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Part I

Problems



6 I Problems

1 Introduction
Problem 1.0.1 Program: Poisson Problem on a Disc
Write a program [u,error] = error poisson radial(H,n) which solves the radially sym-
metric boundary value problem

−∆u = 1 in D, u = 0 on ∂D ,

with B-splines of degree n and grid width 1/H on an annulus D with radii 1/4 and 1/2. It
returns the values of the computed solution at the centers of the grid cells and, by comparing
with the exact solution, the error in the maximum norm.
Answer
error for n = 3 and H = 10:
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2 Basic Finite Element Concepts

2.1 Model Problem
Problem 2.1.1 Boundary Value Problem for a Univariate Energy Functional
Characterize a smooth solution u of the minimization problem

u(1)2 +

∫ 1

0

xu′(x)2 + u(x) dx → min

in terms of a differential equation with boundary condition and determine u explicitly.
Answer
u(1/2):

Problem 2.1.2 Minimization of a Univariate Energy Functional
Solve the minimization problem

min
u(0)=0

∫ 1

0

(u′)2 + 4u2 − 3u .

Answer
u(1):

Problem 2.1.3 Energy Functional for a Univariate Boundary Value Problem
Solve the boundary value problem

− d

dx

(
exp(x)

d

dx
u(x)

)
= 1, u(0) = u(1) = 0 ,

and characterize the solution in terms of a minimization problem.
Answer
u(1/2):

Problem 2.1.4 Ritz-Galerkin Approximation with Sine Functions
Determine the Ritz-Galerkin approximation of the boundary value problem

−u′′ + u = x, u(0) = u(π) = 0 ,

for the finite elements x 7→ sin(kx), k = 1, . . . , n.
Answer
coefficient of sin(10 x):

Problem 2.1.5 Ritz-Galerkin System for a Univariate Energy Functional
Determine the entries of the matrix and the right hand side of the Ritz-Galerkin system for the
minimization problem

min
u(0)=0

∫ 1

0

(u′(x))2 + xu(x)2 − x2u(x) dx

using the basis functions Bk(x) = xk, k = 1, . . . , n.
Answer
third diagonal element of the matrix:
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Problem 2.1.6 Ritz-Galerkin System for Hat-Functions of Univariate Variational
Equations
Determine the entries of the matrix and the right side of the Ritz-Galerkin system for hat-
functions bi, i = 1, . . . , 1/h− 1, with support [ih− h, ih+ h] for the variational equations∫ 1

0

(1 + x)u′(x)v′(x) + u(x)v(x) dx =

∫ 1

0

v(x) dx, v ∈ H1
0 (0, 1) .

Answer
second diagonal element of the matrix for h = 1/10:

Problem 2.1.7 Program: Ritz-Galerkin Approximation of a Radially Symmetric
Poisson problem
Write a program residuum = residuum poisson radial(n) which computes and plots the
Ritz-Galerkin approximation un of the radially symmetric Poisson problem

−1

r
(ru′)′ = exp(r2), u(1) = 0 ,

on the unit disc for the basis functions

B1, . . . , Bn, Bk(r) = 1− r2k .

Moreover, the program calculates the maximum norm of the residuum en(r) = −(1/r)(ru′n)′ −
exp(r2).
Answer
maximum norm of the residuum for n = 5:

2.2 Mesh Based Elements
Problem 2.2.1 Program: Finite Element Solution of a Univariate Boundary Value
Problem with Hat-Functions
Write a program [u,error] = minimization problem(H) which solves the minimization prob-
lem

1

2

∫ 1

0

(1 + x) (u′(x))
2
dx−

∫ 1

0

u(x) dx→ min, u(0) = u(1) = 0 ,

numerically using hat-functions with grid width 1/H as finite elements. Compute the error by
comparing with the exact solution u(x) = −x+ ln(1 + x)/ ln 2 at the grid points x = kh.
Answer
error for H = 100:
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Problem 2.2.2 Ritz-Galerkin Matrix for Hat-Functions
Compute the contributions to the Ritz-Galerkin matrix

G :

∫
gradBj gradBk

for the triangle with vertices
(0, 0), (2, 0), (1, 3)

and the relevant hat-functions.
Answer
sum of the absolute values of the entries of the contributing 3× 3-matrix:

Problem 2.2.3 Finite Element Integrals for Hat-Functions on a Tetrahedron
Using the cubature formula∫

τ

g ≈ vol τ

(
− 1

20

∑
m

g(pm) +
1

5

∑
m<m′

g((pm + pm′)/2)

)

for a simplex τ with vertices pi, pj, pk, p`, derive a formula for the contributions
∫
τ
fBm,

m ∈ {i, j, k, `}, to the right hand side of the Ritz-Galerkin system for hat-functions Bm and a
linear function f .
Answer
largest weight of fm for a simplex with volume 1:

Problem 2.2.4 L2-Norm of a Bivariate Hat-Function
Express the L2-norm of a bivariate hat-function in terms of the areas of the triangles of its
support. Which result do you obtain for equilateral triangles?
Answer
L2-norm for a hat-function supported on a regular hexagon with side length 1:

Problem 2.2.5 Program: Refinement of a Triangulation
Write a program [t,p] = refine triangulation(T,P) which refines a triangulation by sub-
dividing each triangle into 4 congruent subtriangles. Describe the triangulation by an array P
of vertices and an array T which contains the vertex numbers of the triangles, i.e.,

P (T (k, 1), 1 : 2), P (T (k, 2), 1 : 2), P (T (k, 3), 1 : 2)

are the vertices of the k-th triangle.
Answer∑

j,k p
2
j,k after 3 refinements of the triangle with vertices (0, 1), (5, 2), (3, 4):

Problem 2.2.6 Ritz-Galerkin Matrix for Hat-Functions on a Regular Triangulation
Which entries occur in a Ritz-Galerkin matrix for Poisson’s problem and hat-functions on a
triangulation consisting of equilateral triangles of side length h as finite elements?
Answer
sum of squares of the entries in a row:
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Problem 2.2.7 Dimension of Continuous Piecewise Polynomials on a Planar Tri-
angulation
Determine the dimension d(t, v, n) of the space of continuous piecewise polynomials of total
degree ≤ n on a triangulation of a planar simply connected polygonal domain consisting of t
triangles with v vertices. Which result do you obtain for a regular triangulation of a square
consisting of 2m2 isosceles rectangular triangles?
Answer
d(100, 100, 10):

Problem 2.2.8 Program: Evaluation of Lagrange Functions for Simplices
Write a program L = lagrange simplex(x,P,k) which evaluates the Lagrange element asso-
ciated with the node

(k1(p1,1, . . . , p1,d) + · · ·+ kd+1(pd+1,1, . . . , pd+1,d)) /n (
∑

kν = n)

of the simplex with vertices (pν,1, . . . , pν,d) ∈ Rd at (x1, . . . , xd).
Answer
value at x = (1, 2, 3)/8 for the simplex spanned by the origin and the unit vectors and k =
(4, 5, 6, 7):

Problem 2.2.9 Bijectivity of a Bilinear Isoparametric Transformation of the Unit
Square
Show that a bilinear isoparametric transformation of the unit square is bijective if and only if
the image is a convex quadrilateral.

Problem 2.2.10 Program: L2-Norm for Linear Combinations of Bivariate Hat-
Functions
Write a program s = norm hat(f,p,t) which computes the L2-norm of a linear combination
of bivariate hat-functions with values fk at the vertices (pk,1, pk,2) of a triangulation specified
by a list of the indices (tj,1, tj,2, tj,3) of the triangle vertices.
Answer
L2-norm for the test data listed below:
f=[1 2 1 2 3 1 1 0]

p=[0 0;1 0;2 0;0 1;1 1;0 2;2 2;1 3]

t=[1 2 5;1 4 5;2 3 5;3 5 7;4 5 6;5 6 8;5 7 8]

2.3 Sobolev Spaces

Problem 2.3.1 Sine Expansion for Poisson’s Problem
Solve the Poisson problem

−∆u = f in D = (0, 1)2, u = 0 on ∂D

for f(x) = x1(1− 2x2) via sine expansion.
Answer
sine coefficient with largest absolute value:
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Problem 2.3.2 Integrability for the Radial Laplace Operator
For which α 6= 0 is the function

x 7→ ∆rα, r = (x2
1 + · · ·+ x2

m)1/2 ,

a) integrable

b) square integrable

on the m-dimensional unit ball D : r < 1.
Answer
integrable as well as square integrable for m = 10 if α >

Problem 2.3.3 Corner Singularity for Poisson’s Equation
Show that the solution of

−∆u = 1 in D = (0, 1)2, u = 0 on ∂D

has a continuous gradient, but is not twice continuously differentiable on D.
Answer
rate of decay of sine coefficients: O(|k|−s) with s =

Problem 2.3.4 Weak Derivative of a Discontinuous Function
Show that

f(x) =
x1√
x2

1 + x2
2

is discontinuous at x = (0, 0), yet has weak first order derivatives. Are these derivatives square
integrable?
Answer
square integrable [yes/no]:

Problem 2.3.5 H1
0 as Subspace of H1

Show that, for a bounded domain D, H1
0 (D) is a proper subspace of H1(D).

2.4 Abstract Variational Problems
Problem 2.4.1 Riesz Representation of a Univariate Functional
Determine the Riesz representation v = Rλ of the functional λ(u) = u(0) on the Hilbert space

H1
0 (−1, 1) with respect to the scalar product 〈u, v〉 =

∫ 1

−1
u′(x)v′(x) dx.

Answer
v(0) =

Problem 2.4.2 Riesz Representation of the Integral of a Function over the Unit
Disc
Determine the Riesz representation of the functional

u 7→
∫
D

u, D : x2
1 + x2

2 < 1 ,

on H1
0 (D) with respect to the scalar product 〈f, g〉 =

∫
D

grad f grad g.
Answer
value of the representing function at the origin:
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Problem 2.4.3 Ellipticity Constants of a Bivariate Bilinear Form
Determine ellipticity constants for the bilinear form

a(u, v) =

∫∫
D

2uxvx − uxvy − uyvx + 2uyvy

on the Hilbert space H1
0 (D), for a bounded domain D ⊂ R2, with respect to the norm | · |1.

Problem 2.4.4 Ellipticity of a Bilinear Form with Variable Coefficients
Prove the ellipticity of the bilinear form

a(u, v) =

∫
D

(1− x1x2) gradu(x) grad v(x) + exp(x1x2)u(x)v(x) dx

on H1(D), D : x2
1 + x2

2 < 1.

Problem 2.4.5 Ritz-Galerkin Projection onto Linear Functions on a Triangle
Determine the Ritz-Galerkin projection onto linear functions {1, x, y} for the bilinear form

a(u, v) =

∫
D

gradu grad v + uv, u, v ∈ H1(D) ,

and the linear functional λ(v) =
∫
D
xy v(x, y) dxdy with D : x, y > 0, x+ y < 1.

Answer
coefficent of x:

Problem 2.4.6 Fixed-Point Iteration for a Symmetric Positive Definite Linear
System
Following the arguments in the proof of the Lax-Milgram theorem, describe a fixed-point iter-
ation for solving a linear system Au = f with a symmetric matrix A with positive eigenvalues
0 < λ1 ≤ · · · ≤ λn. Use a relaxation parameter to achieve the optimal convergence rate.
Answer
optimal relaxation parameter for λn = 9λ1:

Problem 2.4.7 Existence and Uniqueness of a Minimum of a Univariate Energy
Functional
Show that the quadratic energy functional

Q(u) =

∫ 1

0

u′(x)2 + u(x) lnx dx − u(1/2)

has a unique minimum u ∈ H1
0 (0, 1).

2.5 Approximation Error

Problem 2.5.1 H1-Error of Univariate Hat-Functions
Derive the error estimate

|u− uh|1 ≤ h|u|2
for piecewise linear interpolants uh of a function u ∈ H2(0, 1).



3 B-Splines 13

3 B-Splines

3.1 The Concept of Splines

Problem 3.1.1 Dimension of Univariate Quadratic Splines
Determine the dimension of univariate quadratic splines on a partition 0 < h < 2h < . . . <
1− h < 1 of (0, 1) .
Answer
dimension for h = 1/10:

Problem 3.1.2 Smoothness Constraints for Hermite Data of Cubic Splines
For cubic splines p with knots hZ, determine the constraints on the data pk = p(kh) and
p′k = p′(kh) which imply continuity of the second derivative.
Answer
quotient of the coefficients of p′(kh) and p′((k + 1)h):

3.2 Definition and Basic Properties

Problem 3.2.1 Highest Derivative of a B-Spline
Determine the values dn = (dn0 , . . . , d

n
n) of the n-th derivative of the uniform B-spline bn.

Answer∑10
k=0 |d10

k | =

Problem 3.2.2 Truncated Power Representation of a Uniform B-Spline
Show that a B-spline can be expressed as linear combination of truncated powers:

bn(x) =
1

n!

n+1∑
k=0

(−1)k
(
n+ 1

k

)
(x− k)n+

where zn+ equals 0 for z < 0 and zn for z ≥ 0.

3.3 Recurrence Relation
Problem 3.3.1 Program: Values and Derivatives of a Uniform B-Spline
Write a program [b,db] = b spline(n,H) which computes values and derivatives of a uniform
B-spline of degree n at the points 0, 1/H, . . . , n+ 1.
Answer
sum of absolute values of the B-spline and its derivatives for n = 3, H = 4:

3.4 Representation of Polynomials

Problem 3.4.1 Polynomial Segments of a Quadratic Cardinal Spline
Determine the polynomial segments of the 2-periodic cardinal spline x 7→ p(x) =∑

k∈Z(−1)k b2(x− k).
Answer∑1

x=0

∑2
k=0 |p(k)(x)/k!|:

Problem 3.4.2 Program, B-Spline Representation of Polynomials
Write a program a = marsden polynomial(p) which determines the B-spline coefficients ck =∑n

j=0 aj+1k
j of a polynomial p(x) =

∑n
j=0 pj+1x

j.
Answer∑

j aj for p = (1, 2, 3, 4):
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Problem 3.4.3 B-Spline Coefficients of a Monomial
Show that

x2 =
∑
k∈Z

ckb
n(x− k), ck = (k + (n+ 1)/2)2 − (n+ 1)/12

for n > 1 .
Problem 3.4.4 B-Spline Coefficients of a Cubic Polynomial
Represent the polynomial p(x) = x3− 3x2 + 2x− 4 as linear combination of the cubic B-splines
b3
k,h.

Answer
coefficient of b3

0,1:

Problem 3.4.5 Minimal Support of a B-Spline
Show that the B-spline bn has minimal support, i.e., if b is a spline of degree ≤ n with knots at
the integers which vanishes outside of [0, n] or [1, n+ 1], then b = 0.

3.5 Subdivision
Problem 3.5.1 Program: Subdivision of a Univariate Cardinal Spline
Write a program c = subdivision(c,n), which implements a subdivision step for a cardinal
spline

∑
k ckb

n
k,h.

Answer∑
k ck after subdivision for c = (0, 1, 4, . . . , 92) and n = 3:

Problem 3.5.2 Convergence of B-Spline Coefficients for Subdivision
For a bounded spline p =

∑
k∈Z ckb

n
k,h denote by ck = c0

k, c
1
k, c

2
k, . . ., the B-spline coefficients

generated by subdivision at midpoints. Show that∣∣c`k − p(x)
∣∣ ≤ γ 2−`, x ∈ supp bnk,h` , h` = h2−` ,

where the constant γ depends on n and maxk |ck|.
Problem 3.5.3 Subdivision of a Cardinal Spline
Describe an algorithm for subdividing a cardinal spline

∑
k ckb

n
k,h by splitting each grid interval

kh+ [0, h] into m equal subintervals.
Answer
sum of refined coefficients c for n = 2, m = 3, and c = (. . . , 0, 1, 0, . . .):

3.6 Scalar Products
Problem 3.6.1 Identities for Scalar Products of B-Splines and Their Derivatives
Show the following identities for the scalar products of univariate B-splines bnk,h and of their
derivatives:

a)
∑

k s
n
k = h

b)
∑

k d
n
k = 0

Problem 3.6.2 Program: Scalar Products of Univariate B-splines
Write a program [s,d] = scalar products(n) which computes the scalar products
sn0 , . . . , s

n
n−1 and dn0 , . . . , d

n
n−1 of univariate B-splines with grid width h = 1 and their deriva-

tives.
Answer∑

k |s10
k |+

∑
k |d10

k |:
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4 Finite Element Bases

4.1 Multivariate B-Splines

Problem 4.1.1 Values of Bivariate B-Splines at Grid Cell Midpoints
Determine the values at the midpoints (x1, x2)/2, xν ∈ Z, of the grid cells for the tensor product
B-splines bn(0,0),1 of degree

a) n = (1, 1),

b) n = (2, 1),

c) n = (2, 2).

Answer
sum of the different nonzero values in all cases:

Problem 4.1.2 Values and Gradients of a Bicubic B-Spline
Determine the values and gradients of the B-spline b

(3,3)
(0,0),1 at the grid of points with integer

coordinates.
Answer
maximal value:

Problem 4.1.3 Values and Gradients of a Biquadratic B-Spline
Compute the values and the gradients of the B-spline b

(2,2)
(0,0),1 at the centers ` + (1/2, 1/2),

0 ≤ `ν ≤ 2, of its support.
Answer
largest value:

Problem 4.1.4 Ritz-Galerkin Integrals of Bilinear B-Splines
Determine the Ritz-Galerkin integrals∫

grad bnk,h grad bn`,h

for bivariate tensor product B-splines of degree n = (1, 1).
Answer
sum of absolute values of different integrals:

Problem 4.1.5 Laplace Operator, Applied to a Bicubic B-Spline
For the bicubic B-spline with support [0, 4]2 compute ∆b3

(0,0),1(x), ∆ = ∂2
1 + ∂2

2 , at the points x
with integer coordinates.
Answer
smallest value:

Problem 4.1.6 Program: Evaluation of a Bivariate Spline
Write a program p = spline bivariate(c,n,H) which evaluates a bivariate spline

∑
k ckbk

of degree (n, n) and grid width 1 at the points `/H, ` ∈ Z2, within the standard parameter
domain.
Answer
sum of values for n = 2, H = 3, and ck = cos(k1k2), kν = 1 : 10:
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4.2 Splines on Bounded Domains

Problem 4.2.1 B-Spline Coefficients of a Biquadratic Polynomial
Represent the polynomial x 7→ (x1 − 1)x2

2 as linear combination of bicubic tensor product
B-splines with grid width h = 1.
Answer
coefficient of b

(3,3)
(2,1),1:

Problem 4.2.2 Representation of a Polynomial by a Biquadratic Spline
Which polynomial does the spline

∑
k1

∑
k2
k1(1− k2

2)b
(2,2)
k,1 represent?

Answer
largest coefficient of the monomial form

∑
α pαx

α:

4.3 Weight Functions

Problem 4.3.1 Singularity of the Distance Function for an Ellipse
For the ellipse

E : x2 + 4y2 = 1,

determine the line segment along which the distance function has a ridge.
Answer
line segment [−a, a]× {0} with a =

Problem 4.3.2 Equivalence of R-Functions
Show that the R-function w(u, v) = u + v +

√
u2 + v2 and max(u, v) have for all arguments

u, v ∈ R the same sign. Moreover,

|w(u, v)| � |max(u, v)| .

Answer
largest value of the quotient |w(u, v)|/|max(u, v)|:
Problem 4.3.3 Program: Rvachev Operations for Weight Functions Represented
by m-Files
Write a program rfct(w,operation,w1,w2), which implements Rvachev’s method for weight
functions represented by Matlab m-files w1, w2, by generating an m-file w according to the
specified Boolean operation (union, intersection, or complement).

Problem 4.3.4 Smooth Weight Functions at a Reentrant Corner
If a smooth weight function w vanishes on the negative x- and y-axis and is nonnegative if one
of its arguments x or y are positive, then w has at least a fourth order zero at the origin.

4.4 WEB-Splines

Problem 4.4.1 Extension Coefficients for Bilinear WEB-Splines
Determine the extension coefficients ei,j of bilinear WEB-splines for indices j which are adjacent
to the array I(j).
Answer
sum of different values:

Problem 4.4.2 Extension Coefficients for Biquadratic WEB-Splines
Compute the extension coefficients ei,j for j = (0, 1) and i ∈ I = {3, 4, 5} × {6, 7, 8}.
Answer
largest coefficient:
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Problem 4.4.3 Program: Extension Coefficients
Write a program E = extension coefficients(J,L,n), which computes the array ei,j, iν =
`ν , . . . , `ν + n, of extension coefficients for an outer index (j1, . . . , jd).
Answer
max ei,j for J = (1, 2, 3), L = (9, 8, 7), and n = 3:

Problem 4.4.4 Extension Coefficients for Bilinear WEB-Splines
Sketch the domain D : x2

1 + x2
2 < 2, xν > 0, and, for bilinear B-splines bk with integer knots

(grid width 1) the relevant part of the grid. Mark the lower left corners of the supports of
the inner and outer B-splines with dots and circles, respectively, and compute the extension
coefficients ei,j, j ∈ J(i), for the B-spline bi with the largest portion of support in D.
Answer
maxj∈J(i) ei,j:

Problem 4.4.5 Extension Coefficients for Bilinear WEB-Splines
Sketch the domain D : 0 < x1 < x2 < 2, and, for bilinear B-splines bk with integer knots (grid
width 1) the relevant part of the grid. Mark the lower left corners of the supports of the inner
and outer B-splines with dots and circles, respectively, and compute the extension coefficients
ei,j, i ∈ I(j), for j = (1, 0).
Answer
maxi∈I(j) ei,j:

Problem 4.4.6 Integrity of the Extension Coefficients
Show that the extension coefficients of WEB-splines are integers.

4.5 Hierarchical Bases
Problem 4.5.1 Dimension of a Bivariate Hierarchical Spline Space
Determine the dimension of the bivariate hierarchical spline space with

Dν =
(
0, 2−ν

)2
, 0 ≤ ν < ` (D` = ∅) ,

h = 2−α (α > 0), and degree n = (1, 1).
Answer
dimension for α = 1 and ` = 5:

Problem 4.5.2 Approximation of the Square Root with Piecewise Linear Hierar-
chical B-Splines
Show that the function

√
x can be approximated in the maximum norm on the interval [0, 1]

with error ≤ tol with ≤ c tol−1/2 hierarchical linear B-splines.



18 I Problems

5 Approximation with Weighted Splines

5.1 Dual Functions
Problem 5.1.1 Dual Functions for Hat-Functions on a Uniform Triangulation
Construct dual functions λi for hat-functions Bi on a triangulation consisting of equilateral
triangles with edge length h. Choose λi as a piecewise linear function which is nonzero only on
the support of Bi.
Answer
sum of the values of a piecewise linear dual function λi at the middle and one outer vertex for
h = 1:

Problem 5.1.2 Dual Functions for Univariate Quadratic B-Splines
Construct a quadratic dual function λ∗ with support [3/2−θ/2, 3/2+θ/2] ⊆ [1, 2] for quadratic
B-splines bk, i.e.,

〈λ∗, bk〉0 = δ0,k, k ∈ Z ,

and determine the behavior of ‖λ∗‖0 as θ → 0.
Answer
‖λ∗‖0 � θ−α with α:

Problem 5.1.3 Dual Functions for Linear Bernstein Polynomials
Construct dual functions λk, k = 0, 1, for the linear Bernstein polynomials b0(x) = 1 − x,
b1(x) = x. Determine a constant γ so that

|ck|2 ≤ γ

∫ 1

0

|c0b0(x) + c1b1(x)|2 dx, k = 0, 1 ,

for all coefficents c0, c1.
Answer
max(r, s):

Problem 5.1.4 Dual Functions for Monomials
Construct dual functions λk for the monomials bk(x) = xk, k = 0, 1, 3, on the interval [−1, 1].
Answer
absolute value of the largest coefficient of the polynomials λk:

Problem 5.1.5 Dual Functions for Bilinear B-Splines
Construct dual functions for bilinear B-splines with grid width h, making an ansatz with
piecewise bilinear functions with the same support as the corresponding B-splines.
Answer
largest value of the dual functions at the grid points for h = 1:

5.2 Stability

Problem 5.2.1 Lower Bound for the Condition Number of the Ritz-Galerkin
Matrix for Unstable Bases
Show that

sup
h
h2 condGh =∞

for the Ritz-Galerkin matrix Gh of the Poisson problem on the unit ball and weighted B-splines
wbk, w(x) = 1− ‖x‖2.
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Problem 5.2.2 Stability of WEB-Splines in the Maximum Norm
Prove the stability of WEB-splines in the maximum norm:

sup
x∈D

∣∣∣∣∣∑
i∈I

ciBi(x)

∣∣∣∣∣ � max
i∈I
|ci|

for a standard weight function.

5.3 Polynomial Approximation

Problem 5.3.1 Dependence of the Constant in Bramble-Hilbert’s Estimate for a
Hyperrectangle
Derive the following special case of Bramble-Hilbert’s estimate:

inf
c
|f − c|0,R ≤ const(m) diam(R) |f |1,R ,

where R is a hyperrectangle in Rm. In other words, show that the constant is independent of
the ratios of the side lengths for hyperrectangles, while in general the estimate might depend
on the shape of the domain.

Problem 5.3.2 Dependence of the Constant in Bramble-Hilbert’s Estimate on the
Domain
Show that the dependence of the constant in Bramble-Hilbert’s estimate on the domain is
essential by giving a counterexample to the inequality

inf
c
|f − c|0,D ≤ const diam(D) |f |1,D ,

where D ⊂ R2 and const neither depends on D nor on f .

5.4 Quasi-Interpolation

Problem 5.4.1 Error of a Bilinear Interpolant for Smooth Functions
By a direct argument, show that the error of a bilinear spline interpolant with grid-width h is
of order O(h2) for smooth functions.

Problem 5.4.2 Schoenberg’s Scheme for WEB-Splines
For a standard weight function w of a domain D and a smooth function f which vanishes on
∂D show that

f(x)−
∑
i∈I

f(xi)Bi(x) = O(h) ,

where xi are the centers of the interior grid cells, used in the normalization of the WEB-splines.

5.5 Boundary Regularity

Problem 5.5.1 Differentiability of Univariate Quotients
Assume that w is a univariate weight function with w(0) = 0, w′(0) > 0, and w(x) > 0 for
x > 0. Show that the quotient u/w is ` times continuously differentiable on [0, 1] if u(0) = 0
and u and w have continuous derivatives up to order ` + 1. Give an example which confirms
that the division causes a loss of approximately one order of differentiability.

Problem 5.5.2 Bounded Gradient of a Quotient with R-Functions
Prove that, for a smooth function u which vanishes on the positive coordinate axes, the quotient
u/w, w(x, y) = x+ y −

√
x2 + y2, has a bounded gradient on D = (0, 1)2.
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Problem 5.5.3 Bounds for the derivatives of R-Functions
Show that

|∂αr| � r1−|α| ,

where r =
√
x2

1 + · · ·+ x2
m.

5.6 Error Estimates for Standard Weight Functions

No problems for this section.



6 Boundary Value Problems 21

6 Boundary Value Problems

6.1 Essential Boundary Conditions

Problem 6.1.1 Function on an Annulus with Prescribed Boundary Conidtions
Construct a function u, defined on an annulus

D : 1 < x2 + y2 < 4 ,

which satisfies ∂⊥u(x, y) = x on the inner and u(x, y) = y on the outer boundary.

Problem 6.1.2 Progam: Elimination of Boundary Values and Solution of Poisson’s
Problem
Write a program u = poisson inhomogeneous(f,g,H,n) which solves the inhomogeneous
Poisson problem

−∆u = f in D = (0, 1)2, u = g on ∂D ,

for polynomial data (p(x, y) =
∑

j,k pj,kx
j−1yk−1, p = f, g) with weighted splines of degree n

and grid-width 1/H using the FEMB package.
Answer
maxu for f = g = [1, 1, 1; 1, 1, 1; 1, 1, 1], H = 10 and n = 3:

Problem 6.1.3 Program: Error of Weighted Spline Approximations for Poisson’s
Problem
Write a program [u,error] = bvp convergence(H,n) which computes a weighted spline ap-
proximation of degree n with grid-width 1/H for the Poisson problem

−∆u = exp(x3y2z), (x, y, z) ∈ D : x2 + y4 + z6 < 1 ,

with homogeneous Dirichlet boundary conditions. The program evaluates the solution at the
centers of the grid cells with width 1/(2H) and obtains an error estimate in the maximum norm
by comparing with a solution for the fine grid at these points.
Answer
error for H = 8 and n = 2:

6.2 Natural Boundary Conditions

Problem 6.2.1 Convergence of Richardson’s Iteration for the Neumann Problem
for Poisson’s Equation
Show that the Richardson-Iteration

U ← U + (F −GU)/‖G‖

for the Ritz-Galerkin approximation with WEB-splines of the Neumann problem for Poisson’s
equation,

−∆u = f in D, ∂⊥u = 0 on ∂D ,

(
∫
D
f = 0) converges.
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Problem 6.2.2 Ritz-Galerkin System Describing Flow in a Channel
For biquadratic B-splines bk with grid width h, determine the entries

gk =

∫
Γ0

bk −
∫

Γ1

bk, Γν = {νL} × (0, 1), k ∼ {0, L} × (0, 1) ,

of the right side of the Ritz-Galerkin system describing flow in a channel of integer length L.
Answer∑

k |gk| for h = 1/10:

6.3 Mixed Problems with Variable Coefficients
Problem 6.3.1 Program: Bivariate Second Order Boundary Value Problem with
Variable Coefficients
Write a program [u,r] = bvp bivariate(H,n) which solves the boundary value problem

− div(exy gradu) = 1, u(x, 0) = 0 ,

on the halfdisc in the first quadrant with radius 1/2 and center (1/2, 0) using weighted splines
of degree n and grid-width 1/H. The numerical solution u is evaluated at the centers of the
grid cells. Moreover, the maximum absolute value r of the residual is computed.
Answer
r for H = 10 and n = 3:

Problem 6.3.2 Unique Solvability of a Univariate Boundary Value Problem
For which values of the parameters α, β ∈ R does the boundary value problem

u′′ = αu, u′(0) = 0, u′(1) + βu(1) = p ,

have a unique solution for any p ∈ R?
Answer
for α = −π2/16, β 6=

Problem 6.3.3 Ellipticity of a Bilinear Form with Variable Coefficients
Show that the bilinear form

a(u, v) =

∫
D

gradu grad v +

∫
D

(a gradu)v

is elliptic on H1
0 (D) if α = supx∈D ‖(a1(x), a2(x), . . .)‖ is sufficiently small.

Problem 6.3.4 Hypothesis of the Lax-Milgram Theorem
Determine the variational equations a(u, v) = λ(v) for the partial differential equation

− div (cos(xy) gradu) + eyu = ln |x|, (x, y) ∈ D = (−1, 1)2

with Dirichlet boundary conditions (u = 0 on ∂D). Verify the hypothesis of the Lax-Milgram
theorem, i.e., find ellipticity constants cb and ce for the bilinear form a on H1

0 (D) and show the
boundedness of λ on L2(D).
Answer
‖λ‖0:
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Problem 6.3.5 Hypothesis of the Lax-Milgram Theorem
Determine the variational equations a(u, v) = λ(v) for the partial differential equation

−eyuxx − uyy + cosxu = ln(x2 + y2), (x, y) ∈ D : r =
√
x2 + y2 < 1,

with Dirichlet boundary conditions (u(x, y) = 0 for r = 1). Verify the hypothesis of the Lax-
Milgram theorem, i.e., find ellipticity constants cb and ce for the bilinear form a on H1

0 (D) and
show the boundedness of λ on L2(D).
Answer
‖λ‖0:

Problem 6.3.6 Robin Boundary Condition for a Ritz-Galerkin Approximation
with Hat-Functions on an Annulus
Consider the Ritz-Galerkin approximation with hat-functions of the boundary value problem

−∆u = f, ∂⊥u|Γ1 = 0, u|Γ2 = 0 ,

on the annulus bounded by the circles Γr : ‖x‖ = r with radii r = 1, 2. Describe the modification
of the Ritz-Galerkin system, if the natural boundary condition is replaced by

∂⊥u+ 2u = 3 on Γ1

and all boundary triangles of the triangulation have edge length h.
Answer
largest modification of a matrix or vector entry: h

6.4 Biharmonic Equation

Problem 6.4.1 Radially Symmetric Solution of the Biharmonic Equation
Determine the radially symmetric solution of the boundary value problem

∆2u = 1 in D, u = ∂⊥u = 0 on ∂D ,

with D : r2 = x2
1 + x2

2 < 1 the unit disc.
Answer
u(0, 0):

Problem 6.4.2 Program: Ritz-Galerkin Approximation of a Univariate Fourth
Order Problem with Quadratic B-Splines
Write a program [u,e] = fourth order(H) which computes the solution of the boundary
value problem

u(4) = 1, u(0) = u′(0) = u(1) = u′(1) = 0 ,

at the grid points 0, 1/H, . . . , 1 as well as the error e = max0<`<1/H |u` − uexact(`/H)|.
Answer
error for H = 32:
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Problem 6.4.3 Ritz-Galerkin Matrix for the Biharmonic Equation and Biquadratic
B-Splines
Determine the entries of the Ritz-Galerkin matrix for the biharmonic equation and biquadratic
B-splines:

gj,k =

∫
∆b

(2,2)
j,h ∆b

(2,2)
k,h .

Answer
largest entry for h = 1:

Problem 6.4.4 Weak Form and Existence for a Biharmonic Equation with Non-
standard Boundary Conditions
Determine the weak form of the boundary value problem

∆2u = 0 in D, u = 0, (∂⊥)2u = f on ∂D ,

and show the existence of a unique solution for f ∈ H1(D) and a domain D with smooth
boundary.

6.5 Linear Elasticity

Problem 6.5.1 Strain Tensor for a Radially Symmetric Displacement
Compute the strain tensor ε(u) for a radially symmetric displacement u(x) = ϕ(r)x, r =
(x2

1 + x2
2 + x2

3)1/2.
Answer∑

k,` εk,` for ϕ(r) = r2 and x = (1, 1, 1):

Problem 6.5.2 Program: Elasticity Bilinear Form for Hat-Functions on a Tetra-
hedron
Write a program G = P sigma epsilon hat(P,lambda,mu) which computes the 4× 4 · (3× 3)
block matrix ∫

[p1,p2,p3,p4]

σ(Bkeα) : ε(B`eβ)

for the hat-functions Bj which correspond to the vertices pj of a tetrahedron and the unit
vectors e1, e2, e3.
Answer∑

k,`,α,β |gk,`,α,β| for the standard simplex with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1)

and λ = µ = 1:

Problem 6.5.3 Relation Between Stress and Strain Tensor
Express the strain tensor ε in terms of the stress tensor σ.
Answer
traceσ/ trace ε for λ = µ = 1:
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6.6 Plane Strain and Plane Stress
Problem 6.6.1 Program: Deformation of a Tunnel under a Constant Volume Force
Write a program d = tunnel(H,n) which computes the maximal displacement of a concrete
tunnel (Young modulus E = 1, Poisson ratio µ = 1/4), with cross section bounded by two
parabolas and the x-axis, under a constant volume force f = (0,−1). Use splines of degree
n and grid-width 1/H. The parabolas pass through the points (1/2, 3/4), (1/2 ± 1/4, 0) and
(1/2, 1), (1/2±1/2), respectively, and the structure is fixed at the horizontal boundary (y = 0).
Answer
dmax:

Problem 6.6.2 Coercivity of the Plane Strain Bilinear Form
Show that the bilinear form ∫

D

ε(u)Qstrain ε(v)

is coercive on H1
0 (D)×H1

0 (D).

Problem 6.6.3 Plane Strain Bilinear Form for Pairs of Basis Functions
For given basis functions Bj, Bk and the unit vectors e1, e2, determine the entries

gα,β =

∫
D

ε′(Bjeα)Qstrain ε(Bkeβ), 1 ≤ α, β ≤ 2 ,

of the block matrices appearing in the Ritz-Galerkin system for the plane strain model in terms
of the integrals a`,m =

∫
D
∂`Bj∂mBk.

Answer
number of integrals making up a matrix entry:

Problem 6.6.4 Program: Deformation of an Eccentric Rotating Disc
Write a program u = rotating disc(d,r,H,n) which computes the displacement of a steel
disc (Young modulus E = 1, Poisson ratio µ = 1/5) with radius 1/2 and inner axis with radius
r, dislocated by a distance d, under a centrifugal force (proportional to the distance to the
center of the axis). Use splines of degree n and grid-width 1/H.
Answer
maximal absolute value of the components of the dispacement u at the centers of the grid cells
for d = 1/20, r = 1/10, H = 10, n = 3:
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7 Multigrid Methods

7.1 Multigrid Idea

Problem 7.1.1 Program: V-Cycle for a Univariate Model Problem with Hat-
Functions
Write a program W = V cycle(U,F,alpha) which implements one step of the v-cycle with
hat-functions for the model problem

−u′′ = f, u(0) = 0 = u(1) .

Use α Richardson iterations and a coarsest grid with only 1 unknown, i.e., hmax = 1/2.
Answer
(
∑

k w
2
k)

1/2 for U = (0, . . . , 0)t, F = (sin(π/32), . . . , sin(31π/32))t, and α = 4:

Problem 7.1.2 Grid Transfer for the Fourier Basis with the Univariate Multigrid
Restriction Operator
Show that the univariate multigrid restriction operator

P t =

 1/2 1 1/2
1/2 1 1/2

. . . . . . . . .


leaves the Fourier components corresponding to slow frequencies
(θ = π, 2π, . . . , (1/(2h)− 1)π) invariant up to scaling:

P tEh
θ = sθE

2h
θ , (Eh

θ )k = sin(θkh) .

Answer
sθ for h = 1/64, θ = 16π:

Problem 7.1.3 Representation of Moments for Univariate Hat-Functions
Construct a function r such that

ri =

∫ 1

0

rbi ,

for given moments ri and bi the univariate hat-functions with support ih + [−h, h], i =
1, . . . , 1/h− 1.
Answer
maxx r(x) for the construction outlined in the hint, h = 1, and ri = δi,k:

Problem 7.1.4 Program: Norm of the Univariate Two-Grid Iteration Matrix
Write a program r = norm two grid(h,alpha) which computes the norm of the two-grid it-
eration matrix with α Richardson steps for the Ritz-Galerkin approximation of the model
problem

−u′′ = f, u(0) = 0 = u(1) ,

with hat-functions.
Answer
norm for grid width h = 1/32 and α = 4 Richardson iterations:
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7.2 Grid Transfer
Problem 7.2.1 Program: Extension of Bilinear Splines to a Finer Grid
Write a program V = extend bilinear(U) which extends a coefficient vector for bilinear
splines to a finer grid.
Answer∑
vk for uk = k1k2, kν = 0, . . . , 10:

Problem 7.2.2 Algorithmic Description of the Grid Transfer for Univariate B-
Splines
The transfer of univariate B-spline coefficients U to a finer grid (multigrid extension) amounts
to duplicating each entry uk and then forming n-times a simultaneous average of all adjacent
entries. Give an analogous description for the multigrid restriction operation.
Answer
largest entry of the restriction of U = (1, 2, 3, 4) for n = 2:

Problem 7.2.3 Program: Multigrid Extension for Univariate B-Splines
Write a program V = extend(U,n), which transfers the coefficients of B-splines of degree n on
the standard interval [0, 1] to a finer grid.
Answer∑

k vk for U = (1, 4, 9, . . . , 81)t and n = 2:

Problem 7.2.4 Program: Multigrid Restriction for Univariate B-Splines
Write a program U = restrict(V,n), which transfers the coefficients of B-splines of degree n
on the standard interval [0, 1] to a coarser grid.
Answer∑

k uk for V = (1/1, 1/2, . . . , 1/9)t and n = 3:

7.3 Basic Algorithm

Problem 7.3.1 Operation Count for a Recursive Algorithm
Consider the algorithm

U → V = M(U, k)
V = S(U, k)
if k > 0
V = M(V, k − 1)

end

where the function S requires ≤ α2βk + γ operations (α, β, γ > 0). Show that the total number
of operations required by M is ≤ c2βk where the constant does not depend on k.

Problem 7.3.2 Program: Jacobi Iteration for a Ritz-Galerkin System in Sparse
Format
Write a program V = jacobi(U,G,F) which implements a step U → V of the Jacobi iteration
for the Ritz-Galerkin system GU = F . Assume that the matrix G is stored as a (H + n) ×
(H + n)× (2n+ 1)× (2n+ 1) array where n denotes the B-spline degree and H the number of
grid cells per coordinate direction.
Answer
minj,k vj,k for H = 10, n = 3, uj,k = jk, and the Ritz Galerkin matrix containing 100 on the

diagonal and 1 on the offdiagonals:
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7.4 Smoothing and Coarse Grid Approximation

Problem 7.4.1 Program: Smoothing of Richardson’s Iteration for a Univariate
Model Problem
Write a program r = richarson smoothing(F,steps) which plots the residuals generated
by steps Richardson iterations for the Ritz–Galerkin discretization with hat-functions of the
model problem

−u′′ = f, u(0) = 0 = u(1) ,

and computes the average reduction factor r of the residuals in the 2-norm.
Answer
r for 10 steps and F = (sin(1), . . . , sin(31))t:

7.5 Convergence

Problem 7.5.1 Convergence of a Power Recursion
Determine the restriction on the parameters r, s > 0 for which the sequence 0 = %0, %1, . . .,
generated by the recursion

%`+1 = r + s%m` (m > 1)

converges.
Answer
maximal admissible r if m = s = 3:
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8 Implementation

8.1 Boundary Representation

Problem 8.1.1 Parametrization of a Segment of a Hyperbola
Determine a rational quadratic parametrization of the segment of a hyperbola, defined implicitly
by xy = 1, 0 < x, y ≤ a.
Answer
middle weight of a parametrization with w0 = w2 = 1 for a = 2:

Problem 8.1.2 Implicit Representation of a Quadratic Bézier Curve
Derive an implicit representation of the rational Bézier curve with control points and weights c0 1

c1 w
c2 1

 =

 1 0 1
0 0 1/2
0 1 1

 ,

thereby showing that the curve parametrizes an ellipse.
Answer
ratio of the lengths of the larger and smaller axis:

Problem 8.1.3 Approximation of a Sphere by Bi-Quadratic Bézier Patches
Determine a fully symmetric approximation of the sphere S : x2

1 + x2
2 + x2

3 = 3 by 6 bi-
quadratic polynomial Bézier patches. The patches should touch the sphere at (±1,±1,±1)
(endpoint interpolation) as well as at (±

√
3, 0, 0), (0,±

√
3, 0), (0, 0,±

√
3).

Answer
maximum of the third components of the control points:

8.2 Classification of Grid Cells
Problem 8.2.1 Maximizing the Distance of Critical Points to Grid Cell Boundaries
Determine a shift s ∈ [0, 1)m such that the distance of given critical points x1, . . . , xL to the
shifted grid with cells (s+ k + [0, 1)m)h, k ∈ Zm, is maximal.

Problem 8.2.2 Sufficient Condition for Inner Grid Cells in Terms of the Weight
Function
Let Q = xQ + [−1/2, 1/2]mh be a grid cell and D : w(x) > 0 be a bounded implicitly defined
domain in Rm. If supx∈D | gradw(x)| ≤ c, derive a lower bound on δ = w(xQ) that guarantees
that Q ⊆ D.
Answer
lower bound for δ for c = h = 1 and m = 4:

Problem 8.2.3 Stability of for Modified B-Spline Classification
Let D : w > 0 be a bounded domain with smooth boundary described by a standard weight
function w. Modifying the web-spline classification, we can select inner B-splines bi by requiring
that w is positive at the centers of their support. Prove that, also for this alternative definition,
each set D ∩ supp bi contains a ball of radius ≥ c(w)h, which is an essential property for
stability.
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8.3 Evaluation of Weight Functions

Problem 8.3.1 Program: Distance to a Planar Rational Bézier Curve
Write a program [r,d] = distance bezier(C,w,x) which computes the distance d = ‖x −
r(t)‖ of a point x to a planar rational Bézier curve, parametrized by

t 7→ (r1(t), r2(t)) =

∑n
ν=0(cν,1, cν,2)ων β

n
ν (t)∑n

ν=0 ων β
n
ν (t)

, 0 ≤ t ≤ 1 .

Answer
distance for C = [3, 0; 0, 0; 0, 2], w = [1; 2; 3], x = [1, 1]:

Problem 8.3.2 Program: Distance to the Boundary of an Implicitly Defined Do-
main
Write a program [x,d] = distance boundary(w,p,x0,tol) which computes a closest point
x to p on the boundary of a domain D : w > 0 as well as the distance d of p to ∂D. Use
Newton’s method and assume that w returns values, gradient, and Hesse-matrix and that the
starting guess x0 is sufficiently accurate.
Answer
distance for w(x) = x4

1 − 4x2
1 + x2

2 − 1, p = (1, 0), x0 = (0, 1), and tol = 1e− 10:

8.4 Numerical Integration

Problem 8.4.1 Numerical Integration of Bilinear Splines Over a Boundary Cell
For Ω : 0 ≤ x1, x2 ≤ 1, x2 ≤ x2

1 and bilinear B-splines bk with grid width 1, determine weights
γk such that ∫

Ω

p(x) dx =
∑
k

γkck, p =
∑
k

ckbk .

Answer∑
k 1/γk =

Problem 8.4.2 Gauß Parameters for a Bivariate Boundary Cell
Using the univariate formula

1∫
0

f ≈ 1

2
f(1/2−

√
3/6) +

1

2
f(1/2 +

√
3/6) ,

determine weights γ` and nodes (x`, y`) for integration over the boundary cell

Ω : 1− 2xy > 0 , 0 < x, y < 1 .

Answer
approximation of

∫
Ω
xy dxdy:
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Problem 8.4.3 Dependence of the Accuracy of Gauß Formulas on the Order of
Integration
Compute the area of

D : y3 ≤ x ≤ h, 0 ≤ y ≤ h ,

with a piecewise Gauß formula of order 4 using both possible orders of integration and compare
the results.
Answer
order of accuracy for the less accurate integration order:

8.5 Matrix Assembly

Problem 8.5.1 Operations for Computing Ritz-Galerkin Integrals
How many operations are needed to generate the Ritz-Galerkin integrals∫

Q

grad(wbk) grad(wb`)

for a grid cell Q ⊂ Rm and all relevant pairs of m-variate B-splines of degree n if a numerical
integration formula ∫

Q

f ≈
p∑

α=1

cαf(xα1 , . . . , x
α
m)

with points xα in the interior of Q is used and the weight function w is a linear combination
of B-splines of degree n? Assume that the Taylor form of the univariate B-spline segments has
been generated in a preprocessing step so that Horner’s scheme is applicable.
Answer
operations for m = 2: c pn4 +O(n3) with c =

Problem 8.5.2 Program: Conversion of a Ritz-Galerkin Array to Sparse Matrix
Format
Write a program A = convert matrix(G) which stores a bivariate Ritz-Galerkin matrix, re-
presented in B-spline format by a (H + n)× (H + n)× (2n+ 1)× (2n+ 1) array, as a standard
sparse matrix labeling the grid positions (k1, k2) by a single index k = k1 + (k2 − 1)(H + n).
Answer∑

i,j i+ j + ai,j for H = 4, n = 1 and gi,j,k,` = i+ j + k + `:
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1 Introduction
Problem 1.0.1 Use the program example BASIC of the FEMB-package as a template.
Recall the formula ∆ = 1

r
(rur)r for the Laplace operator in polar coordinates.
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2 Basic Finite Element Concepts

2.1 Model Problem
Problem 2.1.1 Note that the test functions are not restricted at the interval endpoints
x = 0 and x = 1. Moreover, use that ϕ(1)v(1) +

∫ 1

0
ψv = 0 for all v implies ψ = 0 as well as

ϕ(1) = 0.

Problem 2.1.2 For the quadratic energy functional Q derive a differential equation for
the solution u from the inequality

Q(u+ tv) ≥ Q(u) ,

which holds for all smooth v with v(0) = 0.

Problem 2.1.3 Multiply by a test function v with v(0) = v(1) = 0 and integrate over
(0, 1) to obtain the weak form of boundary value problem. Guess an appropriate energy
functional and check that the characterization of a minimum does indeed lead to the weak
form.
Problem 2.1.4 Use the orthogonality of the basis functions and their derivatives:∫ π

0

sin(jx) sin(kx) dx =

∫ π

0

cos(jx) cos(kx) dx =
π

2
δj,k

for 0 < j, k.

Problem 2.1.5 Note that a minimizer u ∈ H of the energy functional

Q(u) =
1

2
a(u, u)− λ(u)

satisfies the variational equations a(u, v) = λ(v) ∀v ∈ H.

Problem 2.1.6 Recall that
∫
bjbk = hsj−k where s−1, s0, s1 are the values of the cubic

B-spline at the interior knots 1, 2, 3.

Problem 2.1.7 In deriving the variational equations note that
∫
D
. . . = 2π

∫ 1

0
. . . r dr for

the unit disc D. Moreover, observe that the integrals
∫ 1

0
exp(r2)Bk(r) r dr can be computed

recursively.

2.2 Mesh Based Elements
Problem 2.2.1 Since the support [kh− h, kh+ h] of the hat-functions Bk,
k = 1, . . . , 1/h− 1, consists only of two grid intervals, the Ritz–Galerkin matrix is tridiagonal.

Problem 2.2.2 The hat-functions Bi, Bj, Bk, which are nonzero on the triangle T ,
contribute the submatrix ∫

T

gradBm gradBm′ , m,m′ ∈ {i, j, k} .

The gradients are constant on T and their values can be determined from the derivatives in
the directions of the triangle edges.

Problem 2.2.3 Use that Bm as well as f are linear on the edges of the tetrahedron to
compute the values of fBm at the midpoints (pm + pm′)/2.
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Problem 2.2.4 Compute the contributions to the L2-norm separately for each triangle
by transformation to the standard triangle with vertices (0, 0), (1, 0), and (0, 1).

Problem 2.2.5 Use an auxiliary array E to avoid double vertices. The entry ej,k
contains the vertex number of the midpoint of the edge [(pj,1, pj,2), (pk,1, pk,2)].

Problem 2.2.6 Use the geometric definition of the gradient; direction and length can be
determined without computations. Note that by symmetry all off-diagonal entries have the
same value.

Problem 2.2.7 Count the triangular Lagrange functions which form a basis. Use
Euler’s formula t− e+ v = 1 to determine the number of edges e.

Problem 2.2.8 Write a recursive program by decomposing the Lagrange function into
appropriate linear factors (quotients of determinants). Use the factorization to reduce the
degree.

Problem 2.2.9 Consider the images of the line segments {x} × [0, 1].

Problem 2.2.10 Use the quadrature formula∫
T

p =
areaT

3

∑
k∼T

p(ek)

with ek, k ∼ T, the midpoints of the edges of the triangle T .

2.3 Sobolev Spaces

Problem 2.3.1 Compute first the univariate sine coefficients a` = 2
∫ 1

0
ϕ(t) sin(π`t) dt

for the functions ϕ(t) = 1 and ϕ(t) = t.

Problem 2.3.2 ∂νr = xν/r.

Problem 2.3.3 Show that the homogeneous boundary conditions are not compatible
with the differential equation. Moreover, prove that the sine/cosine expansion of the first
order partial derivatives is absolutely convergent.

Problem 2.3.4 Compute, e.g., ∂1f(x) for x 6= (0, 0). To derive the identity∫
∂1fϕ = −

∫
f∂1ϕ, split the integrals over the sets Bε and D\Bε where Bε is a small disc

with center (0, 0) and D contains the support of the test function ϕ.

Problem 2.3.5 Consider a sequence of functions ϕ` ∈ H1
0 (D) which converge to the

constant function, thereby concluding that this function, which obviously belongs to H1(D),
is not an element of H1

0 (D). Use the Poincaré-Friedrichs inequality.

2.4 Abstract Variational Problems
Problem 2.4.1 The derivative of the function v ∈ H1

0 (−1, 1) has a jump discontinuity
at x = 0. Take this into account by integrating the scalar product 〈u, v〉 by parts, separately
on the subintervals (−1, 0) and (0, 1).

Problem 2.4.2 Derive a partial differential equation for the representing function and
solve it using polar coordinates.

Problem 2.4.3 For H1
0 , the Sobolev semi-norm is a norm in view of the

Poincare-Friedrichs inequality. Write the integrand as graduA grad v and determine the
eigenvalues of A to obtain optimal bounds.

Problem 2.4.4 Determine first the minimum and maximum of x1x2 on D.



2 Basic Finite Element Concepts 37

Problem 2.4.5 The Ritz-Galerkin projection p satisfies the variational equations

a(p,Bk) = λ(Bk)

with Bk a basis of the approximating finite element space.

Problem 2.4.6 The convergence rate is optimal if the spectral radius of the iteration
matrix is smallest.

Problem 2.4.7 Verify the hypotheses of the Lax-Milgram theorem. Use
u(x) =

∫ x
0
u′(y) dy for u ∈ H1

0 (0, 1).

2.5 Approximation Error

Problem 2.5.1 By the mean value theorem, in every interval Dk = kh+ [0, h], there
exists a point xk with u′(xk)− u′h(xk) = 0. Use this fact to estimate

∫
Dk
|u′ − u′h|2, noting that

u′h is constant on Dk with vanishing second derivative.



38 II Hints

3 B-Splines

3.1 The Concept of Splines

Problem 3.1.1 Denote by [p]x = p(x+)− p(x−) the jump of a function p at x and
represent the spline space S as the kernel of the linear map

L : p 7→ ([p]h, [p
′]h, [p]2h, [p

′]2h, . . .)

between appropriate vector spaces P and V . Use that dimP = dim(kerL) + dim(imL) .

Problem 3.1.2 Consider the Taylor polynomials on adjacent intervals [k − 1, k]h and
[k, k + 1]h and eliminate the unknown derivatives p′′(kh), p′′′((k ± 1)h) in terms of the
Hermite data p`, p

′
`, ` = k − 1, k, k + 1.

3.2 Definition and Basic Properties

Problem 3.2.1 Differentiate the recursion for the derivative of bn.

Problem 3.2.2 Use induction on n and the recursion for the derivative of a B-spline.

3.3 Recurrence Relation

Problem 3.3.1 Use the recurrence relations for bn and (bn)′.

3.4 Representation of Polynomials

Problem 3.4.1 Use the tabulated expressions of the B-spline segments.

Problem 3.4.2 Express p as linear combination of the monomials x 7→ (x− `)n,
` = 0, . . . , n, and apply Marsden’s identity. Use the Matlab functions polyval and polyfit.

Problem 3.4.3 Obtain a first formula for ck with the aid of Marsden’s identity. Derive
some qualitative properties of the coefficients (degree, symmetry, etc.). Then, use induction
on n or, alternatively, a computer algebra system.

Problem 3.4.4 Use Marsden’s identity to obtain representations for the monomials x`.

Problem 3.4.5 Express b as a linear combinations of B-splines, and, by considering
intervals adjacent to the support of b, conclude that all B-spline coefficients must be zero.

3.5 Subdivision

Problem 3.5.1 The grid width h has no effect on the algorithm.

Problem 3.5.2 Show first that each subdivision step reduces the maximal difference of
adjacent coefficients at least by a factor 1/2.
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Problem 3.5.3 By scaling, one may assume that h = 1. First, consider the subdivision
of piecewise constant splines, i.e., the identity∑

k

ck b
0(x− k) =

∑
`

c0
` b

0(mx− `) .

Then, raise the degree by forming the integral average

f 7→
∫ 1

0

f(· − t) dt

on both sides, leading to an algorithm for successively computing the refined coefficients
c1
` , c

2
` , . . . for cardinal splines of degree 1, 2, . . ..

3.6 Scalar Products
Problem 3.6.1 Use the formulas for snk and dnk and that the B-splines form a partition of
unity.

Problem 3.6.2 Repeatedly apply two steps of the recurrence relation for B-splines,
exploiting also their symmetry with respect to the midpoint of their support.
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4 Finite Element Bases

4.1 Multivariate B-Splines

Problem 4.1.1 Use symmetry, the formula for univariate B-splines on the first knot
interval,

bn(x) = xn/n! ,

and that the B-spline values sum to 1.

Problem 4.1.2 First, determine the values and derivatives of the univariate B-spline b3
0,1.

Problem 4.1.3 By definition, b
(2,2)
(0,0),1(x) = b2(x1)b2(x2), where b2 is the univariate

B-spline with knots 0, 1, 2, 3.

Problem 4.1.4 Use the tabulated values of scalar products of univariate B-splines and
their derivatives. Moreover, note that the row values sum to 0.

Problem 4.1.5 First, compute the values and second derivatives of the univariate cubic
B-spline at the knots 1, 2, 3 and recall that b3

(0,0),1 is a product of univariate B-splines.

Problem 4.1.6 First, evaluate the univariate B-spline b at the points 0, 1/H, . . . , n+ 1.
Then, accumulate the array p by noting that ckb(j1/H)b(j2/H) contributes to the value of the
spline ∑

ckb
n(x1 − k1)(bn(x2 − k2)

at x = `/H with ` = j + kH. In loops over jν , the corresponding array positions p` can be
updated simultaneously. Finally, clip the values outside the standard parameter domain.

4.2 Splines on Bounded Domains

Problem 4.2.1 Use Marsden’s identity and the product form of the polynomial.

Problem 4.2.2 Use the univariate Marsden identity to find representations of the
monomials 1, t, t2 and form appropriate linear combinations for the x1- and x2-components.

4.3 Weight Functions

Problem 4.3.1 By symmetry the line segment has the form [−a, a]× {0}. It consists of
intersections of normals at points on opposite sides of the ellipse.

Problem 4.3.2 Use polar coordinates (u, v) = r(cos t, sin t) and l’Hospital’s rule to
estimate the quotient |w(u, v)|/|max(u, v)|.
Problem 4.3.3 Use the Matlab-commands switch, strcat, fprintf, fopen, and
fclose.

Problem 4.3.4 Use polar coordinates (x, y) = r(cos t, sin t) and consider successively the
Taylor polynomials of w of order 1, 2, and 3.

4.4 WEB-Splines

Problem 4.4.1 By translation invariance and symmetry, one may assume I(j) = {0, 1}2

and has to consider only j = (2, 1) and j = (2, 2).

Problem 4.4.2 Observe that ei,j = ei1,j1ei2,j2 and that the array (ei,j)i∈I only depends on
j − ` where ` is the lower left corner of I.
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Problem 4.4.3 Use that ei,j =
∏d

ν=1 eiν ,jν and that the univariate extension coefficients
are values of Lagrange polynomials which can be computed with the aid of the Matlab
functions polyfit and polyval.

Problem 4.4.4 The extension coefficients are values of the bilinear Lagrange polynomial
which equals 1 at the grid point i.

Problem 4.4.5 The extension coefficients ei,j are the values at j of the bilinear Lagrange
polynomials corresponding to the 2× 2–array I(j).

Problem 4.4.6 Because of the product form of ei,j it suffices to consider univariate
Lagrange polynomials. Express the fractions in terms of binomial coefficients.

4.5 Hierarchical Bases
Problem 4.5.1 The number of relevant B-splines bk,hν on the ν-th level is determined
by the sets Dν and Dν+1; D ∩ supp bk,hν must be contained in Dν , but not in Dν+1.

Problem 4.5.2 Use piecewise linear interpolation with the error bound

min(
√
a+ h, a−3/2h2/8)

on a grid interval [a, a+ h]. Denote the break points of the hierarchical partition by
a` = k`2

−` with k` even, i.e., the partition has the grid width 2−` between a`+1 and a`, and
derive bounds for the integers k`.
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5 Approximation with Weighted Splines

5.1 Dual Functions
Problem 5.1.1 Use a symmetric ansatz, i.e., λi is determined by the value α at the
middle vertex of the support of Bi and the value β at the 6 neighboring vertices. Use the
quadrature formula ∫

T

p =
areaT

3

∑
k∼T

p(ek)

with ek the edge midpoints of the triangle T , for integrating quadratic polynomials.

Problem 5.1.2 Use the ansatz λ∗(x) = r − s(x− 3/2)2. Then, by symmetry, only the
scalar products with two B-splines need to be considered. Use computer algebra for the
integrations and solution of the resulting linear system for the parameters r and s.

Problem 5.1.3 Make the ansatz λ0(x) = r(1− x) + sx and note that, by symmetry,

λ1(x) = s(1− x) + rx. Then, the requirement
∫ 1

0
λj(x)bk(x) dx = δj,k leads to a linear system

for the parameters r, s. Use the orthogonality of the dual functions and the Cauchy-Schwarz
inequality to derive the estimate.

Problem 5.1.4 Make the ansatz λk(x) = αk + γkx
2 for even k and λk(x) = βkx for odd k.

Then, determine the coefficients from the orthogonality conditions
∫ 1

−1
λj(x)bk(x) dx = δj,k.

Problem 5.1.5 By symmetry and translation invariance it suffices to construct a single
dual function with support [−h, h]2. Use the values at the grid points {−h, 0, h}2 as
parameters and note that the integrals need to be computed for one square only.

5.2 Stability

Problem 5.2.1 The condition number is the quotient of the maximum and the minimum
of the Raleigh quotient UGhU/UU , where uk are the coefficients of the weighted B-splines.
Choose grids which have cells with very small intersections with the unit ball. Do not aim for
sharp bounds; crude estimates of the Raleigh quotient for appropriate unit vectors U are
sufficient.

Problem 5.2.2 By scaling you may assume h = 1. To relate the nontrivial upper bound
for |ci| to the standard stability result for B-splines, recall that |w(x`)/w| is bounded on a
subcell Q′` with center x` and width 1/(2

√
m). Moreover, note that the quotients

|w(xj)/w(xk)| are uniformly bounded as well for B-spline pairs bj, bk with some common
support.

5.3 Polynomial Approximation

Problem 5.3.1 Transform R to a hypercube with side length h = diam(R).

Problem 5.3.2 Consider a sequence of U -shaped domains

D = (−2, 2)× (0, 1) \ (−1, 1)× (ε, 1)

with ε→ 0 and functions f : (x1, x2) 7→ rx1/(1 + |rx1|) with r = r(ε).
Note, that the best L2-approximation to f by constants is 0 .
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5.4 Quasi-Interpolation

Problem 5.4.1 Consider [0, h]2 as a typical grid cell. Restricted to this cell, the bilinear
spline is a bilinear polynomial which interpolates at the corners and is linear on the edges of
[0, h]2. Estimate first the partial derivatives of the error on the edges, then the gradient on
the entire grid cell, and finally the interpolation error.

Problem 5.4.2 Prove first that w =
∑

iw(xi)Bi by recalling that linear combinations of
WEB-splines can represent weighted polynomials and considering the identity on inner grid
cells. Then, write the error in the form

∑
i(fw(xi)/w − f(xi))Bi.

5.5 Boundary Regularity

Problem 5.5.1 First, consider the quotients u(x)/x and w(x)/x.

Problem 5.5.2 Represent u and ux by integrating ux and uxy, respectively, and, as a
consequence, show that that u(x, y) = xyv(x, y), where v is smooth on D. To analyze the
quotient, use polar coordinates in conjunction with l’Hospital’s rule.

Problem 5.5.3 Note that ∂νr = xν/r and show by induction that the higher order
partial derivatives are sums of products rβ0xβ11 · · ·xβmm with β0 + β1 + · · ·+ βm = 1− |α|.

5.6 Error Estimates for Standard Weight Functions

No problems for this section.
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6 Boundary Value Problems

6.1 Essential Boundary Conditions

Problem 6.1.1 Use the ansatz u = wf + g, where w is a standard weight function for D
with ∂⊥w = 1 on the inner boundary.

Problem 6.1.2 Transform the problem to standard homogeneous form by setting
u = g + v. Use the weight function w(x) = x1(1− x1)y1(1− y1).

Problem 6.1.3 Transform the domain to fit into the standard bounding box [0, 1]3, and
use the program bvp 3d of the FEMB-package.

6.2 Natural Boundary Conditions

Problem 6.2.1 Note that kerG = spanV 0 with v0
i = 1 ∀i. Represent the error as linear

combination of the eigenvectors V 0, V 1, . . . of the iteration matrix S = id−G/‖G‖.
Problem 6.2.2 Only B-splines bk with k1 ∈ {−2,−1} or k1 ∈ {L/h− 2, L/h− 1} do not
vanish on both boundaries Γν . You may consider k1 = −1, k2 ≥ 0 as a typical case.
Essentially you have to compute an integral over a univariate quadratic B-spline which can be
expressed in terms of cubic B-splines.

6.3 Mixed Problems with Variable Coefficients

Problem 6.3.1 Use the program bvp 2d of the FEMB-package.

Problem 6.3.2 Consider three cases, depending on the sign of α.

Problem 6.3.3 Use the Cauchy-Schwarz inequality to estimate
∫

(a gradu)v and the
inequality ‖u‖0 � |u|1 of Poincaré-Friedrichs.

Problem 6.3.4
∫ 1

0
ln2 x dx = 2.

Problem 6.3.5
∫ 1

0
ln2 r r dr = 1/4.

Problem 6.3.6 Use Simpson’s rule∫ h

0

p = h(p(0) + 4p(1/2) + p(1))/6, degree p ≤ 2 ,

for computing the boundary integrals.

6.4 Biharmonic Equation

Problem 6.4.1 Recall that ∆ = 1
r
∂rr∂r and note that the general radial solution of the

differential equation cannot contain terms which are singular for r = 0.

Problem 6.4.2 The exact solution is a quartic polynomial.

Problem 6.4.3 By scaling you need to consider only the grid width h = 1. Note that
b

(2,2)
k,1 (x1, x2) = b2(x1 − k1)b2

x2−k2 and use computer algebra to compute the integrals of the
B-spline derivatives.

Problem 6.4.4 The invariance of the Laplace operator under orthogonal coordinate
transformations implies that ∆u = f on ∂D. Moreover, by elliptic regularity, ‖u‖2 � ‖∆u‖0

since u = 0 on ∂D.
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6.5 Linear Elasticity

Problem 6.5.1 By the chain rule, ∂νr = xν/r.

Problem 6.5.2 The integrand is a constant which can be determined from the gradients
of the hat-functions. Compute the gradients by considering appropriate directional
derivatives.

Problem 6.5.3 First, derive a relation between the traces of the two tensors.

6.6 Plane Strain and Plane Stress
Problem 6.6.1 Use the plane strain model and the program elasticity 2d of the
FEMB-package.

Problem 6.6.2 In view of the inequality of Poincare-Friedrichs,

|u|1 =

(∫
D

|∂1u1|2 + |∂2u1|2 + |∂1u2|2 + |∂2u2|2
)1/2

is a norm on H1
0 (D)×H1

0 (D). Moreover, by a density argument, it suffices to consider
smooth functions, which is convenient for integrating by parts.

Problem 6.6.3 Use that ε̃Qε =
∑

`,m q`,mε̃`εm.

Problem 6.6.4 Use the plane stress model and the program elasticity 2d of the
FEMB-package.
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7 Multigrid Methods

7.1 Multigrid Idea

Problem 7.1.1 Implement multiplications with the Ritz–Galerkin matrix and the grid
transfer matrices as simple vector operations.

Problem 7.1.2 Use the trigonometric formula

sin(α± β) = sinα cos β ± cosα sin β .

Problem 7.1.3 Use the ansatz r =
∑

k rkλk, where λk is piecewise linear with the same
support as bk, and observe that

∫
λkbi = δi,k.

Problem 7.1.4 Starting from an approximation U , denote the results after α
Richardson and one two-grid steps by V and W , respectively. Then,

V − U∗ = Sα(U − U∗), W − U∗ = T (U − U∗) ,

where U∗ is the exact solution of the Ritz-Galerkin system and S and T are the Richardson
and two-grid iteration matrices.

7.2 Grid Transfer
Problem 7.2.1 Use bilinear interpolation, noting that the coefficients correspond to
values at the grid points.

Problem 7.2.2 Describe the duplication and averaging by matrix operations. Then give
an algorithmic description for the multiplications with the transposed matrices.

Problem 7.2.3 Using a loop over the binomial coefficients, the entries of U affect every
second entry of V . Note, that not all of the refined coefficients are relevant.

Problem 7.2.4 Using a loop over the binomial coefficients, every second entry of V
affects the entries of U . For full vectorization, it is convenient to pad V by zeros before
applying the restriction operation.

7.3 Basic Algorithm

Problem 7.3.1 Derive a recursion for the number of operations required by M .

Problem 7.3.2 Note that the matrix diagonal corresponds to the entries
G(:, :, n+ 1, n+ 1). For an efficient implementation, it is convenient to pad the vector
U(1 : H + n, 1 : H + n) by zeros and loop over the third and fourth indices of G.

7.4 Smoothing and Coarse Grid Approximation

Problem 7.4.1 The residual is generated as part of a Richardson step.

7.5 Convergence

Problem 7.5.1 Illustrate the recursion graphically.
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8 Implementation

8.1 Boundary Representation

Problem 8.1.1 Choose w0 = w2 = 1 and make a symmetric ansatz for the control
points c0, c1, c2. Use that c1 is the intersection of the tangents at the endpoints. Determine
the middle weight w1 by evaluating the parametrization at the midpoint.

Problem 8.1.2 Write the parametrization in the form

x =
2∑

ν=0

γν(t)cν ,

express γν as linear functions of (x1, x2), and observe that γ2
1 = w2

1γ1γ2.

Problem 8.1.3 By symmetry, only the top patch needs to be determined. Use
symmetry and the endpoint interpolation property to determine the patch boundaries.
Finally, evaluate the patch at the midpoint to determine the middle control point.

8.2 Classification of Grid Cells
Problem 8.2.1 Consider each component separately and determine sν by maximizing

min
`

min
kν∈Z
|x`ν − (sν + kν)hmodh| .

Problem 8.2.2 Use the formula w(y)− w(x) =
∫ 1

0
grad(x+ t(y − x))(y − x) dt.

Problem 8.2.3 Show first that for any point x ∈ ∂D and any r < rmax there exists a ball
Bx,r ⊂ D with radius r and center with distance 2r from x which is contained in D. To this
end use bounds on the gradient and Hesse matrix of w and a quadratic Taylor approximation
of w near the boundary.

8.3 Evaluation of Weight Functions

Problem 8.3.1 The closest point r(t) to x is either one of the endpoints r(0) or r(1) or
satisfies

ϕ(t) = 〈x− r(t), r′(t)〉 = 0 .

Generate the numerator of ϕ by interpolating sufficiently many values of the scalar product.
Use the Matlab programs polyfit and roots.

Problem 8.3.2 Note that a closest point is characterized by the equation
p− x = λ gradw(x).

8.4 Numerical Integration

Problem 8.4.1 The relevant bilinear B-splines are bk, k ∈ {−1, 0}2.

Problem 8.4.2 Determine the intersections of Γ : 1− 2xy = 0 with the boundary of
(0, 1)2 and partition Ω accordingly. Map the tensor product Geuß formula to the resulting
subdomains.
Problem 8.4.3 The scaled univariate Gauß formula∫ h

0
f ≈ h(f(1/2−

√
3/6) + f(1/2 +

√
3/6))/2 is used in both coordinate directions. Note, that

the set D has to be split at corner points.
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8.5 Matrix Assembly

Problem 8.5.1 Note that, in view of symmetry, only roughly half of the
(n+ 1)m × (n+ 1)m relevant B-spline pairs need to be considered. Split the computation into
several steps: the evaluation of univariate B-splines and their derivatives, the computation of
the m-variate B-splines and their gradients, the generation of w and gradw, and finally the
numerical integration.

Problem 8.5.2 Recall that for an array element gk1,k2,s1,s2 the indices sν specify the
offset from the main diagonal which corresponds to s = (n+ 1, n+ 1). Use the Matlab
commands reshape, ndgrid, and spdiags.
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