

2(Th; K) ∩H1Λ2(K), which we denote by P0
1Λ2(Th; K),

where B3 denotes the space of cubic bubble functions. We then choose the
two remaining spaces as

Λ0
h(V) = (P1 + B3)Λ0(Th; V), Λ1

h(K) = S0Λ
0
h(V).

It is easy to see that

Λ1
h(K) = (P1 + B3)Λ1(Th; K) ∩H1Λ1(K) ≡ (P0

1 + B3)Λ1(Th; K).

Since the sequence

P1Λ
0(Th; V) d0−→ P−1 Λ1(Th; V) d1−→ P0Λ

2(Th; V) → 0

is exact, so is the sequence

(P1 + B3)Λ0(Th; V) d0−→ P−1 Λ1(Th; V) + d0B3Λ
0(Th; V) d1−→ P0Λ

2(Th; V) → 0.

For this choice of spaces, however, it is not true that dΛ1
h(K) = Λ2

h(K).
Instead, we use the more general condition Π2

hdΛ1
h(K) = Λ2

h(K), which al-
lows the use of stable Stokes elements. The proof that the combination
(P0

1 + B3)Λ1(Th; K) and P0
1Λ2(Th; K) is a stable Stokes pair (the Mini-

element) involves construction of an interpolation operator Π1
h : H1Λ1(K) 7→

(P0
1 + B3)Λ1(Th; K) satisfying

〈d1(τ −Π1
hτ), qh〉 = 0, qh ∈ Λ2

h(K), ‖Π1
hτ‖1 ≤ C‖τ‖1, τ ∈ H1Λ1(K),

which gives properties 16 and 17 for the operators Π1
h and Π2

h. Properties
16 and 17 for the operators Π̃1

h and Π̃2
h are satisfied by the Raviart-Thomas

interpolant Π̃1
h : H1Λ1(V) 7→ P−1 Λ1(Th; V). Finally, one can easily check that

18 and 21 are satisfied if we define
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Π̃0
h : H1Λ0(V) 7→ (P1 + B3)Λ0(Th; V)

by
Π̃0

hτ = S−1
0 Π1

hS0τ.

Note that condition 21 is then trivial, since for τ ∈ H1Λ0(V),

S0,hΠ̃0
hτ = Π1

hS0S
−1
0 Π1

hS0τ = Π1
hS0τ.

Applying Theorem 10.1, and standard approximation and regularity re-
sults, we obtain the error estimates

‖σ − σh‖0 + ‖p− ph‖0 + ‖u− uh‖0 ≤ Ch(‖σ‖1 + ‖p‖1 + ‖u‖1) ≤ Ch‖f‖0.

11.4 A PEERS-like method with improved stress approximation

In this new method, we change one of the spaces used in the PEERS element
and both of the auxiliary spaces used in the analysis, i.e., we choose

Λ1
h(V) = P1Λ

1(Th; V), Λ2
h(V) = P0Λ

2(Th; V), Λ2
h(K) = P0

1Λ2(Th; K),

and the two remaining spaces as

Λ0
h(V) = P2Λ

0(Th; V), Λ1
h(K) = S0Λ

0
h(V) ≡ P2Λ

1(Th; K) ∩H1Λ1(K).

The basic change from the analysis of the PEERS element is that we use the
fact that the combination of P2Λ

1(Th; K) ∩ H1Λ1(K) and P0
1Λ2(Th; K) is a

stable pair of spaces for the Stokes problem (i.e., the Taylor-Hood element).
We may also view this new method as a modification of the lowest or-

der Arnold-Falk-Winther method, where we are using the same stress and
displacement spaces and lower exact sequence as in that method, but have
changed the spaces with values in K. The advantage of this modification is
that it produces a higher order approximation to the stress variable. Looking
at the error estimates given in Theorem 10.1, we see that the error estimate
for ‖σ− σh‖0 depends both on ‖σ− Π̃n−1

h σ‖0 and ‖p−Πn
h p‖0. In the lowest

order Arnold-Falk-Winther method, ‖σ − Π̃n−1
h σ‖0 ≤ Ch2‖σ‖2, since we are

using P1 elements to approximate σ. The fact that piecewise constants are
used to approximate the multiplier results in only an O(h) approximation for
the second term. By using linear elements in the modified method, we recover
second order convergence. Since we use only piecewise constants to approx-
imate u, we can only obtain the estimate ‖u − uh‖0 ≤ Ch. However, since
the quantity ‖uh − Π̃n

h u‖0 is also O(h2), we might be able to obtain a better
result by a post-processing procedure.

Remark 1. We note that some of these same ideas have been used to develop
hybrid methods for the approximation of the elasticity equations. For example,
see [21].
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11.5 Methods of Stenberg

A family of methods proposed and analyzed by Stenberg [28] chooses for r ≥ 2,
n = 2 or n = 3,

Λn−1
h (V) = PrΛ

n−1(Th; V) + dBr+nΛn−2(Th; V), Λn
h(V) = Pr−1Λ

n(Th; V),
Λn

h(K) = PrΛ
n(Th; K),

where Br+n denotes the space of functions which on each simplex T have the
form bTPr−1, where bT (x) =

∏n+1
i=1 λi(x), i.e., the space of bubbles of degree

r + n. To fit our framework, we then choose the two remaining spaces as

Λn−2
h (V) = (Pr+1 + Br+n)Λn−2(Th; V),

Λn−1
h (K) = (Pr+1 + Br+n)Λn−1(Th; K) ∩H1Λ1(K).

Since the sequence

Pr+1Λ
n−2(Th; V)

dn−2−−−→ PrΛ
n−1(Th; V)

dn−1−−−→ Pr−1Λ
n(Th; V) → 0

is exact, it is easy to see that the sequence

(Pr+1 + Br+n)Λn−2(Th; V)
dn−2−−−→ PrΛ

n−1(Th; V) + dn−2Br+nΛn−2(Th; V)
dn−1−−−→ Pr−1Λ

n(Th; V) → 0

will be exact. Again it is not true that dΛn−1
h (K) = Λn

h(K), and so we use the
more general condition,

Πn
h dΛn−1

h (K) = Λn
h(K),

which allows the use of stable Stokes spaces. From the definition of Sn−2, it
it easy to see that when n = 2,

S0Λ
0
h(V) = (Pr+1 + Br+n)Λ1(Th; K) ∩H1Λ1(K),

and when n = 3,

S1[Λ1
h(V) ∩H1Λ2(V)] = (Pr+1 + Br+n)Λ2(Th; K) ∩H1Λ2(K).

The proof that the combination (Pr+1 + Br+n)Λn−1(Th; K) ∩ H1Λn−1(K)
and PrΛ

n(Th; K) is a stable pair of Stokes elements (cf [23, 15]) gives us
precisely what we need to establish 16 and 17 for the operators Πn−1

h and
Πn

h , i.e., the construction of an interpolation operator Πn−1
h : H1Λn−1(K) 7→

(Pr+1 + Br+n)Λn−1(Th; K) ∩H1Λn−1(K) satisfying

〈dn−1(τ −Πn−1
h τ), qh〉 = 0, qh ∈ Λn

h(K),

‖Πn−1
h τ‖1 ≤ C‖τ‖1, τ ∈ H1Λn−1(K).
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Properties 16 and 17 for the operators Π̃n−1
h and Π̃n

h are satisfied by
the canonical canonical interpolant Π̃n−1

h : H1Λn−1(V) 7→ PrΛ
n−1(Th; V).

Finally, it is easy to check that 18 and 21 are satisfied if we define

Π̃n−2
h : H1Λn−2(V) 7→ (Pr+1 + Br+n)Λn−2(Th; V) ∩H1Λn−2(V)

by
Π̃n−2

h τ = S−1
n−2Π

n−1
h Sn−2τ.

When n = 2, this same analysis also carries over to the case r = 1, since the
combination (P2 + B3)Λ1(Th; K)∩H1Λ1(K) and P1Λ

2(Th; K) is a stable pair
of Stokes elements. The situation is more complicated in three dimensions,
since the analogous combination is not a stable pair of Stokes elements.

Using Theorem 10.1, it is straightforward to derive the following error
estimates, assuming that σ, p, and u are sufficiently smooth.

‖σ − σh‖+ ‖p− ph‖+ ‖uh − Π̃n
h u‖ ≤ Chk(‖σ‖k + ‖p‖k), 1 ≤ k ≤ r + 1,

‖u− uh‖ ≤ Chk(‖σ‖k + ‖p‖k + ‖u‖k), 1 ≤ k ≤ r,

‖dn−1(σ − σh)‖ ≤ Chk‖dn−1σ‖k, 1 ≤ k ≤ r.
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