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Abstract

Resistivity measurements are used in geophysical logging to help determine hydrocarbon
reserves. The derivation of formation parameters from resistivity measurements is a compli-
cated nonlinear procedure often requiring additional geological information. It is important
that the tool measurements be accurate with as few misleading artifacts as possible. This
requires an excellent understanding of tool physics, both to design new tools and interpret
the measurements of existing tools. The Laterolog measurements in particular are difficult to
interpret because the response is very nonlinear as a function of electrical conductivity, unlike
Induction measurements. Forward modelling of the Laterolog is almost invariably done with
finite element codes which require the inversion of large sparse matrices. Modem techniques
can be used to accelerate this inversion. Moreover, an understanding of the tool physics can
help refine these numerical techniques.

In axisymmetric formations, the best way to model the Laterolog is to cast the finite element
problem in terms of the azimuthal magnetic field H 4 rather than the classical electric potential
®. The use of H 4 allows one to model such frequency effects on the Laterolog as the Groningen
effect: an anomalous indication of hydrocarbon beneath highly resistive layers. Moreover,
unlike the ® formulation, the H 4 formulation does not exhibit a numerical singularity as the
contact impedance on electrodes tends to zero.

In fully three-dimensional problems, e.g., with highly deviated or horizontal wells, the Hg
formulation is not appropriate nor is a complete solution in terms of Maxwell’s equations
practical. To obtain a rapid solution in terms of ® requires a discretization that matches
dipping bed boundaries and fractures while still retaining sufficient structure for modern
iterative methods to be applicable. Decompositions of the approximation space tie directly
back to the meshing and discretization strategy as well as giving insight into preconditioning
techniques for conjugate gradient methods.
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Chapter 1 Introduction

Abstract. This chapter presents an overview of the thesis and describes the new
finite element applications that are examined in the thesis. We introduce Maxwell’s
equations and demonstrate the existence and uniqueness of the solution. We also
give a rapid survey of some of the ideas from linear algebra and functional analysis
that are the underpinnings of the finite element formulation.

1.1 Overview

This thesis describes finite element algorithms for resistivity modelling in geophysics. Its
emphasis is the interaction between discretization and solution techniques. Both traditional
and novel discretizations are considered for time harmonic Maxwell’s equations in 2D and 3D
‘with emphasis on the low frequency and DC excitation in 3D. Structure in the discretization
leads to streamlined matrix inversion. For example, relaxation methods can take advantage
of tensor product decompositions of the approximation space and hierarchical methods can
take advantage of direct sum decompositions. Decompositions of the approximation space tie
directly back to the meshing and discretization and give insight into preconditioning conjugate
gradient methods.

The major new developments presented in this thesis involve the application of modern finite
element methods to difficult modelling problems in geophysics, specifically: Groningen effect
in axisymmetric formations and focussed electrode modelling in highly deviated and horizontal
wells.

What is new in this thesis:

o Laterolog modelling in terms of the azimuthal component of magnetic field, Hg.
. Superconvergeﬁt formulations for apparent resistivity.
o A method of modelling Groningen effect.

o Contact impedance modelling for non-zero frequency w.

1



2 CHAPTER 1. INTRODUCTION

e Solution for 3D fields across horizontal beds.

¢ Unifying view of relationship between mesh discretization and solution strategy: the
importance of discretizations which preserve ‘structure.’

The motivation behind the thesis is a need for robust and accurate modelling of electromagnetic
tool configurations used to probe rock formations. Such tools are lowered down boreholes
and used in oil exploration and production to measure the electrical properties of rocks. From
these measurements an interpretation can be made as to the hydrocarbon bearing potential of
the formation. The two most important families of such tools are the Induction and Laterolog

configurations.

The Induction tool, [16], [32], [45], generates an azimuthal current around a metallic sonde
which induces current loops in the rock formation as shown in Figure 1.1. These current loops
in turn set up a secondary magnetic field which induces a voltage across the receiver coil.
We shall see in Chapter 2 that this voltage is roughly proportional to formation conductivity.
There is also much larger direct coupling term, however, and this must first be removed from
the voltage measurement by subtracting the response from a third ‘bucking’ coil (not shown
in Figure 1.1). In a layered formation, the resistivities of adjacent beds will also affect the
tool response, a phenomenon known as shoulder effect. Rather than an exact value in each
bed one obtains a log of apparent resistiviry which must be further postprocessed to estimate
true bed resistivities. Multiple arrays of weighted transmitter and receiver coils are used to
simplify this postprocessing, a procedure known as focussing and this is discussed further in
[45]).

Laterolog tools, [17], [44], [45], rely on a different principle whereby current is injected directly
into the formation from metallic electrodes. In an azimuthally symmetric formation, the
electric field will lie purely in the azimuthal plane (i.e., E4 = 0). In ahomogeneous formation,
the amount of voltage required to drive unit current between two electrodes will be proportional
to the resistance of the formation. The presence of neighbouring beds again degrades the
response and Laterolog produces a log of ‘apparent resistivity’ which is postprocessed to
estimate the true resistivity of each bed. An array of electrodes is again used to focus the
current in such a way that the shoulder effects are minimized as shown in Figure 1.2. Figure
1.3 shows the more sophisticated focussing arrangements used in the the Dual Laterolog
(DLL).! Two separate focussing systems are combined onto the same tool by operating them
_ atdifferent frequencies (35 Hz for the LLd mode and 280 Hz for the LLs). As can be seen from
Figure 1.3, the current paths in the LLd mode penetrate deeply into the formation whereas the
LLs mode is more sensitive to the region near the borehole, [44].

tMark of Schlumberger
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Figure 1.1: Schematic representation of an Induction coil. The transmitter coil creates a primary
magnetic field which induces current loops in the formation. These current loops induce a voltage
on the receiver coil which is proportional to formation conductivity. However, there is also direct
coupling from transmitter to receiver which must first be subtracted from the measured voltage.
(Reproduced courtesy of Schiumberger Technical Review)
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Figure 1.2: Focussing with large guard electrodes reduces shoulder effects from adjacent beds.
(Reproduced courtesy of Schiumberger Technical Review.)
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Figure 1.3: Focussing conditions used for the Dual Laterolog. (Reproduced courtesy of Schlum-
berger Technical Review.) The Azimuthal Resistivity Imager has the same configuration as the
Dual Laterolog except that the A2 electrode is segmented azimuthally as shown in the top of the
figure. For both tools, the voltage monitors at M'1 and M2 (and M'1 and M'2) are maintained
at the same potential by varying the current from the guard electrodes Al and A2 (and A'l and
A’2). The effect is to minimize shoulder effects on the A0 measure electrode.




6 CHAPTER 1. INTRODUCTION

In addition to shoulder effect, the presence of the borehole will also influence the apparent
resistivity, and if the borehole is not aligned perpendicularly to the bed boundaries there
will also be a dip effect. The goal of modem tool designs of both Induction and Laterolog
tools is to obtain accurate apparent resistivities and develop new postprocessing schemes so
that true formation resistivities can be estimated with confidence. This requires an in-depth
understanding of the physics of the measurement and an ability to predict the tool response in
a give configuration, which in turn is dependent on the availability of high-speed and accurate
modelling codes. For Induction tools (e.g., the DIT) a wide range of such codes has recently
become available, e.g., [3], but fewer codes are available for Laterologs, mainly because the
Induction tool can often be well-modelled using idealized point-sources whereas the Laterolog
cannot, [45]. The thrust of this thesis is to show how to solve for the response of a Laterolog
in previously unobtainable configurations and also how to improve the accuracy and speed of
finite element codes in 2D configurations that have been previously solved.

For example, Groningen effect is a finite frequency phenomenon on Laterologs that can
generate anomalously high readings of resistivity and lead to the erroneous supposition of hy-
drocarbon beneath massive anhydrite or halite layers, (e.g., [10], [29], [47]). Our modelling of
Groningen effect uses a finite element formulation for the azimuthal magnetic field component,
Hy. The only previous technique suggested in the literature, [4], assumes a low frequency
approximation to Maxwell’s equation. Using H, allows full modelling of Maxwell’s equation
in axisymmetric media.

Moreover, the use of H instead of the classical electrostatic potential $ provides a straightfor-
ward method of computing current lines as contour plots of pH 4. Deriving current lines from
® can become numerically unstable if ® is not very accurate. We discuss H ¢ modelling in
Chapter 3. The use of H does raises an interesting problem, namely how to model electrodes
subject to contact impedance. We present the solution to this problem in Chapter 4.

We also show how to use finite elements to derive a tool response without any loss of
accuracy present in traditional methods such as presented in [19). This method is called
superconvergence and, while popular in mathematics journals, has rarely been applied to
geophysical problems. It is closely related to the idea of using variational principles [11] to
derive the desired quantity (the apparent resistivity) instead of using the variational technique
to compute field distributions, with apparent resistivity obtained by postprocessing. We have
not found references in the geophysics literature using this technique. This technique does not
require that the FEM expansion be in terms of H4; the method works as well for traditional
FEM solutions of Laplace’s equation in ®. We discuss this in Chapter 2.

In 3D, we give a new approach to mesh discretization for Laplace’s equation in ¢ which

tMark of Schlumberger




1.2. MATHEMATICAL FORMULATIONS 7

allows convenient tensor product formulations (like finite difference or FEM on a uniform
mesh) but retains the flexibility of FEM methods to be conformal with bed boundaries and
complicated tool geometries. We apply this technique to models of highly deviated wells
where beds intersect at angles of 80-90 degrees. Traditional 3D finite element packages can
have problems because the mesh generators lead to globally skewed systems of tetrahedra.
Our method presented in Chapter 5 shows how to avoid this.

The remainder of this chapter provides arapid overview of mathematical ideas and conventions
used within this thesis. The purpose is to fix notation and provide references to standard texts
rather than didactic exposition. Lastly, as an example of these techniques we demonstrate that
the weak form of Maxwell’s equations has a unique solution.

1.2 Mathematical formulations

We very briefly overview mathematical ideas and notation needed for subsequent computations
on function spaces, convergence, etc. We have deliberately chosen a sloppy approach to any
topological subtleties; these issues have been well-covered in the literature (e.g., [371, [38]).
Instead, we stress the important ideas behind the mathematical terminology.

Notational conventions

We use the standard notation for the arithmetic fields, writing in blackboard bold: Z for all
integers, R for the reals and C for the complex domain. E.g., if Q is some three dimensional
domain we have Q C R3, The closure of €, denoted Q, is the union of the boundary 92 and

o]
interior . We shall always assume € to be a bounded subdomain with polygonal or smoothly
varying boundary. If ©; and 2 are two spaces, we write {21 X §2» for the space® of ordered
pairs (u,v), v € Q, v € Qp and similarly write Q% = Q x Q, etc. If a space V' is not
normally considered a subspace of W but there is an exact copy of V' inside W then rather
than writing V C W we may also write V < W. This map is called the inclusion map and
by definition it is one-to-one.

Bold faced symbols in lower case represent vectors in the domain, e.g., r or r’, and bold faced
terms in capital letters represent vector fields on the domain, e.g., E(r). The unit vectors in
IR3 are denoted i, j, k or else as X, ¥, 2. Cylindrical coordinate vectors are given as f, (13 and
%. (@ is reserved for latitudinal spherical coordinates.) The terminology 1, etc, may also be

1Also called the Cartesian product of ; and £;.
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used to represent an approximation to u. & will always denote the outward pointing normal
from the boundary 952.

Tensors are denoted A etc, and in dyadic notation ii, etc. For example, the identity tensor is
given by

(1.1) I=zx+9y+22.

Vectors in abstract vector spaces, however, are not flagged in bold case, eg,wewritev € V,
to indicate that v is some element of the vector space V. v may actually be a function on Q
and V, will then have been provided with additional topological structure (e.g., it is a Banach
or Hilbert space). All vector spaces will be assumed to be complex valued, and vector space
constructs will be defined over C. In C*, we shall always use the notation that {z, y) denotes
the bilinear form

(1.2) (2,9) =) ziw

without complex conjugation. (z,y) is thus not an inner product because it is not positive
definite.? The inner product over C* is given by (z,7) which we term sesquilinear, [38),
because it is linear in the first component but (z, a;y; + azg2) = @ (z,7,) + @2z, Fy) is

conjugate linear. We write
llull = v/{u,3)

for the norm. If u is a complex-valued vector, |u| is used to denote a seminorm3, e.g.,

Vi(u, )l

The space of infinitely continuous, complex valued functions defined on € is denoted C*° ().
C5°(€2) denotes the space of smooth functions which are zero in a neighbourhood of O.
An abstract, complex-valued bilinear form b(w, v) is termed continuous if there exists a real
positive M such that |b(u, v)| < M ||ul)||v|| for all u and v. In addition, if there exists a ¥>0
such that [b(u, %)| > 7||u||? for all u then b(w, v) is termed coercive . We term a complex
valued bilinear form symmetric if b(u, v) = b(v, u).

Upper case is used both for vector spaces and matrix representation of operators on that
space. Operators from one vector space to another may also be written in Gulet fonts,
E.g., if v1,...vy, is a basis for an n-dimensional space V and wy, .. .w,, is a basis for an
m-dimensional space W then a linear operator R: V — W is represented by a matrix R,

2[9] and [21] refer to this bilinear form as a formal inner product
A seminorm satisfies all of the properties of a norm save that |u| can be zero for non-zero .
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where

(1.3) R(vi) = D Rijw;.
J

Courier font (e.g., this) is used for computer symbols and algorithms, e.g., R might
represent a particular storage scheme for the components of the matrix R, or operator R. We
also use Courier font for fragments of computer codes.

Integration

Integration may be written in mathematical or engineering notation according to convenience.
E.g., if Qis the 3D domain [z, z2] X [y1, y2] X [21, z2] then we may write

(1.4) /{;f or ///f or /:2 -/:2 /22 f(z,y,2) dedyd:z.
Q A

Boundary integrals may similarly be denoted ]{ regardless of whether €2 is 2D or 3D. We
aqn
will typically use S to denote a 2D subset of €2 and V' for 3D.

In many cases, we need only approximate values of integrals and use numerical quadrature
rules of the form

(L.5) /ﬂf ~ Y wyf(zp)
4

where the z,, are suitable selected points in {2 called ‘stations’ and the w,, are weights. Gaussian
quadrature rules for Q = [0, 1] are well known (e.g., [2]). More complicated formulae for
more general domains (such as triangles and tetrahedra) are given in [43].

The simplest quadrature rules are based on the trapezoid rule, for example, if C = {c(t) : t €
[0, 1]} denotes a curve in C then we numerically evaluate a contour integral as

N A ety
19 fcf(z)dz = Z el +2f( (tizs) (e(ti) — e(ti-1))

where to, ... ,tx is a partition of [0, 1].
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Contour integrals in the complex plane are often more easily evaluated by deforming the
contour. By Cauchy’s theorem if ¢, and ¢ begin and end at the same points in C with ¢,
homotopic to ¢, then

%)) f f(2)dz =f f(z)dz-}-ZRes[f; 2r)

where 2, is the list of poles between c; and c;. Ideally, one can find a curve ¢, along which
the integral is more easily integrated numerically.

It is important to take into account branch cuts when deforming contours. For example, the
following routines compute f(z) = /z(z — 1) with two different branch cuts

COMPLEX FUNCTION F1(Z) COMPLEX FURCTION F2(Z)
COMPLEX Z COMPLEX 2

F1 = SQRT(Z*(Z-1)) F2 = SQRT(Z) * SQRT(Z-1)
RETURN RETURN

END END

Delta functions ¢ are defined by their action on functions in C$°(£2), namely that

(1.8) §(f) = £(0)

and, more generally, given z € Q

(19) §(z)(f) = f(=).

The derivative of the delta function is the map 6'(z) defined by
(1.10) §'()(f) = ~f'(=).

In cylindrical coordinates, the 3D delta function is defined as 6(r) = §(z)6(y)86(z) =
5(0)6(2)/(27p).

Delta functions can also be defined heuristically as the derivative of characteristic or Haar
functions. We define the characteristic function on an interval, X[a, ), to be the function which
is “1” on the interval [a, 5] and zero elsewhere. Characteristic functions on arbitrary domains
are similarly defined. If f is a function defined on 2 then we define its ‘support’ to be the set
of points z where f(z) # 0. The set of points for which f(z) = 0 is called the ‘kemel’ of f
denoted ker(f). The set of points f(<) is called the ‘image’ of f and denoted im( f).
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Linear algebra and Sobolev spaces

As the equations describing electromagnetic fields are linear in nature (a phenomenon known
as ‘superposition’), the natural mathematical language to describe solution algorithms is that
of linear algebra and functional analysis. Electromagnetic fields will be viewed as points in
abstract linear spaces and an understanding of the properties of these spaces can guide us in
algorithm development. In this subsection, we fix the notation for the linear spaces that we
will be using through this monograph.

Given two vector spaces, V and W, their direct sum, V & W, is the space of dimension
n + m with basis vy, ...Vp, w1, ... wn. If V and W are two vector spaces, V x W is not
a vector space, but becomes one, namely V' & W, by enforcing the identification of ordered
pairs (v, a1w; + agwa) = ay(v, w1) + az(v, ws) for a;, @z € C. In fact, for infinite
dimensional spaces, this is the usual definition of V & W, (e.g., [31]).

A potentially larger space of dimension mn is the tensor product V ® W. It has basis vectors
v; ® w; where an appropriate meaning is given to the tensor product of individual vectors.
For example, the dyads live in R3 ® R3 and we could also write equation (1.1) as

(1.11) I=%0%+70§+202.

As an example, for finite dimensional spaces, V ® W can be thought of as the space of matrix
representations of bilinear functions from V x W to C.# (This is the usual analogy of dyads
being ‘the same thing’ as matrices.) For infinite dimensional spaces, [13], [31], the space
V @ W is defined to be that unique space such that any bilinear function f from V x Wto C
corresponds to the composition of the map of the ordered pair (v, w) — v ® w followed by a
linear map from V ® W to C.5

The dual of a vector space V, denoted V', consists of the continuous linear maps from V' to
C. We shall usually assume that our vector spaces V come equipped with a norm ||v|jy and
the corresponding norm on V" is then

axm = max f(v).

(1.12) r=m =
Wl =g ol iwll=

Note that a linear function £ is continuous if and only if || f|]v+ < oo. If V is finite dimensional

and the linear operator f is represented as a matrix F as shown in equation (1.3) then || f|| is

the largest eigenvalue of F.

4Not sesquilinear!
5[1] gives a good exposition of tensor products for both contravariant and covariant tensors,
but only for finite dimensional spaces.
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Some normed spaces are actually inner product spaces in that there is a bilinearmap V x V —
G (v, w) = (v, w), such that (v,7) = ||v||%. An inner product space V is termed a Hilbert
space if it is complete, i.e., if the limit point of any convergent sequence always lies in that
space. This is not true, for example, of the rational numbers (fractions), the sequence 1,
1+1/1, 1+ 1/10+1/2!, 1+ 1/11+ 1/2! + 1/3!, is a convergent sequence of rational
numbers but the limit e is not a rational number. Nor is C°(f2), the space of continuous
functions, complete because it is easy to take a limit of continuous functions and have the
limit be discontinuous (think of adding Fourier harmonics to form a square-wave).

Standard examples of Hilbert spaces are L2(2) and H(Q2), the spaces of complex valued
functions f on Q such that (f, f)o < coand (f, f}1 < oo respectively, where

(L13) (£, 9o = / fo  ad  (fgh= /n f9+(Vf)- (V).

We write L? as H° and generalize to write H™ () for the space of functions whose nth partial
derivatives have finite L2-norm. The spaces H™ are often called Sobolev spaces. The inner
product on H" is

(1.14) = ) / (D F)(D*g).

#(a)<n
where (in 2D) o = (a1, a2), #(a) = oy + a3 and D* = §*1/9z** §*2/Gy** with a
similar definition in 3D.

In H1(£2), we define the semi-norm

(115) 112 = /n vs-v7,

and in H"(Q)

(1.16) Ifla = / D*f-D°F.
|al=n

For any H™(Q),

w1 A1 = Z 71 =

Fractional spaces H"*¢(2), n > 0, € € [0, 1) are defined in terms of the norm

(1.18) lollFnsecay = I0IIZ + [0 3rnse @)
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where (e.g., [7])

|Dv(z) — D*v(y)|
(119) I’Ulgi"'*‘(n) = Z L |z - y|d+2€

laj=n

where d is the dimension of 2.

If r > 0 then we define H~"(Q) as the dual space (H§({2))" where H{(2) denotes the
space of functions u € H"(Q) with v = 0 on dQ. Because Hg(2) C H"($2) then
(HT(Q)Y C (H5(Q)) = H™"(). Compared to (H"(R))', H~"(£2) contains some
additional boundary operators (given in [35], p. 110) that can only be defined if v — 0 near
09 and which involve derivatives of order less than r.

Some of the above statements about Sobolev spaces become a lot harder to visualize when one
recalls the glossed over notion of completeness. For example, one cannot strictly speaking
define H3(£2) as the space of functions » € H" () with u|sn = 0 on 92 because u need not
be continuous and its value on 62 need not be defined. All of the spaces H" (£2) are Hilbert
spaces so (tucked away in the definition) they are necessarily complete. Each of these spaces
is built by defining a “point” in H"(£2) to be the limit of a sequence of smooth functions. The
only difference between the H™’s lies in the definition of the limit. For example, we define
H5 () as the completion of C§°(Q2) in the || ||, norm.

In addition to the inclusion C*(Q) < HT(R?) for r > 0, there is a natural inclusion of
CL(2) — (HE(S2)) defined by

1.20) g: f o {frg) = fn fo Vi€ HHQ)

for ¢ € C(§2) and so we can also define H ~"(£2) as a limit of smooth functions, provided
we take the || ||-» norm. This was the historical approach to defining delta functions (e.g.,
[5]). Evenif g € H~"(R) is not a smooth function, we shall still write (f, g) for g(f).

Examining the structure of the Sobolev spaces, there is an apparent singularity at r = 0. For
r = 07, the Sobolev space places no restriction on the function values on 9€2. For r = 07,
the Sobolev space is defined as a dual space. In fact there is no singularity. When r = 0,
Hj(Q) = H”(Q) because there is no restriction on continuity in L?(£2), and when r = 0
there are no lower order boundary operators left to be defined in (H§(2)) — (H™(R))".
Lastly, L2(£) is known to be self-dual, [38].

The lack of completeness of C" and the existence of a continuous scale of spaces H” for any
7 € IR are strong reasons to use the Sobolev spaces. In particular, in the context of differential
equations we have that®

5[38] gives the proof if L has constant coefficients, [24] gives the more general case.
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Theorem 1 If L is an elliptic 2nd order operator with smooth coefficients and Lu = f with
FEH (Q)andr € Rthenu € H+2(Q).

This theorem would not be true if we replaced, for example, H” () with C"(Q). Even if f
were in C” then L~! f need not lie C"+2. It will, however, lie in some slightly large space.
That space is precisely the space given by completing C™*2 under the || (|, +2 norm.

Fractional spaces arise because data which has, say, r derivatives in the interior of € can
actually be a little less smooth on the boundary 8, in fact, by exactly ‘half a derivative’.
Suppose that u € H'(R) so that Vu € (H°(Q))? (recall that the superscript ¢ means
d separate copies). On the boundary, we will have that u € H'/2(8Q) and Vu - & €
H~1/%(8Q). Heuristically speaking, the potential distribution, u, along a boundary is going
to be ‘more smooth’ than the corresponding current distribution Vu - £.

We have seen that if r > s then H™ C H*, but in addition, by the Riesz representation
theorem, [38], there is also defined an isomorphism between H~"(Q) and H' (). Le., given
any g € H™" we can always find g € H™(Q) such that g(f) = (g, f), for all f € H"(Q).
Using the notation defined above, this says that (g, f) = (g, f), forsome g € H". If r > 0,
this does not imply, of course, that there exists a g with (g, f} = (g, f)o. For example, if
2 = (~1,1) C R then all functions in H}(£2) are actually continuous, so the delta function,
6 is a well defined ‘point’ of H~'(Q). This means that there is a well-defined continuous
function d such that (d, f}; = f(0) for all f € H'(Q).” But there does not exist a function
d € H(Q) such that (d, f)o = £(0) (if there were then we would have that § = d € H(Q)
which is clearly false).

The fact (used in the previous paragraph) that functions in H§ ((—a, a)) are actually continuous
may not seem surprising, but this result does not extend to higher dimensions. For example, in
2D the function loglog(p) is in H'(IR?) but is not continuous at the origin. The relationship
between continuity and the Sobolev index r is a little subtle. Specifically, if Q2 is a bounded,
polygonal open subset of R, then

Theorem 2 (Sobolev Embedding) H™+4/2(Q) C C*(Q2) ¢ H™(Q).

For example, in 1D, functions are continuous if they have a derivative with finite energy,
whereas in 3D having a second derivatives with finite energy is needed to guarantees continuity.
A relatively simple proof of this result is given in [38).

When Q = R¢is unbounded, we can use a simpler definition for Sobolev spaces based on the

"d(z) takes on a surprisingly simple form!
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Fourier transform. Specifically, for any r, u € H™(R¢?) if

(1.21) Nulldre(rey = /kem l42(1 + |k|?)"dk < oo.

From this definition, for example, [35] shows that the statement in 2D that “derivative with
finite energy implies continuity” only just fails: for @ C R?, H'*¢(Q) C C'(Q) for any
¢ > 0. The 2D delta function lies in H~'~¢(Q2) for any ¢ > 0, but not in # ~*(£2). Similarly,
in 1D, § € H~/2=¢(R ) for any € > 0.

Galerkin formulations

We say that an equation Lu = f is valid in the weak or distributional sense if Ly, v) = (f, v)
for all v. v is termed a test function. The space of test functions must be chosen sufficiently
smooth that the inner product {Lu, v) exists in the ‘classical’ sense (after integration by parts
if necessary). E.g., if L is a second order differential operator and u is in H 1(Q) then
Lu € H~1($) and we could take v € H™(Q), (n > 1). Alternatively, if u € H*(Q), then
Lu € H?(2) would be continuous and we could take v to be a delta function, in which case
Lu = f would be enforced at every point — the ‘strong’ sense of the differential equation.
In the finite dimensional case, we know that an operator will be invertible if its smallest
eigenvalue is bounded away from the origin. In the more general case, we have the result

Theorem 3 (Lax-Milgram) If A is a coercive, symmetric bilinear form defined over V, i.e.,
7llwl1? < |A(v,?)| € Cl|vl|*for allv € V ,thenfor any f € V there exists a unique solution,
u, to the system of equations

A(u’v) = (f, ’U) Vv € V7
and ||u|] < C/7l\fll.

Note that | A(u, )| is not the same as A(u, %) because the latter need not be real valued. Also,
it is not a restriction to think of the right-hand side as an inner product because by the Riesz
representation theorem any continuous linear operator on V' can be so represented. Lastly,
note that A(w, v) = (f,v) for all v € V is the same system of equations as A(u,7) = (f,7)
forallv € V.

If W is a closed subspace of a Hilbert space V, then we can define W+ to be the space of
functions u such that (u, w) = Oforall w € W. We will then have a direct sum decomposition
V = W& W<, Any point v € V can be written uniquely as w; + wp with wy € W and
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wy € W*. This in turn defines a natural map called the projection operator P : V — W
given by P(v) = P(w; + wz) = wy. P(v) will be the closest point in W to v.

The combination of these two ideas is used repeatedly in the so-called method of moments,
[23], or Galerkin method: Given a symmetric, invertible linear operator L : V — V' we
solve the system Lu = f restricted to some finite dimensional subspace W C V with @ the
image of u under the natural projection P : V = W @ WL — W. Thus we wish to find
% € W such that (L, 9) = (f, o) for all # € W. By the Lax-Milgram theorem, such a 4
will exist provided L is coercive over the subspace W, i.e., provided the smallest eigenvalue
of L is bounded away from 0.

A concrete example of this is given in the Section 1.4 where we show that there must exist a
solution to the time-harmonic representation of Maxwell’s equations in a lossy media.

If we are given a basis wi,... ,w, for W then & = uyw; + ...u,w, and we are thus
required to solve the finite dimensional system

(1.22) > uj(Labj, ) = (f, i)
i=1

fori = 1,...n. (L, ;) clearly constitutes an n x n matrix which we term the stiffness
matrix .

Sometimes, the test functions v are required to satisfy a linear constraint Pv = 0, say, so
that W is the kernel of P and a basis for W may not be obvious or easy to implement on the
computer. In this case we can appeal to the theory of Lagrange mutlipliers for a solution. We
know that for any bounded linear operator P : X — Y then X = ker(P)@®im(P*) where P!
is the adjoint operator (i.e., transpose) defined by (Pz,y) = (z, P*y), [38]. So (Lii, d) = 0
for all 5 € ker(P) is exactly the statement that Lu € im(P?), i.e., that Lu = P! for
some A € Y. Xis known as a Lagrange multiplier. This formulation can be used to impose
divergence conditions on the solution of Maxwell’s equations in 3D. In Chapter 2, we shall
use Lagrange multipliers to help examine constraint equations for focussed Laterologs.

Connectivity and calculus

We have seen that notion of completeness is important to the study of differential equations.
A second topological concept intimately related to calculus is connectivity. The domain 2 is
called simply connected (written 71(2) = 0) if the image of any circle in § extends to the
image of a disc lying wholly within Q (e.g., not the case for a circle around the borehole if
§2 consists of the formation minus the borehole). Graphically, if 71(2) = 0 then one can
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“shrink” any circle to a point. Similarly, we write that 72(Q) = 0if any sphere can be shrunk
to a point in the domain (e.g., not the case for R3 minus a point). We have the well known
results that

Theorem 4 If 71(Q) = 0then V x A = O ifand only if A = —V'® for some scalar field .
Theorem 5 If 72(2) = 0then V- A = 0ifand onlyif A = V x B for some vector field B.

Other important links between geometry and calculus are Stokes’ and Gauss’ theorems

(1.23) /VxA-du: A -dl,
s a5

(1.24) /V~A= A-dv
v av

for surfaces, S, and volumes, V, respectively, from which we can derive the classical 3D
formulae

(1.25) /f-ng:/g-fo+/ fxg-dv
0 o an
and
(1.26) /¢»V-f=—/V1/)-f+ Yf - dv.
Q [¢] an

In cylindrical coordinates, the gradient, curl and divergence are given by

0P -1 00
(127 V‘I’—P-%-Hﬁ;%-%zé—z',

(1.28)
VxA=p[laA’ _6A¢]+4;[6A,,_3A,]+2[1 0 ony)— 1%]’

p 06 0z 5z 9p p0p » 8¢
19 1944 | 0A.
(1.29) V-A= pap(pAp) +; 36 T 5
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Direct sum decompositions

For a simple application of Sobolev spaces, we can consider the space H °“™!(Q) which is the
completion of (C*(£2))* under the norm

(130) ’ ||u||§u,.,=/u-'ﬁ+qu-Vxﬁ
a
and the subspace
(131) Xo = {Vxsuch that x € H() and x|an = 0} .

Xo is complete under the || ||cur: norm and is a closed subspace of H %™ so has a well-defined
orthogonal space X :

(132) X ={ueH°""suchthat/u-V+qu~VxV=0forallvEXo}

fy!
ie.,
(1.33) Xy ={ue H**" such that / u-Vy=0Vx € H}(Q)}
n
(134) = {u € H**"'such that /(V -u)X = 0¥x € Hp(Q)}
o]

where we have used equation (1.26) and the fact that x = 0 on 3. In general, u € Hv"!
need only be tangentially continuous, so that V - u € H~}(Q), but H}(Q) is the dual
space of H~1(Q) so the only way for (V - u,¥) to be zero for all x is if V-u = 0. As
Hevrl = Xo @ X¢, we have thus proved

Theorem 6 Every element u € H°*"(Q) can be written uniquely as u = Vx + v where
V-v=0andx = 0on .

In particular, v € H!(2)3 even though u itself can be discontinuous.

If we remove the boundary restriction on x, we increase X slightly to
(135) X = {Vxsuchthat x € H(Q)}.

By applying the same reasoning as above to this subspace we get that

Theorem 7 Every element u € H“"(Q) can be written uniquely as u = Vx + v where
V-v=0andv- v =00n0.
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Lastly, we can write
(1.36) X = {ue H* " suchthat V x u = 0},

 which is a larger space than X if 2 is not simply connected. We obtain the decomposition’

Theorem 8 Every element u € H*™'(S) can be written uniquely as u = w + v where
Vxw=0,V.-v=0,v- &= 00ondQ andmoreover (v,f) = 0 for any f with V x £ =0
even if £ is not the gradient of a scalar.

In each case, note that uniqueness of the decomposition can also be established directly, for
example, if Vx € Xg then V- Vx = 0 with x = Oon G which has the unique solution
x=0.

1.3 Sparse matrices

Sparse matrices arise naturally in the study of finite element problems because of the inherently
local nature of the differential operators. We give a brief overview of some standard techniques
used to manipulate sparse matrices. Non-local behaviour may be observed on the boundaries,
for example representations of the boundary conditions “at infinity” may be non-local and
conditions on the tool can also be non-local, especially when dealing with focussed electrode
devices. Such boundary conditions will not significantly decrease the sparsity of A.

The most fundamental question is how to store the matrix A. We define the profile of the
N x N matrix A to be the smallest number p(¢) > 0,i{ = 1,..., N such that A;; = 0 if
li = j| > p(i). The maximum value of p(:) is termed the bandwidth (or more precisely the
half-bandwidth). If A is symmetric, profile or skyline storage for A is A where

-1
A= ADDII +3-11  and D) =1+ (p(k)+1).
k=1

The zero elements of A beyond the profile are not stored. D[I] gives the location in A of the
diagonal of the Ith row. We can use a similar profile storage scheme if A is not symmetric.
An advantage of this formulation is that if A = LU is a factorization of A as a product of
lower and upper triangular matrices, then L and U can lie in the same storage structure as A.
If A is symmetric then U = DL for some diagonal matrix D. We can always choose L to
have unit diagonals. The following algorithm known as row-wise Gaussian elimination, {5],
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computes U/ and L from A

Ui = Aij-— i}::i LU - for i<},
L = (A,-j - JZ;; L.-,U,,-) / U;; for i>j,
where we proceed in the row-wise fashion

(138) (G,7) = 1,1),1,2),...(1,n),(2,1),..., (N, N).

If we do not store the diagonal of L then in fact we can overlay L and U into the same storage
as A. If A is symmetric then we do not need to store L at all.

(1.37)

The major disadvantage of the profile storage scheme is that it can be very large. In a typical
finite element problem on, say, a n x n x n mesh the profile of A will be O(n?) even though
most of the entries within that profile are zero. The corresponding entries in L and U, however,
will not be zero, a phenomenon known as fill-in, [22]. Moreover, it is strongly oriented towards
Gaussian elimination, which can be an expensive solution strategy. An alternative approach
is to only store the non-zeros of A.

RS/CS storage system

This method of storing a matrix requires two pointer (integer) arrays in addition to a packed
array containing the non-zero data (which we shall assume to be complex valued). The first
pointer array RS(I) indicates the location in A(*) of the first nonzero element of each row.
Le., the storage locations A[J], 3=RS[I],...,RS[I+1]-1contain the non-zero elements on
the Ithrow. We set RS [N+1]-1 to point to the last element of A. We should stress that RS(I)
refers to a storage location within A (*) and not within A(#*, *). The second array CS(*) lists
the corresponding column numbers. An example may make this clearer. Consider the matrix

1 0 0 -1
0 8 -3 4
(139 A= 0 =3 5 0
-1 4 0 6
The corresponding data storage is:
A =1-18-3 435-1 46
cCS =1423 423124
RS =136 811

E.g., the data for the third row lies in A(*) and CS(#*) starting from location RS(3) = 6to
RS(4)-1 = 7,i.e., the elements of A(3, %) are -3, 5, with corresponding columns 2, 3.
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Other storage schemes

For symmetric matrices, there is clearly redundant information in the above system and an
obvious contraction is to, say, not include lower triangular components in A(*):

A
Cs
RS

i
e
[USIN NIN
O\Noo

3456
343
7

Y N

The first scheme has the disadvantages that it is slightly awkward to locate diagonal entries
of A, whilst in the symmetric scheme traversing columns (as will be required in the ILU
preconditioning step, for example) is inconvenient. Other popular choices include storing
the diagonal entry first on each row (e.g., [36]) and storing the symmetric matrix in column
oriented storage (recommended by [5]). The simplicity of the RS/CS scheme tends to outweigh
its disadvantages, however, and will be the method used exclusively in this text.

Given the RS/CS storage scheme, multiplication y = Az is quite straightforward:

DoI=1,N
Y{I]l = 0
END DO
POI=1,X

DO J = RS[1], RS[I+1] -1
Y[1] = Y[1I] + ACII*xX[CcsS[J]]
END DO ‘
END DO

1.3.1 Stencil formulations

An alternative approach is possible if the matrix A arises from a uniform mesh. For example
supposing {2 to be a rectangular domain in the p, z plane, we can construct a mesh of
rectangles given partitions pg, . . . PN 20, - - . , 2p along 9$2. We do not number the nodes
from 1,... N, N, but retain the 2D structure. The discretization space, V;/ ® V7, is the tensor
product of the 1D discretizations in p and z.

Matrix assembly is simplified because we know a priori that ¢j will be a neighbour of
pq if and only if |i — p| < 1 and |j — g| < 1. The global stiffness matrix of equation
(1.22) will have a nine-point stencil at each node and is most easily coded in FORTRAN as
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A[-1:1,-1:1,0:NRHO, 0:NZ].There is no need for an RS/CS data structure. For example,
if A is symmetric, multiplication of y = Az becomes:

DO I = 0, NRHO
DO J = 0, N2
Y[I,7] = A[-1,-1,I,31#X[1-1,J-1] + A[ 0,-1,I,J7*X[I ,J-1]
+ AL 1,-1,1,31#X[I+1,3-1] + A[-1, 0,I,J1*X[I-1,] ]
+ AL 0, 0,1,33+X[T ,J ] + A[ 1, 0,I,J]1#X[I+1,] ]
J+1]

+ A[-1, 1,I,J]*X[I-1,J+1] + A[ 0, 1,I,J31+X[1 ,
+ Al 1, 1,I,3]*X[I+1,J+1)
END DO
END DO

Pointer arithmetic is avoided and the compiler can generate gather-scatter operations at
compile-time if needed. Appropriate care needs to be taken, however, to ensure that
A[P,Q,I,J] is zeroif X[I+P, J+Q] is exterior to the domain.

1.4 Maxwell’s equations of electromagnetics

In this section, we present an overview of Maxwell’s equations, boundary conditions, generic
sources and material properties. We shall assume a time harmonic excitation of the form
e~*' and suppose that a current source J excites an electric field E and magnetic field H
within some domain @ C R3, Here J, E, and H are three dimensional, complex valued
vector fields. Maxwell’s equations describe the relationships between these fields in terms of
the constitutive properties of the medium:

(1.40a) VxH=(c—-iwe)E+J,
(1.40b) VxE=iwuH,

(1.40¢) V - €E = pp,

(1.40d) V-uH =0,

where o is the electrical conductivity, ¢ is the electrical permittivity, and y the magnetic
permeability. In general, we shall suppose that each of these constitutive parameters is real
valued and strictly positive within . oE is termed the induced ohmic current, —iweE the
induced displacement current and J the impressed current.

In equation (1.40c), pr denotes the total electric charge density in the domain. If we take the
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divergence of equation (1.40a) we obtain
(1.41) wpr =V - (J+oE),

so that pr has contributions from both the divergence of the impressed current and also
from V - cE. We will obtain charge accumulation at points of discontinuity of o E. These
accumulated charges contribute to pr. Only in the special case that ¢ = 0 can we know pr
a priori. As this occurs rarely in geophysical problems (essentially only within the interior
of resistivity tools!) we shall not use pr in the remainder of this dissertation. (In very
low resistivity anhydrites and halites, we shall always assume that there is some nonzero
conductivity ¢.)

We do not suppose that the material properties are smoothly varying and so equations (1.40a)
—(1.40d) must be understood in the weak or distributional sense. In particular, if we choose
constant test functions, we obtain the global integral formulations of Maxwell’s equations:

Ampere’s Law

(1.42) /VXH-dV:f Hwﬂ:/aE-du—-iw/eE~du+/J-du,
s as s s s

Faraday’s Law

(1.43) /VXE~dV:% E-dl:iw/pH-du,
s as s
Gauss’ Law of Electricity
(1.44) f eE-dv:/ prdV,
av %

Gauss’ Law of Magnetism

(1.45) f pH - dv=0,
v

for a 2D surface, S, or 3D volume, V, in Q and dv = £dS, etc.

From these equations, we can derive the standard boundary conditions across domains of
discontinuity in the material properties (e.g., [11], [25], [26]) which we do not repeat here,
save to note that the tangential electric and magnetic fields must always be continuous across an
interface if the conductivities are finite. In a well posed finite element formulation, boundary
conditions interior to the domain (e.g., at formation bed boundaries) will be natural with
respect to the Galerkin operator, [42].
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Implementation of approximate boundary conditions at infinity have typically played an im-
portant role in FEM, but in geophysical applications the fields will decay rapidly (exponentially
in many cases) from the sources and homogeneous Neumann or Dirichlet conditions are not
inappropriate provided the boundaries are taken sufficiently far from the sources. In Chapters
3 and 4, we discuss boundary conditions on tool surfaces and electrodes. Boundary conditions
on cable armour are given in Chapter 3 and boundary conditions across imperfect electrodes
are given in Chapter 4. Here we shall limit ourselves to a discussion of boundary conditions
across perfect conductors and insulators.

1.4.1 Perfect conductors and insulators

For almost all situations in resistivity modelling, the ohmic current is non-zero. However,
for some tool configurations, we also need to postulate the existence of a ‘perfect insulator’
where o and iwe are both so small that we can take ¢ = iwe = 0. We suppose that = Hao,
the permeability of free space, inside a ‘perfect insulator.” The electromagnetic field inside a
perfect insulator need not be zero. The opposite case of extremely large conductivity, termed
a ‘perfect conductor” is less problematical because the electromagnetic field therein must be
zero.® We shall typically suppose that perfect conductors have been removed from §2 and
replaced with suitable boundary conditions on E and H. More specifically, we have:

Theorem 9 On the boundary of a perfect conductor, the tangential component of E and the
normal component of H are both zero.

The normal component of E and tangential component of H need not be zero. We define the
surface current to be

(1.46) J, = xH.

Across the boundary of a perfect insulator the tangential components of E and H are both
continuous. This is clearly not necessarily the case for perfect conductors. The normal
components of 4H and (¢ — iwe)E are, however, continuous for both cases.

Unlike ‘perfect’ electrical conductors, perfect electrical insulators do not exist in nature, but
their use simplifies some mathematical formulations. In practice, a ‘perfect’ insulator is one
in which o =~ 0 and the dimensions of which are so small that displacement currents can be

8f w = 0 and ¢ = oo, there could also exist a so-called magnetostatic field H = Vx with
V - uVx = 0. We can always ignore this magnetostatic component in resistivity modelling.
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Perfect
insulators

Perfect

conductors

Figure 1.4: Formulation purely in terms of tangential H on the insulating boundaries of the
axisymmetric cylinder will be valid for (i) and invalid for (ii). J denotes a possible current source
along a wire at the centre of the cylinders.

assumed negligible. For example, we will suppose that the certain sections of the Laterolog
consist of perfect insulators with a current carrying wire down the centre of the insulator.

The field within a perfect insulator is not zero but if we are given all three components of either
the electric or magnetic field on the boundary then the field inside is unique. The following
(admittedly perverse) example shows that it is not sufficient to be only given the tangential
magnetic field on the boundary of a perfect insulator. Figure 1.4 shows two cylindrical domains
with perfectly conducting caps at 2 = 0 and z = L connected by a current carrying wire at
the centre of the cylinder. In the second case, there is also an annular conducting ring around
the middle of the domain. In this case, one can construct a function 3 which is "1" above the
conducting ring and "0" below and such that V23 = 0. On the metallic boundaries we can
choose V4 - & = 0. The magnetic field H = V1 will have zero tangential component on
the insulators but be non-zero inside the domain. Such a 1 cannot be constructed in case (i).
For this geometry, specifying tangential magnetic field on the insulating sections will give a
unique solution on the interior of the domain.

Such problems of non-uniqueness are not restricted to perfect insulators. [27] and [28] show
how non-uniqueness can arise in magnetic scalar potentials in multiply connected regions and
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Kotiuga relates this non-uniqueness to elements of relative cohomology groups [6], [41].

We shall see in Section 1.4.4 that if |o — iwe| is bounded away from zero then specifying
tangential EM fields will give rise to a unique solution. In Section 1.4.6 we also examine the
case when 2 contains perfect insulators.

1.4.2 Reciprocity

Following [23] and [26], we consider two time-harmonic sources J, and J; in a domain
subject to appropriate boundary conditions. These sources generate electromagnetic fields
E,;, H; and E;, H, respectively. The reaction between the two fields is defined in [39] as

(147) [a,8] = / 3. E,
(1}

and it is clear that
(1.48)

[a,b]—[b,a]:/V-(beHa—Eabe)=/ (Es x Hy — E; x Hy) - dv,
o) an

which [14], [15] and [20] cite as a special case of the Lorenz reciprocity theorem. Depending
upon the boundary conditions imposed on 82, we may have that [a, b] = [b, a] in which case
we describe the system as reciprocal. In particular, any boundary condition of the form

axE+ B xDxH=0

(where o and S are arbitrary) will give rise to a reciprocal system. Boundary conditions
involving tangential derivatives and those corresponding to focussed Laterologs can give rise
to non-reciprocal systems as we shall see in Chapter 2. An unbounded (isotropic) domain will
always be reciprocal as the fields will decay to zero at infinity. In an anisotropic domain, the
material properties o, ¢ and g are tensors, not scalars, with

(1.49) V x E = wzH, and VxH=(7-iwéE+7J.

For the anisotropic case, we can only have a reciprocal system if, in addition to the appropriate

conditions on 92, we have that the material property tensors are symmetric (e.g., 7 = o),
[14], [15].

We shall see in Chapter 2 that in a finite element context reciprocity corresponds to symmetric
(or complex symmetric) matrices, for which sophisticated inversion methods exist. If we
introduce feedback circuits on electrodes to enforce focussing conditions then the resulting
finite element matrices need not be symmetric and so harder to invert. Solution techniques
which avoid this problem are also presented in Chapter 2.
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1.4.3 Weak formulation of Maxwell’s equations

In general, to solve for E and H, we will remove perfect conductors and perfect insulators
from 2 and replace them with boundary conditions on 0€2. We can suppose that the tangential
E field is zero across the perfect conductors and let us suppose that we have been able to solve
for the H field within the perfect insulators (= H, say). In this case, following [40], p. 48,
we can write 9 = 9Qo U 8, where H x v = H x v on 8Q and E x v = 0 on 0%Q,.
From (1.40a) and (1.40b) we have

(1.50) V x

V x H — iwpH = V x

0 — twe o — iwe’

which we interpret in the weak form

(1.51)
J
/h-Vx 1, VxH—iwyh-H:/h-Vx - Yh € H*(R).
Q o — twe o

0 — WE

Here HE"™(R) is the Sobolev space containing those fields, h € H*"(Q), such that
h x & = 0 on Q. [34]. We do not suppose h to be continuous. The integrals in Equation
(1.51) will exist in the classical sense after integration by parts (equation (1.25))

(1.52)/ L Vxh-VxH—iwyh-H-i-f{ :
no’—'l(df ana—l(-UC

:/h-Vx J. .
Q o — lwe

Because H x & is prescribed on 89 we have set to zero the tangential component of h on €20
to avoid an overdetermined system. On the remainder of %, (VxH) x & = & x (0 —we)E
is zero by hypothesis so the boundary integral vanishes from (1.52) to give

h-(V xH) x &

o~ Wwe

(153) AW(H,h):/h.VX I _Mh)  VheHOT(Q)
aQ

where the bilinear form
Vxf-Vxg
54 wll, = _— ] .
(1.54) Au(f, g) /‘; p— iwpf - g
and
(1.55) M=Vx J
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In the next section, we show that A, is coercive and hence can use the Lax-Milgram theorem to
guarantee existence of a solution to (1.53) within a bounded domain where 0 < |o—iwe| < oo.
Note that standard texts do not discuss the question of existence, only uniqueness, which is
simpler.

1.4.4 Existence of a solution

Assume that 62 is divided into two regions 852 where the tangential H field is zero and 52,
where the tangential E field is zero. We can think of 8 as bounding a source free perfect
insulator and 52, as bounding a perfect conductor. Let H§“™' () be the subset of H°“"(()
consisting of those functions which are tangentially zero on 8. We shall show that the
bilinear form A, (f, g) is coercive over H§"™(Q)if o, ¢ and p are all real and bounded away
from zero and w is strictly positive. As an immediate corollary of the Lax-Milgram lemma, a
solution to

A.(H,h)= (M,h) Vhe HS(Q)

must exist and be unique. Moreover the bounds on A, will give a relationship between
“H”curl and ”M”curl, where

(1.56) IH2,,. = /ﬂ B2 + |V x HP
is the norm on H°*"'(Q).

Let us write 1/(o — iwe) as p’ + ip and by hypothesis 0 < p/,.., < p' < Prnas < 0O Over
§2 and similarly for p”. For notational simplicity, we assume that B is constant.

We have that

2 2
(157) lAw(f,?)|2={ / p'Hfow} +{ / p”llesz-qulfllz} ,

SO

|Au (£, )| {f IV = £{lp” }2 {IHV x fllp" }
(1.58) —_— > { + —whe
II£115 TlIEl2 EE
where A = p[ ;.. /Ppaz- Now if f(z) = Az? + (z — wp)? then f(z) has a minimum when
¢ = wpu/(A+ 1), namely f = w?u®A/(A + 1) so for any z € R, Az? + (z — wp)? >
w?p?A/(A + 1) and hence

D oA,

1.59 = -
(159) I 2 341
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and

(1.60) |Auw (£, )] = Y|If13.

Certainly,

(w61) AWl D1 > i [ 1V %12
[

and so (possibly with a different value of v)

(1.62) JAGE, D) > 711120

Note that in particular that y — 0 asw — 0, p/,;, — Oorpfl .. — oo.
Boundedness is easier to prove as (a — 6)? < 2a® + 2b? and so

(1.63)

29

AE N < { e [ nvmn?} +2{ e [ nwle} +ofou [ ufn?}

and
(164) AuE B < C [ I+ 17 x £
0

for a suitable choice of C.

Thus by the Lax-Milgram lemma provided w is bounded away from zero A,, is coercive and

a solution to Maxwell’s equation will exist in H () (at least in a distributional sense) and

be unique. Also note that as the frequency tends to zero, the bound C/+ on ||H|| will tend
to infinity and the solution will become more and more unstable. In fact, equation (1.53) has
a weak singularity at w = 0. To obtain uniqueness and existence at w = 0, it is necessary
to impose equation (1.40d). In the next section, we discuss the formulation of Maxwell’s

equations at zero frequency.

1.4.5 Maxwell’s equations at DC

When w = 0, Maxwell’s equations for the magnetic field are

(1.65) VxH=0¢E+17,
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(1.66) VxE=0

and

(1.67) V.uH =0,

whence

(1.68) Vx%VxH:Vx; and V-pH=0

which we term the H-formulation.

Alternatively, if 7,(Q2) = 0 then from Theorem 4, E = —V® for some scalar field & and we
obtain Poisson’s equation

(1.69) V.eV®=V-],
which we term the ®-formulation.

Boundary conditions are different from the CW (non-DC) case considered in the previous
section. For the @ formulation, we must prescribe either ® or 9®/0v on the boundary. For
the H formulation, we must prescribe either H x 2 on the boundary or H - .

Existence and uniqueness proofs for the DC case follow familiar arguments (e.g., [5], [12],
(42]). The only hard part is to prove coercivity and for this one uses the Poincaré inequality
that for any bounded €, there exists a Cq > 0, such that

(1.70) / (V®)? > Cq / @2
4] Q

for all & which are constrained to zero on some part of 82.°

1.4.6 Low frequency solutions to Maxwell’s equations

We have seen in section 1.4.4 that Maxwell’s equations lead to a coercive formulation but that
at low frequencies the smallest eigenvalue of the operator A,, tends to zero. Druskin, [18],
has recently shown that if a divergence condition is enforced then coercivity is maintained

%e.g., see [12], [35). [42] gives a simple proof of this inequality for the case = (a,b) C R.
It is important that some part of the domain be held to zero otherwise a & = xa would be a
counterexample.
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regardless of frequency. Specifically, there exists a constant ¥ > 0 independent of w and f,
but depending on the material parameters o, u and € such that

(1.71) |[Au(£,5)] > 9|if||%.,; forall fsuchthatV-puf =0.

An immediate, and important, corollary is that if V}, is a subspace of H curl(Q)) which has the
property that every element of V;, is divergence free then the solution Hy € Vj to

(1.72) A, (Hp,hy) = (M, hy) Vhy € V3

satisfies

(1.73) (1H — Hy |2, < ¢ min ||H — Hy |30
cur 7 HhEVh cur

where H is the true solution in H%™_i.e., up to a constant that does not vary with w, then the
finite element solution over Vj, is “as close” to H as the best possible Hj, in V. We repeat
Druskin’s proof here for the convenience of the reader.

Let O, be a subset of the boundary which has the property that there are points where i, j
and k are tangent vectors, i.e., 8, is such that the constraint u x v = 0 on 012, implies that
u, = 0 somewhere on 9%, uy = 0 somewhere on 02, and u, = 0 somewhere on oQ,.
In that case, the Poincaré inequality, (1.70), applied separately to each component of u gives
that for some y > 0

(1.74) /Vu:Vﬁ 27/ u-u
Q Q
for all u satisfying u x £ = 0 on §€,. From this it is immediately clear that
1.75) /VxE-VxE>7/E-E
Q Q

for all E satisfying E x & = 0 on 89, with V - E = 0. We shall write 9§ for 9Q — 652,
and suppose that (V x E) x & = 0 on 0.

As p is real, we thus have

(1.76) / Loxers —l—/ |E|?
oM Hmaz JQ

(177 = a/ |E|?,
e)
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say. Let ag be the largest such value of « for which the bound holds.

Druskin’s proof relies on the observation that for a bounded linear functional A, then if A
is the maximum value such that X* Ax > AX'x then ) is also the minimum value such that
X' Ax = XX'x has a non-zero solution.

So for the case here, oy is the smallest value of « such that

(1.78) / l|v x B> = a/ |EJ?
aQp Q

has a non-zero solution. Let Eq be that solution. As ay is non-zero it is also easy to show that
V-Eq=0.Let Hy = 1/uV x Eq, then Hy is non-zero and

(1.79) V x V x Ho = aouH,

with Ho x & = 0 on 0, and (V x Hg) x & = 0 on 8Q. It is also clear from equation
(1.79) that V - uH = 0. Moreover, aq is the smallest value of « such that

VxVxH=auH

has a non-zero solution H satisfying the divergence and boundary conditions. Finally, assum-
ing o is real,

(1.80) / l,v x HI> > ap / #H? > aopmin / [H|?
Qf 0 o

forall Hwith V- uH = 0, H x & = 0 on 09, and (V x H) x & = 0 on 8Q,. Note that
this bound does not require any smoothness for y or o.

[18] also points out that this is a special case of the fact that the set of points A such that the
pencil

VlexE:/\oE,
]

Ex&o=0 ondf, (VxE)yx2=0 ondQy,

has a non-zero solution is the same as that set for the pencil
1
V x ;V x H=AuH,

Hx2=0 ondQy (VxH)xD>=0 onéf,.

Given equation (1.80) then equation (1.71) follows by applying the result to the real and
imaginary parts of A, (f, f). From a finite element perspective, this result is a little disatisfying
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in that in general it may be highly non-trivial to build approximation spaces in V, C # curl
which satisfy V-uHj = 0forall H, € V},. For this reason, in this thesis, we shall concentrate
on two cases for which the construction of V}, is essentially trivial, namely DC solutions in
terms of ® and azimuthally symmetric solutions in terms of Hy. [18] has shown how the
divergence condition can fit naturally with the Yee-Lebedev finite difference formulation,
however.

The imposition of a divergence constraint also allows us to discuss existence and uniqueness
over domains 2 which contain perfect insulators. If o — iwe = 0 in the closed subdomain
Qo C Qand |0 — iwe| > s > 01in Q — g then define the space

(1.81) H={he H*'(Q)suchthat V-ph =0and V x h = 0onQo},

so that, for example, if Qg is simply connected then h = Vx on Qo. We redefine A, as

(1.82) Aw(f,g):/ 1, fo-ng—iw/yf—g,
Q

N-Qp g — WweE

so that A,, will be bounded over H. Coercivity follows because for suitable v > 0and ¥ > 0

|Aw(f,f)| Z 7fn-nn IV x £|?
(1.83) =7 [q|V x f|?
> 7 Jq If?

where we have used equation (1.71) and ¥ is independent of w. A, is thus bounded and
coercive over H, so existence and uniqueness (over H) follows from the Lax-Milgram theorem.
If the divergence condition were not imposed, but we still insisted that V x h = 0 for all
h € M, then coercivity would still be satisfied but with a constant that tended to zero as
w—0.

1.4.7 TE and TM fields

In 3D, the H formulation will be more complicated because of the vector nature of the problem
and the need to enforce the divergence condition. For DC problems, the ® formulation is thus
much simpler. In some 2D cases, however, the ® formulation no longer has this advantage.
For example, consider an axisymmetric geometry. Maxwell’s equations will decouple into
two modes “transverse magnetic” (TM) and “transverse electric” (TE) [11], [26]. The first has
zero q3 component of electric field and the second a zero ¢ component of magnetic field. The
non-zero components of a TM mode are Hy, £, and E;. The non-zero components of a TE
mode are Ey, H, and H,.
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These azimuthal fields can be used as scalar potentials. For example, for the axisymmetric
TM case, we have

(1.84) &VxéVx(Hd,&):J;-Vx%,

which is a coercive formulation. Because 3/d¢ = 0, the divergence condition is automatically
satisfied. Moreover equation (1.84) extends very simply to the CW case:

J

o — twe’

(1.85) -V x V x (Hy@) —iwpHy = -V x

o — we

whereas the @ formulation is only valid at DC. In Chapters 3 and 4, we discuss other advantages
of the H4 formulation.

In Chapter 2, we shall see that resistivity tools on a mandrel divide naturally into those which
generate TE fields and those which generate TM. Solenoids generate TE field and while toroids
and electrodes generate TM.

1.4.8 General solutions

The simplest solutions arise when the material properties are homogeneous in which case
Maxwell’s equations reduce to the simpler vector Helmholtz equation

(1.86) VxVxE—-kE=iwpd,

where k? = iwp(c — iwe). k is termed the wavenumber of the medium. We can always
choose k such that Re(k) > 0 and Im(k) > 0. Electromagnetic fields in the medium will
propagate as waves with wavenumber £, for example we have plane wave solutions

(1.87) E(r) = wuEoe’sT H(r) = k x Ege'kT,

where Ey is an arbitrary vector (in C*) and k -r = k,z + kyy+k, z with k2 + k2 +k2 = k2.
Some or all of the components of k will be imaginary. In addition to plane waves, cylindrical
waves are often appropriate representations of EM fields in borehole logging. Such waves
are most conveniently written in terms of the 2 components of the electric and magnetic field
vectors. Waves which are outgoing in the radial direction take the form

(1.88) []ﬁ_;j L ) [Z] ’

where e and h are arbitrary constants and k2 + k2 = k2. Here H(" denotes the vth order
Hankel function of the first kind (e.g., [2], [46]) and we have chosen a branch cut such that
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Im(k,) > 0 for all k. These outgoing waves have a singularity at p = 0. Waves which are
nonsingular on the axis take the form

E, i iv €
(1.89) [H] = etke2ex V2 ], (kyp) [h] ,
where J,, is the nth order Bessel function (e.g., [2], [46]).

If the material properties are constant, but J is complicated, then (e.g., see [26], p. 229) we
can write the general solution to equation (1.86) as

s 1 eiklr—r'|
(1.90) E(r) = wwp [I + FVV] -/{;Zﬂr—_r—,—'J(r') dv’,
so that by Faraday’s law
cikle=r'|
(191) H(r) = V x /n v

Equations (1.90) and (1.91) can be viewed as an analytic representation of Green’s principle,
[141, [26], [33], which decomposes an EM field into a sum of spherical waves emanating from
different positions r’ with strengths J(x’). The Sommerfeld-Weyl integrals

gk [ 00 ks gikyy pikzlz]
. == d dky ——mM8M8M8 ™
as -=g e

i

(193) — _2_/ dkz H(()l)(kpp) eik.z,

can be used to give alternate representations in terms of plane or cylindrical waves. In the
above integrals, k2 + k2 = k2, k2 + kZ = k? and the Fourier integral is taken along the
Sommerfeld contour, [26] Such representauons are very convenient when solving for EM
fields in layered media, e.g., [8], [11], [26], [30].

In Chapter 2, we present an overview of computational methods as they apply to modelling re-
sistivity tools. The main emphasis is on Laterolog and Induction modelling. We shall examine
solutions to Maxwell’s equations for some simple cases and also review traditional finite ele-
ment solutions to equation (1.69). Chapters 3 and 4 examine FEM solutions to equation (1.85)
in more detail and discuss how the presence of the finite frequency affects matrix inversion.
In Chapter 3, we also give examples of the Groningen effect on Laterologs. In Chapter 5, we
examine more sophisticated techniques for solving equation (1.69) in complicated geometries
arising in highly deviated wells.
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chapter2  Computational Methods in
Resistivity Modelling

Abstract. Resistivity tools can be divided into two classes: one with TE sources
and primary field components Ey, H,, H, and one with TM sources and primary
field components H, E,, E.. Induction tools are TE sources, Laterologs are TM.
TE modelling in layered media is readily amenable to analytic or semianalytic
methods. Because of different boundary conditions, TM modelling can be more
complicated. Iterative finite element techniques can be applicable in such cases. We
review some of the traditional iterative methods and show how they can be applied
to focussed resistivity tools.

2.1 Introduction!

Resistivity devices are used to probe rock formations and provide estimates of hydrocarbon
potential, usually in combination with other measurements, such as dielectric, [63], nuclear,
[10], [20], or sonic porosity measurement, [64]. The interpretation of such measurements
has been extensively discussed in the literature (e.g., [17], [20], [64]). We shall only give
sufficient description of the logging process to motivate the mathematical developments in the
rest of this text.

All of the resistivity tools that we shall consider consist of electromagnetic sensors lowered
down a borehole drilled into a potentially hydrocarbon bearing rock formation. The most
readily producible oil will be that which over geological time has settled within pores and
fractures in sandstones or carbonates and been trapped beneath an impermeable layer such as
shale.

The borehole is drilled with a rugged drill-bit secured on a metal pipe through which mud
is pumped. The mud flushes cuttings from the face of the bit and acts as a lubricant. The
flow of the mud can be used to drive mud downhole turbines which in turn drive the drill-bit.

1This chapter constitutes condensed course notes from a graduate level course taught by the
author in January — March 1992 at the Federal University of Para, Belem, Brasil and sponsored
by Petrobras.
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Alternatively, on a rotary assembly, the torque for the drill-bit is provided by turning the
drill-pipe. The mud used must also be sufficiently dense to resist pressure from overpressured
zones which might otherwise force the drilling mud uphole.

Because of the many demands placed on the drilling mud, its composition is not straightfor-
ward, but for electromagnetic modelling only its electrical conductivity is important, [52].
Muds which are made as emulsions of water drops in oil can be assumed to have an extremely
low conductivity. Non-oil based muds can have varying degrees of conductivity depending
on their salinity. For example, muds made from sea-water are common in the Middle East and
these are very conductive (0.005 — 0.05Qm at downhole temperatures) as are muds which
are used to drill through salt domes (a high degree of salinity helps prevent washouts of the
halite), [12}. Muds made from fresh water will be less conductive (0.01 — 5.02m) depending
on the range of additives added to the mud.

Measurements of formation resistivity and porosity may be made while drilling or else after
drilling by lowering on a reinforced cable a sonde containing the sensors. There are advantages
and disadvantages to both methods. The latter method, known as wireline logging, has the
advantage that sophisticated measurements can be made with sensors that do not have to
withstand the rigours of drilling and whose data can be transmitted to the surface along
transmission lines within the armoured cable. Logging while drilling (LWD) has the big
advantage that the measurement is not corrupted by drilling mud penetrating into the rock
formation. LWD has the disadvantage that the telemetry rate to the surface is very low because
of the absence of a wireline cable — instead, data is sent to the surface by pulses in the mud
flow or stored within the tool for later downloading when the bit is pulled back to the surface.

The angle through which the borehole penetrates the rock formation can be more or less
arbitrary. Vertical wells are cheaper but have a smaller intersection with the hydrocarbon
pay zone. Horizontal wells are recently proving popular as engineering difficulties are being
conquered and the costs of drilling decrease. Horizontal and highly deviated wells offer the
promise of increased production due to the longer interval of pay zone through which the
borehole passes. The modelling of modemn resistivity tools through such highly deviated
wells is one of the main developments of this dissertation.

Modem resistivity tool designs for both wireline and LWD configurations have drastically
improved the ability to determine the true resistivity of a bed with minimum distortions in the
measurement from nearby beds. To perform such measurements the sensors now typically
consist of some kind of focussed array of transmitters and/or receivers. Each of these can
mathematically be modelled as a weighted sum of the individual components where the
weighting is determine by the focussing. The response of the individual sensors in turn can be
derived from Maxwell’s equations applied to the pertinent source and boundary conditions.
These sensors can often be represented in an idealized fashion as point sources which can
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greatly simplify numerical modelling. Some tool configurations, such as the Laterologs,
however, cannot be modelled with point sources, and there is a need for robust and accurate
codes. We emphasize finite element formulations for Laterologs and review a simple finite
element algorithm appropriate for simple electrode devices in axisymmetric media. We
pay particular attention to iterative solutions and also discuss how focussing techniques can
complicate the finite element formulation.

2.2 Overview of resistivity tools

Maxwell’s equations in the context of resistivity logging were presented in Chapter 1:

(2.1a) VxH=(c-weE+7,
(2.1b) V x E = iwpH.

The electromagnetic source, J, is either divergence free or not. The former case, termed
inductive, relies on electromagnetic coupling to generate the field. In the latter case, termed
galvanic, current will enter the domain directly from the points of non-zero divergence although
there may be additional coupling effects from J when w is non-zero. The first category can
be grouped together as “coils” and the latter category as “electrodes.” Coils in turn can be
divided into those which, roughly, drive their current in the same direction as the coil and those
which drive their current in a perpendicular direction. We refer to these coils as solenoidal
or toroidal, respectively. Typical representations of the three different excitations are given in
Figure 2.1.

In wireline resistivity logging, the coils will usually be wrapped around a cylindrical mandrel,
which may or may not be metallic depending on the tool design. The purpose of the mandrel
is to provide structural stability to the sonde and also insulate the sensors from measurement
and telemetry circuits inside the mandrel. Smaller sensors can alternatively be located on
metallic pads which are forced against the borehole wall by powerful springs, e.g., [33], [43].
In logging while drilling, the coils or electrodes will be embedded in the drill-string.

The first source electrode configurations used in resistivity logging were the Normal and
Lateral devices, [64], shown in Figure 2.1c. In both cases, the points of non-zero divergence
are the ends of a current carrying wire, with one end at the surface and the other downhole.
The ends of the wire are electrically connected to highly conductive metallic electrodes to
improve the electrical connection between the source and the formation. The current return at
the surface, called the fish, was usually in a small pool of conductive mud, also to improve the
electrical connection. The source configuration is shown schematically in Figure 2.1c. The
downhole source is invariably termed the ‘A’ electrode and ‘B’ is the current return. In some
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@) (b) ©

Figure 2.1: (a) Solenoidal coil, (b) toroidal coil, and (c) Normal/Lateral electrode excitation.

tool designs the B electrode is also downhole. The difference between the Normal and Lateral
designs lies not in the source assembly but in the resistivity measurement itself. For the Normal
design the potential difference Vs — Vv was measured where M was a downhole measure
electrode and N was uphole. For the Lateral design, both M and N measure electrodes were
downhole. Modem tool designs have many measure electrodes downhole and the apparent
resistivity is a complicated combination of all measure electrodes. We shall always assume
that the potential, ®, decays to zero at ‘infinity’ (e.g., the surface) and V is the value of ® at
whatever point NV is located.

The electrode configuration will clearly only pass a non-zero current if the formation has a
finite resistivity, which will always be assumed even though in some halites and anhydrites
that resistivity may be very high. More of a problem is that the electrode tools are usually
not in direct electrical contact with the formation but rely on the ability of the borehole mud
to carry the electrical current from the source electrode A into the formation. For this reason
electrode devices are only practical in conductive, salty muds. As the muds become fresher
(i.e., less salt) they will become less conductive. Oil-based mud can be assumed to have such
low conductance that electrode measurements will only carry current if there is a breakdown
in the oil/water emulsion allowing current to pass [4].

In addition to the galvanic currents leaving A, at non-zero frequencies the flow of current from
B to A could conceivably also cause inductive coupling. Before examining this coupling, we
need to examine the electromagnetic properties of solenoids and toroids.
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2.2.1 Solenoids

Solenoidal coils provide the building blocks for Induction devices such as shown in Figure
1.1. Mostly used in oil-based or fresh muds, they generate a field which primarily contains
Eg4, H,, H, components, i.e., it is TE. Inhomogeneities in material properties, e€.g., across
dipping beds, can also excite TM modes, as can eccentricity of the sonde, (e.g., [40], [41]).
The idealized representation is a thin loop of current of radius a and centred at z = 0:

2.2) I(r) = I8(p — a)b(2).

In a homogeneous formation, we can use the integral formulae of section 1.4.8 to derive the
expression for electric field

2.3)
2 1 2% a 0 e,‘k|r_r'| o
E(r) = iwp [I+ ﬁVV] / d¢'/ p'dp'/ dz' ——— I6(p' — a)8(2'),
0 0 -0

4xr — 1/

We can evaluate equation (2.3) explicitly if the radius a is small. The only tricky parts are to
at
remember that ¢ varies as a function of ¢”:

~t . -
24) ¢ = —psin(¢’ — ¢) + @ cos(d’ — ¢)
and to derive the small argument expansion
eik|r—r’| eikr

A|r — 1| ~ dnr

(2.5)

[1 + %(1 — tkr) cos(¢’ — ¢)]

valid for @ < r. We obtain

ikr :
2. E = ¢ =—di 1 2¢ L B
(2.6) (r) = PE, Giwp ik ITa yp— [1+ kr] "

The source obtained as the limit as a tends to zero but Ira® remains constant is termed the
vertical magnetic dipole (VMD). If we place another thin coil, I, of radius a at z = L with
L >> a then the voltage induced across the coil will be

2.7 V—fE = 2ma(—i )'kzmﬂikfl e
' = pBe = 2malmwppkine o U L) T

If the source coil has N turns and the receiver coil N g turns then for low frequency excitation
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0 > weand |k L[ < 1 so we can expand equation (2.7) in powers of kL to give

V = —twpuNr Np———t— I(ma® (sz (14 4kl - E*L*/2+ - )

o L3
ziprTNRI( ) (1+ k2L%/2)
onL?
I
2.8 ~ NpNp 72 L3) (iwp — w2 u2oL?/2)

which is the fundamental formula for Induction modelling. In particular, we see that the real
(in-phase) component is proportional to o and that the out-of-phase component, the so-called
‘direct mutual signal,” is much larger. In practical tools such as the Dual Induction Tool, the
direct mutual signal is removed by subtracting off the voltage on a third bucking coil situated
at z = L < L whose location and number of tums are computed so that the out-of-phase
components exactly cancel (in air).

If a is not small, equation (2.3) can be evaluated in terms of elliptic integrals [1], [28], but it
is also instructive to write the field in terms of cylindrical waves as indicated in section 1.4.8.
In terms of the Z component, we have (e.g., [28], [34])

2.9) H,=4a / dk, ko Jy(k,a) HS (k,p)e**  for p>a

and

(2.10) H, —’I“ dlc koJo(k,p) HO (k,a)e®*  for p<a
4

where k7 + k2 = k? = iwp(o — iwe), Im(k,) > 0 as before and the Fourier integral is
understood in the Sommerfeld sense.

The presence of an infinitely long metailic or insulating mandrel down the centre of the
tool does not hugely complicate modelling. We must take into account the reflection of the
electromagnetic fields from that mandrel. For p > a, we obtain

(2.11a)

i1 .
H. == dk ky {J1(kpa) + THP (kya)} HO (k,pp)efts?

(2.11b)

I
Bo= =2 [ k. (ko) + THP (0)) B (k)
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where T = —J;(k,b)/H{" (k,b) if E, = 0 on p = b (perfectly conducting mandrel) and
T = —Jo(k,b)/H§ (k,b) if H, = 0 on p = b (perfectly insulating mandrel) and we
are assuming the mandrel to have infinite extent. As discussed in Chapter 1, by perfectly
insulating mandrel we mean an insulating mandrel (with zero conductivity) and small enough
that displacement currents can be ignored.

If the mandrel is conducting and we take the limit as @ — 0 (so that 6 — 0 also) then

(2.12)
. o0
Ey = iwp%[a / dk, {Ji(kpa) + TH{" (k,a)} H{"(kpp)e’*s*

- iwy-;—l(az - b?%) / dk, k, HO (k,p)e®s*

w,uI(az - bz) 0 /00 (1) ik z
= —— dk, HV (k s
8 ap oo 4] ( Pp)e

In(a? —b?) 8 e*7 . N i ikp
BT e e CR =g =] R

= —wy
r

which, apart from a scaling factor, is the same as equation (2.6). Equation (2.8) can thus be
viewed as the response of a 2-coil sonde on an insulating mandrel with L >> a. Indeed, a
fundamental design consideration when building induction tools is to ensure that the effects
of mandrel and finite size coil do not significantly change the response of the tool from that of
a pure magnetic dipole, e.g., see [28].

Moreover, not only can induction tools be modelled as combinations of point dipoles but the
tool response in heterogeneous media is fairly well approximated by a convolution of the bed
conductivities against certain readily computable geometric functions of p and z: 31, [25],
[50], [64]. Inversion of the tool response follows by deconvolution, [8], [61]. To make the
deconvolution as accurate as possible, arrays of transmitter and receiver coils are used with
different predetermined weightings, [7], [9]. The corresponding situation for Laterologs is
quite different and focussing issues are a lot more important.

2.2.2 Toroids

Toroids are the dual of solenoids. Instead of an azimuthally directed electric current running
along the coil, toroids in effect produce a azimuthal ‘magnetic current,” I5s. We can determine
this magnetic current from simple geometric arguments. Suppose that the azimuthal cross-
section of the toroid is 22 + (p — a)? < r? then from Ampere’s Law we have that for small
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Ts

0 lp—a|>r,
2.13 2npHy = .
2.13) piie {NTI lp—a| <r,

where N7 is the number of turns of the coil and I the current. Since V x E = iwpdH $ We
canwrite V x E = —M = —Ip8(2)6(p — a) if

(2.14) Iy = —iwp/H¢dpdz = —iwpnr? Nr1/(27a).

Similar expressions have been given in [13], [26] and 42].

If the geometry is axisymmetric, the field components generated by the toroid are Hy, E,,
E;, ie., the field is TM, and H satisfies the differential equation

(2.15)

-~

@V x ZNTI‘S(LE)‘S(_Z)'

V x (He@) —iwpHy = —My = iwpnr? g

0 — iwe
If the formation is homogeneous

(2.16) bV x V x (Hsd) = k*Hy = (0 — iwe) [y 8(p — a)8(2),

and we can derive an expression for H 4 analogous to that for E 4 in the previous section

: 1
etklr—r'|

_ . 2 1 ’ ’
.17 H = (0 — iwe) [I+k2VV] ,/;,47r|r—r’|M(r)dV
2.18) = —d(o— iwepmaIyik e [14 ] 2
. = o — iwe)ma® Iy ik — poed B
for small a.

As in the previous section, to solve for the presence of a mandrel inside the coil we write the
field in cylindrical waves and add an additional field component to represent reflected field
from the mandrel. We obtain

(2.19) E,:”f“ / dk:k, {J1(kpa) + TH{(k,a)} HE" (kop)et*=?
- 00

where now I' = —Jo(k,b)/H§" (k,b) if E;, = 0 on p = b (perfectly conducting mandrel)
and T' = —Jy(k,b)/H{"(k,b) if Hs = 00n p = b (perfectly insulating mandrel).
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This expression assumes the mandrel to have infinite extent. If the mandrel is insulating the
length of the mandrel is not a major influence on the induced fields. If the toroid is wrapped
around a metallic mandrel, however, the situation is quite different. In particular the length
of the mandrel above and below the coil significantly influences the response of the tool.
Essentially, the problem is that with a metallic mandrel the toroid induces electric fields along
the mandrel and the mandrel itself acts as an antenna. For an insulating mandrel this problem
does not arise.

These results indicate a key difference between TE and TM modelling in borehole logging.
While TE and TM are duals, because of differences in material properties, tool strings con-
sisting of TM coils on a conductive mandrel are poorly approximated by point sources. In the
next section, we will examine the TM fields generated by electrodes.

2.2.3 Electrodes

The simplest representation of the Normal/Lateral source configuration is a small sphere
emitting DC current  in a homogeneous medium of conductivity o. The electric field excited

is (e.g., [30])
I
(2.20) E(r) = - ETTP'

Here in fact, E = —V &, where the potential is given by

I 1
2 _r_r
22D ® o 4x|r|

The field due to two such monopoles with current I leaving the first (at z = 0, say) and
returning to the second (at z = I, say) is given by,

I r '
222 Er)= - —— - ——
(222) (r) o {471'|r|2 4r|r’|? } ’

where r denotes coordinates relative to the first monopole and r’ denotes coordinates relative
to the second. As [ tends to zero, so does E, but we can also consider the limit where [ tends
to zero but Il remains finite, called a Hertzian dipole or vertical electric dipole (VED), which
gives rise to the electric field

_
~ 4xrdc

2.23) E {2i- cos 0 + @ sin 0}
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and magnetic field

-

. ., Il p
(2.24) H= ¢W sinf = ¢W;

Galvanic sources which radiate at non-zero frequencies cannot be written by inspection, but
we can again use the integral formulae of section 1.4.8 for some simple cases. For example,
for the VED introduced above, the time harmonic current source is

(2.25) I(r) = 2115(r)

whence

] ~ 1 e’ eil:lr—rl‘ 116
E(!‘) =Wy [I+ FVV] // r mz (I’)

. .1 _ 8] efkr
(2.26) = iwpll [z + Fvb_;] o
and
@.27) H(r) = —gikn [14 L] 2
) T=-e 47r kr| r

which is seen to be the dual of equation (2.6).

Simple electrode tools in resistivity logging such as the Lateral and Normal configurations
can be modelled as point sources. The depth of investigation is determined by the separation
between the source electrode, A, and measure electrode M. The ‘Short Normal® had a 16
inch separation, the ‘Long Normal® had a 64 inch separation. The main difficulty interpreting
resistivity logs from a Normal or Lateral was that the apparent resistivity at one tool position
was quite sensitive to the resistivities in adjacent (and further) beds, a phenomenon known as
shoulder effect. The simplest way to decrease this was to extend the length of A and measure
only the current from the centre of the electrode. This arrangement is shown in the LL3'
of Figure 1.2 where the A electrode is divided into three separate electrodes maintained at
equipotentials. The outer electrodes are called guard electrodes and the inner Ap electrode is
the ‘measure’ electrode. The Dual Laterolog (DLL)! shown in Figure 1.3 has a much more
sophisticated arrangement with a large number of sources and receivers at different potentials,
and governed by a set of linear focussing constraints, [62]. In addition to the different
electrode potentials, the regions in between the electrodes are covered with insulating material
and modelled as perfect electric insulators. The effect is that the boundary condition on the
tool is a complicated mix of Dirichlet and Neumann boundary conditions, for which finite
element solutions are the most appropriate.

tMark of Schlumberger
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2.3 Finite element solutions for Laterologs

In the remainder of this chapter, we show how to solve for Laterolog excitation in two
dimensional axisymmetric formations using finite elements and iterative inversion. We assume
DC excitation and solve for the electric potential $. Three dimensional formulations in &
are deferred to Chapters 4 and 5. In Chapter 3, we present an alternative formulation for
axisymmetric formations in terms of Hg.

2.3.1 Potential formulation at DC

We have seen in section 1.4.5 that at DC, Maxwell’s equations decouple into two separate
equations for E and H with E = —V® and V - ¢V® = V - J. For Laterolog modelling,
J = 0. All of the source conditions are represented by boundary terms on p = a, the surface
of the tool. If the formation is axisymmetric, we can suppose that ® is only a function of p
and z. From Equations (1.27) and (1.29) we have

190 0o 0 0®

We suppose the Laterolog to consist of electrodes I'; at fixed potentials V; and separated from
one another by insulating sections. We write 8% = | J; T'; and 92 = 3 U 62, and so

2.29) =V, on T; and g—‘f =0 on 09Q,.

In the terminology of Chapter 1, we have removed the perfect insulators and perfect conductors
from the domain and replaced them with boundary conditions. Current emanates only from
the T; electrodes. We shall suppose that [y is the current return at infinity with Vo = 0.
To avoid problems near p = 0, we shall also suppose that p > a throughout §2. A typical
configuration is shown in Figure 2.2.

We solve equation (2.28) using the Galerkin method presented in Chapter 1. Given V =
(Vi, ..., Va), let HL() be the subspace of H'(Q2) with & = V; on T'; and & = 0 on T'o.
The Galerkin method enables us to find a solution of equation (2.28) projected onto some
subspace W of H'(f2). We choose W to be a finite dimensional space built from local
‘pyramid’ functions defined on a triangulation of 2.

More specifically, we shall suppose that we are given a mesh of triangles A € 7, where
the h denotes the diameter of the largest triangle in 75. Each node (p;,z;) = 1,...,N
may lie on any number of triangles. We choose W, to be the space generated from a basis
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Figure 2.2: Typical finite element configuration. The domain S is partially bounded by electrodes
T';. Ty is taken to be the current return ‘at infinity’ with ® = ¥ = 0. On the other electrodes ®
Is set to the given voltage V; with W = 0. The remainder of the boundary is denoted Q. In
the limit as the mesh is refined, 0®/8v = 0 on 0X2,,. There is no constraint on ¥ on on,. v
denotes the outward pointing normal from the domain Q.
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Bi(p,z),i=1,..., N consisting of piecewise linear functions with B;(p;, z;) = 6;; where
8;; denotes the Kronecker delta function. If a triangle A has node numbers n,, r = 1,2,3
then within A

(z2 — 23)(p — p3) — (p2 — p3)(z — 23)

(2302 Bra(pr2) = (22 = 23)(p1 — p3) — (p2 — p3)(21 — 2z3)’
_ (zm—z)p—p) = (p3 = p1)(z — 21)

(2300 Bra(p.2) = (z3 — z1)(p2 — p1) = (pa — p1)(22 — 21)’

(230¢) an(p, 2) = (21— 22)(p — p2) = (p1 — p2)(z — 22)

(21 = 22)(p3 — p2) — (p1 — p2)(z3 — 22)

This discretization is termed P1. A similar discretization using bilinear functions on rectangles
is termed Q1.

We define the finite element solution @5, to be that real-valued function in Vi = Hy, (Q2)NWy
such that

2.31) (Uh, L(®1)) =0 V¥ € HI(Q) N Wh.

Note that L(®;) € H~1(Q) so the bilinear form (¥, L(®5)) is defined, at least in the
distributional sense. In practice, we will use integration by parts to obtain

av 8<I> 0¥ 0%
(2.32) (¥, L(®)) // dpdzop (3 Bp 5 az)

which is clearly a symmetric bilinear form. Provided that 6p > Ominpmin > 0, then from
equation (1.70) we see that there exist ¥ > 0 and C > 0 such that (for real-valued functions
)

(233) el < (@, L(®)) < Cllelii

provided that we insist that ® = 0 on T'q. If we do not impose any Dirichlet constraints on ¢
then the constant function would have (®, L(®)) zero with ||®||; non-zero thereby violating
the lower inequality. By the Lax-Milgram lemma, a solution ® exists in #'(£2). As L is also
coercive over the subspace W}, we can also be sure that ®; exists.

We can successively subdivide the triangles in 73, to give a sequence of finite dimensional
spaces W, D Wy D Whye D ... Wecanobtaina finite element solution for each of these
spaces and can show? that for some constant C independent of h and

(2.34) |® — ®xllo < Ch%|®|,.

2This result depends on sufficient smoothness of & and 3%, e.g., [60]. [35] proves a similar result
for the case of o an arbitrary bounded function of §.
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(Note that @ will be in H2(R2) if the source term is in H°((). )

Thus, as the mesh is refined the finite element answer approaches the true solution ®. In fact,
it is not always necessary to subdivide the mesh uniformly. Rather one needs to have a fine
mesh in regions of {2 where ® varies rapidly (e.g., near the ends of electrodes). The subject
of how to adaptively change 7, based on knowledge of ®}, is discussed in section 2.5.

23.2 Assembly of stiffness matrix and Dirichlet constraints

As the basis functions B;(p, z) span the space Wy, it is necessarily the case that
N

2.35) @ =) u;Bj(p,2)
=1

for some u; € Rand weset ¥ = B;(p,2)fori =1,..., N sothat equation (2.31) becomes

N
(2.36) (Bi, L(Bj))u; =0  VB; € HY(Q) N Wy
ji=1

As noted in Section 1.2, (B;, L(B;)) constitutes an N x N matrix, A, called the stiffness
matrix.

u denotes the coordinates of the function @, projected onto the space W, and we similarly
write v for the components of Wy. In matrix notation, (¥5, L(®3)) = v*Au. ¥ ¥), = B;
then v' Au = 0 is the ith row of the matrix equation Au = 0. ¢, and ¥, are functions in
H(Q), whereas u and v are vectors in RV (or CV) where N is the dimension of Wh.

The Dirichlet constraints require a modification of the stiffness matrix, A. As ¥ € H, ),
then the ith component of v must be zero if the ith node is Dirichlet. Suppose for convenience
that we have listed the M Dirichlet nodes last with RN = RN-M ¢ RM. We write
corresponding decompositions as u = u; + u, and v = v; + v, where ug, v; € RVN-M and
uy,v3 € RM, We can also write

Ay A uf
237 v'Au= (o] +03)A(ur +uz) = (v v}) (A; A;:) (U‘;) '

Here A;;isan (N — M) x (N — M) matrix and Aszis M x M.
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By supposition, us is to be set to some known Dirichlet value %,. We must have that vz = 0
but there are no restriction on v; so the only way for v* Au = 0 is to have that

ut
2.38) (A An) (u,;) =0.

If we combine this equation with the known equation for u3, we obtain

A A u 0
(5 7)) =)

Physically, the ith row of Au represents a computation of net current divergence at the ith
node. At interior nodes and those on 952, we know that this net current must be zero. At
Dirichlet nodes, however, we do not know what this net current is, so we must set the test
functions ¥}, to be zero at those nodes, i.e., we must delete those nodes from the stiffness
matrix A. To maintain a well-defined system, in place of each deleted row, we can insert the
known Dirichlet value for that node. This is precisely equation (2.39).

We can maintain symmetry by wrmng A11U1 = —A12U2 = —Alzﬁz, ie.,
A 0N fur) _ [—Anu
w (-

A key difference between finite element and finite difference programs is that in the former
the stiffness matrix may have considerably less structure and the programs must be able to
deal with more or less arbitrary mesh topologies. As described in Chapter 1, we can store only
the non-zero entries of A using an RS/CS sparse matrix method. The RS/CS structure can be
readily obtained from the mesh topology. We shall suppose that we are using the P1 piecewise
linear elements introduced above, so that a matrix element A;; will only be non-zero if 7 and
j are nodes of a common triangle. We can suppose that the finite element mesh is described
by given the list of nodes n;, k = 1,..., N; associated with each node ¢. Ignoring the fact
that A is symmetric we can take an RS/CS storage scheme defined by

241) RS[)=Y_Nj; and  CS[RS[]+k—1]=ni k=1,..., N
i=1

If we wish to only store the upper triangle of a symmetric matrix then we perform the same
operation but on the subset of nodes n;; with k > 1.

If the mesh is rectangular with nodes (pi, z;), i = 1,...N,, j = 1,... N, we can choose a
stencil formulation, as A;; p, will be zeroif | — p} > 1or | —¢| > 1. For such a mesh, there
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is very little difference between finite elements and finite differences, at least from a coding
perspective,

The simplest way to perform the operation implied by equation (2.40) (and which does not

involve renumbering the nodes so that the Dirichlet nodes are last) is to set P() to be a mask
which is ‘true’ for Dirichlet nodes and ‘false’ for non-Dirichlet nodes. Then set

if P(i) then wu;:=7; else u;:=0;
f = Ay
if P(i) them f;:=—f; else fi=0;
if P(i) then B,’j = A,‘j;
if P(i).or.P(j) then Aij = 0;
if P(Z) then A;; :=1;

This operation is essentially modular in that it does not require any knowledge of the storage
scheme for A, only that there be a subroutine to perform f — Au. At the end of the operation
we have stored (A2, A3z) in the matrix B and replaced the corresponding rows in A with
(01). We have also replaced the columns A, in A with 0 as required in equation (2.40).
We have seen in Chapter 1, that if 0§ is a closed subset of the boundary and H}(Q)
contains those functions in H(£2) which are zero on 8, then there is a natural direct sum
decomposition

(2.42) HY(Q) = HY(Q) & HY*(6%,)

where H'/2(09) represents the possible range of Dirichlet functions, %, on Q. Equation
(2.40) is precisely the decomposition of A in terms of this direct sum with

243)  Anc:Hy(Q)— H™(Q)  and  Asz: HY2(6Q0) — H-1(Q).

B : Hy(Q) & H'/*(8Q0) — H~'/2(9Q) provides the dual map from the potential data
into the space of current distributions on 8Q. Indeed, we shall see in the next section that
multiplying the potential (U;, U;) by B is precisely the operation needed to compute electrode
currents on 5.
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2.3.3 Computation of electrode currents

An important technique which is not common in geophysical modelling is the use of super-
convergent or variational methods to compute apparent resistivity, [37], [39]. We have seen
that the approximate potential ®, is accurate to O(h?). On the electrodes themselves, in fact,
& is exact because the Dirichlet boundary conditions were imposed strongly by requiring that
®, € H(Q). To arrive at an apparent resistivity, however (either for focussed or unfocussed
tools) we also need to be able to compute the current emanating from each electrode

2.44) I; =f Ua—é
r;

where v is as usual the normal pointing outward from €2, i.e., into the electrode (and hence
the lack of minus sign).

Standard methods (e.g., differentiating &) will bring about a loss of accuracy in the computa-
tion of I;. Better is to see that if L(®) = 0 then equation (2.44) follows by applying equation
(1.26) to

9@ dx | 0% dx
(2.45) I = / ( % 3y " 5 az> (x, L(®)),

where x = xr, is 1 on the electrode and zero elsewhere on 0 (it’s value inside KOZ will not
affect the value of I;). In fact, because ®/9v = 0 on 9Q — I, we can choose arbitrary
x € HY2(3Q) provided x|r; = &;. (Le., x is 1 on the ith electrode, zero on all other
electrodes and Y is the restriction of some H ! function to the boundary 9€2.) In particular, we
could even choose Y to be a multiple of ®!

Our approximate formula for J; using the finite element solution is then

(2.46) Ii = (In)i = (xn, L(®4)) ,

where x» € Wy is 1 on the nodes of T'; and zero on the other boundary (and interior) nodes.
We shall show that as the mesh is refined

(247 I — (In)il] = O(R?).

Such a result is termed superconvergent because
(2.48) |® — ®rllo = O(h?) and  [[V® — V&llo = O(h)

so we have gained an order of accuracy greater than we could have obtained from V&;.

We can give a simple proof of this result based upon the following observations:
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¢ Clearly it suffices to show the result when ® = 1 onT; and ® = 0 on the remaining
electrodes. We can lump all of these electrodes together and call them I.

e The functional (®, L(®)) is real and coercive so its stationary point is a minimum,

¢ Equation (2.45) is actually valid when x = &, the stationary point of (®, L(®)) because
as we discussed above the value of y on 9§ — T is irrelevant.

¢ Le., I; is actually the minimum value of (®, L(®)) with ® constrained to be 1 on I';
and 0 on I'o. This can also be seen, [15], as an application of Gauss’ principle whereby
a knowledge of the energy stored in the medium translates directly back to the apparent
resistivity.

e (¥, L(®)) is variational and L is symmetric so by the usual argument, e.g., [14]

(®, L(®)) — (@1, L(B1)) = (& — Bn, L(® ~ 1)) + 2(Bn, L(® — @)
= (® — &4, L(® — 1))

because (U5, L(® — ®,)) = 0 for all ¥, by construction. Because L is continuous,
for some C we have

(@ — @, L(® — @1)) < C||VE — V&4|12 = O(h?),

where we have used equation (2.48).

We see that the computation of I; is thus accurate to O(h?). In fact, it is not just along
electrodes that we can use this superconvergence result. The formulation in terms of stiffness
matrices actually gives accurate values for the internal current flow too. Not the current flow
at a point, or through a node of the mesh, but a value for the integrated current flow through
any line segment of the mesh. This ties in with the notion of staggered meshes. Given the
mesh of nodal points we can construct a ‘dual’ mesh with a node at the midpoint of each line.
At that point we let the unknown be the net current flux through that line. The finite element
formulation for @, gives automatically the result for the unknown currents on the staggered
mesh.

Similar results have been reported in the finite difference literature where improved accuracy
can be obtained if the electric and magnetic fields are stored on staggered meshes, [48], [49].

2.3.4 Reciprocity and solutions for focussed tools

For focussed tools we are given a system of V' constraints on the voltage or currents on the N
tool electrodes (together with a constraint of zero potential on some reference T at infinity).
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To arrive at the apparent resistivity for focussed tools one solves for N linearly independent
excitations. The focussed solution must be a linear combination of these N solutions and can
be arrived at by inverting an N x N matrix. For example, we can solve for the fields ®;,
j=1,..., N satisfying

(2.49) L(@j) = 0, (I’j = 5,’1' on F.‘ .

By the previous comments, the current on the ith electrode given unit voltage excitation on
the jth electrode is

(2.50) Zij = (@i, L(®;)).

We refer to this matrix as the transfer impedance matrix. Using the variational formula to
compute currents shows that the transfer impedance matrix will be symmetric even for the
finite element solution over a coarse mesh. However, if the solution to the finite element
system of equations is only approximate then symmetry will be lost. If we obtain an exact
solution to the finite element system of equations, e.g., by Gaussian elimination, then we will
retain symmetry. From a physical perspective, the transfer impedance matrix is symmetric
because the Dirichlet conditions on the electrodes give rise to a reciprocal system in the sense
of Section 1.4.2.

In Chapter 4, we show how to solve for focussing constraints using the current excitations as a
“basis’ instead of the voltage excitation shown above which produces the inverse matrix z1
which can provide better numerical accuracy in some cases.

2.3.5 Solution in the presence of focussing constraints

Some focussing conditions on Laterologs such as those shown in Figure 1.3 require active
tool electronics which violate reciprocity. Such boundary conditions cannot be introduced
into the global stiffness matrix without losing symmetry. The purpose of this section is to
demonstrate how the focussing constraints violate symmetry and to-give an example which
partially illustrates the problem. Suppose that we have two tool electrodes I'; with boundary
conditions Vi = 1, I; = 0. We have no a priori information about the potential on I's and we
suppose that the current returns to some electrode I'g with Vo = 0 as shown in Figure 2.2. In
terms of voltage excitation, the voltage V5 is adjusted so as to maintain a zero net current on
1. Electronically this would be done with some kind of feedback loop.

We can suppose that each electrode is represented by just one node and that our superconvergent
formula for I is

2.51) L=An®1 4+ -+ A1,®,
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The correct solution is given by applying the Dirichlet constraints to give the system

1 0o ... 0 P, 4

0 1 . 0 P, Vs

(2.52) a3y agz ... Qs ®|_ |0
an1  Qp2 Ann P, 0

which we can write in block form

I 0 0 (0] %21
253) 0o 1 o0 |le)=(wn
A3z Aszz Ass/ \Ps 0

whence &3 = —A;sl (A31 i+ A32V2) and
2.54) I = AnVi + ApVe — A13A3 (A Vy + Aza V)
which with I; = 0and V; = 1 gives

_An - A13Az5 Ay
A1g — A13A35 Asy

2.55) Vo =

Note that A3z will be invertible because it contains the Dirichlet nodes on the current return
To: the stiffness matrix for Laplace’s equation has a zero eigenvalue (corresponding to the
constant functions) unless part of the boundary is constrained to a Dirichlet value.

We can obtain the same result by solving the non-symmetric system

A Az A\ (@ 0
(2.56) I 0 0 ® =11},
A1 Aszz Asz) \®3 0
where the first row is the equation I; = 0 and we have obtained the second row by replacing
the original condition on I, by ®; = 1.
The important thing is that the boundary conditions on the electrodes are

257 $1=1 and AP+ APz + 41303 =0,

which we will writt P® = R. The conditions on the test functions are different, namely

(2.58) ¥, =0 and ¥, =0,
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which we will write Q¥ = 0. We are imposing the potential constraints P and in exchange
not imposing known currents on the two electrodes. We are trying to find a @ € H HQ)
satisfying P® = K such that

VAD =0 VYV € ker(Q).

(Recall from Chapter 1 that ker(Q), the kernel of @, is the space of functions ¥ for which
Q¥ = 0.) From the theory of Lagrange multipliers, we know that this constrained problem
is equivalent to

2.59) (é %t> G) - (;D

For our particular example we obtain

Apn A A3 1 0 o, 0

(2.60) As1 Aszs Azs 0 0] ]®3]|=10],
A1 Ap A3 0 O A1 0
1 0 0 0 O As 1

which leads to the same system nonsymmetric system as equations (2.56).

We can obtain a different (and incorrect!) solution if we try to maintain symmetry by choosing
¥ to lie in ker(P) and not ker(Q), i.e., we restrict the test functions to lie in the space

(2.61) ¥, =0 and A¥, + Alz\Ilz + A13¥3=0.

In this case we would have to solve the Lagrangian system

A A Az An 1 o, 0

Ag1 Azp Az Az 0 | D2 0

(2.62) Az1 Asy Asz Az 0| | @3] =10
A1 A Az 0 O A1 0

1 0 0 0 0 Ag 1

whence A = —A1121,®; = 1and

0 Aix Az A A
(2.63) Agr Aza Az [ P2 =— | A21 | &
A31 A32 A33 (D3 A31

We shall show that this system of equations is inconsistent with the correct solution for ®.
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We know from the true solution that Az; ®; + A3s®2 + A33P3 = 0 so we must have that
As1A1 = 0 which can only be true if either all of the elements in Ag; are zero or A; = 0. So
A1 = 0 and we obtain

A A A\ /9 0
(2.64) A1 Ay Axs| [®2] =10
A3z Azz Assz/ \®3 0

which is clearly false. In other words, the only way that we can obtain a valid symmetric
formulation is if A3; = 0. This is clearly consistent because then the conditions on the test
functions are that ¥; = Oand A;1¥1 + A12¥2 = 0 which decouple into Dirichlet constraints
on @, and (if A;2 is non-zero) ®; (i.e., ker(P) = ker(Q) if A13 = 0).

In conclusion, care must be taken when entering focussing conditions into stiffness matrices.>
If the focussing conditions are also applied to the test functions then (a) the resulting stiffness
matrix will be symmetric and (b) the answer could be wrong!

23.6 Electrode impedance

At low frequencies, in fact, it is not possible to ensure that ® = V on a current carrying
electrode. Instead, an electrochemical reaction will take place which will cause a potential
drop across the electrode, [45], [65]. This drop can be characterized by a material constant
called the contact impedance Z. with units 22 and defined as the potential drop across the
electrode for unit current density. Its formulation at DC thus corresponds to the mixed
Neumann condition

0 V-0

where v is again the outward pointing normal from Q (i.e., into the electrode). Z, will vary
with frequency, mud salinity and the electrochemical composition of the electrode. {45} and
[51] show that most of the voltage drop takes place across a very thin capacitative zone in
front of the electrode with additional contributions from electrolyte diffusion into and out of
this zone. Typical values of Z. in the low frequency (1Hz - 100Hz) range from 10~*Qm? to
10-3Qm?. At higher frequencies Z, becomes less important [36), [44], [S1]. In Chapter 4,
we discuss the impact that Z, has on finite element modelling using both the ® formulation
presented here and the H 4 formulation developed in Chapter 3.

3For example, the MODULEF finite element package insists that linear boundary conditions
apply equally to the test and trial functions, [55].
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2.4 lterative solution techniques

When A is a symmetric operator, the idea behind many iterative methods of solving Az =b
is to recast the problem into finding a stationary point of the functional

Az

(2.66) f(z) = 7~ bz

because

2.67) M =Az b
dz

so ¢ = A~ 1bis a stationary point of f. When A is not symmetric then

(2.68) d’;(f) = %(A + Az~ b

so this method cannot be used to invert A, except for the important case that A is Hermitian

(that is A = Zt). In this case, z = A~ 'b is the stationary point of the slightly different
functional

(2.69) f(z) =7'Az — b'z — Tb.

The methods described here for (complex) symmetric matrices will go through for Hermitian
matrices if we use the inner product {z, 7) instead of the complex-valued bilinear form (z, y).
We will not discuss Hermitian matrices further in this text, however, because they occur
infrequently in FEM discretizations of lossy media.

Recall that a real valued matrix A is positive definite if d'Ad > 0 for any d, in which case
we write A > 0. If A > 0 then the stationary point of f(«) will actually be a minimum.
For more general (e.g., complex) symmetric matrices we cannot assume & = A-lbtobea

Our strategy to find the stationary point of f(z) is to use a sequence of search vectors
dip,k = 1,2,... and define zj 41 to be the stationary point of the one-dimensional function
f(zx + 7di). The only difference between the iterative schemes we propose here is the
choice of dj. McCormick, [46], has shown that more sophisticated methods such as multigrid
and domain decomposition also come under the same formulation. We need the following
definitions: let ey, . . . e, be the standard basis for R™ (i.e., e; is the ith column of the N x N
identity matrix) and let Ao be some symmetric matrix which is ‘close’ to A and such that
Ay ! can be computed more rapidly than A=, We will always write g; = Az — f for the
residual error after k iterations. Let z; be some initial guess and set do = 0. We define the
following iterative methods:
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Gauss-Seidel dy = emoq(x, N)
Steepest Descent d;. = —g;

t
Biconjugate Gradient dj = —gj + 229 g, |
Jr—19k-1

t A—l
Preconditioned Biconjugate Gradient d = —A; Lo + t—gk—-‘ilg—kdk_l

Jk—1 Ao Gk-1

fork=1,2,....

Depending upon the properties of A (and Ao), these algorithms may or may not converge.
In particular, they are all guaranteed to converge if A is real valued and A > 0, [66], [67].
Some will converge under more general circumstances. For a trivial example, if A has purely
negative eigenvalues then steepest descent will converge, although it should then be more
properly called steepest ascent! For general complex symmetric matrices the steepest descent
algorithm will diverge (rapidly). Gauss-Seidel will also diverge. The convergence behaviour
of the biconjugate gradient algorithm is more tricky, as is the nomenclature?. If A is purely
real and symmetric (regardless of whether or not it is positive definite) the biconjugate gradient
algorithm is called the conjugate gradient algorithm, [5]. For the conjugate gradient algorithm
(ignoring effects of machine roundoff) then there is only one possible point of failure, the
computation of 7.

At each iteration, we are given a search direction d and need to find the stationary point of
f(zr + 7di). We have

d d d
(2.70) w = = {(zr + 7dr)' A(zr + Tdi) /2 — b} (22 + rde)}
2.7 = (:L‘k + Tdk)t Ady — btdk =0
whence,
di gx
2. = ——k .
272) d, Ady

If A is not positive definite then conceivably di Ady = 0 for non-zero dy and the conjugate
gradient algorithm will fail. If, however, A > 0 (so that A is real) and we are solving Az = b
where b is real then all the d; will be real-valued so d} Ady = 0 only for d; = 0 and, by
construction, this can only happen if gx = 0 (e.g., [6]) in which case z} is the desired solution.

% This nomenclature is unfortunately now standard, e.g. [22], [57), {59].
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When A > 0, the conjugate gradient algorithm also has the property, [6], that the (real-valued)
gx are orthogonal to one another in the absence of machine round-off error. There certainly
cannot exist more than N orthogonal vectors in R, so we must also have that g = 0 for
kE > N. lLe., the conjugate gradient algorithm is guaranteed to converge in at least N steps
provided that there is no machine round-off and no division by zero in the computation of
7, [29], [57). For A > 0, [16] and [54] have the even stronger result that the algorithm
will converge to machine precision (albeit not necessarily in V steps) even in the presence
of machine round-off.> For the non-positive definite case, consider the problem of solving
Az = b with zero initial guess and
1 0
= _1> .

We have X ;
dene() ()
) r= —digydiad = BB g g, 2 D (’“)
PE TR/ AR = 2T R \bs)
g:bf+b§(b1)_(b1): 261 by (b2>:
2T 02— \ b bs b2 — b3 \—by
t 2 _ 32
9292 b3 — b
dy = — =
2 g2 + gi 7 1 b? + b%
so that s 12
= by — by
b2 + b3
and

so we have obtained the solution after two multiplications by A, provided &, # b,. Different
initial guesses would give rise to different conditions needed to avoid division by zero, but it
will always be the case, [16], that such conditions will form a subset of measure zero. In the
presence of machine round-off, this means that there is no upper bound on 7, although the
likelihood of actually dividing by zero is small.

While the conjugate gradient algorithm has only one potential point of failure, the biconjugate
gradient algorithm has three.® In addition to the fact that 7 need not be defined for some

5In the presence of machine round-off, the g, rapidly lose their orthogonality, {27], [54].
8 Of course, the algorithms themselves are the same! For symmetric matrices, the attribute ‘bi’
only refers to the types of matrix to which the algorithm is applied.
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dy, it is conceivable that g; could be non-zero but g}c gr = 0. A more subtle problem is
that complex symmetric matrices need not have N linearly independent eigenvectors. Such
matrices are termed defective. For example,

a b
@73) A= (b ozt 2ib)

has only one eigenvector. [16] shows that if the biconjugate gradient algorithm runs to
completion and the matrix A is non-defective, then the algorithm will have converged to
z = A~1b. In the absence of machine error, the residual errors gx satisfy the ‘formal’
orthogonality relationship gig; = 0 for k # I, [11), [23], and as A is non-defective we also
have that g;gx # 0. There cannot be more than N such vectors in CV , so if the algorithm
converges then it must do soin N or fewer iterations.

Itis well known, e.g., [6), that the preconditioned biconjugate gradient algorithm defined above
is equivalent to biconjugate gradient applied to Ay 1 2AAE 1 2, so the convergence analysis
for the preconditioned biconjugate gradient algorithm is essentially that of the conjugate
gradient algorithm. The only difference is that A could be positive definite and A, indefinite,
in which case preconditioning could introduce a possibility of failure that was not present in
the non-preconditioned algorithm. Also, the ‘closer’ Ay is to A then the closer Ay 1 2AA(} 12
is to the identity matrix and if this is so then it seems reasonable to expect a more robust and

rapidly converging algorithm.

This has been quantified by [54]. The convergence of the biconjugate gradient algorithm is
intimately related to the eigenvalue distribution or spectrum o'(A4)’, [6], [31], namely that if
A > 0and # = A~'bis the desired solution then

2.74) (5: — :Bk)tA(:f: - :L‘k) < AIEIE%);) |pk(/\)|(i‘ - zo)tA(i — 2)0)

for any kth degree polynomial pi(z) with p(0) = 1. Here z; is the solution after the kth
iteration and «y is the initial guess.

For example, if S = [A1, An] contains all of the (necessarily real and positive) eigenvalues
of the positive definite matrix A, then for any p with p(0) = 1,

(2.75) \max, [Pe(A)] < max pi(3)]

and the polynomial we use will give a bound on the error  — zj. Obviously, we want to find

”More precisely, the spectrum of a bounded operator is the (necessarily compact) set of points
A such that A — ) is not invertible.
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Pk to give as tight a bound as possible, and [6] shows that this is bound is

(2.76)

. Av+ 0] VAN — VA1 ) 2k/+/
A ] —_— —-2k/\/K(A)
rrp},ltnr){leagzlpk( )] k [A /\1] < 2 (m T < 2e

where T} is the Chebyshev polynomial of degree k, [1], and k(A) = An /A is the condition
number of A. This is a somewhat pessimistic estimate because it assumes the eigenvalues
are evenly spaced within [A;, Ax]. [6] and [31] give tighter bounds when more information
about o(A) is known. Clustering near the smallest eigenvalues is particularly significant.
Nonetheless, this bound does show us that if we choose Ao such that (A, Y 2447 2«
k(A) then convergence will improve.

In fact, the ‘downside’ of the (bi)conjugate gradient applied to indefinite matrices is not that
the algorithm will, or will not, converge in N steps (which for large sparse systems would be
prohibitive anyway) but rather that the asymptotic rate of convergence will be much poorer than
indicated by equation (2.76) if there are many eigenvalues A with Re(A) < 0, [18]. Moreover,
[21] and [53] give numerical examples which show that if a large number of eigenvalues
straddle the origin of the complex plane then methods based on Krylov approximations
generally offer no significant advantage over solving the normal equations by ‘standard’
conjugate gradient.®

Biconjugate gradient iteration (i.e., complex symmetric A) without preconditioning is not very
robust, especially for high frequencies, w. Not only can the asymptotic rate of convergence
be poor but also near-divisions by zero can make 7 very large causing wild oscillations and
loss of accuracy in |gz]. In addition to reducing the condition number, a good preconditioner
will be one which reduces such oscillations, presumably by bringing A, 1 2AA(; 12 closer to
a positive definite matrix.

Even at DC, however, preconditioning is a necessary step because of the ill-conditioning
caused by (i) conductivity contrasts and (ii) mesh refinement, [6]. A method was developed in
[47), which partially alleviates these two problems, namely incomplete LU preconditioning:
traditional LU factorization as developed in Chapter 1 but with fill-in excluded.

2.4.1 Incomplete LU Preconditioning

The closer that A approximates A, then the closer Ay ! A will be to the identity, giving rise
to a more convergent algorithm. However, while A has a sparse storage, A~! requires a very

8The normal equation corresponding to Az = b is A'Az = A'b.
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large amount and it could be very computationally expensive to choose Ag too close to A.
The trick is to find a good preconditioner Ao which accelerates convergence without requiring
large storage requirements.

The idea behind ILU preconditioning, [6], [24] is to compute matrices L and U such that
Ao = LU is close to A, but such that L and U retain the sparse storage of A. The matrix
C = LU — A'is termed the ILU defect and is hopefully ‘small’ relative to A. The following
algorithm shows how to overwrite A with L and U and at the same time compute C.

dor=1to N -1
dor=1t0N -1
d= A(r,r)
doi=r+1to N
if A(i,r) # 0 then
e=A(i,r)/d
A(i,r)=e
doj=r+1t0 N
if A(r,7) # Othen
if A(%, j) # 0 then
A(1,7) = A(4,5) — e x A(r, §)

else
C(i,5) = C(i,5) + e x A(r,5)
C(i,i) = C(i,i) — e x A(r,j) : optional
A(i, 1) = A(i,1) — e x A(r, j) : optional
end if
end do
end if
end do
end do

| end do

At the end of this algorithm A has been overwritten by L and U with L having unit diagonals
which are not stored, i.e., the diagonal elements that are stored in A after the ILU algorithm
are the diagonal elements of U. Note that as A is complex symmetric, sois C and U = DL?
for some diagonal matrix D.

As written, this is the so-called modified ILU whereby fill is actually transferred to the
diagonal of A (the lines flagged as ‘optional’ in the above code). This has the effect that C'
is necessarily the weighted sum of positive semi-definite matrices which simplifies a number
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of mathematical proofs and has occasionally been shown to improve convergence, [6]. Our
numerical experiments have not determined conclusively whether there is an advantage or not
in adding this term to the diagonal of A. Adding additional terms to the diagonal can also
ensure that the product LU is positive definite at DC, [32].

A thorough examination of /LU preconditioning is given in [6] where it is shown that the
effect of ILU preconditioning is a decrease in iteration count from O(N/¢) to O(N1/ ()
where d is the dimension of the problem. For example, as each iteration requires O(N)
operations, the total cpu count for an ILU preconditioned conjugate gradient solution to the
2D equation (2.31) is O(N3/4). We shall return to this point in Chapter 3 when we look at
some practical examples of the biconjugate gradient algorithm to Maxwell’s equations.

2.5 Adaptive meshing

We have seen that given piecewise linear approximation functions, the finite element solution
converges quadratically as the mesh is refined. This result is pessimistic in that it supposes
the whole mesh to be refined uniformly. In practice, there will be areas where the solution
is already well approximated by piecewise linear functions and in such regions there is little
advantage to subdividing the mesh. We examine criteria that can be used to decide where to
subdivide the mesh and still retain quadratic convergence.

There are two essentially different ways of refining meshes, the first compares the mesh against
some approximate solution which captures the physics, typically some information about the
second derivative is needed, then, say, the areas of each triangle can be adjusted so that the
net “weight” of each function is the same on each element. This is the approach used in
TWODEPEP, [58]. An alternative method looks at the finite element on the coarse mesh
and applies some functional to that mesh, “hot spots” of which will then be candidates for
refinement. The functionals used are again usually related to the norm of the second derivative.

Consider a P1 discretization on a quasi-uniform mesh Q, of triangles and suppose we have
computed the corresponding Galerkin solution up. Conceivably, 25, will be sufficiently fine in .
some places and not fine enough in others. We would like to be able to analyze u, to determine
refinement points in 4. Let Q2 be the mesh obtained by subdividing each triangle of Qp
into 4 as shown dotted in Figure 2.3. We can assume that the node numbers of those 2, nodes
in Q47 have not changed.

We demonstrate a procedure which will determine whether mesh around the ug node is a
candidate for refinement. (We shall use ug, etc., both for the value of the solution at that point
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Figure 2.3: Refinement patch (shown dotted) on triangular mesh.

and the node number.)

Examining Figure 2.3, we see that if there are N, triangles in 2, which contain node ug then
there are Ny radial spurs from uo and so an additional N, interior nodes on Q472 mesh as
well as an additional Ny new ‘boundary’ nodes. We order the triangles anti-clockwise and
use the notation u; for the original node on the triangle, w; for the node on the jth spur and
v; for the jth boundary node. By abuse of notation, we shall also write u; as u No+1, €tC.

We use the RS/CS data structure to compute the v; and w;. Suppose that RS1,CS1 is the data
structure for 2, and RS2,CS2 for €2, /2- If I denotes the uo node number, then u; are given
by CS1[RS1[I]:RS1[I+1]-1] and the w; are the values CS2[RS2[I] :RS2[I+1]-1] (the
diagonal term u, is also in both of these lists). The only tricky point is that with the subdivision
of Figure 2.3 then v; is the unique node in the h/2 mesh which is a neighbour of both u; and
#;41. (This would not be true for some alternate subdivision schemes.) So v; is obtained
as the intersection of CS2[RS2[J] :RS2[J+1]~-1] and CS2[RS2[K] :RS2[K+1]-1] where
J=u;and K = u;q,.

Note that when considering Laplace’s equation in the plane, if the material properties are
constant within each element of size h, then we do not have to recompute the stiffness
matrices for any of the h /2 elements (regardless of dimension) because the material properties
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and Jacobian are constant within the h element. E.g., consider the local stiffness matrix from
the element 045.

Aoo Aos Aos ug
@7 (wo ua us) | Aso Ass Ass | | ua
Aso Ass Ass U

(our notation deliberately ignores symmetry). Then as the h/2 triangles are similar, the
contribution from element 045 to the global stiffness matrix for the h/2 elements is

uo\' [ Aoo Ao 0 0 0 Ags Ug
wy || Aso Aco+A4a+Ass Aos Asg + Aos 0 Ass + Asq Wy
Uy 0 Ago Agq Ags 0 0 Uq
Vg 0 Aso + Aos Asa Agot+Ass+Ass Asg Ago + Aos Vg
us 0 0 0 Asy Ass Aso us

ws / \ Aso Ags + Asg 0 Aoa + Ago Aos  Apo+Asa+Ass) \ws

If Dirichlet conditions are not imposed on the stiffness matrix then we have noted earlier that
constant functions are then eigenvectors corresponding to the zero eigenvalue. The columns
(and by symmetry the rows) will necessarily sum to zero. As a check on the above equation,
we can see that as the rows and columns of the local h stiffness matrix sum to zero so do
the rows and columns of the A/2 matrix. Symmetry properties in the h mesh will also be
conferred onto Q4.

However, when solving Laplace’s equation in axisymmetric coordinates or when solving for
H 4 either with, or without frequency, the formula for the h /2 stiffness matrix is not correct.
For axisymmetric coordinates, we have seen that the material property term enters the stiffness
matrix as op. In Chapter 3, we shall see that with an alternative formulation based on Hg,
the material properties enter as 1/(op). When solving for frequency problems the stiffness
matrix and mass matrix do not scale together. For 2D problems in the plane with lumped mass
approximation then scale invariance does hold.

For these more general problems, we have two choices: compute the true stiffness matrix on
the h/2 mesh, or not! If not, then one can argue that all that is important is that some *fairly
close’ second order operator is well approximated by the mesh: if the original mesh was fine
enough then this assumption is valid. Note that here we are only looking for a heuristic as to
which nodes should be refined, not to use the h/2 stiffness matrix to updated up, directly.

Once we have the h/2 global matrix for the patch, we suppose that we know the boundary
values u; and interpolate the v; with

v = Uip1 + Us
; = ———
2
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and then use an iterative method (a small number of Gauss-Seidel steps suffices) method to
update uo and check for a significant change. If there is a significant change then that node is
a candidate for mesh refinement.

2.6 ' Lanczos methods and focussing®

We have seen that the focussed Laterolog problem can be cast formally into solving the
non-symmetric block system

A A O ® 0
(278) A21 Azz - V = 0
0 P Q@ E R

where V' is denotes the N electrode voltages, E the corresponding electrode currents and
PV 4+ QE = R is the focussing constraint. We have divided the nodes up into ‘interior’
nodes with subscript 1 and use subscript 2 for electrode nodes. If E were known in advance
then we could solve the first two rows, whereas if V were known in advance then we would
solve the constrained system

Ann A (@1 _ (0
@) (5 ) (@) =)
It is the non-reciprocal nature of the PV + QE = R focussing that causes the problem.

In Section 2.3.3, we proposed solving N separate equations with each equation having unit
current emanating from just one electrode, i.e., solving the block system

A A (¢ 0
2. =
@50 <A21 Azz) (Z) (1)
where [ is the N x N identity matrix and ®; = (¢11, ¢19, .. ., $1n) is the collection of

solutions for each excitation. Z is the symmetric transfer impedance matrix. Then we can use
Gaussian elimination to solve

(2.81) (PZ+Q)E=R.

From an iterative perspective, we can of course stop after, say, k iterations so that Z is the
approximate (and probably not quite symmetric) transfer impedance matrix. Substituting into

®Presented in [38].
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equation (2.81) gives the approximate currents
(2.82) (PZr + Q)Er = R.

and E; — F as the conjugate gradient iteration count increases. Unfortunately, this method is
not very numerically convenient because the computation of (P Zx + Q)™ typically involves
the subtraction of very similar numbers so Z; must be obtained to high accuracy (better than 6-
7 significant figures). It would be better if we could find a way of solving (PZx +Q)Ex = R
without ever computing Z. (E.g., A~'f — A~!g might require A~!f and A~'g to high
accuracy whereas A~!(f — g) need not.)

Two approaches come to mind. This first is to solve (PZ; + Q)Ej = R itself iteratively.
This would only require the (approximate) action of A~ on another vector, not require the
values of Z) themselves. Because (PZ; + @) is non-symmetric we cannot use conjugate
gradient directly. Possible choices are conjugate gradient applied to the normal equations
(ZLP' 4+ Q')(PZk + Q)Er = (ZL P' + Q") R or a generalized minimum residual method
such as [56] applied to the non-symmetric equations directly.

The second approach is to use a connection between conjugate gradient iteration and tridiag-
onalization. We have mentioned that, by construction, the residual errors g; are orthogonal
(at least in the absence of machine error), so that with z; = g;/||g;|| for j = 1,..., k then
X! Xy = I, the k x k identity matrix. Moreover, [16] shows that for suitable a; and 3;
defined in terms of 7; and ||g;|| then we have the Lanczos three-term recurrence relation

(2:83) Azj = Biy1zip1 + @iz + Fi-1zj-1,

ie., AXy = X T} for some tridiagonal matrix T. Because of the orthogonality of the z;,
Ty represents the projection of A onto the space generated by i, . . ., Zx. In the presence of
machine error, orthogonality cannot be assumed, but nonetheless one can show, [2], [19], that
for an analytic function f then

(2.84) FAXE = Xef(Tr).

Note that if we assume a zero initial guess then the first column of X is b/||b|| where b is the
right-hand vector so that, for example,

(2.85) A7~ X T (118100 ... 0).
Applying N independent conjugate gradient iterations, with k steps in each, and right-hand
vectors b = e, j = 1,..., N thus corresponds to a block decomposition

(2.86) AXy = X Tk and XiXe = I
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with the first ‘block” vector being (0 Iy )* so that

1[0 -
(2.87) A~ (IN) =XiTy ' (In, 0,...,0),
and we can write the focussed system as
(2.88) TiV — (Ig’ ) E=0,
(2.89) P(0,IN)X:V +QE =R.

The advantages of this formulation are that we do not need to compute A~ f exactly for any
vector f in order to continue the iteration. With the GMRES approach, [56], we need to have
an initial guess for the E’s. That initial guess gets better as k increases because we have the
solution for the E of the previous k, but the operator Z;, will have to be started again “from
scratch” and applied to many different vectors. A disadvantage of the Lanczos formulation
is that we are always in effect solving A~! Iy and using the conjugate gradient information
gained in the solution of that system to drive the matrix inversion.

2.7 Conclusions

We have presented some of the state of the art methods used in finite element modelling, many
of which have not appeared in the geophysical literature. In the subsequent chapters, we shall
expand and enhance these methods and develop new applications to electrode (TM) modelling
in 2D and 3D formations.
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chapters  Laterolog Modelling at
Non-Zero Frequencies

Abstract. Focussed electrode tools such as Laterologs operate at low frequencies
and have been historically modelled as though they operated at DC. While capturing
much of the tool physics, this prohibits modelling some important phenomenon such
as the Groningen effect, an anomalous indication of hydrocarbon beneath large
highly resistive anhydrite blocks. For applications in axisymmetric configurations
(e.g., where the tool is centred and the beds are perpendicular to the borehole)
we have developed a finite element formulation which solves for tool response
regardless of excitation frequency. We show how the resulting stiffness matrix
can be rapidly inverted and present a post-processing scheme which computes
apparent resistivity without a loss in accuracy due to mesh discretization. From
an interpretative view point, our formulation produces the current lines instead of
equipotential surfaces and as such has been found to be more useful in understanding
tool physics.

3.1 Introduction

Electrode tools operating over a wide range of frequencies are used in borehole logging
to estimate formation resistivities. These resistivities are used to evaluate the amount of
hydrocarbon in the rock. The simplest electrode configuration is termed the Schlumberger
Array or electrical survey (ES) is shown in Figure 2.1c and involves a current source emanating
from an electrode A returning to electrode B with two voltage electrodes M and N, [2], [33].
In a homogeneous formation, the resistivity is proportional to the potential difference between
M and N divided by the current from A. The proportionality constant is termed the ‘K-
factor’ and depends on electrode spacings and the like. In an inhomogeneous environment,
this proportionality relationship is no longer valid and the tool instead reads an ‘apparent’
resistivity R4, which must be further processed to arrive at formation resistivity. As discussed
in Chapter 2, we refer to the configuration as Normal when N and B are at the surface, as
Lateral if B is at the surface with N downhole, and as Shallow ES if both M and B are
downbhole.

Newer electrode tools are typically combinations of these configurations subject to focussing

79
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conditions which maintain desired equipotential surfaces independent of the formation con-
ductivity, [13]. Prime examples of such focussed tools are the Laterologs, typically run in one
of two modes: a ‘Shallow Mode’ which is primarily sensitive to resistivity near the borehole
and the ‘Deep Mode’ which probes a few metres into the formation. By running the two
modes at different frequencies they can be combined to a single tool, as has been done with
the Dual Laterolog (DLL)! shown in Figure 1.3. To minimize some anomalous effects, the
voltage reference N for the DLL is aiways downhole, separated from the tool housing by a
long (50m) insulated cable known as the bridle, [37].

Most of the mathematical and physical properties of Dual Laterologs are well understood [28],
[35]. In particular, the separation between the Deep and Shallow readings can be shown to be -
dependent on the invaded zone around the borehole. So-called ‘tonado charts” are then used to
back out such parameters as depth of invasion, resistivity of invaded zone (R,,) and formation
resistivity (Ry), [11], [13], [40]. Layered environments complicate the interpretation but the
usual assumption is that the operating frequencies are low enough to be able to predict the
tool response by DC modelling of the layered media [4], [14]. This modelling has shown that
for an unfocussed tool, currents will readily deviate away from resistive layers to penetrate
neighouring beds which are more conductive, as shown in the left-hand side of Figure 1.2. By
using focussing techniques such as shown for the LL3 in the right-hand side of Figure 1.2 and
for the DLL in Figure 1.3, however, shoulder effects can be reduced. They can not always be
eliminated however.

In particular, if the DLL is logging beneath a highly resistive bed then one can show that the
deep reading of apparent resistivity will increase as the voltage reference N enters the resistive
zone. This has been termed the Delaware effect and has been minimized by putting the current
return B at the surface. Under certain circumstances involving partially cased holes, however,
separations have been observed which are both larger than the calculated Delaware effect and
unrelated to invasion [41]. Lacour-Gayet, [21], [22], has shown that these separations vary
with frequency. This phenomenon has come to be known as the Groningen effect after the
eponymous oil field in the Netherlands where the phenomenon was first observed.

We present a new finite element formulation, [23], which can model the Groningen effect and
has led to new strategies to remove it, [12]. Our formulation also lends itself to modelling the
toroidal antennae recently proposed by for logging while drilling.

A commonality between these sources is that in an axisymmetric formation (e.g., in a vertical
borehole penetrating horizontal layered beds) the only field components generated are Hy,
E, and E;. Because the magnetic field in the 2 direction is zero such fields are termed
Transverse Magnetic (TM). Induction tools excite the dual fields Eg, H, and H, and are

tMark of Schlumberger
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termed Transverse Electric (TE). Without azimuthal symmetry either tool can generate all six
components of electromagnetic field. For example, [25] shows how eccentering an induction
tool causes the formation to couple TE and TM modes. A non-perpendicular angle between
borehole and beds will also cause coupling, [18].

In layered media, one can solve for tool response using spectral FFT techniques, e.g., [31], [8]
but in more complicated geometries involving, say, a borehole, multiple beds and invaded
zones where borehole fluid has penetrated the beds, semi-analytic or finite-element techniques
become the method of choice, [9], [10]. This is especially true for the study of the Groningen
effect as it involves armoured cable, highly conductive casing, and beds of widely varying
resistivities. Low frequency TM excitation is often assumed to be DC, in which case Maxwell’s
equations collapse to the familiar Laplace’s equation for which FEM codes abound, [5], [27],
[42], [43]. In this chapter, we concentrate on finite element formulations for TM excitation
at non-zero frequencies. In fact, our formulation is also valid at DC, and a trivial extension
thereof covers TE excitation.

Whilst our finite element decomposition is essentially classical (e.g., [36], [43]) and can be
viewed as a TM version of the TE code in [6], we do take advantage of the novel features
introduced in the previous chapter, specifically (a) the use of an incomplete LU preconditioner
combined with biconjugate iteration to solve the complex symmetric stiffness matrices, and (b)
the use of a ‘superconvergent’ technique to compute normal derivatives along the boundary.
The resulting code, called CWNLAT, is both faster and more accurate than other codes
presented in the geophysics literature (e.g.,[4], [42]).

In the next two sections, we present the mathematical and finite element formulation, concen-
trating on sources pertinent to borehole geophysics and leaving explicit details to Appendix
3.A. Subsequent sections deal with the matrix inversion and the Groningen effect.

3.2 Mathematical formulation

Assuming a time harmonic excitation of the form e~*w! Maxwell’s equations in an axisym-
metric, anisotropic domain 2 take the form

(3.1a) V x E = wpH,
(3.1b) VxH=GE+1J
where y is the magnetic permeability and & denotes a complex-valued anisotropic conductivity.

J is the impressed current density and ZE the induced current densnty The units of E are V/m,
the units of H are A/m. We allow 7 to be transverse isotropic with & = ¢, 55+ ap¢¢+az Zz
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[71,[29]. We do not consider anonvertical symmetry axis for the anisotropy because this would
couple the TE and TM modes. A non-zero term in 42 would not couple the modes but would
imply an unusual anisotropy caused by grains or fractures oriented conically around the
borehole and is also excluded from consideration. As in the previous chapters, in an isotropic
formation we write o instead of . Compared to our earlier terminology, for notational
convenience we have absorbed the dielectric term iw? into the expression for conductivity.
For the frequencies under consideration in this chapter, dielectric effects will be negligible
but we do not need this assumption for our modelling. We suppose o, and o, to be complex
valued with positive real components which ensures that the fields will decay away from the
source(s). If w is nonzero, this decay will be exponential. We also suppose the imaginary
components of o, and o, to be non-negative.

Assuming TM excitation, so that J = J,p + J,Z, we write u = 2mpH 4 and Maxwell’s
equations reduce to the second order equations
_ 0 1 0u 08 1 06u iwp

+—u=21M,

3.2 L{u) = 6_p/—m_20_p + EEG_Z P

where we have written

4 =1 8 (J, o (J,

. =—-¢- J==—=)=-=(-F].
3.3) My @-Vxo 3 (02) P (a,,
The units of My are V/m?. Physically, u = 27pH 4 is equal to the total amount of current®
passing vertically through a disk of radius p. Moreover, contour lines of  are exactly the
current lines in the formation, which is convenient for visualization of the fields.

As shown in Figure 3.1, we exclude the axis p = 0 from the domain 2 and set p = afor
the inner radius of . & points outward from the boundary 3%, and # = & x ¢ denotes the
tangent vector. We define d! to be the variable of integration 7,dp + 7, dz along the boundary.
If u and v are complex-valued scalar functions on €2, we introduced in Chapter 1 the notations

B4 (U,U)Lz(n) :// vudpdz, (”’“)U(an) = fvu dl.
o

an

Note that the element of integration here is dpdz and not p dpdz, and that we are not taking
any complex conjugates.

The boundary of (2 is divided into 9Q: regions bounded by ‘perfect’ insulators (where o = 0
and displacement currents are negligible) and 82, for the remainder. Boundary conditions
along 92 are called Dirichlet and correspond to insulated wires carrying known currents:

! Including displacement current.
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Figure 3.1: Configuration for a Shallow ES. Electrodes A and B have Neumann condition E; =
ZsH 4. The boundary between electrodes has a Dirichlet constraint on u = 2w pHy. v denotes
the unit normal vector pointing out of § and T is the unit tangent vector to 0S2. The electrodes at
A and B are solid, ) < p < a.
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applying Stokes theorem to a disk of radius a in the p¢ plane, gives u = 2waH ¢ = I, where
I is the sum of impressed and induced currents passing perpendicularly through that disk. In
general, across an imperfect conductor only the former will be known a priori but, by taking a to
be sufficiently small (relative to w), then the contribution from induced displacement currents
along the borehole can be assumed negligible. Because the field decays exponentially from
the source, boundary conditions ‘at infinity’ can be replaced by a zero Dirichlet condition
boundary sufficiently far from the tool. In particular, H4 = 0 is a good approximation at
an air/earth interface. In general, we write % for the boundary conditions along 8§ with
T € HY?(8Qp) as discussed in Chapter 1. We write H2(£2) for those functions in HY(Q)
which are zero on 9€2.

In this chapter, the source free boundary conditions along 892, take the form E, — Z, H ¢=0
where Z, represents the surface impedance in . In general, we can always suppose that
Zs = —z, — w2z, where z; and z]' are both non-negative. Such boundary conditions can
arise, for example, on electrodes or cable armour. We take Z, = 0 if the electrodes are
perfectly conducting. If the electrodes have radius a and a linear resistance per unit length R
(in Q/m) then we take Z, = —2waR. (The negative sign arises because # = —z on p=a)

For example, Figure 3.1 shows a Shallow ES with current I leaving electrode A and returning
to electrode B: we set u = I on that part of 8 between A and B, and set u = 0 elsewhere
on 982. On the electrodes we set E, = 0. The frequency here was 35Hz with skin effects
negligible because of the short spacing between electrodes. Figure 3.1 shows only part of the
computational domain  and the boundary segments “at infinity’ are not shown.

Our finite element formalism allows for the more general possibility of E, — Z, H 6 =Ty,
called an inhomogeneous mixed Neumann or Robin boundary condition. This is appropriate
for modelling voltage gaps, for example, where Ty € H~*/2(89,,) can be prescribed a priori.
In Chapter 4, we shall develop a still more general boundary condition on 852, which allows
one to model electrodes with contact impedance. It is important to note that in this chapter
when we refer to an electrode impedance we are referring to the ratio £. +/ H 4 on that electrode
and not a contact impedance.

We show in Appendix 3.B that a Robin boundary condition is also a natural representation
of a current carrying wireline cable. E.g., to model a Long Normal and bridle suspended
from an armoured cable, we use the boundary conditions shown in Figure 3.2 where the
unmarked sections of the boundary have the Dirichlet condition H4 = 0. Figure 3.2 shows
the corresponding current lines computed by CWNLAT for the case of DC excitation when
the cable armour is perfectly conducting (so that Ty = Z, = 0). Figure 3.3 also assumes DC
excitation but now T} and Z, are large. We see that the fields along the cable armour have
moved closer to the constant 27 Hy = I that would correspond to a perfectly insulating cable
and that relatively more current returns to electrode B. These two examples are unrealistic
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Current Return
B at Surface:
E;=0

Cable
Armour:
E.-Z H¢ = Tq,

Bridle:

Electrode A:
E.=0

Figure 3.2: Boundary conditions for an electrode A suspended on an armoured cable. Electrode A
is separated from the cable armour by an insulating bridle. The electric field lines were computed
for the DC case with perfectly conducting cable armour, Z, = Ty = 0.
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Current Return
B at Surface:

E;=0

Cable
Armour:

ET—ZSH¢=T¢

Bridle:
21tpH¢ =1

Electrode A:
E.=0

Figure 3.3: Boundary conditions for an electrode A suspended on an armoured cable. Elsctrode A
is separated from the cable armour by an insulating bridle. The electrical field lines were computed
for the DC case with imperfectly conducting cable armour so that both Z, and Ty are non-zero,
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because of the small size of . When modelling the DLL, we will take the boundaries of €2 to
be far from the tool. We will examine the fields due to the DLL in more detail in section 3.5.

Certain tool configurations have sources inside 2. Distributed source fields (i.e., those without
any delta functions) arise naturally if one first solves for an associated ‘primary’ field and use
the finite element formalism to solve for the remaining ‘secondary’ field (e.g., [6]). Delta
function sources arise in the representation of toroidal antenna: as we have seen in section
2.2.2, atoroid at (po, 20) is represented by the source term

(3.5) My = iwpINgr2 PP gy

27p
where I is the current, Ny is the number of turns and r, the radius of the toroidal coils in
the pz plane (assumed small). Such sources are used on recent logging while drilling (LWD)
tools where the toroids are wrapped around a drill pipe to measure the formation resistivity
while drilling.

Figure 3.4 shows the current lines induced by such an assembly operating at 1 Hz. We have
assumed that the drill bit is wider than the rest of the pipe and has cut a mud-filled borehole
shown by the dotted lines. In Figure 3.5, which shows the current lines induced by the same
assembly at 1 kHz, we see that skin effect in the metal pipe changes the current pattem: €.g.,
the field decreases more rapidly away from the toroid and the fields no longer penetrate into
the interior of the drill-pipe. Similar results to Figure 3.4 have been described by [16], but our
formulation allows us to simultaneously take into account the finite length of the tool and the
finite operating frequency.

For a Normal tool or Laterolog, once we have solved equation (3.2), we obtain the apparent
resistivity from the electric boundary potential

x
(3.6) &(x) = —/ E-+dl
Xe
where the integration is counter-clockwise along 92 from some ‘reference potential” at x..
Note that for non-zero w, we cannot define a unique potential across €2 nor need the potential
at x. be single valued. Clearly

1 du, 1 Ou, .
—-z . T — — — . T
poz Op PO, 52"

1 6u., . 1 Ou.

__—z .

—p-0
po; 6pp po, 02

3.7 27E - T =

A

which we write as 1/(p7)8u/8v. The boundary condition along 05, thus becomes

(3.8) —— - —u=2nTy
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Figure 3.4: Electric field induced by toroidal coil on a drill-stem at 1 Hz. The borehole wall is
denoted with a dotted line and the drill string itself is shown hatched,
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Figure 3.5: Electric field induced by toroidal coil on a drill-stem at 1 kHz. The borehole wall is
denoted with a dotted line and the drill string itself is shown hatched.
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and we generalize ® to the function H'/2(6Q) x H/2(6Q) — C

1 1 du

3.9 P(v,u) = ~or EE vdl.
a0

If v is 1 along some section of OS2 from A to B and zero elsewhere then ®(v, u) is the potential
difference between A and B. As any element of H!/2(9Q) extends to a H function defined
on 2, we can also view ® as a bilinear form on H*(R).

To arrive at a finite element system of equations, we first cast equations (3.2) and (3.8) into a
weak form by integrating against a test function v. We are thus required to find u € H1(R)
such that ¥ = % on 09 and

(3.10a)

0 1 6u 06 1 8u> < iwp >
Y 505000 9200 82 +{v,—u =27 (v, Mg}, 2001
< Oppo. O0p 0z po, 0z L3(9) P L) ( o)L ()

(3.10b) - 27®(v,u) — <v, éu> =27 (”:T¢)L2(an )?
P /r2aq,) i

for all test functions v € H{} (). We would obtain an overdetermined system if we ‘tested’
u with non-zero v on 9 while at the same time insisting that v = ¥ there. Integrating by
parts and combining the two equations, we obtain

VA

(3.11)  P(v,u) - <v, —’u> = —27 (v, M¢>L2(n) + 27 <"’T¢>L2(8n.,)
L2(80,)

for all v € H(Q) where P is the bilinear form

(3.12)

Pom= (R B (LB ()
’ po; ap’ap L2(q) papaz’az L3}(Q) ’ p Lz(n)'

The Dirichlet conditions are satisfied in the strong sense in that, for any mesh, the approximate
solution up, will necessarily satisfy u, = % on Q. The Neumann terms are only satisfied in
the weak sense, i.e., only when integrated with respect to the test function v.

Applying Green’s formula to equation (3.11), we see that when u is a solution to (3.2) and v
is zero over the support of My (i.e., (v, M) L3(q) = 0) then

(3.13) ®(v,u) = -—;;P(v,u).



3.3. FINITE ELEMENT FORMULATION 91

This gives us a second algorithm for computing ®. We refer to (3.8) as the ‘classical’
formulation and (3.13) as the ‘superconvergent’ formulation. We show in the next section
that when u is an approximate finite element solution, the second formulation is much more
accurate. Essentially the same result was derived in section 2.3.3.

3.3 Finite element formulation

The finite element solution proceeds by first dividing Q into a series of rectangles (the
‘elements’) bounded by mesh lines z = z;,...2n, and p = p1,...,pN, (With p1 = a).
Finer meshes have extra p and z lines. This subdivision is done in a ‘quasi-uniform’ fashion
so that the mesh diameter &, (i.e., the largest diagonal value of any of the elements) remains
roughly proportional to 1/ VN with N = N, , N, the number of nodes. Separate levels of
refinement are labelled by their mesh diameter.

Given a subdivision with diameter h, we write Vi, C H() for the (finite dimensional) space
of piecewise-bilinear functions over that mesh. In Appendix 3.A, we construct a set of basis
functions for V; such that for each node 7; of the mesh, the basis function B;;(p, z) satisfies
B;;(pp, 2) = 6ip8jq Where § denotes the Kronecker delta. B;; give a representation of Vj, as
the tensor product V¥ ® V;? of one-dimensional basis functions in p and z, respectively. We
replace equation (3.11) with the discrete problem: Find up € Vi such that up = T on 0
and

(3.14)

Zs
P(vh,uh) —{ —vp,Up = =27 (vh,M¢)L2 ot 27 ('D},,T¢)L2 a9,
P Laon) (@ (60)

for all test functions v, € Vi N H§(Q). The constraints on €2 are imposed on both u and
vy, whereas the constraints on 92, will only be satisfied ‘on average’ over each boundary

element. We shall write ¢j € 8% if the i7th node lies on 9Qy so the test functions vy, consist
of any B;; such that ij ¢ 0. We write

Zs
(3.153) Aijpg = P(Bij, Bpg) — <Bij’ _qu>

p L2(3%,)
(3.15b) f,’j = =27 <B,‘j , M¢>L2(ﬂ) + 27 (B;j , T¢)L2(6ﬂu)
so that with

(3.16) un(p, ) = Y Bpg(p, 2) tpg
rq
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then

(3.17) D Aijpgupg = fi;  forall ij ¢ 89
Pe

Explicit formulae for A are given in Appendix 3.A. These equations, together with the
constraints up = % on 9%y, define a large sparse system of equations for upg. The complex
symmetric matrix A is termed the global stiffness matrix.

As we have seen in section 2.3.2, the Dirichlet nodes in the finite element calculation require
special attention. Suppose we number the Dirichlet nodes last so that A(v, u) decouples into
blocks

Ay A
(3.18) A(v,u) = (v] o) (A; A;;) (Z;)

where v = 0 and uy = Wy, i.e., A;2 and Ay correspond to nodes where v, € 8%, For
these rows we do not test with v, but rather insert the known values of % to give

(3.19) (AO“ Af) (Z;) - (_g)

Our solution technique is tailored to complex symmetric matrices, so we premultiply by

I —A;;,
0 I
to give the symmetric system

A 0\ (w1 _ (i — A12%2
o (5 YE)-()

In the subsequent section, we show how to invert equation (3.20) using the preconditioned
ILU biconjugate gradient scheme developed in Chapter 2.

There remain the questions as to how well does u; approximate u and how to compute
boundary potentials and apparent resistivities. For example, u; need not satisfy equation
(3.10b) pointwise on 9S2,, although u, will clearly agree with u at each node on 8. In fact,
one can show, e.g., [S], that u), converges to u throughout Q and does so at least quadratically
—which we write as [|u — up|| = O(h?), (e.g., a three times finer mesh gives an answer which
is nine times more accurate). Under certain quite restrictive hypotheses, one can also show
that the error in uj, evaluated at special points within each rectangle is O(h3), a phenomenon
known as ‘superconvergence’ —for essentially no extra effort one obtains an order of magnitude
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improvement, [34]. Unfortunately, for practical problems with discontinuous conductivities
and varying mesh diameters, this O(h®) superconvergence does not appear to exist.

As alluded to in the previous section, we do have a superconvergent method for computing
apparent resistivity. Specifically, if va = xaB is 1 for the nodes along a boundary section AB
and zero everywhere in {2 then

B+h/2
P(vh,un) —-/ —l—@dl

(3.21) =
A-hj2 PO OV

= 0(h?)

e.g.,if A = B then —27 P(vs, up) represents the jump in potential across A. (From equation
(3.15a), P is the same matrix as A less the impedance contributions.) A formal proof of this
result is identical to that of section 2.3.3 and is not repeated here. Algorithmically, the result
is extremely useful: after solving for u, the “potential jumps" across each node are given by
one extra matrix multiplication by P.

In coding, it is simplest to have two separate matrices: One first builds the matrix P then adds
impedance terms to form A. The rows of A are overwritten at each Dirichlet node according
to equation (3.20) and Au, = fj is solved. The subsequent computation of potentials is very
inexpensive. With bilinear elements, Puj could certainly be computed in 9N operations.
In fact, as we only need Puy, along the boundary, the computation is 0(\/17 ). Finally, the
potential difference between two electrodes ‘A’ and ‘B’ is given by adding together the values
of —27 Puy, at the boundary nodes between ‘A’ and ‘B.’

Physically, setting the ith row of Pu to zero corresponds to anumerical statement of Faraday’s
law in a loop, T';, surrounding the ith node (with O(h?) error). On boundary nodes, this loop
cannot be closed: Pu contains only the contributions from that part of T'; in Q. To complete
the statement of Faraday’s law requires the contribution, f, from E - #dl /27 over the missing
section. Faraday’s law becomes the ith row of Pu = f. E.g., at DC, given u (and assuming
My = 0) then (to O(h?)) Pu gives the electromotive force around each of the I';: zero at all
interior nodes and equal to the jump in potential across each boundary node.

We demonstrate superconvergence numerically using the example of a Shallow ES operating
at 1kHz in a 10 ©2m homogeneous formation with 0.1 Qm borehole (and 8" diameter). Figure
3.6 shows the real component of the potential computed the two ways and for different mesh
sizes. One set of curves has been displaced by a distance of 10 volts for clarity. In Figure
3.7, we show the difference between the two convergence rates at an arbitrary point ‘A’ on
the upper electrode. We used Richardson extrapolation, [38], to estimate the true potential
at A (required to define ‘error’ as no analytic expression exists). The curve obtained from
P(vn, us)is clearly converging much faster than that obtained from equation (3.8). Moreover,
the expected convergence rates (given by the slopes of the curves on the log-log plot) confirm
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Figure 3.6: Superconvergence results for a Shallow ES at 1 kHz. The figure shows the potential
along p = a as a function of z, with electrodes at [5, 10] and [15, 20). The resuits from different
mesh sizes are shown overlaid and we also do this computation using a non-superconvergent
O(h) method and the superconvergent O(h?) method. The latter set of curves are displaced 10
volts for clarity. The potentials at point A are also replotted in Figure 3.7.
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Figure 3.7: Superconvergence results for a Shallow ES at 1 kHz. The figure shows the error in the
computation of potential at the point A of Figure 3.6 when the potential is computed by two different
methods. The slope of the curves on the log-log scale indicate the rate of convergence, namely
1.20 and 1.93. The asymptotic rates predicted theorstically are O(h) and O(h?), respectively.



96 CHAPTER 3. SOLUTIONS AT NON-ZERO FREQUENCIES

the theoretical results. We have plotted the real value of the potential, but similar results were
also observed for the imaginary component.

3.4 Matrix inversion

In this section, we show how to solve the system Auj, = fy arising from the finite element
discretization. We shall drop the subscript » as we consider a fixed mesh diameter. For any
non-singular N x N system of equations Au = f then u must lie in the space generated by
successively applying A to f: the vectors f, Af, A%f, ... cannot all continue to be linearly
independent and so for some 3;, i = 1,... ,n with By # 0

G2 Bof + BLAf+ ...+ BuA"f =0

implying that v = —(B,f + ...+ B, A" "1 f)/Bo with n < N. The problem, of course, lies
in generating the ;. The spaces generated by {f}, {f, Af}, {f, Af, A2f}, etc, are called
Krylov spaces. If A is positive definite and symmetric then the conjugate gradient method
chooses from each Krylov space the vector closest to the true solution (in the energy norm)
and we have seen in Section 2.4 that a solution with a given accuracy can be obtained after

" O(/k(A)) iterations, where «(A) is the condition number of A. When A is arrived at via

finite element discretization, this number of iterations can still be prohibitively large and we
accelerate the convergence by preconditioning with a matrix Ao having a similar spectrum to
A but which is readily inverted. Our method of choice is incomplete LU factorization. As
presented in Chapter 2, we set Ag = LU where A = LU + C and L (resp. U) lower (resp.
upper) triangular matrices with the same sparse structure as A. We compute L, U and C with
the ILU algorithm of (5] presented in Chapter 2.

As shown by [5], on a uniform mesh of diameter A, if A is the stiffness matrix corresponding
to a second order elliptic operator then x(A) = O(h%) = O(N?/%) where N is the total
number of unknowns and d is the dimension. This can been seen physically because (e.g.
in 3D) the lowest order eigenmode will be, roughly, a piecewise linear discretization of
sin(z/L)sin(y/L)sin(z/L) where L is the linear dimension of {2 whereas the highest order
mode will be, roughly, sin(hz/L)sin(hy/L)sin(hz/L). For a second order operator the
corresponding eigenvalues will be 1/L? and h2/L? so the ratio between them is h2. As the
mesh is refined, x(A) will increase and so the number of iterations required for convergence
will also increase. [5] shows that large variations in material properties also increase the
condition number. Under certain fairly restrictive conditions, [26] showed that the condition
number of the ILU preconditioned system was O(N1/4),

Unfortunately, even at DC, the hypotheses in [26] will not usually be valid but in practice we
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Figure 3.8: Convergence of the CWNLAT code as a function of mesh size. The configuration was
a 64 inch Shallow ES at 1 kHz in a 10 ohm-m formation with 0.1 ohm-m, 8 inch borehole.
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observe the predicted convergence rate of O(N!/ (24) regardless of frequency. Figure 3.8
shows a typical example of convergence for a Shallow ES operating at 1 kHz in a formation
with borehole. In general, the iteration count will depend on the eigenvalue distribution of A,
[19], [30].

From Appendix 3.A, we know that A = S + iwT with S and T both real symmetric. S
is spectrally equivalent to the stiffness matrix for Laplace’s equation and, by the Poincaré
inequality (i.e., equation 1.70) will be coercive provided that Dirichlet constraints have been
applied to A. In general T can have both positive and negative eigenvalues.

If X + ip is an eigenvalue of A with eigenvector u + v then

(3.23) A+ i) (llull? + ||o)|?) = (uf = i )(A + ip)(u + iv)
(3.24) = (u' — ' )(S + wT)(u + iv)
(3.25) = (u'Su + v'Sv) + iw(u'Tu + v Tv)

so that if ys|ul|®> < w'Su < Cs||u||? and [v!Tw| < Cr||v||? then vs < A < Cs and
|p| € wCr, ie., the eigenvalues of A lie in a rectangular box parallel to the real and
imaginary axes and bounded away from zero.?

Moreover, when w # 0, the ILU factorization appears to cluster the eigenvalues nearer the
real axis which further helps stabilize the biconjugate gradient routine, [15], [24]. Eigenvalue
distributions and the convergence rates for complex symmetric matrices arising in EM moment
method solutions have also been discussed in [31] and [32).

3.5 Resistivity tools in heterogeneous media

Consider first the response of a Normal tool with a 9.14m (360 inch) electrode in a homoge-
neous formation and a return at the surface. We applied the CWNLAT code to re-confirm the
observations of Lacour-Gayet, [21]. At DC, the current lines will emanate radially from the
source. At non-zero frequencies, however, because of skin effect the returning currents in the
formation will be constrained to lie in a cylinder around the borehole with radius proportional
to the skin depth: 6§ = \/2/owp. For example, Figure 3.9 shows the current paths induced
when the electrode operates at 35 and is suspended on a cable without armour in a 1Qm
formation (6 = 85m).

2In 3D this statement is not true in general, but one can show that there must exist a a such
that the eigenvalues of A lie in a parallel strip which has been rotated by €'* and which is bounded
away from the origin.
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Figure 3.9: Current lines induced by a 35Hz electrode on a cable without armour in a 1 ohm-m
formation. We show the current lines in just one azimuthal plane. The electrode length is 9.14m

and the skin depth 6 is 85m.
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Figure 3.10: Potential along borehole axis induced by a 35Hz electrode on a cable without armour
in a 1 ohm-m formation. The units on the x-axis are metres. The out-of-phase voltage is shown

dotted, the in-phase solid. The electrode is emitting unit current.
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Figure 3.10 shows the potential along the borehole axis. Unlike the DC case, at a finite
frequency the potential decreases linearly along the cable. The linear resistance can be
roughly approximated as the formation resistivity divided by the area of a circle of radius 6

/o _wp

(3.26) Reoae = 7 = 5=

but a more exact expression derived in Appendix 3.C which takes into account percentage of
currents flowing outside the circle of radius & is shown to be wy/8. In particular, the slope is
independent of formation resistivity. Near the electrode the potential decrease is exponential.
The out-of-phase potential is shown dotted and is also linear along the cable (its slope is
dependent on formation conductivity). Note that if the voltage reference is placed 50m from
the source electrode, the change in apparent resistivity due to the 35Hz frequency will be quite
small.

The presence of cable armour does not significantly change the current lines when the forma-
tion is sufficiently conductive. Essentially, the cable provides an alternative current return.
Although the cable conductivity is high, the cross-sectional area will be quite small. Typical
values for Z, are —1 x 10~ to —1 x 10~3Q. Figure 3.11 shows the current lines in a 1Qm
formation when the tool assembly now consists of a 9.14m (360 inch) electrode with radius
(1.8 inch), an insulating bridle with radius 12.7mm (0.5 inch) and a conducting cable armour
with conductivity 10~%Qm, interior radius 2.54mm (0.1 inch) and exterior radius 6.35mm
(0.25 inch). Note that the interior of the cable is set to a perfect insulator through which the
35 Hz current passes to the electrode. We would get quite different response if we took the
interior of the cable armour to be a perfect conductor because then there would be a very
efficient path to the surface by just crossing radially through the cable and up the conducting
core to the surface. Figure 3.12 shows the same configuration but now in a 10*Qm formation.
The cable now offers a less resistive path to the surface and there is less skin effect.

3.5.1 Influence of casing in homogeneous and layered media

In this section we first examine the influence of a cased borehole on the fields induced by an LL3
in an otherwise homogeneous medium, then examine a log of the same tool in layered media
consisting of a high resistivity anhydrite around the casing with a homogeneous formation and
uncased borehole below.

Figure 3.13 shows the current paths around a casing shoe at DC and Figure 3.14 the same
configuration at 35 Hz. We see a big difference: at 35 Hz the currents cannot pass through
the casing shoe because of skin effect. In both cases, the source electrode is 50m below the
casing shoe and the return electrode is at infinity.
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Figure 3.11: Current lines induced by a 35Hz electrode on a cable with bridle and armour in a
1 ohm-m formation. We show the current lines in just one azimuthal plane. The tool assembly
consists of a 9.14m electrode with radius 45.72mm, an insulating bridle with radius 12.7mm and
length 50m, and a conducting cable armour with conductivity 1.e-6 ohm-m, interior radius 2.54mm
and exterior radius 6.35mm. The current lines are virtually indistinguishable from those of Figure
3.9 indicating that at this contrast the cable armour is not a significant current return path.
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Figure 3.12: Current lines induced by a 35Hz electrode on a cable with bridle and armour in a
1.e4 ohm-m formation. We show the current lines in just one azimuthal plane. The tool assembly
consists of a 9.14m electrode with radius 45.72mm, an insulating bridle with radius 12.7mm and
length 50m, and a conducting cable armour with conductivity 1.e-6 ohm-m, interior radius 2.54mm
and exterior radius 6.35mm. The current lines are clearly different from those of 3.9.
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~——
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Figure 3.13: Current lines around a casing shoe with a DC current source far below the casing
shoe. The casing acts as a good conductor and current will enter the casing from both the borehole
and the formation. The casing resistivity is 2 x 10~7Qm with relative magnetic permeability 200.
The interior radius of the casing is the borehole radius, which is 4.0 inches. The casing thickness
is 0.3 inches. The formation is 10 m and the borehole is 0.1 Qm.
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Borehole Wall

Formation

Figure 3.14: Current lines around a casing shoe with a 35Hz current source far below the casing
shoe. Current cannot pass through the casing because of skin effect, instead current enters the
exterior of the casing, travels down the casing shoe and back up the inside of the casing. The
casing resistivity is 2 x 10~7Qm with relative magnetic permeability 200. The interior radius of
the casing is the borehole radius, which is 4.0 inches. The casing thickness is 0.3 inches. The
formation is 10 Qm and the borehole is 0.1 Qm.
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Casing 10m uphole of anhydrite layer. freq = 35 Hz.
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Figure 3.15: The Groningen effect. Simulated resistivity logs from an LL3 approaching a casing
shoe. At 35 Hz there is a big kick in apparent resistivity once the bridle has entered the casing.
The casing shoe is located 10m uphole of the anhydrite layer. The units on the x-axis are metres.
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Figure 3.16: Resistivity logs from a 35Hz Dual Laterolog approaching a casing shoe. The Gronin-

gen effect appears as a big kick in the LLd out-of-phase component and an increased separation
in LLd and LLs apparent resistivity as the bridle enters the casing.
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The effect of this current shielding on a resistivity tool is that at 35Hz, the currents will
effectively return to the bottom of the casing shoe at 35Hz, causing an increase in apparent
resistivity when compared to the DC case. This is shown in the logs of Figure 3.15.

The features shown in Figure 3.15 have also been seen in the field. Figure 3.16, reproduced
from [21], shows a typical example. The effect starts around 3794 feet, 196 feet below a
highly resistive bed at 3598 feet, with a casing shoe 15 feet uphole of the bed boundary.

3.6 Conclusions

We have been able to model frequency effects on Laterolog configurations using a new finite
element code and have been able to model the Groningen effect. The superconvergence
developed for the ¢ formulation in Chapter 3 extends to the Hy formulation. The stiffness
matrices resulting from the Hy formulation are complex symmetric with the eigenvalues
having positive real component bounded away from the origin. The stiffness matrices are
readily inverted with the incomplete LU preconditioned biconjugate gradient algorithm.

Appendix 3.A  Stiffness matrix expansions

This appendix gives explicit formulae for the stiffness matrices P and A as integrals over
rectangular elements on a quasi-uniform grid with nodes py,...pn, and 21,...zx,. The
basis functions are given explicitly as a tensor product of 1D local functions:

(3.27) Bij(p, z) = B (p)Bi(2)
where
—pi—1)/Api—y ifp € [pi—1, pi]
(3.28) Be(p) = { (P~ Pi=))/Bpicy ifp
(°) {(Pz‘+1 —p)/Api  ifp € [pi, pig1]

(3.29) B (2) = {(Z PR A

(zj41—2)/Az;  ifz € [z, 2j41]
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with Ap; = piy1 — pi and Az; = zj41 — zj. We assume 7 — iwe and fwy are constant
within each mesh element so that

N,=TNy—1
(3.30) Pijpg = P(Bij, Bpg) = Z Z S{ijq
I=1 J=1
where S is the local 2D stiffness matrix over the I.Jth rectangle:
1 orer 9P OBE dp [P
g1 L — P 7 Z 32
3.31) Siipe o1T ~iwel [or 3p 9p p /;J B3 B,
1 PI41 d 2141 §B? OB*
R 11/ B-?B;:_p/ 5,
g'p _zwcp or P J: 8z 0z

PI41 d ZJ41
— iwpt! / BBy L / B: B:
PI P Jz,;

Clearly, S//,, is non-zero only when |i — p| < 1 and li — ¢l < 1. In CWNLAT, the
local stiffness matrices are stored as a 4 x 4 matrix for each element [p;, pi41] X (2}, zj+1].

CWNLAT uses a stencil formulation for the global stiffness matrix A as shown in Chapter 1

and stores A asa 3 x 3 matrix for each node (p;, 2;),i=1,... , N, j=1,..., N
From the definitions of B and B?, S{j"pq can be assembled from the integrals:
1 [#+139 g log(pi+1/pi)
(3.32) S,",:—/ ——(pis1 —P)=piv1 —P) = — 35—
A%i o pap( +1 )ap( +1 ) Ap?
(333)
1 19 0 log(pi+1/pi)
St =5 ,~=—/ = (p = pi)g=(pis1 — p) = ——— Ay
+1 +1 A%‘ o pap( )ap( +1 p) AP?
1 [P0 9 log(pi+1/pi)
3.34 SPL . _—__/ ——(p—pi)=— —p;) = =
( ) i41i+41 A%, . P 8P(p P )3,0('0 P ) Ap?
1 [P pieilog(pisr/pi) | pi —3pin1
(335 1= —/ L(pis1 = )pins — p) = 211 kel
A%i o P +1 )( +1 ) Ap? 2AP:
(3.36)
[ A pipi+1 log(pix1/pi) | pir1 +pi
=15 =~—/ ~(p = pi)(pig1 — p) = — LSRRI 4 B
t+1 t1i+1 A%‘ 0 Ap? 2Ap"
337
1l pilog(pir1/pi) | pix1 —3pi
) L [ gp— “Ap— p: — ) = £ 14 () i+ ]
T O O v TV
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1 %49 0 1
(3.38) S;J AZ’ lj E(zj-‘-l - Z)E(Zj.{.l bl Z) = Azj
(339
2 2 | AR , i) -1
Sivi=5in= az, /z, 3o =2z —2) = 3.,
. 1 [5+H ) 7} 1
(3.40) +1j+1 = A—ZJ/; E(l - Zj)a(l -z)= A,
i 1 [F+ A,.
(341) 1 A2J ‘/zj (Zj+1 - Z)(Zj.H - z) = 31
. 1 2541 Az'
(3.42) ;=1 = A—2/ (41— 2)(z — ) =
z; Jz;
B 1 Zi+1 Azj
(3.43) = A_?, '/;j (z-z)(z—z) = 3

S? and S* are termed ‘local 1D stiffness matrices’ and 1”7 and 17 ‘local 1D mass matrices’.
To solve Maxwell’s equations in a flat 2D plane, one need only change the formulae for S’”
and 1” to those of 57, and 17, respectively. This has also proven useful for debugging.

To compute A from P requires a boundary impedance term

/ —Z—’-B,-J-Bp,,dl
an P

which can be evaluated from the 1D mass matrices
(3.44)
2541 Z Z Pi41 Zs
/ —B,Jqudl 6,}, and / 73{_,‘3,,«(11 = Z, lfpﬁjq
z '

3 i

where é denotes the Kronecker delta function.

We use Gaussian quadrature to compute f;; from equation (3.15b) unless M consists of delta
functions in which case (B;;, M)q can be computed analytically.

Since Z, = —2} — iwz!, A = S + iwT with

o Ouodv Oudv 28
049 st = [ ot (G5t 5 )+ £
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and

_ € Oudv Oudv 7 2y
646 T = [ i, (ap op * 32 az) S e

so that S is positive semi-definite and 7' is indefinite. S is positive definite over H () by
Poincaré’s inequality.

Appendix 3.B  Boundary Condition for Armoured Cable

We derive an effective boundary condition for a current carrying armoured cable. We model
the cable as a conductor carrying an impressed current, I, inside the cable and separated from
the cable armour by an perfect insulator. We set p € [a, b] for the cable armour with material
properties o, p, €. From Section 1.4.8 we know that locally the field variation in the armour
is of the form

(3.47) Hy = e*=*[aH{ (vp) + BJ1 (1))

where 72 + k2 = k? and k is the wavenumber inside the armour. We suppose the armour is
sufficiently conductive that ¥ = k, i.e., k., = 0. The boundary conditions on Hy are

(3.48) aH® (ka) + BJ1(ka) = [/(2ma) and oH{"(kb)+ BJ1(kb) = Hy

p=b

The corresponding tangential electric field at p = b is given by

(3.49) E, = {(cHV (kb) + BJo(kb))}.

o — WeE

We solve for « and 8 in terms of I and Hy and substitute into equation (3.49) to give

p=b
(3.50) —E, - Z,Hy =141
where
H{"(ka) Ji(ka)
3.51) 7 = k Hé’(kb) Jo(kb)

"o — dwe lH{”(ka) J1(ka)
HO®kD) Iy (kb)
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Figure 3.17: Real and imaginary components of 2n H ¢ across an armoured cable both computed
three ways: shown solid, dotted and dashed. The solid curves is the analytic result, the dashed
curves show the finite element resuits with the cable meshed and the dotted curves show the
finite element result computed with inhomogeneous Neumann condition on the outer surface of

the cable.

and

1 1 |HP(ka) Ji(ka)|™

(3.52) b = b T e |HO (kD) Jy(kb)

For low frequencies the real components equal the DC values, Z, = —2wb/(017(b — a?))
and t4 = 1/(e17(b? — a?)), while the imaginary components scale linearly with frequency.
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Figure 3.17 shows the comparison between analytic and finite element methods. The first
set of curves (solid) show the real and imaginary components of 2wpHy crossing a cable
armour with inner diameter 0.3 and outer diameter 0.5”. The armour has relative magnetic
permeability of 100 and conductivity of 108S/m. We have supposed an incident field in the
formation such that the field at R = 4" is zero. The second set of curves (dashed) show the
finite element result with the cable armour meshed and the third set of curves (dotted) show the
finite element result assuming the inhomogeneous Neumann condition along the outer surface
of the cable. The curves overlay perfectly.

Appendix 3.C  Linear resistance for coaxial currents

This appendix derives the formula Rcoar = wpt/8 for the linear resistance of the coaxial
currents induced by an unshielded, long cable. The electric field due to a long cable carrying
current [ is given by, [20],

(3.53) E= —zf“;—"mg”(kp)

where k2 = iwpo. The power loss per unit length is given equivalently by either of the two
expressions 1 1% Reoaz or § [ o|E|%. Setting the two expressions equal gives the formula

wp\?2 * .
(3.54) Reoae = o) 2 / plHS (kp)|*dp
0
and using
R, 11
(3.55) plH  (kp)|*dp = ———
0 T WUT

we arrive at Reoqz = wit/8. The idea of obtaining Rc,qax by comparing two expressions for
power loss was given in [17]. This last integral can be derived by using Kelvin functions,
[39]:

(3.56)
ber(z) — ibei(z) = Jo(ze™*)  and ker(z) —ikei(z) = %Hé"(ze”“)

whence

o0 4 o0
(3:57) / pH (k) dp = =5 / plker’ (/aTTp) + kei2(/GHTp))
0 0
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which can be integrated analytically (!) (e.g., [1] Equation (9.9.25)) to give

1

7 g P er(z ke (2) — kei(a)er ()]

(3.58)

For large x, ker(z) kei’(z) — kei(z) ker'(z) decays as e~*V? (e.g., [1] Equation (9.10.32)) so
it remains to evaluate the limit as # — 0. For small enough z, we have

(3.59)

ker(z) ~ —log(z/2)ber(z) + w/4bei(z)  kei(z) ~ —log(z/2) bei(z) — 7 /4ber(z)
and

(3.60) ber(z) ~ 1 bei(z) ~z%/4  ber'(z) ~z bei'(z) ~ z/2

with the integral following from z kei(z) ker'(z) — w/4 and z ker(z) kei’(z) — 0.
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chapters  Contact Impedance Modelling
and Verification

.

Abstract. This chapter examines different approaches to modelling electrodes sub-
ject to contact impedance and presents the results of some verification tests. Contact
impedance is an electrochemical effect that can be represented as the limit of a thin
layer of resistivity R. and thickness d in front of a perfectly conducting electrode,
where the limit is taken in such a way that the product dR. = Z. remains constant.
For DC problems, this limit can be represented by the boundary condition

¢ V-9

w ~  Z.

where V is the potential on the perfectly conducting electrode ‘behind’ the contact
impedance layer, ¢ is the borehole conductivity in front of the layer and » the unit
normal pointing into the electrode. For non-DC problems, we cannot suppose that
the electric field can be written in terms of a scalar potential @, but for both DC and
CW problems in axisymmetric media, the electromagnetic field generated by TM
tools such as Laterologs can be written purely in terms of Hy. We show that for
such configurations

g

¥Hy

dz2
is the natural representation of an electrode with contact impedance, Z, in an
axisymmetric formation subject to time harmonic excitation. In an appendix, we
detail CWNLAT and ALAT3D input files used to solve contact impedance problems
and show excellent agreement between the two formulations.

E.+ 2. 0

4.1 Introduction

Contact impedances have typically been ignored when modelling Laterologs. Electrodes have
been consistently taken as Dirichlet conditions in @, [7] or homogeneous Neumann conditions
in Hy, {11, [4). For the newer tools with arrays of small electrodes, such as the FMI' and
ARI!, contact impedance becomes more important. In the SKYLINE finite element code, [2],
contact impedance is modelled by placing thin insulating elements in front of the electrode.
We propose a more mathematically rigourous approach where the insulating elements are
replaced by effective boundary conditions which model the electrode physics. We shall

tMark of Schlumberger

119
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examine the boundary condition for contact impedance in a finite element context and discuss
its implementation in terms of ¢ and H .

4.2 Contact impedance modelling

Consider a metallic electrode charged to a potential V' on the boundary of a domain € filled
with material with conductivity ¢. The electrode will induce a potential field ® satisfying
Laplace’s equation V - 0V® = 0 with & = V on the boundary. Contact impedance, Z. (in
2m?), on the surface of the electrode changes the boundary equation ¢ = V into the Robin
boundary condition

03<I> V-9
v~ Z.
where v is the outward pointing normal on 9. If the boundary of § is decomposed into a

sum of (connected) electrodes I'; separated from one another by insulators then the complete
boundary condition on 9%2 is

4.1)

9 V- :
(4.2) U% = ZC on F,,
dd
4.3) - =0 o o0 — U Ty,

which gives, by inspection, the well-defined elliptic system for &
vo vV
44 / = / — V¥ e HYQ),
o) r: Ze Z . Ze @)

where H'(2) is the space of functions whose gradient has finite L2 norm. If the V; are not
known g priori then we can add the equations

V-9 _

“4.5)

where /; is the total outward flowing current on the ith electrode. (We are assuming for
notational convenience that all of the electrodes have the same contact impedance.)

The above formulation is classical, e.g., [6]. In cylindrical coordinates, equation (4.4) becomes

ov 09 6‘1’8@ \I!V
4.6) /(;dpdzpa[a 6p 5 6z] Z/d p— Z/

VU € HI(Q),
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where dr = 7,dp + 7,dz and T = 7,p + 7.2 is the counterclockwise unit tangent vector.

We can also interpret the boundary condition for contact impedance as the limit of a shell
whose thickness h tends to zero at the same time as the conductivity tends to zero in such a
way that /o — Z.. (Note that this limit is dimensionally correct.)

The opposite limit where ¢ — oo as h — 0 in such a way that ch — Cj provides
a convenient representation for fluid-filled fractures: there is no discontinuity in potential
crossing the fracture but non-zero current can pass along the inside of the fracture. With
contact impedance, no current can travel parallel to the electrode surface but there is a
potential drop across the layer. We shall return to fracture modelling in Chapter 5.

For example, in an axisymmetric configuration, consider a rectangular element [p1, p2] %
[21, z2] in the pz plane, with bilinear approximation for ¢ and ¥ so that

@.7 ApAz ®(p,2) = ¥y (p2 — p)(z2 = 2) + P2 (p— p1)(22 — 2) +
®3(p — p1)(z — 21) + Ba(p2 — )z — 21),

and similarly for ¥. Wewrite h = Ap = ps — p1. P = (p1 + p2)/2a0d Az = 23 — 2y
and examine the contribution of this element to the global stiffness matrix as h — 0 and
h/oc — Z.. We have that

(4.8)

G B oY 9% 0¥ 0%
J v [ [ (2502%)

e
= (¥, — ¥y w3—¢4)%‘§ G ;) (&'};ﬁ:iﬁ) N
oo w77 ,05) (00)
49) s (W= U s — W) %%Z G ;) (22 - i;)

as Ap — 0. (For afracture, it is the second matrix that would contribute to the stiffness matrix.)
This result is equivalent to supposing a contact impedance on p = p, with @; = @3 =V
and ¥, = ¥4 = 0, for we have

4.10)

Y(@—-V) pp [* _ p2Az 2 1\ [®,—-V
/ Z. _Zc/z, (@ - V) =7 (V2 W) () o) (g5-v)

P=p2
[z1 .22]
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The same analogy holds true for arbitrary three dimensional geometries and is one of the
advantages of the ¢ formulation. In an axi-symmetric environment, an alternative choice of
‘scalar potential’ is the azimuthal component of magnetic field Hg. Unlike &, H 4 this does
not extend to a scalar potential in 3D but it does have the advantage of allowing frequency
effects. Assuming axisymmetry and time harmonic excitation e ~*“*, Maxwell’s equations for
TM excitation:

(4.11a) V x E = iwpdHy,
(4.11b) V x (¢Hy) = cE+3,

reduce to the second order scalar equation
B -1 - -
4.12) -V x ;Vx(¢H¢)—iwuH4,=¢-VxJ/a
(here o may be complex-valued). The question is how to generalize the boundary condition

(4.1) on I';. For example, if the electrode lies along a line of constant p, then differentiating
equation (4.1) gives

t aEz - Ez
4.13) ' o & - Z.
and then substituting
10
4.14 = -—(pH
leads to
Ez _ 2 ¢ .
4.15) Z = 522 + zwuaH¢

This boundary condition is not appropriate for modelling contact impedance. We shall demon-
strate that the appropriate boundary condition is

E, 8%H,

Z. ~ 02

4.16)
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4.3 Contactimpedance modelling with H;

One justification for equation (4.16) follows from a-spectral analysis of the fields on the
electrode. We suppose that o is constant in  and write the fields in terms of their spectral
ek:2 components, as in Section 1.4.8. We write o for the conductivity inside the impedance
layer. We can suppose that inside the impedance layer, a < p < b

H{(kca) ~
_ (1) _Z70 ¢ tk,z
4.17 Hy = A[H{ (kep) ———Jo(kca) J1(kep)le
H{(k.a) 2k

_ @ _ Hg (% ik 2 Ke
(4.18) E, = A[Hy" (kcp) Jolk.a) Jo(kep)le .
where k2 = iwpo, — kZ, and in the formation b < p
4.19) Hy = [BH(® (kp) + CJy(kp))e™*+

0 Lk

(4.20) E. = [BH{" (kcp) + CJo(kp)]e’k";

where k? = iwpo — k2. The presence of the Jo 1 term indicates the possibility of sources
are discontinuities in o exterior to the p = b. The value for C will not be known a priori, we
must find a boundary condition which is valid for arbitrary C.

We want to derive a formula for E,/Hys as h — 0, where b = a + hand 6. = h/Z.. E:
and H 4 are continuous at p = b so regardless of the values of A, B and C
E, k.2 HE(k(a+ b)) = Tt Jolke(a + b))

He b HO(k.(a+h)) - 2=l (ke(a+ b))

(4.21)

for small h equals

E, k.2 HY(k(a+h) = Tress Jo(ke(a + b))
H, h H® (k.a) - Hokea) 7. (k.a)

Jo(kca)

(4.22)

which by I’Hopital’s rule becomes

1 Ho(kca)
4.23) Ez- — 127 H{ '(kca) — J:(kc:) Ji(kca) — k7 = kg
H, “TOHO (kea) — Helket) ], (k.a) ¢ 2

which is not independent of k. Similarly, one can show that there is no expression of the form
(E, — Eq)/(Hg — Hy) which is independent of k.. Thus there is no first order boundary
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condition on H 4 which will accurately model contact impedance. Equation (4.23) is, however,
clearly just the spectral representation of (4.16) and so, regardless of the value of k,, equation
(4.16) correctly represents the physics of contact impedance on the electrode.

An alternative justification for equation (4.16) follows from a finite element formulation in the
appropriate limit. If we take as fundamental unknown u = 27pH 4 then Maxwell’s equations
on §2 (with perfectly conducting boundaries) reduce to

1 (avau_’_@a_u
8pdp 08z 82

(4.24) / dpdz —
(13

) - /dpdz MEw=0 W € HY(Q).
op a p

Note the variable of integration is dpdz not p dpdz. Physically, this is because the equations
for Hy correspond to integration about voltage loops in the pz plane, whereas the equations
for @ correspond to integrals of current within cylindrical blocks.

We again consider a bilinear approximation of both u and v in the rectangle [p;, pa] x [21, 23).
In the limit as A — 0 it is clear that the w term will vanish, so we only need to consider the
derivative terms. We obtain the local stiffness matrix

Az (2 1 -
@9 (o o (1) (270

Ap 2 1 Uqg — Uy
(va—v1 vs—vs) poAz (1 2) (ua —u

which is a bit tricky in the limit because the denominator in the first term goes to zero, implying
that we must also impose uz = u; + O(h) and vy = v; + O(h), etc. (We have also been a
little sloppy in the integration of 1/p but this will certainly be ok as b — 0.)

The condition that uy — u;, etc, follows physically from equation (4.14) that if £, — 0
then du/dp — 0, i.e, if there is no vertical component of current then the current flux through
a loop of radius p; must be the same as through a loop of radius a.

We arrive at a stiffness matrix contribution of

Z. (2 1 -
(4.26) (v —v1 v3—-1)) 6pAz (1 2) (:: - :2)

which we write as a boundary contribution to the stiffness matrix by substituting us = uj,
etc:

Z 2 1 -
4.27) (va—v1 vy —v)) FAcz (1 2) (Z: - Z:)
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which simplifies to
ZC 1 -1 U
(4.28) (U] 114) %Z_z_ (_1 1 ) (u4) .

For an axisymmetric problem involving curved electrodes with tangent vector 7 and normal
vector & = ¢ X +, one can similarly show that contact impedance reduces to the differential
equation

’H
4.29) E, +2. 208 _g
or?
where we are using a non-standard meaning for the double derivative in polar coordinates:
32H¢ 7] i} 1 3(pH¢) 8H¢
4. — = T+ T - 2 .
(4.30) or? [7"6p+7 6z] (Tpp Op tng; )

Equation (4.29) is valid for arbitrary frequencies and does not require that o be constant in
front of the electrode.

The differential system for H 4 in  is thus equation (4.12) with equation (4.29) on the I'; and
H4 = /(27p) on the insulating sections. We assume that we know the currents I; from each
electrode in which case we also know a priori the currents T along the insulating sections of
99. We shall assume for notational convenience that §2 is a rectangular domain with p > a
and the electrodes subject to contact impedance lie along p = a.

We multiply equation (4.12) by a test function ph¢ and integrate (with respect to dpdz) over
Q to give the weak system

9 LopHy | 0 L3pHy) oy )
(“30) /;]dpdzph4, (Bpap dp +Bzap 0z + p PHo

Vhs suchthat phg € H'(Q)

with the condition that hg = 0 on 99 — |J; T'; (where H satisfies a Dirichlet constraint).
Integrating by parts gives

w | dgf»z (a(ph¢> 8(pHs) , Blphs) a(pH¢)) [ gty
0 o

Op dp 8z 0z
/ arle (”Pl BeHy) +vzaH¢ =0
an o p Op 0z

where & = v,p+ v, = 7, p — 7,2. We recognize the boundary integral as

(433) dfp—l“’if-vX($H¢)= / drphsEr = / phoE,
an o a0 7 JL
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because hg4 is zero off the electrodes. Substituting equation (4.29) and writing u = 27pH ¢
and v = 2mphy gives

; 2
4.34) /dpszu-Vv—/ dpdzﬂuv+>:/ dTUéQ—
a 9P Q p U,

p 012
which we recognize as equation (4.24) with additional boundary terms. These boundary terms
can be written in a symmetric fashion by observing that for p = a

Z. 8%u Z. 8%u Z. 8u v
(435) ‘/I:i dT’l)?W = —‘/I:i dz‘l)?-az—2 = Al dz—p—ga

because v = 0 on JT;. (If two T; were touching, the integration by parts would be trickier
but the resulting weak formulation is still correct.)

To complete the chain of reasoning, we shall now suppose u and v to be linear on [z, 2] C T
with u(z) = u4(22 — z) + u1(z — z1), etc., and examine the contribution of the boundary
term to the stiffness matrix. We have

22 - —
@36) / d Z. Ou Ov A Zeug— Uy Vg4 — v

L — e e T —

p 020z z p Az Az
which is equation (4.28).

To conclude, contact impedance Z. on vertical electrodes T'; gives rise to the coercive system

dpdz [Oudv Oudv
437 /{; o [Eza—p*i'a—za]

| dpasi® 2 dudn _ 1
/ndpdzpuv%—;fr'dzpazaz_o Vv € HY(R)

withu =%and v =0o0n 8Q — |J; I';.

4.4 \Verification

We have coded the potential formulation in 3D (ALAT3D) and the axisymmetric formulation
for time harmonic excitation (CWNLAT). We shall compare the two codes in their domain of
intersection, namely axisymmetric domains with zero frequency excitation.
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An obvious test case for the contact impedance modelling is to ensure that the code can
reproduce the correct answer for the cylindrically symmetric case of equations (4.17) and
(4.19) for the case of an infinitely long electrode (k, =-0). For this case, however, the contact
impedance may only be a small perturbation and stronger tests are desirable. In general,
contact impedance effects will be larger for small electrodes (large k) and low frequencies w
131, I5).

We shall solve for the fields produced by arrays of finite length electrodes using the ®
formulation of equations (4.4) and (4.5) and the H4 formulation of equation (4.37). Ina
numerical Galerkin formulation, the two solutions will necessarily provide upper and lower
bounds for the true answer (which is not obtainable by analytic means).

For the verification results presented here we shall consider an array of electrodes of different
sizes and impedances. The array is symmetric about z = 0 and {2 is the domain @ < p <
R,0 < z < L for suitable a, R and L. Here a represents the tool radius and R and L suitable
boundaries at “infinity” where the field distribution can be assumed known (e.g., zero). The
first tool we consider has radius 1.8 and electrodes

# |z 2 Impedance

E1[00] 10 | Z.=3x107°
E2{20| 30 | Z.=3x1072
E3 |40 |600 | Z.=3x107°

with a current return (i.e., zero potential) at L = 1000 (all dimensions are in inches). Sections
of the tool which are not electrodes are perfect insulators. We place the tool in 4" radius
borehole filled with a 0.1Qm mud. Assuming that each electrode in turn fires unit current then
measuring the potentials at each electrode gives rise to a 3 x 3 transfer impedance matrix, Z.

For an extreme tese case, we can suppose a ‘no-flow’ boundary condition at R = 4 (i.e., that

the formation is infinitely resistive). The matrix from the @ formulation

92.96011 97.18669 92.56337
92.56338 92.56338 92.56337

97.42648 92.96011 92.56337
(4.38) Z =

agrees closely with the matrix from the H 4 formulation

(4.39) 92.96208 97.18991 92.56518 ] .

97.42926 92.96208 92.56518
Z =
92.56518 92.56518 92.56518
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Alternatively, rather than using equation (4.5), we can suppose that each of the electrodes is
in turn excited to unit voltage and solve equation (4.4) for ¢ and compute the total currents
emitted, which gives the matrix

4.40) Y =1-0.0178 0.2178 -0.2001

0.2071 —0.0178 -0.1893
—0.1893 —0.2001 0.4002

which is in excellent agreement to the inverse of Z, namely

0.2070 —0.0178 —0.1893
(441) Z7'=1{-0.0178 02178 —0.2000| .
—0.1893 —-0.2000 0.4001
For a second tool configuration, we subdivide the long electrode E3 into three pieces,

E3, E4, E5, with the centre section E4 having a very low contact impedance and we also
lower the contact impedance of E;.

# | z 29 Impedance
El1 |00} 10 | Z,=1x 10"
E2[20]| 30 | Z.=3x10"2
E3 140 50 | Z.=3x 103
E4|60| 70 | Z,=1x 1078
E5)|80]|600| 2, =3x10"3

The ALAT3D and CWNLAT input files for both configurations are given in Appendix 4.A.

Having a small Z. allows us to test for any degradation in convergence for ®, because as is
clear from equations (4.4) and (4.6) there may be overflow problems for small enough Z..
The stiffness matrix for Hy does not become singular as Z. — 0, however.

Again supposing the formation to be infinitely resistive we get

93.67669 93.34482 93.13902 92.94752 92.56518
93.34481 97.57388 93.14523 92.94783 92.56518
4.42) Z =193.13902 93.14524 93.67528 92.95377 92.56518
92.94752 92.94783 92.95377 93.06466 92.56518
92.56518 92.56518 92.56518 92.56518 92.56518
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from the H4 formulation and

93.67136
93.34255
93.13659
92.94512
92.56338

(4.43) Z =

93.34255
97.57022
93.14283
92.94543
92.56338

93.13659

93.14283.

93.67185
92.95140
92.56338

from the ® formulation using equation (4.4).

92.94512
92.94543
92.95140
93.06246
92.56337

129

92.56338
92.56338
92.56338
92.56338
92.56338

With voltage excitation instead of current excitation and solving for @ we obtained

1.4529 —0.1228 —0.4548
—0.1228 0.2270 —0.0374
(4.44) Y = | -0.4548 —0.0374 1.4084
—0.6637 —0.0508 —0.7185
-0.2116 —0.0161 —0.1977
which again compares well to the inverse of Z, namely
1.4529 —0.1228 —0.4548
—0.1228 0.2270 —0.0374
(4.45) Z71=]-0.4548 —0.0374 1.4084
—~0.6637 —0.0508 —0.7185
—~0.2116 -—0.0160 —0.1977

—0.6637
—0.0508
—0.7185
3.1088
—1.6758

—0.6637
—0.0508
—0.7185
3.1088
—1.6758

—0.2116
—0.0161
—0.1977
—1.6759
2.1120

—0.2116
—0.0160
—0.1977
—1.6759
2.1120

For a “practical’ tool configuration, denoted AZIS5, we shall suppose that no current flows from
E1 and E4, that E3 and E5 are held to the same potential (unknown a priori) and that £'1
and E4 are both held to unit potential. This gives 5 equations in 5 unknowns leading to a well
defined system. We define the apparent resistance to be Vg1/Ip2. This can be computed in

terms of the Z matrix as

(4.46) Vi _

Z12
Za3

Z33 — Zs3

Z13
Z43

Z33 — Zs3

Z1s
Zas

Z3s — Zss

I

or else in terms of the Y matrix as

Vi

(4.47) 2=

I

Yi2
Y22
Ya2

Zsz — 213
Z33 — Zs3

Y114+ Y14

Ya1 + Yas

Zas — 215
Z3s — Zss

Yis+ Yis
0 Yaz + Yas
Yaz + Yas

Y12
Yo

Yi3+Yis
Yz + Yas
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1.2
|_|_.......§.. . ; e d i

Rt/Ra
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Ra/Rm

Figure 4.1: Borehole correction chart for the AZI5 configuration. R, denotes the apparent resis-
tivity, R, the mud resistivity and R, the true formation resistivity.

For the previous example, we obtain that in an infinitely resistive formation, I = 0 and so
the apparent resistivity is also infinite. For more general formations, we will obtain a (finite
valued) apparent resistivity by scaling the apparent resistance V; /I by some constant (in this
case K = 0.171m) so that in a 10Qm formation (with conductive borehole) the apparent
resistivity is also 10 Qm.

Using the two different formulations in Hy and @, Figure 4.1 shows the apparent resistivity,
R,, computed numerically as a function of the formation resistivity, R;. For clarity, we have
computed the ®-result on a coarser mesh with a uniform zone in a neighbourhood of the
borehole surrounded by a non-uniform triangulation in the remainder of the formation. It can
be seen that for most contrasts, the mesh is sufficiently fine and excellent agreement is obtained.
When there is no contrast between R; and R,,,, then the zone of uniform triangulation needs to
be extended further into the formation whereas when the contrast is extremely high the mesh
near the borehole wall needs refining.

As discussed in Chapter 2, the drilling process can allow mud to enter the formation and
change the value of R;. A schematic diagram is given in Figure 4.2. We assume that the
shoulder beds are impermeable and not invaded by the mud fluid and that the bed of interest
has been subject to a piston-like invasion, so that its resistivity takes on a step profile with
value R, for p less than some radius and R; in the remainder of the bed. The effect of
changing radius of invasion is shown in Figure 4.3 where we have R; = 1000, R,, = 0.1,
Rz, = 10. We also compare the result for the H 4 and ® formulations on two different meshes
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Figure 4.2: Schematic interpretation of an invaded bed assuming a step profile of invasion. R, is
the bed resistivity, R, is the resistivity of the invaded zone, Ry, is the mud resistivity and R the

resistivity of the shoulder beds.

to show the effect of mesh diameter.

To test the 3D code in non-axisymmetric situations, we built a finite element code to solve for
z-invariant potential fields in circular wedges with constant conductivity. Assuming a product

mesh {pl7< e yPn} x {¢ly-”
(4.48)
where
(4.49)
P — Pi-1 o
) Api_l pE [Pupt—l])
Bi(p) = %ﬁ p € lpit+1, pil,
0 elsewhere,

and Ap; = pit1 — pi, Adj = ¢j41 — 9.

, &m }, we chose tensor product basis functions

Bij(p,¢) = Bl(p)B{(4)

3 —¢j-1 _ _
_A_(bjT ¢ €< [¢;—1,¢3],
SN A
Bj (QS) - ﬁ’.z¢—¢i ¢ c [¢jv ¢j+l}x
j
0 elsewhere,

The global stiffness matrix can be built as a tensor product of the one dimensional stiffness

and mass matrices in ¢ and p.
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10'

10°

Ra

. OOOfse-ﬂ‘\eSh R

10
10 10 10

Invasion Radius

Figure 4.3: Invasion modslling for the AZI5 configuration. R, = 1000Qm, R,, = 102m and
R, = 0.1Qm. All linear dimensions are in inches. R, denotes the apparent resistivity, R, the
mud resistivity, R, is the resistivity of the invaded zone and R, the true formation resistivity.

The components of the local stiffness and mass matrices in ¢ are given by

4.50)

Pit1 P 14 . .
/ 3B aB pdp — Pi+1 + pi
o % 36 p 3app 2Api
aB!f BB + 9B 0B i+1 + pi
§= L pdp;  — / —Hlpdp = BHZH
9p Op ., Op Op 2Ap;
/p"“ 6B”| dB! 41 g, - Pitl + pi
. dp dp p= 2Ap;
4.51)
it dp P Pit1 - 3pit1
Bpr e &P — M+l 1 1+ i+
/,,,. hop A % +f 2Ap.
dp pit1 dp Pi+1Pi \  Pit1 | Pi+ pit1
M/ = /BfB’.’——; — / BBl — =- lo, + -
3 i) o +1 P 2Ap? € Pi 2Ap;
i dp P; Pi+1 | pi+1 — 3pi
B!, |B =-—slo +
'/p‘_ +1 :+1 Ap,? g i 2Ap;

and the components of the local stiffness and mass matrices in p are given by
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4.52)
41 9B¢ OBY
¢ /¢ % P VRS VIN?
aB¢ 8B bit1 aB¢ aB
A¢= —L d¢; — </ i+l g =-~1/A¢;
4" 1
k'/ + 6B,+1 aB'_H ¢ = 1/Ad

( P+
/ B!Bfd¢ = D¢:/3
¢A

:ﬁ.‘+1
(4.53) M= /Bf’deqS; — / BfBf  dé = Adi/6,
¢.

Sit1 o oo

because
4.54)
&B* 8B? dB? B¢ dpdé
Bij - VB,, = '——” *B? pdpd L BfB?
[ BB = [Ty BB pdras s [ ;
- ¢ ¢
= AL M, +M:;,A”
and
(4.55) ]{ BijBpg pdé = p1 M 61161
=P

which can be substituted into equation (4.4).

Given the setup of Figure 4.4, We examine the potential along the tool surface for Z. = 0 and
Z. = 3 x 10~2Qm? and for R, = 0 and R; = co. When R, = 0 the formation is perfectly
conducting and we suppose that I; = 1 and I; = 0 with the current returning to the borehole
wall. When R; = oo, we suppose that I; = —] = 1. In the former case, the voltage along
the mandrel is always positive and we present the data on a logarithmic scale to demonstrate
the agreement over a large dynamic range, in the latter case the voltage is skew symmetric
and we present the data on a linear scale.
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Borehole
wall 0.1 Qm

“./ Electrodes

Figure 4.4: Nonaxisymmetric test configuration. The electrodes lie on the surface of the tool
mandrel. Here, we suppose the borehole wall is either a perfect insulator, or a perfect conductor.

Comparing Figure 4.5 to Figure 4.6 we see that the presence of contact impedance does not
significantly affect excellent agreement between the codes. We can also see that the greatest
effect of the contact impedance is the change in value of V; which increases by an order of
magnitude. The potential distribution along the mandrel is actually rather independent of Z.,
save that the electrodes themselves become equipotentials when Z, = 0. Also note that it is
only the current carrying electrode that demonstrates a dependence on Z,, even though the
same boundary condition is being used for both V; and V>. In all cases, we see that the greatest
discrepancy between the two codes occurs near the edge of the electrodes, which is due to the
different meshing strategies.

45 Conclusions

We have developed a formulation for contact impedance that is valid for non-zero frequencies
as well as at DC. When cast in terms of H 4, the boundary condition requires a second order
tangential derivative in H4. The validity of this formulation was confirmed by showing that
finite element and spectral methods gave rise to the same expression. When the boundary term
is written as a weak condition it adds to the coercivity of the stiffness matrix in H 4. Moreover,
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10

180.0 150.0 120.0 90.0 60.0 30.0 0

180.0  150.0 120.0 90.0 60.0 30.0 0
Phi

Figure 4.5: Surface potential V = V (¢) as a function of the azimuthal angle ¢ for I, = 1 and
I, = 0 and R; = 0. Tool radius = 1.8". Borehole radius = 3.0”. Z. = 0Qm?. Error is
relative to the 2D data.

as the contact impedance tends to zero, there is no singularity in the stiffness matrix, unlike the
case for the DC formulation in terms of ®. Lastly, we have demonstrated excellent agreement
between 2D and 3D finite element codes for configurations involving large impedance drops
over current carrying electrodes.
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10"

10°

180.0  150.0 120.0 90.0 60.0 30.0 0
Phi

180.0  150.0 120.0 90.0 60.0 30.0 0
Phi

Figure 4.6: Surface potential V = V (¢) as a function of the azimuthal angle ¢ for I; = 1 and
I; = 0and R; = 0. Tool radius = 1.8". Borehols radius = 3.0". Z. = 3 x 10~2Qm?. 3D
results shown solid, 2D results dashed. Error is relative to the 2D data.
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10.0

5.0

Zc=0
e J

0.0

50 Vi=6.67 =10
: V2=-6.67 12=-10
-10.0+
180.0 150.0 120.0 90.0 60.0 30.0 0

Phi

180.0  150.0 120.0 90.0 60.0 30.0 0
Phi

Figure 4.7: Surface potential V = V (¢) as a function of the azimuthal angle ¢ for I = = 1and
I, = —1 and R; = co. Tool radius = 1.8". Borehole radius =3.0". Z. = 0Qm?. 3D results
shown solid, 2D results dashed.
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10.0
5.0
[Zc = 3.e-2 |
|
0.0
50 vVi=80.9 =10
e V2=-809 12=-10
-10.0
180.0 150.0 120.0 90.0 60.0 30.0 0

Phi

180.0 150.0 120.0 90.0 60.0 30.0 0
Phi

Figure 4.8; Surface potential V = V (¢) as a function of the azimuthal angle ¢ for I, = 1 and
I = —1 and Ry = oo. Tool radius = 1.8". Borehole radius = 3.0". Z, = 3 x 10~2Qm?2. 3D
results shown solid, 2D results dashed.
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Appendix4.A CWNLAT and ALAT3D sample input files

CWNLAT input file for 3-electrode configuration and infinite resistivity formation. Cur-
rent sources, H4 formulation. Result given in equation (4.39)

#CWNLAT input for azimuthal test #1.

#3 electrodes with non-zero contact impedance
Quiet

5

###t
# Tool description - 3 electrodes on sonde, symmetry across Z=0
###

electrodes

11.8 0.0 1.8 1.0
21.8 2.0 1.8 3.0
31.8 4.0 1.8 60.0
4 1.8 1000 3.0 1000
5§ 3.0 1000 4.0 1000

known current - CWNLAT will loop over 3 missing sectioms
(0.,0.) 1.8 0.00 1000 0
(0.,0.) 4.0 © 4.0 1000

scont

###

# Formation description

###

blocks of constant resistivity [rmin,zmin,rmax, Zmax]
#borehole

1 1.8 0. 4.0 1000.

#rock is assumed infinitely resistive

list of resistivities [RES, MU, EPS]



140 CHAPTER 4. CONTACT IMPEDANCE MODELLING

1 0.1 1. 1.
2 100 1. 1.

220

# Mesh

#it#

Z

#ZSONDE -- tool coordinates DO need to be here!
00.10.50.91.01.52.02.12.52.93.03.54.04.1

4.5 5.05.56.06.57.07.58.08.59.010.0 11.0 15.0 20 25
30 35 40 44 48 52 56 58 59 59.9

60 61 62 66 70 75 80 90 100 150 200 300 400 550 750 900 950
990 999 1000

RHO values
1.8 1.82 1.84 1.86 1.92 1.96 2.1 2.2 2.3 2.4 2.6 2.8 3.0
3.3 3.6 3.8 4.0

Mesh -- i.e., refine the mesh by this factor
6

#i#

# Miscellaneous

#itd

potential reference

3.0 1000.

ueps (convergence criterion for conjugate gradient)
1.e-8

output

0 ti.cwn_dat

ALAT3D input file for 3-electrode configuration and infinitely resistive formation. Cur-
rent sources excitation. Result given in equation (4.38)

#ALAT3D input file for 3 electrode tool

MODULEF meshes and ALAT3D output files
t1.mod
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t1.sd
t1.dip_dat

LIST OF MATERIALS (#, RES, INVRES each on a separate line)
# Region ONE is ALWAYS the borehole fluid

10.10.1

2 100. 100.

BOREHOLETOOL (Bx,By,Tool,Ecc). Restricions: Ecc=0 and Bx = By
4.0 4.0 1.8

DOMAINS (x1,z1,x2,z2) - borehole value takes priority
2 -5000 0 5000 5000

INVASION (either i1 or 2 radii with an optional 3rd parameter)
10. 10.

Z -- tool coordinates are NOT added to this list.

#ZSONDE -- tool coordinates DO need to be here!
00.10.50.91.01.52.02.12.52.93.03.54.04.1

4.6 5.05.566.06.57.07.5

8.0 8.5 9.0 10.0 11.0 15.0 20 25 30 35 40 44 48 52 56 58 59 59.9
60 61 62 66 70 75 80 90 100 150 200 300 400 550 750 900 950

890 999 1000

X/RHO values —— there are no elements beyond RHO=4.0
1.8 1.82 1.84 1.86 1.92 1.96 2.1 2.2 2.3 2.4 2.6 2.8 3.0
3.3 3.6 3.8 4.0

ELECTRODES (REF, THETA1, R1, Z1, THETA2, R2, 22)

1 180 1.8 0 0 1.8 1.0
2 180 1.8 2.0 0 1.8 3.0
3 180 1.8 4.0 0 1.8 60.

NULL POTENTIAL (cannot lie outside formation...)
180 1.8 1000 04 1000

Azimuthal mesh -- if only one value given then its axisymmetric
0
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Surface Impedances on current electrodes
1 3.e-2
2 3.e-2
3 3.e-3

Precision -- double precision required on the VAX

2

REFINE -- refines only the REO/Z mesh, not in THETA.
4

GAUSS/CG

0 1.E-10

Window: Cuts beyond this radius are NOT added to the mesh
50.0

qzone - exterior to 50000 use resistivity 0.1
#Inside qzone=4.0 use a quasi-uniform mesh
4.0 50000 0.1

For this problem, the ALAT3D code converged in 75 iterations per excitation using point
ILU preconditioning. If we solved the same problem but assuming a 5 degree wedge instead
of azimuthal symmetry, then the number of iterations did not change provided we chose
lexicographic ordering with the ¢ variables first. If we numbered the p, z plane first, the
number of iterations for this problem was greater than 10,000. For coarse meshes, the
convergence rate for the azimuthally symmetric problem was essentially the same as for the
5-degree wedge regardless of which lexicographic ordering was chosen, however. It is only
for fairly fine meshes that node ordering dominates the iteration count. Note that listing the
# nodes first also minimizes the bandwidth but as we are using sparse storage schemes this is
not really pertinent.

For the azimuthally symmetric problem, if the contact impedance is set to 108 on each
electrode, the iteration count did not change, indicating that the ILU preconditioning was able
to handle contrasts of 10° on electrode surfaces. The transfer impedance matrix was

93.0388 92.7111 92.4447
(4.56) Z = 1927111 92.8175 93.4447
92.4447 93.4447 93.4447

confirming that contact impedance has the greatest effect on the smallest electrodes.
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CWNLAT input file for 5-electrode configuration and infinite resistivity formation. Cur-
rent sources, H; formulation. Result given in equation (4.42)

#CWNLAT input for azimuthal test #2.

#5 electrodes with non-zero contact impedance
Quiet

5

#H#
# Tool description - 5 electrodes on sonde, symmetry across 2=0
###

electrodes

11.8 0.0 1.8 i.0
21.8 2.0 1.8 3.0
31.8 4.0 1.8 5.0
4 1.8 6.0 1.8 7.0
£1.8 8.0 1.8 60.0
6 1.8 1000 3.0 1000
7 3.0 1000 4.0 1000

known current - CWNLAT will loop over missing sections
(0.,0.) 1.8 0.00 1000 0

(0.,0.) 4.0 © 4.0 1000
scont

(1.e-5,0.) 1

(3.e-2,0.) 2

(3.e-3,0.) 3

(1.e-5,0.) 4

(3.e-3,0.) 5

#it#

# Formation description

###

blocks of constant resistivity [rmin,zmin,rmax,zmax]
#borehole

1 1.8 0. 4.0 1000.

#rock is assumed infinitely resistive
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list of resistivities [RES, MU, EPS]
i 0.1 1. 1.
2 100 1. 1.

###

# Mesh

#i4

YA

#ZSONDE -- tool coordinates DO need to be here!
00.10.50.91.01.52.02.12.562.93.03.54.04.1

4.54.95.05.15.55.9
6.06.16.56.97.07.17.57.9
8.0 8.1 8.5 9.0 10.0 11.0 15.0 20 25

30 35 40 44 48 52 56 58 59 59.9
60 61 62 66 70 75 80 90 100 150 200 300 400 550 750 900 950
890 999 1000

RHO values
1.8 1.82 1.84 1.86 1.92 1.96 2.1 2.2 2.3 2.4 2.6 2.8 3.0
3.3 3.6 3.8 4.0 '

Mesh -- i.e., refine the mesh by this factor
6

###

# Miscellaneous

#it#

potential reference

3.0 1000.

ueps (convergence criterion for conjugate gradient)
1.e-9

output
0 t2.cwn_dat
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ALATS3D input file for 5-electrode configuration and infinitely resistive formation. Cur-
rent source excitation, & formulation.

#ALAT3D input file for 5 electrode tool

MODULEF meshes and ALAT3D output
t2.mod

t2.sd

t2.dip_dat

LIST OF MATERIALS (#, RES, INVRES each on a separate line)
# Region ONE is ALWAYS the borehole fluid

10.10.1

2 100. 100.

BOREHOLETOOL (Bx,By,Tool,Ecc). Restricions: Ecc=0 and Bx = By
4.0 4.0 1.8

DOMAINS (x1,z1,x2,2z2) - borehole value takes priority
2 -5000 0 5000 5000

INVASION (either 1 or 2 radii with an optional 3rd parameter)
10. 10.

Z —- tool coordinates are NOT added to this list.

#ZSONDE -- tool coordinates DO need to be here!
00.10.50.91.01.52.02.12.52.93.03.54.04.1
454.95.065.15.55.96.06.16.56.97.07.17.57.9

8.0 8.1 8.5 9.0 10.0 11.0 15.0 20 25 30 35 40 44 48 52 56 58 59
59.9 60 61 62 66 70 75 80 90 100 150 200 300 400 550 750 900
950 990 999 1000

X/RHO values -- there are no elements beyond RHO=4.0
1.8 1.82 1.84 1.86 1.92 1.96 2.1 2.2 2.3 2.4 2.6 2.8 3.0
3.3 3.6 3.8 4.0

ELECTRODES (REF, THETA1, R1, Zi, THETA2, R2, Z2)

1 180 1.8 0 0 1.8 1.0
2 180 1.8 2.0 0 1.8 3.0
3 180 1.8 4.0 0 1.8 5.0
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4 180 1.8 6.0 0 1.87.0
5 180 1.8 8.0 0 1.8 60.

RULL POTENTIAL (cannot lie outside formation...)
180 1.8 1000 04 1000 '

Azimuthal mesh -- if only one value given then its axisymmetric
0

Surface Impedances
#current electrodes
1 1.e-5

2 3.e-2

3 3.e-3

4 1.e-5

5 3.e-3

Precision -- double precision required on the VAX

2

REFINE -- refines only the RHO/Z mesh, not in THETA.
4

GAUSS/CG

0 1.E-10

Window: Cuts beyond this radius are NOT added to the mesh
50.0

qzone - exterior to 50000 use resistivity 0.1
#Inside qzone=4.0 use a quasi-uniform mesh
4.0 50000 0.1

In fact, the above input files can be improved by noting that two of the electrodes do not emit
current. They can be replaced by the keyword “COURT-CIRCUIT” or “CONNECTIONS” in
ALAT3D. (ALAT3D only looks at the first letter of each keyword!) Also the upper E'3 and
E5 electrodes are always held at the same potential so we can give them the same reference
number. The resulting computation is 60% faster.
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ALAT3D input file for 5-electrode configuration and infinitely resistive formation using
‘connections.” Current source excitation, ¢ formulation.

#ALAT3D input file for 5 electrode tool (+CONNECT)

MODULEF meshes and ALAT3D output
t3.mod

t3.sd

t3.dip_dat

LIST OF MATERIALS (#, RES, INVRES each on a separate line)
# Region ONE is ALWAYS the borehole fluid

10.10.1

2 100. 100.

BOREHOLETOOL (Bx,By,Tool,Ecc). Restricions: Ecc=0 and Bx = By
4.0 4.0 1.8

DOMAINS (x1,z1,x2,22) - borehole value takes priority
2 -5000 0 5000 5000

INVASION (either 1 or 2 radii with an optional 3rd parameter)
10. 10.

Z —-- tool coordinates are NOT added to this list.

#ZSONDE -- tool coordinates DO need to be here!
00.10.50.91.01.52.02.12.52.93.03.54.04.1
4.54.95.05.15.55.96.06.16.56.97.07.17.67.9

8.0 8.1 8.5 9.0 10.0 11.0 15.0 20 25 30 35 40 44 48 52 56 58 59
59.9 60 61 62 66 70 75 80 90 100 150 200 300 400 550 750 900
950 990 999 1000

X/RHO values
1.8 1.82 1.84 1.86 1.92 1.96 2.1 2.2 2.3 2.4 2.6 2.8 3.0
3.3 3.6 3.8 4.0

ELECTRODES (REF, THETA1, R1, Z1, THETA2, R2, Z2)
1 180 i.8 2.0 0 1.8 3.0
2 180 1. 4.0 0 1.85.0

1. 8.0

8
2 180 8 0 1.8 60.
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Connect -~ i.e., set the net electrode current to zero.
3 180 1.8 0 0 1.81.0
4 180 1.8 6.0 0 1.87.0

NULL POTENTIAL
180 1.8 1000 O 1000 1000

Azimuthal mesh
0

Surface Impedances
4 1.e5

1 3.
2 3.e-3
31.

Precision -- double precision recommended on the VAX
2

REFINE -- refines only the RHO/Z mesh, not in THETA.
2

GAUSS/CG

0 1.E-10

Window: Cuts beyond this radius are NOT added to the mesh
50.0

qzone — exterior to 50000 use resistivity 0.1
50.0 50000 0.1

The resulting transfer impedance matrix will necessary have ‘blanks’ in it for the lines cor-
responding to current excitation from the short-circuits. These ‘blanks’ are flagged as"-
99999.99" by ALAT3D. For the above input file, we obtained the transfer impedance matrix

97.26731 92.56338 93.04290  92.74260
92.56338 92.56338 92.56338  92.56338
93.04290 92.56338 —99999.99 —99999.99
92.74260 92.56338 —99999.99 —99999.99

4.57)
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chapters  Hierarchical Formulations and
3D Mesh Discretization

Abstract.

The ALAT?3D finite element code has been developed to solve for resistivity tools
operating at (or near) DC in complicated three-dimensional formations. The basis
functions used are conformal with bed boundaries regardless of the deviation of
the borehole. In particular, ALAT3D is appropriate for solving for modelling TM
resistivity tools in horizontal wells. To avoid mesh distortion at high dip angles,
the basis functions used are a direct sum of R1 elements on a quasi-uniform mesh
of pentahedra combined with additional tetrahedral patches which overlay the bed
boundaries. To construct these patches requires a recursive algorithm to subdivide
pentahedra or hexahedra into tetrahedra in such a way that the tetrahedra are aligned
against the bed boundaries. To ensure continuity of the potential field, the tetrahedral
basis functions are required to be zero on the boundary of each patch. The resulting
formulation is akin to that of a domain decomposition solver with two domains:
a uniform mesh of pentahedra and the tetrahedral mesh of patches. The solution
method uses approximate solvers on the two subdomains which are combined as
preconditioners to a conjugate gradient algorithm over the whole domains. The
approximate solvers which are currently implemented in ALAT3D are based on
incomplete LU factorization but more sophisticated hierarchical and muitilevel
techniques could also be implemented.

5.1 Introduction

In the previous chapters, we have mostly concentrated on azimuthally symmetric formulations.
For many important applications, however, a full 3D geometry is required. Finite element
solutions to the full 3D vector Maxwell equations such as [3] are very slow. For low frequency
tools, it is often preferable to solve an approximate 3D scalar problem. For TM excitation,
the appropriate formulation is Laplace’s equation V - ¢V® = 0 where @ is the electric
scalar potential satisfying E = —V®. 3D finite element equations for ¢ were presented in
earlier chapters. In this chapter, we shall concentrate on the choice of interpolation spaces and
corresponding meshes.

151



152 CHAPTER 5. HIERARCHICAL DISCRETIZATION

A natural meshing strategy for 3D borehole resistivity problems is to construct a mesh in p, 2
and then rotate that mesh in ¢. If the p, z mesh consists of triangles then the 3D mesh will
consist of triangular prisms, rectangles in p, z become hexahedra in 3D. We refer to such
discretizations as product formulations and they have many advantages normally associated
with finite difference codes such as vectorization, armenability to structured matrix inversion
techniques and a modularity that lends itself to simple coding.

Having decided upon a mesh strategy, one must consider local interpolation strategies. There
are two ‘natural’ formulae: the first is linear in the cylindrical coordinate system and the
second is linear in the Cartesian system. Essentially, the former corresponds to elements
which are conformal with the cylindrical geometry of the tool and borehole, the latter implies
a polygonal approximation. In section 5.2 we compare these two approaches as they apply to
laterolog modelling in heterogeneous media.

The resulting stiffness matrix can be inverted to solve for potential distributions and the
resulting procedure is useful for modelling modern imaging tools such as the azimuthal
resistivity imager, ARI!, provided the tool is centred. In section 5.3 we show how small
changes to the formalism allow for eccentricity and give some examples. Even allowing
for eccentricity, however, the meshes will not, in general, be conformal to bed boundaries
and fractures because these, presumably, will have some deviation relative to the borehole.
Indeed, a major modelling issue for the azimuthal laterolog is to predict the response of the
tool in horizontal or highly deviated wells. In section 5.4 we show how to use hierarchical
techniques to create interpolation spaces whose basis functions can be conformal to arbitrary
bed boundaries without significantly departing from the product structure built in the first
section. This requires an understanding of how to decompose of a mesh of pentahedra into
tetrahedra and the details of this are given in section 5.5.

In section 5.6 we show how the same hierarchical formulation can also be applied to modelling
the response of the resistivity tools crossing inclined fluid-filled fractures.

5.2 Tensor product discretization

We consider finite element solutions to the problem of non-axisymmetric 3D sources in a
2D axisymmetric formation, such as found when solving for the ARI! centred within a non-
deviated borehole. Although the source excitation is complicated, the formation takes on
a simple Cartesian product form where by the ‘product’ of two geometric domains €2; and
2, written ©; x Q3, we mean the set of pairs (z1,z2) with z; in their respective domains.

tMark of Schlumberger
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For a simple example, a solid cylinder is the product of a circular disk (the cross section)
with an interval [2;, 23] (the cylinder axis). Given triangulations 7; on £; there is a natural
triangulation on ) x € with elements Ty x T for T; € 7;. For example, if 77 consists of
triangles covering the p, z plane p > a, and 7; consists of line segments along the ¢ axis, then
T: x T, is a mesh of pentahedral prisms aligned with the axis of symmetry. In this section,
we compare and contrast finite element formulations based on this product mesh and on the
corresponding tensor product of interpolation spaces.

Recall from Chapter 1 that the tensor product of two vector spaces V and W with bases
v1,...,Vn and wy, ... ,wy is the nm dimensional space V ® W with basis vectors v; ® w;
where some appropriate physical definition is given to v; ® w;. V ® W has the mathematical
property that any bilinear function defined on V' x W decomposes as the composition of the
map (v, w) — v ® w followed by a linear map from V ® W to R. We shall see that if V' and
W are approximation spaces based on triangulations 7; on 2, and 7 on {22, respectively,
then V ® W is the natural approximation space for the product space £2; x §2,.

5.2.1 Isoparametric elements

Given an azimuthally symmetric domain meshed with péntahedral elements, it is appropriate
to consider Laplace’s equation in cylindrical coordinates. The potential field & satisfies

_1_368_<I>+1 60 8<I>+ 6064)_
20606  pop lop 0z 0z
where o is the conductivity in the (bounded, polygonal) domain 2 under consideration. We
suppose that o is piecewise constant so that ® € H 1(Q), i.e., @ lies in the space of functions

whose gradient has finite L2 energy. We interpret equation (5.1) in the weak (or distributional)
sense:

0 o 0% 8 0o g 09
2 dbdpdsy | 2.00% 0 0% O 0%l _
(5.2) /ﬂqﬁdpz [3¢p6¢+3pap8p+azap6z] 0,

5.1 0,

for all ¥ € H}(). We suppose that ® is held at zero potential over part of the boundary
80 and write H}(Q) for the space of functions in H'(£2) which vanish on 8<, so that
® and ¥ are both in Hj(2). We suppose the remainder of the domain to be covered in
insulating sections surrounding N electrodes I'y across which current can flow. The boundary
condition on the insulating sections is & /dv = 0 where v is the outward pointing normal.
The boundary condition on I'; is

00  Vi—@

(5.3) i Z.
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where Z. is the electrode contact impedance and V; the applied voltage. We also interpret
these boundary conditions in the weak sense, so that for all ¥ in HJ(Q)

(5.4) / a\Il— —Zf Vk_

We will assume all of the electrodes to lie on a cylindrical mandrel of radius p = @ and to be
composed of ‘square’ patches ¢ € [@k,, Pr,), z € [2k,, 2k,). So that equation (5.4) can also
be written

bk,
5.35) / O'\I’— / ad(b/ dz \I’
bk, T

and for notational convenience we assume Z, to be the same for each electrode. If we apply
integration by parts to equation (5.2) and substitute equation (5.4) we obtain

1 ¥ 6 v oP Y oP
60 [adptor| 50+ BT+ ST

N
~®
=§:/ AL Y € H(Q).
k=1 Ty ZC

Given a triangular mesh in the p, z domain with nodes (p;, 2;),7 = 1,...N and a sequence
of azimuthal nodes ¢;, j = 1,... M, we discretize equation (5.6) by projecting ® (and ¥)
onto the space V;¥ ® V/** generated by basis functions

6.7 Bij($,p,2) = BY($)B (p,2),
where we exclude basis functions which are nonzero on 9. Here

%:%f‘;l ¢ € [¢;-1,9;],
ey

(5.8) Bf(¢)={ Lit1=¢ ¢ € (65, 8541],
$i+1 — ;

0 otherwise.

are the basis functions for the space V,® and the B!* span the space V,/* where Bf*(p, z) are
the piecewise linear functions introduced in Chapter 2: If a triangle A ; has node numbers n,,
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r = 1,2, 3 and coordinates (pr, zr) then within Ay

pz (22 — z3)(p — p3) — (p2 — p3)(z — 23)
G5 B2 = G 2o = o) — (2 = pa) 1 = 29).

pi(y ) (3= 2)p=p1) = (ps—p1)(z = z1)
G0 Brlea)= (23— 21)(p2 — 1) — {p3 — p)(22 — 1)’
(5.9¢) sz (P, ) ( Zz)(f) PZ) - (Pl PZ)(Z - 12)

(21 = 22)(p3 — p2) — (p1 = p2)(23 — 22)
If the Bf span the vector space V;® and the B* span the space V,/* then the B;; span the
space V¥ ® V2. If we write
(5.10) ®(4,p,2)= Y PpgBpy($,p,2) and  ¥($,p,2) = Bij(4,p,2),
Pq
then equation (5.6) takes the form of the discrete system of equations

(5.11) S Aijpe®p =V Vij
Pq
where
(5.12)
o 1 0B,y 8B;; | 9By 3B;; aB,,q aB,,] /quB.,
Am_!dmdw”[ﬂ 56 38 T 9p p | o Z .

and

(5.13) ‘/U _Z/ BzJVk

If we assume the triangular mesh to consist of elements Ay, I = 1,..., Na, then the 3D
domain is composed of (M — 1) N pentahedra. The elements are curved with respect to the
cylindrical coordinate system and are referred to as isoparametric, [31]. We suppose that o
(and Z.) are constant within each pentahedron so that the integrals of equation (5.12) (and
{5.13)) can be evaluated by summing the contributions from individual pentahedra:

(5.14)

Na,M-1
0B,, 0B;; 0By, 0B;; :
d pg U245 pe g E: ¢ pz
/ﬂ d)dpdzap[ 5 Op + 5, 3z ] ._Izl » a'”MqJI A il’
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Na,M-1
B 1
(5.15) / d¢ dpdz "af” aa 411 = ors AY | M2,
¢ I= l.I 1
and
B, B;;
(5.16) / adpdz 2L = ,
[ atsis B2 2 ) g,
where
4 ¢s ¢ o
(5.17) my| = / [ as 28,
¢ ¢ 9B? aB¢
G.18) A4i, =/¢, e

are the local mass and stiffness matrices in ¢ and

(5.19) M|, = / 94z po: g,
8B* 9Bf*  OBE* 9BY
pz| _ P t P 3
620 s |f‘/A,d” i [ G oo ' 0: oz ]

(5.21)

2141
=l = /dzB,’,"B{”:/ dz BY* B*.

27
Arnadd

are the corresponding matrices in pz. Note that we are assuming that those electrodes which
are subject to contact impedance lie on a cylinder with constant p so we do not need a matrix

My,
As the basis functions are only non-zero over local domains, most of the above integrals are
zero. For example if Ay has nodes {n;, ny, n3} then A;ﬂl = 0if {p, i} € {ni1,n2,n3}

and A‘”!I thus constitutes a 3 x 3 local stiffness matrix A?? = Afz, |, forr,s =1,2,3.
We also define the local mass matrix as MfZ = Mf?, |,. Similady M, , Mz,
A, , reduce to 2 x 2 local matrices A%, M9 and M*.
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Explicitly, we find that

(5.22)
vz 1/3 1/6
M* = Az (1/6 1/3> :
(5.23)
- 1 1
¢ —
ek (e
(5.24)
R ﬁ Z9 — 23
AP = — 23 — 21 (z2—23 23— 21 21—22)
4A 2 — 29
P2 — P3
+ps—p1 ) (p2=ps P3—pP1 Pr—p2)|,
Pr— P2
(5.25)
o 1/3 1/6
M? = A¢ (1/6 1/2)
(5.26)

M7~ =(1/3]|(1/3 1/3 1/3),
P \1/3

where A is the area of A, p = (p1+p2+p3)/3, Ab = byy1— ¢, Az = 2141 — 27 and
M#* has been evaluated numerically by assuming one Gauss point at the barycentre of Aj.
Symbolically, the 3D stiffness matrix has been decomposed as M# @ A?* + A% @ M**.

The derivation of equations (5.24) and (5.26) is standard (e.g., {25]) but is repeated here
for the reader’s convenience. As we are dealing with just one triangle, we can write B,
instead of B,’j’r and we see from (5.9) that the B, are actually the composition of two

functions F; ' : Ay — A followed by B, : A - R where A is the ‘standard triangle’
{(2,9):0<2<1-§,0<9< 1},

(5.27) Bi(i, i) =1-2-9, Bu(&,9)=%  Bs(£,9) =14

and Fy : A — Ay is the affine map

(5.28) (’z’) = Fi(#,9) = 23: (5) B.(2,9)-
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F
_» R
Bf

Figure 5.1: Linear functions on Aj are the composition of Fr L with the map B,.

The configuration is shown in Figure 5.1. Fy and B, are P1 affine maps. The B, are also
termed barycentric coordinates and constitute the local basis functions relative to the (Z, §)
coordinates. :

The integrals over A are transformed to integrals over A according to the usual formula
(5.29 APz = / dpd2VB, VB, = / d dy |DF| VB, - VB,
Ar A

where the Jacobian | D Fy | is the determinant of

(5.30) DF] - (pZ -1 pP3— Pl) ,

Z22—21 zZ3—2

and DB = (V By, VB;, VB3)! is obtained from the chain rule

-1 -1 -1
(531)  DB(p,z) = DBDF;' = (1 o) (”2"’1 ”3"’1)

Z9 — Z 23—z
0 1 2 1 3 1

(532) =201 o0 (zs —n p- /73) '
2 0 1 Z1—=22 p2—p
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Noting that D B is constant across A we can remove DB* DB from the integral to obtain
(5.33)
AP = 2ADB‘DB[ pdz dj
A

1 1-y
(534) — 9A DB DB /o dy /0 [p1 + (p2 — 1)z + (p3 — p1)Y)

(5.39) :2ADB‘DB[p_21+P2;P1 +p3;p1],

which is equation (5.24).
Equation (5.26) follows in the same way by first transforming the domain of integration in
(5.19 t0 A
. 1 l-y l
(5.36) M** = 2A/ dg}/ dz
o Jo pr+ (p2— p1)z + (p3— 1)y
(1-2-9 & 9)'(1-2-9 & 9),
but then rather than pursue a tedious analytic formula, we use Gaussian quadrature with
weights w, and stations (z, yp)

1
p1+ (p2 — p1)zp + (p3 — P1)Yp

(537 M =207 w,
p

t
(l_fp_yp Tp Yp) (l-zp~y 2 Yp) -
Tables of Gaussian quadratures for the triangle are listed in [26] and for equation (5.26) we
took the simplest, namely ¢, = yp = 1 /3, wp = 1/2. [25] shows that the numerical
error caused by evaluating the mass matrix M #? with only one Gauss point will not cause a
degradation in the accuracy of ®,, (analogous to ‘mass lumping’ in time-domain modelling).

5.2.2 Cartesian elements

An alternative approach is to not take into account the cylindrical geometry but to think of the
pentahedra as having straight edges, essentially replacing the cylindrical borehole and mandrel
with a polygonal one. Each element, I, whose triangular faces have Cartesian coordinates
(zr, Yr, zr) and (Tr4+3, Yr+3, z;), 7 = 1, 2,3, is the image of the function Fn:11 -1,

3 [(1—=2)zr + 2zr43\
(5.38) Fn(#,9,2) =Y | (1= 2)yr + 2yr43 | Br(£,9).

r=1 Zr
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where II is the ‘standard pentahedron’ A x [0,1) and z, = p, cos ¢;, Zr43 = pr cos bit1,
etc., defines the mapping from cylindrical to Cartesian coordinates. We refer to such non-
isoparametric elements as Cartesian or polygonal. We define the local basis functions on the
pentahedron as Fyj ! composed with a R-linear map from the standard pentahedron. If we
assume a node numbering ny1, ny1, ng; and nya, ngg, nas for the triangular faces of II, then

(5.39)
3,2 3 A
&(z,9,2)|y = E P, g Bpe(z,9,2) = Z[‘I’nrl(l — 2) + ®n,22] B, (2, §),
p=1,9=1 r=1

where Fri(£, §, 2) = (z,y, z) and the B were defined in equation (5.27). The global stiffness
matrix can again be reduced to a sum over the pentahedra, in this case of 6 x 6 matrices

(5.40) szﬁa@awgvmq

(5.41) =Aﬁ@ﬁw&wymx

where

(5.42) DB=DBDF;' and DFy= (9;—:, aa%, %F%) :

The resulting integrals are even more tedious to evaluate analytically than those of equation
(5.36) because the Jacobian of Fij is not constant

(5.43)
P-1 2-1 2#4+§-1
-z 0 -z
o Ty T2 I3 T4y ITs Zg 1—3 _9
DFu(2,9,2)= w1 v s ws us % ;-3 1—d44¢]
21 29 23 21 Z2 23 3 0 7
0 : ¥
and
z2-1 2-1 z249-1
1-2 0 -z
o 1=z - -1
(5.44) L I X
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Instead we use Gaussian quadrature appropriate for the standard pentahedron. Tables of station
points and weights are again available from [26]. In all of our calculations, we used a 21 point
formula.! For small enough Ad, the difference between the isoparametric and polygonal
formulations will be quite small and this has also been observed experimentally.

5.3 Eccentricity

In the previous section, we showed how the stiffness matrix for a centred tool could be built
as a tensor product A% @ M#* + M¢ @ AP? where, in some sense, the M matrices are the
identity operators and the A matrices are the stiffness matrices in the component spaces. This
formulation lends itself to isoparametric elements and we also showed how build directly a
stiffness matrix using polygonal elements. Borehole and shoulder effects on centred tools are
amenable to this formulation but effects on eccentred tools are not. In this section, we discuss
eccentricity modelling.

Eccentricity modelling is important for azimuthally sensitive tools such as the Azimuthal Re-
sistivity Imager, ARI', and the Resistivity at the Bit, RAB!, used in LWD because eccentricity
will put some of the measurement electrodes closer to the borehole wall than other electrodes,
and hence induce a higher apparent resistivity. This could mask any true azimuthal variation
in formation conductivity, [6], [20], [24]. For simple geometries, one can derive analytic solu-
tions for the response of an eccentered tool: e.g., [12] solves for an eccentered point source in
a borehole, [18] solves for an eccentered point source in a cylindrically layered medium, [19]
solves for eccentered coils on an infinite mandrel in a cylindrically layered medium, and [11]
solves for an eccentered sonde with finite-length sources in a formation with borehole. For
more complicated configurations, we shall see that finite element methods are much simpler.

Indeed, for the polygonal approximation of the previous section, eccentricity is particularly
straightforward to take into account. We assume an eccentricity ¢ along the x-axis such that
the tool remains some finite distance away from the borehole wall. Let n(p) be the linear
function whichis 1 at p = a and 0 at p = b, where a is the mandrel radius and b the borehole
wall. Le., if p = S2°_, pr B, (%, ) then

b— b =P
(5.45) Np) = 52 = o = == 2 e Br(3.9)
r=1

1 This computation is relatively slow. It would be faster if we could cast A*Y? as a tensor
product.
tMark of Schlumberger
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Then the following function will map standard pentahedra onto a deformed mesh which is
conformal with the eccentered (polygonal) mandrel.

(5.46)
‘ 3_[prl(1—2)cosdj+2cosdjpa]) en(p)
Ffy(2,9,2) =Y | pel(1 - 2)sing; + 2sind;1) | B2, )+ | 0 |,
r=1 2, 0

In practice, we shall choose b to be one mesh radius less than the borehole radius so that the
formation is always surrounded by an undeformed “collar” — this will prove convenient when
we add fractures.

The only thing we have to watch out for is that the function F does not produce degenerate
pentahedra. But if we consider a quadrilateral in the p, ¢ plane ¢ € [¢1, 2], p € [p1, p2)
then because a + ¢ < b (otherwise the tool is touching the borehole) |n(p2) — n(p1)| <
p2 — p1 From this one can deduce that there cannot exist o and 8 such that simultaneously
pisin(a) = pasin(B) and p; cos(a) + n(p1) = p2 cos(B) + n(p2), i.e., the image of the
isoparametric Quadrilateral under Fyj is never degenerate. The proof is straightforward. If
such an o and 3 exist, then we must be able to find a 8 such that

(5.47) preosa+n = \/p} — psin® B+ = pycos B+ ny

so that

(5.48) P} = p3 + 2(n2 — m)p2cos B+ (n2 — m1)?
which implies that

(5.49) ' P12 p2 = |n2 — m|

which contradicts our hypothesis on 7(p). For some non-linear choices of 7, degenerate cases
can be constructed, however.

Similarly, if the polygonal angles in the mesh are less than 7 /2 then the image of the straight-
line quadrilateral is never degenerate. For example, if we consider the case of just one
azimuthal node at 7/2 then in Figure 5.2 we see that a degenerate element will be created if
the line from X to the node on the tool to Y is convex. If the eccentricity is less than that ¢g
which corresponds to a straight line from X to Y then no degenerate elements will be created.
If the line from X to Y is straight then we must have that a = b—¢g sothat eg = b—a, i.e., the
eccentricity has pushed the tool to touch the borehole wall. For smaller eccentricities, even for
a m /2 azimuthal separation the quadrilaterals will not be degenerate. Clearly, as the azimuthal
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Figure 5.2: Eccentered tool with radius a in a borehole with radius b. An invalid mesh will be
created if the node Z lies outside the triangle OXY, but this can only happen ifa 2> b—eie,if
the tool is touching the borehole wall.

separation between the nodes decreases there is even less possibility for degeneracy. Thus
for the Cartesian case, the only change in the code necessary is replacing D Fy in (5.41) and
(5.43) with DFy. Essentially, in (5.43) we just add en(p) to the z;. An alternative approach
used by the SKYLINE finite element code, [13] is to subdivide each distorted pentahedron
(and hence every pentahedron) into tetrahedra in which case analytic formulae can be used
throughout the domain.

For the isoparametric elements, things are slightly more complicated because the Jacobian is
no longer separable in terms of ¢ and p so the local stiffness matrices lose their tensor product
structure, and in addition must be evaluated numerically. An explicit formula for Fry follows
from equation (5.46)

3 [prcos((1 — 2)¢; + 2¢j41) en(p)
550 F§(&,9,2) =Y | prsin((1 - )5 +2641) | B-(&,9)+ | O
r=1 Zr 0
so that
(5.51)
oFs 3 [prleos((1 - z)é; +Af¢j+1)ﬂ_ e/(b—a)], 4B,
I = prsin((1 — 2)¢; + 2¢j41) — )
0%, 9(z,9,5) ZT M 02, 91(2,9)
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and
OF 3 [—prsin((1 - 2)@; + 2¢j4+1)
ssp =X eeos(- 25+ 0i) | B59)
f-yA)z‘ r=1 1

We use the same 21 point Gaussian quadrature routine as for the Cartesian case.

5.4 Bed boundaries?

Given a pentahedral mesh, one can always arrive at a mesh which is conformal with an arbitrary
inclined plane by suitably subdividing the pentahedra into tetrahedra. Such subdivisions are
appropriate when solving for the tool response in a heterogeneous formation through which the
borehole has been drilled at a non-perpendicular angle, [22]. Unfortunately, if one pentahedra
is subdivided then all of its neighbours must also be subdivided and continuing this way we
see that all the pentahedra in the mesh must be subdivided, regardless of the location of the
interface. As tetrahedral decompositions tend to be less accurate than pentahedral this causes
a degradation in accuracy. Moreover, the subdivision tends to introduce an orientation to the
mesh which further degrades the accuracy. One approach, valid for dip angles less than, say,
45 degrees is to shear the mesh and not introduce new nodes. This is the approach taken by
the SKYLINE finite element code and, in effect, is also the method we have chosen to model
eccentricity. This method becomes increasingly unstable for high dip angles and will not give
a valid mesh for horizontal bed boundaries parallel to the horizontal borehole.

The approach considered in this section is to subdivide pentahedra but to choose a non-
standard interpolation scheme. Specifically, let V,f ® V¥* denote the space of basis functions
for the pentahedral mesh and let V;4 denote the space of basis functions for the tetrahedral
mesh which is conformal to all the dipping bed boundaries. Let W be the subspace of V,2

containing only those nodes which are nor also nodes of V,f’ ® Vh” “. Then, by construction,
(5.53) WANVZeVf =0
sothat W& U V¢ ® V/F* is actually adirect sum W2 & V¢ ® V* = WA @ V1, say. This

is the basis set that we use for the finite element modelling. Clearly, the only pentahedra that
need to be subdivided are those through which bed boundaries pass and in the absence of a bed

2Presented at [17].
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Borehole

Figure 5.3: The dip angle § of a bed is taken to be the relative angle to the horizontal plane, so
that a dip angle of zero corresponds to an azimuthally symmetric geometry and a dip angle of 90
degrees corresponds to a horizontal borehole parallel to the layering.
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boundary the finite element code retains its product structure. Suppose that the finite element
matrix corresponding to this direct sum is written

A Ax

(5:34) <A21 Azz)

where Ay is the original stiffness matrix on the pentahedral mesh and A, is a stiffness matrix
for Laplace’s equation on a 3D volume which surrounds the bed boundaries. The boundary
conditions for the latter case being homogeneous Dirichlet conditions. A2; = A}, represents
the coupling term between the two vector space summands (although the basis functions split
as a direct sum, the operator does nof). We refer to the nodes of A2 as the overlay nodes and,
assuming that bed boundaries do not intersect one another then A5, actually corresponds to the
disjoint sum of 2D Poisson’s equations along the bed boundary. The forcing term is the extent
to which the original basis functions in V! fail to take into account the charge accumulation

along the bed boundary. In particular, note that for many cases involving weak contrasts, the
overlay solution will just cause a small perturbation to the solution on the pentahedral mesh.

We term this decomposition a hierarchical formulation because clearly W2 c W2 @ VI
and V1 C W2 @ V]T'. In general, any sequence of bases is called hierarchical if one basis set
is a subset of the next. For a simple example consider the basis consisting of the two functions
defined on [0, 1] shown in the top of Figure 5.4. The lower half of Figure 5.4 shows two choices
of basis for a vector space defined on amesh V}, which is half the diameter of the original mesh.
The upper set of basis functions is denoted Bj. Figure 5.4a shows a non-hierarchical basis,
whereas Figure 5.4b shows a hierarchical scheme. In the latter case, the basis vectors of By,
are also basis vectors of Bj. Hierarchical bases in FEM offer many of the advantages found
in nested dissection or substructuring and their use can also drastically improve the stiffness
matrix condition number [30). Such bases also offer intriguing connections with multigrid,
[29], and with the (different) aggregation methods of Chatelin & Miranker [4], Chew [5], and
Douglas {7]. There is also currently interest in the hierarchical properties of wavelet bases
(e.g., [21]).

For this analogy in 1D, we can suppose that we have ‘pentahedral’ nodes at z = 0and z = 1
and that we wish to discretize the problem d/dz(odu/dz) = 0 where ¢ = 1 for z < 1/2
and ¢ = 7 for x > 1/2. The basis functions are

(5.55) Bi=«¢ By=1-=¢z
and for a unique solution let’s suppose that we have u(0) = 1 and u(1) = 0.
The local stiffness matrix for this ‘element’ is

! dB; dB; /‘/2 dB; dB; ! dB; dB;
0 —— — = —_— — c—
0

(5:36) o dr dz dz dz 172 dz dz
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Figure 5.4: 2-level hierarchical bases on [0, 1]. In case (b), the two basis functions of By, are

also basis functions of By,.

1/1 -1\, 1/1 -1
65D :§<—1 1>+T§(—1 1)

and imposing the Dirichlet condition at z = 0 gives the matrix

(5.58) ((1) ?) (ZD - (ﬁl)) ’

with solution u(z) = 1 — z.

Now we add a ‘tetrahedral’ node at z = 1/2. It’s basis function is
2 0,1/2],

(5.59) Byz) = {2*  =€l01/2
2-2r ze€[1/2,1].

We now obtain the stiffness matrix

((1—1-1')/2 —(1+7)/2 1—7')
(5.60) —(a+n)/2 (+n)/2 t-1],

1—171 7—1 2421

which becomes

(5.61) (

O O -
O = O
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+ oo
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aftter the imposition of Dirichlet constraints. The solution is uy=1 u =0, uz=(r - 1)/
(27 + 2) which, coincidentally, is the true solution. In particular, notice that as 7 — 1 then
the contribution from the ‘tetrahedral’ node is not needed and u3 — 0. For this example
u3 — 0 because the true solution lay in the space generated by B; and B, more generally,
the presence of the ug node will be akin to a mesh refinement at the bed boundary. Also
notice that in the computation of the stiffness matrix for the pentahedral nodes we do take into
account the change in conductivity in the computation of Ay;.

For a more complicated example of nested bases, consider Laplace’s equation with Dirichlet
boundary conditions

(5.62) V-oVu=0, u= fondf,

discretized using the two meshes shown in Figure 5.5. We suppose that ¢ is constant above
and below the diagonal interface, T', shown in Figure 5.5b. The set of piecewise bilinear basis
functions used in Figure 5S.5a will be denoted B;. The basis functions used in Figure 5.5b
will be the linear elements on triangles given in equation (5.9) and denoted B,. We suppose
that we do not want to use the triangular basis functions over the whole domain, but instead
choose By U B, where B; denotes those triangular basis functions which are zero at any node
of B;. In this way, we gain the ability to model sharp changes in the field across the interface
without changing the basis functions away from the interface. Suppose that V; is the space of
functions generated by B;, then we want to write the scalar field u as u; + ug with u; € V.
This decomposition would not normally be unique. We enforce uniqueness by insisting that
u2 = 0 on all of the nodes of B;. us is thus only non-zero on the area shown shaded in
Figures 5.5a and 5.5b, which we denote . The non-zero nodes of u, lie only along the 1D
interface, I'.3

At the boundaries of the domain, we suppose that f € Vi sothat we canset uy = 0 everywhere
on the boundary 9S2;. We write V? for the space of piecewise bilinear functions in V; which
are zero on the boundary 9. We thus obtain a well-defined Galerkin scheme by choosing
test functions v; € V? and v5 € V, such that

(5.63) / oV - V(u; + U2)‘= 0 and / oVuy -V(u; +uz) =0
o) 0

for all v; and v, with u; = £ on 69 and u2 = 0 on JQ3. This obviously corresponds to a

*In purely formal terms, we can think of u2 being the restriction to I' of a function in & HQ)
with uz|sn = 0, so that u, € H;/Z(F). We have chosen a decomposition H?! Q) = " Qe
Holn(l") where -ﬁl(ﬂ) is that space of functions u with {w,v)p =0forall v € H;lz(l")‘ Le., we
have specifically removed from H( Q) those functions which have discontinuous normal derivative

across I' and put those functions into Hg / *(I) instead. The FEM discretization inherits the
decomposition of these function spaces.
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@ ®)

Figure 5.5: Meshes on [0, 1]2. T denotes the interface between two different material constants
and it is required that nodes on T' be incorporated into the finite element solution.

stiffness matrix with block structure

An AIZ)
5.64 .
( ) (Atlz A22

Ay, denotes the discretized Laplace equation using piecewise bilinear functions over {2 and
Aq; represents the discretized Laplace equation using piecewise linear functions over Q,.
A7} produces a function whose normal derivative is continuous across I', so that the normal
current is discontinuous and leads to a charge build up. u is the extra contribution needed
to make the normal current continuous again. The coupling matrix A2 will take on a similgr
form to that from Figure 5.4b. One can think of the solid triangle being a basis function in B,
and the basis functions Bap C By, are the Bj.

This example was a little contrived because on 0<22, 5 is linear and so could match perfectly
against a bilinear function defined on the rectangles. A simple strategy would have been to
remove the bilinear basis functions from 2, and have a well-defined finite element scheme
with triangles inside €2, and rectangles outside.

This strategy is not possible in 3D. An intersecting plane will result in a mesh of tetrahedra on
{2, and give rise to piecewise linear functions defined on the triangles of the boundary Q.
These would not match up against the bilinear elements on the square faces of 3(Q2 — Q). In
effect, u; + u, would not be continuous. The only ways to enforce continuity are either (i)
extend Q5 to encompass the whole domain or (ii) set us = 0 on 8Q,. The first case, that of
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extending €2, to the entire domain requires a tetrahedral mesh everywhere, which was what
we had tried to avoid. In the second case, we see that u; + uz is continuous precisely because
the zero function is equally well defined as bilinear on a square mesh or linear on a triangular
mesh.

Our strategy for 3D meshing is thus to rotate a 2D mesh of triangles to form a mesh of
pentahedra. The stiffness matrix A;; will be block tridiagonal. Each bed boundary defines an
intersecting plane which cuts through the domain. We convert each intersected pentahedra into
a sum of tetrahedra, but we only subdivide those pentahedra which are actually intersected.
We write §2; for the sum of tetrahedra. We solve for u; + uy where us is defined on the mesh
of tetrahedra and, for continuity, us is zero on 8Qy. A, represents Laplace’s equation on
the tetrahedra. A;; represents the differential equation relative to the original discretization
scheme.*

Because the stiffness matrix has retained a rich structure, many iterative and direct inverse
methods suggest themselves. We shall give examples based on conjugate gradient with suitable
preconditioners based on the incomplete LU factorization of Chapter 2.

We have found that the positivity of LU depends strongly on the node numbering chosen. In
particular, if we choose a ‘natural’ ordering, with the overlay nodes listed after the pentahedral
nodes then the convergence was almost invariably poor. Nor did choosing a profile minimizing
scheme such as reverse Cuthill-Mckee help [2].° The problem is that we are trying ‘point-
oriented’ preconditioners. We are ignoring the block structure of A and that is a mistake.

A better preconditioner is to write Ay; = L1,U;; + Ci1 and Az = LyaUsy + Cyo so that
A A Ly; 0 > (Uu 0 ) (Cu A12)

5.65 =

(5.65) (A’u, Azg) ( 0 L)\ 0 un)tla, oy

We call this preconditioner a “block ILU” preconditioner. Although the defect matrix, C,
is now bigger than it was for point ILU, the number of iterations will be greatly decreased,
evenif Ly,U;; or LyyUss are not positive definite. A comparison of the two preconditioners
is shown in Figure 3.  This example involved a Dual Laterolog! in a 0.01Qm borehole
with one semi-infinite bed of resistivity 192m beneath another of resistivity 100Qm. The
interface was inclined by 80 degrees. We compare point-ILU preconditioning with block
ILU preconditioning. The former required 4300 iterations and the latter only 740. For this
problem, there were 3329 nodes in each of 32 pz planes and an additional 7629 tetrahedral

4411 could also correspond to a finite difference discretization.

SMoreover, an RCM nunibering will destroy the structure of A that we have been trying to
maintain!

tMark of Schlumberger
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Figure 5.6: Point versus Block ILU Preconditioning.

nodes, making a total of 114157 unknowns. For this example, if we chose to not add the
additional basis functions on the tetrahedra, the number of iterations fell to 720 and the
accuracy degraded by 8%.

Also notice that in the computation of the stiffness matrix for the pentahedral nodes we do
take into account the change in conductivity in the computation of A;;.

This last point raises a question when computing the integrals over II. Because of the interface,
IT will be given as a sum of tetrahedra. We can either perform a numerical integration within
the tetrahedra or else stick with the original 21 point Gaussian integration over II and assign
conductivity according to which tetrahedron the Gauss point lies. In practice, the difference
between the two is small. We chose the latter for the somewhat biased reasoning that if the
conductivity either side of the interface is the same then it will have absolutely no effect on
A, essentially by construction. The presence of the overlay nodes will change the answer a
little, however, essentially as if we had refined along the bed boundary.

The block ILU preconditioner presented above can also be viewed as a type of domain
decomposition preconditioner with inexact solvers, [8]. The two ‘domains’ are, respectively,
the nodes on the pentahedral mesh and the nodes on the tetrahedral overlay patch. The inexact
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solvers are the incomplete LU factorizations over the two domains. As the domains overlap
completely, we can expect the convergence rate to be essentially the same as the convegence
rate for the pentahedral mesh with no overlap.

5.5 Decomposition of pentahedra

We have seen that in order to incorporate a dipping interface, we must subdivide pentahedra
into tetrahedra which are aligned on that interface. To do so we first label those pentahedra
according to whether or not they intersect the interface and then those pentahedra are each
subdivided into three tetrahedra. This latter step is a little non-trivial. There are two ways to
subdivide a rectangular face into triangles and so eight possible ways of subdividing the faces
of the pentahedra. Six of these correspond to valid tetrahedral subdivisions and two do not.
Two possible valid subdivisions are shown in Figure 5.7. The subdivision of one pentahedron
affects the subdivision of its neighbours because the subdivision of each rectangular face must
match up (otherwise the mesh of tetrahedra would not constitute a valid finite element space
and the basis functions would be discontinuous). The two configurations shown in Figure
5.8 do nor correspond to a tetrahedral subdivision. So, as each pentahedron face is being
subdivided, one must make a choice of the two possible subdivisions, and then check that this
choice does not lead to a conflict once the whole mesh has been subdivided. If it does lead
to a conflict that instead choose the other subdivision. Written recursively with the correct
recursively defined data structures, the algorithm is in fact, fairly straightforward. An outline
of the program is given below.

We suppose that we are given a list of rectangular faces, with each pentahedra the union of
three rectangular faces. Each rectangular face also knows which pentahedra it belongs to. For
convenience, we arrange the pentahedra in a linked list so that if p is a pentahedron then p—>n
is the next pentahedron in the list. p = NULL indicates the end of the list. Each rectangle r
is assigned an integer r—>o which when 1 or —1 determines which diagonal to choose for the
tetrahedral subdivision.

Then when the subroutine subdivide_pent () below retuns TRUE a valid subdivision will
have been applied to each of the pentahedra. We have not tried to prove that subdivide.
pent () cannot return FALSE but this has never been observed. The following algorithm is
written in a pseudo-C notation.

typedef struct {float x,y,z;} POINT;
typedef struct {POINT *i, *j, *k, *1; PENT #*p1, *p2; int o;} RECT;
typedef struct {RECT *i, *j, ¥k; PENT *n;} PENT;
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Figure 5.7: Two possible decompositions of a pentahedra into three tetrahedra.
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Figure 5.8: Invalid decomposition of a pentahedra into three tetrahedra.

subdivide_pent(p)

PENT #p;

{

if (p == NULL) return (TRUE);

if (orient_pent(p) == FALSE) return(FALSE);
return(subdivide_pent(p->n));

}

orient_pent(p)

PENT *p;

{

FALSE) return(FALSE);
FALSE) return(FALSE);
FALSE) return(FALSE);

if (p->i->0 == 0) if (orient_face(p->i)
if (p->j->0 == 0) if (orient_face(p->j)
if (p->k->o0 == 0) if (orient_face(p->k)
return (pent_ok(p));

orient_face(f)

FACE *f;

{
f->0 = 1;
if (orient_pent(f->p1) && orient_pent(f->p2)) return(TRUE);
f->0 = -1;
if (orient_pent(f->p1) && orient_pent (f->p2)) return(TRUE);
f->0 = 0;
return(FAIL);
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pent_ok(p)
PENT =*p;
{
All of the faces have been assigned orientationms.
If orientations correspond to a tetrahedral subdivision:
return(TRUE) ;
else
return(FALSE) ;

The test for pent_ok is actually quite simple. As is clear from Figures 5.7 and 5.8, in a
valid subdivision there will be one node which is connected to two diagonals, in an invalid
subdivision the diagonals will cycle around.

In fact, the problem of subdividing a mesh from pentahedra into tetrahedra is a little simpler
for our case because the pentahedra are obtained by rotation from a 2D mesh. One need only
find orientations of the lines in the 2D triangles such that no triangle is a closed cycle and then
from these orientations one can easily determine valid subdivisions of the pentahedral mesh.
The structure of the above algorithm is still the same.

Once one has obtained a mesh of tetrahedra, adding the interface results in the possible cases
shown in Figure 5.9. In each case, the subdivision results in a combination of pentahedra
and tetrahedra. In Figure 5.9a there is one tetrahedron and one pentahedron, Figure 5.9¢ has
two pentahedra and Figure 5.9d has two tetrahedra. Figure 5.9b gives rise to a tetrahedron
and a rectangular pyramid which must be subsequently divided into two tetrahedra. We then
convert this mix of tetrahedra and pentahedra into a mesh of tetrahedra using essentially
the same algorithm as given above. Once one has obtained a mesh of tetrahedra aligned
with a given interface then an additional interface can be added (e.g., if one wants to model
intersecting fractures).

5.6 Fractures
For a slightly different application of the hierarchical formulation, we consider fracture mod-
elling.

Understanding the response of electrical tools in fractures is essential to providing valid
interpretation products. Fractures are important as they provide conduits for drlling mud
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(@ (b)

(c) (d)

Figure 5.9: Addition of a planar interface to a tetrahedron results in four possible combinations of

tetrahedra and pentahedra. Case (b) gives rise to a rectangular pyramid which must be subdivided
into two tetrahedra.
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during exploration and for possible hydrocarbon during production, [15], [16]. A knowledge
of the fracture system is also useful for stimulation and “fracking,” [28].

The essential physics is that the presence of fractures filled with conductive fluid allows
electrical current to flow more deeply into the formation along current paths that would not be
possible in the absence of the fracture, {24]. Conversely, fractures filled with highly resistive
mud block current paths. For example, vertical fractures filled with oil-based mud are known
to complicate Induction and CDR responses, [1].

Despite the large scale changes brought about by the fracture, at the scale of the fracture the
physics is still that of Maxwell’s equations, or, Laplace’s equation at DC. In particular, the
assumption is that the resistance normal to the fracture is zero implying that the potential is
continuous across (and along) the fracture. Current can flow along the fracture, however, so
the boundary condition is that

QE+
081/_

(5.66) =dV,-05Viu,
where u is the potential, V ; the (2D) transverse derivative along the fracture, d is the fracture

thickness and ¢ and o are the formation and fracture conductivities, respectively. The
configuration is shown in Figure 5.10.

5.6.1 Finite element formulation

The boundary condition (5.66) fits naturally into our finite element framework. Suppose that
we have a system of basis functions spanning a linear space Vi which is conformal with the
fracture plane then we would like to find the solution uj, in V;, which satisfies the weak system
of equations

(5.67) (vh, V. chuh) =0 Yo, € Vi
and
oult
(5.68) (vh,d'a—u )=<’l)h,dv_1_'0’fVLu>p Vvh.

where the subscript r denotes integration along the surface of the fracture. Additional
boundary conditions will apply to us and vs on the boundary of the domain as discussed
in earlier chapters — here we shall suppose perfectly conducting electrodes on an otherwise
insulating boundary.
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Fracture ‘ Domain
element

PI map

RI map

Standard
tetrahedron
inside prism

Figure 5.10: Subparametric thick fracture element in R3. The fracture is viewed as a prism of
thickness d inside the domain §2 and filled with fluid of conductivity o ;. This prism is the image of
the ‘standard prism’ under a P1 map. The finite element approximation, uy, is defined to be the
inverse of this P1 map followed by an R1 map from the ‘standard prism." In the limitas d — 0, uy,
is continuous across the fracture, but current can also propagate within the fracture element.
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Applying integration by parts we obtain that
(5.69) / oVuy -V +]£ dosViup-Vivy =0 Yun € HY(Q).
o) F -

with vy, zero on the perfectly conducting electrodes (where uj is known a priori).

5.6.2 Local stiffness matrices

Explicit expressions involving transverse derivatives are most simply derived by assuming
that the fracture element has some finite thickness d and is the image of a standard prism under
a linear (P1) map. Recall that the most general ‘first order” map on a prism takes the R-linear
form

(5.70)  R(%,9,9) = Ri(1 —2 — §)(1 — £) + Ra2(1 — ) + Raf(1 - 2} +
R4(1 — 2 — §)2 + Rs22 + Reyz,
whereas the P1 ‘“first order’ map on the tetrahedron takes the form

.71) P(3,,2) = Py(1 — & — § — 2) + Pa + Paj+ Pas.

The local element uy, is given by the composition shown in Figure 5.10 where now the F; are
nodal coordinates in R3. We suppose that the nodes within the fractures are ordered so that
1,2 and 3 lie on the lower triangle and i + 3 is above 7. The map P is clearly determined by
the coordinates of nodes 1, 2, 3 and 4 and is invertible for non-zero d. The map uj is thus well
defined from R3 to R (actually more general than we need: we only need up to be defined
on an open set containing the prism in 2). We can compute the derivative of uj by the chain
rule, with derivatives of P and R written by inspection.

Lo —Z1 Y2—Y1 22— 2y
(5.72) VP={z3—2z1 Ys—Y1 23— 21
T4 —2T1 Y4~ Y1 Z2a—21
and similarly for V R. In particular, note that ¥V P can be computed explicitly in terms of d

and the nodal coordinates of the lower triangle, Suppose that n/|n| is the unit normal to the
triangle containing nodes 1, 2, 3 so that

i ] k
(5.73) n=|{ry—I Y—Y 22— 21
3 —ZTy Ys— Y1 23— 21
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and

Zq )
dn
(5.74) Ya | +—
24 Z1 n

so VP (and its inverse) can be computed.

5.7 Implementation details

The above formulation of hierarchical bases has been coded in the ALAT3D package. The
code requires about 10000 lines of FORTRAN to perform the construction and inversion of
the stiffness matrix and the postprocessing to compute tool responses. The subroutine to
subdivide a mesh of pentahedra into tetrahedra with given planes intersecting the mesh was
coded in a separate 3000 line C program called COUPXX. The ALAT3D package, in fact,
allows the user a choice of how to interpolate the fields across interfaces. The most accurate
is to choose the interpolation space of the form W2 @ V¢ ® V** as described above, but
the user can also force the field to have zero projection onto the space W4, In this case, the
element integrals are evaluated as

/ O'VB,'J' . Vqu = ZO’A/ VB,'J' . VBPq
(1} A A

with 21 point Gaussian quadrature for the element integrals over tetrahedra. This ensures that
contribution from a pentahedra containing, say, a small sliver from a highly conductive bed
will be correctly accounted for.

A third possibility is to not subdivide pentahedra at all with

/ oVBij VBpy = / onVBij - VBy,
Q o Ja

and oy now evaluated at the Gauss points within the pentahedron (for this numerical integration
we used a 15 point quadrature). The advantage of this method is that one does not need to
call COUPXX to perform the element subdivisions, the disadvantage is that very thin beds or
fractures could completely miss the Gauss points. In effect, this last method converts the true
bed profile into an approximate ‘step’ profile. Experience has shown that the most efficient
scheme is to subdivide pentahedra crossing bed boundaries only if they lie within a sphere
around the source electrodes, where the potential beyond the sphere is small enough that
assuming a step profile will not significantly degrade the response. Within the sphere, uses the
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full W2 &V ¢ ®V ** interpolation space. A typical example involving the azimuthal laterolog
requires about 5000 nodes in the pz plane and 100 nodes in the ¢ plane. The total storage
required is then about 40,000, 000 words of memory. -Double precision is used throughout
ALAT3D so this corresponds to about 20, 000, 000 storage locations for the stiffness matrix
and potential fields. On a DEC Alpha workstation the solution is obtained in about 15 cpu
minutes per electrode excitation — as discussed in Chapter 2, for a focussed resistivity device
we have to solve for each excitation independently and apply the focussing conditions to
the resulting transfer impedance matrix. The Azimuthal Resistivity Imager requires 16 such
excitations per tool position.

Node numbering is an important issue for preconditioned conjugate gradient schemes, e.g., see
[9], {10]. We found that for 3D Laterolog problems, one should list the nodes as (1, p1, 21),
(2,p1,21)s - - -» (&, p1,21), ($1, p2, 22), etc. The stiffness matrix over pentahedra is thus
not block tridiagonal. We use an RS/CS sparse storage scheme as described in Chapter 2. The
cost of performing the ILU decomposition is negligible compared to the cost of the 200400
iterations of conjugate gradient (per electrode excitation). Another approach would be to
allow fill-in in ¢ when computing the ILU factorization so that at each iteration the ¢ nodes
are solved exactly. The conjugate gradient routine could then be viewed as an acceleration
of line-relaxation, {14], {27]. This would ensure rapid communication between the azimuthal
planes and, in particular, an azimuthally symmetric result would be obtained in the same
number of iterations as for the 2D problem on the pz mesh (of course, each iteration would
be more expensive).

The triangular mesh in pz is simply obtained by deleting nodes from a rectangular mesh in
p, z whenever the aspect ratio of the rectangles is worse than 3 :: 1. The user enters a list of
nodes in p and z at run-time. The program COETHYN constructs the triangular mesh, with
the option of using additional adaptive refinement as described in Section 2.5.

ALAT3D also allows an interpolation space of the foom W2 @ V* ® V#?, where now the
pentahedral mesh is created by taking the tensor product of a 2D triangular mesh in the p¢
plane with a 1D mesh in z. In this case, the Modulef finite element package is used to create
the triangular mesh in the p, ¢ plane, [23]. For applications involving horizontal wells, such
a mesh can require fewer unknowns. Moreover, for horizontal wells, the 2D mesh in p¢ can
always incorporate the bedding planes so there are no additional W4 nodes and ¢ is constant
within each pentahedron.

When computing a log over many tool positions, the potential field from one tool position
will be a good initial guess for the potential field at the next. Our design of hierarchical
bases lends itself well to this formalism, because there is no need for interpolation between
different meshes. The only basis functions which change with tool position lie in W4 where
zero is often a good initial guess. The picture on the cover shows the initial error when
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we use the previous tool position. The error is concentrated along those elements whose
conductivity changed when the tool moved, namely the green and yellow diagonal region.
For the 3D geometries we have considered, using the previous tool position combined with
a line relaxation sweep gave a very good initial error, but the asymptotic convergence rate
did not change. As we have discussed, focussing constraints often require the subtraction of
very similar numbers in the transfer impedance matrix. This in turn requires great accuracy
in the conjugate gradient iteration and the asymptotic convergence rate can dominate the
computation time. To truly take advantage of the field from a previous tool position one needs
to embed the constraints into the conjugate gradient routine as discussed in Chapter 2.

5.8 Conclusions

In conclusion, we have developed a robust method of adding basis functions which are
conformal with sharp changes in material properties. If appropriate block preconditioners are
chosen then these additional functions do not cause any significant increase in the number
of iterations required for convergence. A physical understanding of the finite element and
mesh discretization process has led to better preconditioning and more accurate and robust
solutions. In particular, by not subdividing pentahedra into tetrahedra on most of the domain,
we can retain many advantages of finite difference algorithms on structured meshes (e.g., block
relaxation and hierarchical formulations). The only way to avoid this subdivision, however,
is to not use a full set of tetrahedral basis functions near bed interfaces. Instead we limit the
tetrahedral basis to those functions which are zero along all pentahedral faces. The resulting
matrix has the structure of a direct sum W2 @ V¢ ® V#? and we have shown how to tailor
the ILU decomposition to invert the corresponding stiffness matrices.
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chapters  Conclusions and Future -
Research

Abstract. Finite element methods for complicated heterogeneous formations have
been developed in earlier chapters. Future research will concentrate on faster
inversion techniques which take advantage of the structure built into the finite
element stiffness matrices

6.1 Overview

Finite element methods for resistivity logging tools in complicated heterogeneous formations
have been developed in earlier chapters. In particular, in 3D, the basis functions will lie in an
approximation space of the form V, = V7~ ® V¢ @& V2 which we have termed a hierarchical
decomposition because of the natural inclusions V#* @ V¢ — V; and VA < V. The
corresponding stiffness matrices take on a highly structured form

An Ap
(6.1 (A21 Azz)

where Aj; is block tridiagonal because of the tensor product structure on the pentahedral
mesh. We refer to such a matrix as block Laplacian because both A;; and Aqs represent
discretizations of Laplace’s equation. The solution technique we have proposed in Chapter 5
was to use a block ILU preconditioner to accelerate a conjugate gradient iteration.

We have also examined ILU preconditioners in Chapter 3, where they were used with success
to invert the complex symmetric matrices arising form a fintie element decomposition for
H  valid for arbitrary frequencies w. We also saw in Chapter 4 how the more complicated
boundary condition for contact impedance can be brought into the Hy framework.

Preconditioning alleviates ill-conditioning brought about by non-zero frequencies, high con-
trasts in material properties and the large variation in scale between the mesh diameter h and
the size of the total domain €2.

The main problem with the block ILU preconditioner in 3D is that it is relatively expensive per
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iteration and does not rapidly propagate data through the mesh. A more promising approach is
to use a hierarchical scheme in ¢ to replace the discretization V# into a hierarchical scheme so
that the basis functions are stacked according to Figure 5.4. The Laplace operator discretized
according to this basis function will have O(1) condition number so the block triangular
stiffness matrix over the pentahedral mesh should have condition number no worse than that
of the Laplace operator discretized over the triangular mesh in pz. The downside will be
that the stiffness matrix will have roughly twice as many non-zero entries and will not have a
structure well suited to (point) LU preconditioning. Simple smoothing methods such as Gauss-
Seidel should be powerful however, especially if incorporated into an alternating direction
scheme. In effect, the resulting algorithm would be equivalent to using multigrid with line
relaxation along the azimuthal direction and ILU-preconditionined conjugate gradient in the
pz plane.

In Chapter 2, we showed that focussing can cause a loss of symmetry in the stiffness matrix
and future research will examine ways in which non-symmetric iterative methods can be
used to derive a robust iterative scheme which does not require solving for each electrode
excitation independently. For example, we have seen that GMRES applied to the Schur
complement, as developed in Chapter 2, can require N full matrix inversions, where N is
the number of focussing constraints. Preliminary research indicates that the Bi-Conjugate
gradient method applied directly to the non-symmetric stiffness matrix gives a solution in
approximately the same amount of time as 2-3 electrode excitations. With a suitable (non-
symmetric) preconditioner, this iteration count might be further improved.

There is also a natural decomposition of the stiffness matrix into blocks corresponding to
domains of constant material properties. Domain decomposition techniques can be used to
take advantage of this structure and provide a framework which can take advantage of parallel
MIMD architectures.

In conclusion, the thrust of this thesis has been to build relatively well conditioned stiffness
matrices which retain a significant amount of internal structure and to show how simple
preconditioners can be exteneded to complex symmetric matrices (2D) and block Laplacian
matrices (3D). Future research will concentrate on faster inversion techniques which take
advantage of this structure and which can extend the methods to rapid solutions of the full
Maxwell equations in three-dimensional geometries.

!MIMD is an acronymn for Multiple Instruction Multiple Data. Early so-called ‘parallel’ ma-
chines such as the CM2 could, in fact, only operate the same operation on all components of an
array. Much more interesting is the possibility of allowing the code to act differently on different
pieces of data, this is the essencce of MIMD. A typical MIMD example would have different cpu’s
solving the differential equation in different domains. Another would be to evaluate a spectral
integral by giving a separate wavenumber to each cpu and accumulating their computation of the
integrand.



Glossary of Codes

The following codes have been referred to in the text:

LATER A 2D finite element code which solves for ® in an azimuthally symmetric medium.

The mesh is a quasi-uniform rectangular mesh in the pz plane. The code was written
by Ecole des Mines, Paris, under contract by Schlumberger in 1975.

SKYLINE A 2D finite element code which solves for @ in a 3D geometry consisting of

cylindrical wedges. This configuration can be sheared to account for dip and the tool
can be eccentered within the borehole. The code was written by Ecole des Mines, Paris,
under contract by Schlumberger in 1980 and extensively modified and improved by
Marie-Therese Gounot at Schlumberger Etudes et Production, Paris.

CWNLAT A 2D finite element package which can solve for a variety of scalar potentials

including H4 or ® in an azimuthally symmetric medium and H or @ in the zy
plane. The code was written in 1989 by John R. Lovell at Schlumberger-Doll Research,
Ridgefield, CT and subsequently modified to allow for a variety of boundary conditions
as described in Chapters 3 and 4. Sample input files for CWNLAT are given in Chapter
4.

ALAT3D A 3D finite element code which solves for @ in a more or less arbitrary geometry.

The basis functions used are R-linear on pentahedra with the option of adding additional
tetrahedral nodes on interfaces between bed boundaries. Dipping beds are not simulated
by shearing the mesh and the code is as accurate at 90 degree dip as at 0 degree dip.
Both ALAT3D and CWNLAT share the same keyword driven user-friendly interface.
ALAT3D was written in 1992-1993 by John R. Lovell at Schiumberger-Doll Research,
Ridgefield, CT. Sample input files for ALAT3D are given in Chapter 4.

FEMIND A 2D finite element code designed to solve for induction tools in axisymmetric

formations. The code uses a block-Gaussian elimination to efficiently solve for multiple
tool positions and was written in 1980 by Barbara Anderson and Steve Chang at
Schlumberger-Doll Research, Ridgefield, CT.

TWODEPEP A commercial finite element package developed by Granville Sewell which

uses finite element techniques with adaptive mesh refinement to solve 2D partial differ-
ential equations.
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Glossary of Tools

The following Schiumberger logging tools have been referred to in the text:

ARI' Azimuthal Resistivity Imager has been designed as an upgrade to the Dual Laterolog
(DLL)!. In addition to the DLL electrodes, additional azimuthal sensors have been
added which generate a quantitative resistivity image. The ARI also incorporates an
advanced postprocessing system which minimizes the Groningen effect, the modelling
of which was performed with the CWNLAT code of Chapter 3.

DLL! Dual Laterolog consisting of a shallow resistivity measurement (LLs)! and a deep
measurement (LLd)T both of which modes operate simultaneously. The focussed current
patterns of the two modes of the DLL are shown in Figure 1.2.

LL3! Early Laterolog consisting of a current measure electrode surrounded by two large
guard electrodes. The three electrodes are maintained at the same potential. The
corresponding log is similar to that of the LLd but is subject to more severe shoulder
effects. As both the LLd and LL3 have reference potential ‘N’ at the end of a long
bridle then the two logs are equally susceptible to Groningen effect.

FMI' Formation Micro Imager measures the resistivity in front of an array of buttons and
thereby obtains a resistivity image. Four pads are used to maximize coverage of the
borehole wall.

ES' A four electrode array run in either Lateral or Normal configurations. Current leaves
electrode A and returns to electrode. B and the voltage difference between electrodes
M and N is measured.

DIT! Dual Induction Tool consists of an array of two three-coil induction tools. Each such
system consists of a transmitter and receiver coil with the direct signal from transmitter
to receiver subtracted by measuring the signal at a third ‘bucking’ coil. One such
combination gives a deep resistivity measurement (ILD)! and the other a more shallow
measurement (ILM1).

tMark of Schlumberger
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Samenvatting

Bij de opsporing van aardolie en aardgas spelen weerstandsmetingen in boorgaten, meestal in
samenhang met metingen van andere grootheden zoals de porositeit van de formatie, een-be-
langrijke rol. Het bepalen van relevante parameters van de formatie uit weerstandsmetingen is
een gecompliceerd, niet-lineair probleem, waarbij veelal aanvullende geologische informatie
nodig is. Het is daarbij van belang dat de gebruikte meetinstrumenten (tools) zonder mislei-
dende artefacten zo nauwkeurig mogelijke meetwaarden verstrekken. Dat maakt zowel bij
het ontwerp van nieuwe meetinstrumenten als bij de interpretatie van metingen van bestaande
instrumenten, goed fysisch inzicht noodzakelijk. Daartoe is er duidelijk behoefte aan model-
leringsalgorithmen die het mogelijk maken om de responsie van een meetinstrument in een
gecompliceerde twee- of driedimensionale meetomgeving, b.v. in een boorgat, te bepalen.

De meting van elektrische weerstand, massadichtheid en porositeit van het gesteente in een
formatie kan worden verricht tijdens het boren van een boorgat in die formatie dan wel na het
boren door een meetsonde in het boorgat te laten zakken. Beide meetsituaties hebben voor- en
nadelen. De laatste methode bekend onder de naam “wireline logging” heeft als voordeel dat
complexe metingen kunnen worden verricht door sensoren die niet zijn blootgesteld aan de
barre omstandigheden tijdens het boren. De meetdata kunnen met relatief hoge transmissie-
snelheid via een gewapende kabel naar het aardoppervlak worden verzonden. “Logging while
drilling” (LWD) heeft als groot voordeel dat de metingen niet worden beinvioed door de
diffusie van de boorvloei-stof (mud) in de steenformatie. Nadeel is dat de transmissiesnelheid
van de telemetrie zeer laag is. De meetdata worden naar het aardopperviak verzonden via
pulsen in de boorvloeistofstroom.

Voor zowel “wireline logging” als “logging while drilling” kunnen de weerstandsmetingen
worden onderscheiden in die van het “Laterolog”-type en die van het “Induction”-type. In een
rotationeel symmetrische boorgatomgeving zullen instrumenten van het Laterolog-type elek-
trische stromen genereren die in azimuthale vlakken vloeien. Instrumenten van het Induction-
type daarentegen genereren stromen die om het boorgat circuleren. Laterologmetingen zijn
dikwijls moeilijk te interpreteren omdat de responsie op een zeer niet-lineaire wijze van
de conductiviteit van de formatielagen kan afhangen. Inversie van de responsie van een
Induction-meting is nagenoeg lineair. Daarom is het modelleren van meetinstrumenten van
het Laterolog-type vanuit rekentechnisch standpunt een grotere uitdaging. In het bijzonder
omdat de inversie meestal via een iteratief proces van voorwaartse modelleringsmethoden
plaats vindt. Bij het modelleren van instrumenten van beide types wordt uitgegaan van de
lineaire veldvergelijkingen van Maxwell.

Het voorwaartse modelleren van de Laterolog wordt bijna altijd uvitgevoerd met behulp van
eindige-elementenpakketten. Deze pakketten vereisen inversie van grote, ijle matrices. In dit
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proefschrift zijn nieuwe pakketten ontwikkeld waarbij moderne methoden worden gebruikt
om de matrixinversie te versnellen. Bovendien wordt inzicht in de fysica van het probleem
gebruikt om de toegepaste numerieke technieken verder te verfijnen.

In een rotationeel symmetrische boorgatconfiguratie is de beste manier om de Laterolog te
modelleren om het eindige-elementenschema te formuleren in termen van de azimuthale
component van de magnetische veldsterkte, Hg. Dit in plaats van de klassieke wijze van
formuleren met behulp van de scalaire elektrische potentiaal ®. Met deze H 4-formulering
kunnen frequentie-effecten zoals het Groningen-effect - een anomale indicatie van koolwater-
stoffen onder formatielagen met grote weerstand - worden gemodelleerd. Bovendien zal de
H 4-formulering in tegenstelling tot de formulering in termen van de elektrische potentiaal,
geen numericke singulariteiten vertonen als de contactimpedantie van de elektroden steeds
kleiner wordt.

In volledig driedimensionale configuraties, b.v. in het geval van boorgaten in formaties met
sterk hellende lagen of voor horizontale boorgaten, is de H 4-formulering niet geschikt. Noch
is dan een volledige, vectorigle elektromagnetische formulering praktisch haalbaar, zodat een
formulering in termen van de elektrische scalaire potentiaal resteert. Voor de numerieke im-
plementatie daarvan is een ruimtelijke discretisatie nodig die aansluit aan de sterk hellende
lagen of aan eventueel aanwezige scheuren in de formatie. Zo’n discretisatie moet zodanig
worden uitgevoerd dat structuur behouden moet blijven om het oplossen van het resulterende
stelsel vergelijkingen met modeme iteratieve methoden mogelijk te maken. Decompositie
van de benaderingsruimte is daarbij direct gerelateerd aan de vermazing en de discretisaties-
trategie terwijl het bovendien inzicht verleent in mogelijke preconditioneringtechnieken voor
de toegepaste geconjugeerde gradiéntenmethode.

Recentelijk is veel vooruitgang geboekt bij het ontwikkelen van preconditioneringstechnieken
waarmee de convergentie van eindige-elementenmethoden kunnen worden versneld. Incom-
plete LU factorisatie blijkt daarbij bijzonder aantrekkelijk te zijn voor laagfrequente proble-
men in configuraties met verliezen. Rekentijden van O(N 5/ 4) in tweedimensionale en van
O(N7/%) in driedimensionale problemen, waarbij N het aantal onbekenden is, zijn daarbij
gerealiseerd.

Een probleem daarbij is dat N nog steeds zeer groot kan worden: in de orde van enkele
honderdduizenden voor typische driedimensionale problemen. Een belangrijk aspect daarbij
is de toepassing van hierarchische vermazingstechnieken. Hierbij worden gecompliceerde
elektroden en formatiegeometrieén met zo’n min mogelijk aantal knooppunten gemodelleerd.
De oplossing die daartoe wordt voorgesteld is om patches van thetraédische vermazing over
een uniforme vermazing met pentahedra en hexahedra te leggen. De grove vermazing met
thetrahedra moet daarbij nog steeds voldoende fijn zijn om nauwkeurige berekeningen van
spanningen op en stromen door elektroden te kunnen uitvoeren. Details van deze hierarchische
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vermazingstechnieken voor twee- en driedimensionale problemen worden bediscussieerd.

Combinatie van bovengenoemde hierarchische vermazing met gepreconditioneerde en super-
convergente berekening hebben geresulteerd in een aantal geavanceerde numerieke pakketten
die zijn gebruikt om een aantal tot voor kort onoplosbare problemen te modelleren in zowel
twee- als driedimensionale configuraties in “wireline logging” en in “logging while drilling.”
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