
Finite Element Model of Fracture Formation on
Growing Surfaces

Pavol Federl and Przemyslaw Prusinkiewicz

University of Calgary, Alberta, Canada

Abstract. We present a model of fracture formation on surfaces of bi-
layered materials. The model makes it possible to synthesize patterns of
fractures induced by growth or shrinkage of one layer with respect to
another. We use the finite element methods (FEM) to obtain numeri-
cal solutions. This paper improves the standard FEM with techniques
needed to efficiently capture growth and fractures.

1 Introduction and Background

We consider fracture pattern formation on differentially growing, bi-layered sur-
faces. The top layer, called the material layer, is assumed to grow slower than the
bottom background layer. Through the attachment of the material layer to the
background layer, such differential growth produces increasing stresses in the ma-
terial layer. Eventually, the stresses exceed the material’s threshold stress, which
leads to formation of a fracture. As this process continues, a pattern of fractures
develops. Here we present a method for simulating this pattern formation.

In our method, fracture mechanics [1] is combined with the framework of
the finite element method (FEM) to form computer simulations that can predict
whether and how a material will fail. The FEM is a numerical technique for
solving partial differential equations [10], widely used in mechanical engineering
to analyze stresses in materials under load [10]. Given some initial configuration
of a structure, coupled with boundary conditions and a set of external forces,
the FEM determines the shape of the deformed structure. The deformed shape
represents the equilibrium state, since the sum of internal and external forces at
any point in the structure is zero. Our method is most closely related to that of
O’Brien and Hodgins [3], in that it treats fracture formation in the context of
continuum mechanics and the finite element method. In contrast to their work,
however, we are interested in patterns of fractures, rather than the breaking of
brittle materials.

We consider formation of crack patterns in bark as an example of pattern
formation due to expansion of one material layer with respect to another, and
formation of crack patterns in mud as an example of pattern formation due
to shrinking of one layer with respect to another. Tree bark consists of dead
conductive tissue, phloem, which is expanded by the radial growth of cambium
inside the trunk [6]. As a result of this expansion, the bark stretches until it
reaches its limit of deformation and cracks. In our simulation we use a simplified,
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Fig. 1. The two-layered models of bark and drying mud.

two-layer model of a growing tree trunk (Fig. 1, left). The inside core grows
radially and does not break, while the outer layer, which represents the bark,
may break.

As water evaporates from mud, the mud shrinks. Since water evaporates
faster from the layers closest to the surface, different layers shrink at different
rates with respect to each other. This non-uniform shrinkage of the various layers
leads to material stress and, consequently, to the formation of cracks. We model
drying mud using two layers (Fig. 1, right). The background layer is assumed
to be static, representing either mud that dries very slowly or the surface on
which the drying mud rests. The material layer represents the drying mud and
is attached to the background layer.

We use linear elastic fracture mechanics [1], and approximate the stress field
near a crack tip using the theory of linear elasticity [8]. A fracture occurs where
the maximum principal stress exceeds material’s threshold stress (maximum prin-
cipal stress criterion [8]). The direction of the newly formed fracture is per-
pendicular to the direction of this maximum principal stress. We also use the
maximum principal stress criterion to establish the propagation direction of an
existing fracture. We terminate the propagation of a fracture using the Griffith
energy approach [1]. It states that a fracture propagates as long as the potential
energy released by the fracture exceeds the energy required to form the fracture.
An overview of our algorithm is given in Fig. 2.

2 Fracture Simulation Algorithm

Discretization. We model the material layer as a single layer of three dimen-
sional 6-node wedge elements (prisms) (Fig. 3) [2]. The material layer in which
the cracks are formed is attached to the background layer at attachment points,
which are the bottom three nodes of each wedge element. The attachment points
are randomly placed on the plane or a cylindrical surface, then repelled using a
particle repelling algorithm [7] to obtain more uniform distribution. The result-
ing points are connected into a mesh using Delaunay triangulation.
Growth modeling. The growth of the background layer is modeled by adjusting
the positions at which the wedge elements are attached to it. The trajectory of
each attachment point is defined by its initial position and its velocity vector.
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Fig. 2. Structure of our fracture simulation algorithm.
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Fig. 3. The wedge element and the resulting representations of flat and cylindrical
surfaces.

We consider both isotropic and anisotropic growth [6]. Shrinkage of the material
layer is simulated by adjusting the reference shapes of the wedge elements.

Global stiffness matrix calculation. We calculate the equilibrium state of
the mesh using the finite element method [10]. First, we calculate the elemental
stiffness matrices Ke using 9-point Gaussian quadrature for each prism element,
as described by Keeve et al. [2]. Next, we assemble the elemental stiffness ma-
trices into the global stiffness matrix Kg, which represents the coefficients of a
set of linear equations KgQ = F . Here Q is the vector of nodal displacements
and F is the vector of nodal forces.

Equilibrium calculation. At equilibrium, the total force acting on any free
node is equal to zero. The calculation of the equilibrium is therefore performed by
setting F = 0, imposing boundary conditions, and solving the resulting system
of equations for Q. In our case, the boundary conditions consist of the known
nodal displacements values of the fixed nodes, determined from the positions
of the attachment points. We solve the resulting system of equations using the
iterative conjugate gradient algorithm [4].

When a change is made to the geometry of the model, the equilibrium state
of the model needs to be recalculated. Many of these changes, such as in fracture
formation, mesh refinement, or node repositioning during mesh smoothing, are
confined to small regions, and have negligible effect on more distant parts of the
mesh. We take advantage of this locality by recalculating the equilibrium state
adaptively, only in the regions of interest (local relaxation). These regions are
detected by checking for large unbalanced nodal forces.

Modeling fracture behavior. Once the equilibrium state of the material layer
is calculated, we compute the stress tensor at each node [11], and we use it to
calculate the maximum principal stress s1. If s1 exceeds the threshold stress
of the material, we mark the corresponding node n as a possible candidate for
fracture initiation. In most cases there is only a single candidate. Having more
than one candidate typically means that a too large a time step was used for
simulating growth. We address this issue by advancing the simulation time with
adaptive time step control (Fig. 2a).

Once a single fracture candidate node n has been identified, we extend the
fracture at this node and adjust the finite element mesh accordingly. We use the
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Fig. 4. The mesh is refined only around the fracture.

same procedure to both incorporate the onset of a new fracture and to propagate
an existing fracture (Fig. 2e). The input to this procedure is the location of the
fracture, specified by a fracture node n and the corresponding nodal stress tensor
σ. The fracture plane p is determined from σ: its normal is the eigenvector of σ
corresponding to the maximum principal stress s1.

Modeling fracture extension. The first step consists of refining the elements
sharing the fracture node n so that each element is smaller than a user-defined
constant λmax. The constant λmax effectively denotes the maximum distance a
fracture can extend before the nodal stress at its fracture tip is recalculated.
Imposing the limit on the length of the fracture extension is important when the
fractures turn rapidly.

We refine the elements with a version of the triangular mesh dynamic re-
finement algorithm proposed by Rivara and Inostroza [5]. This refinement step
allows us to discretize the surface using a coarse global mesh, and subdivide it
only where needed, leading to smaller memory requirements and faster simula-
tions. An example of a mesh that has been dynamically refined around a fracture
is shown in Fig. 4.

The next step is to create a new copy n′ of the fracture node n. All elements
that contain node n are then adjusted according to their locations with respect to
the fracture plane p. The elements situated entirely on one side of the plane are
assigned the original node n, while the elements on the other side are assigned
the new copy n′. The remaining elements, sharing the node n, are split by the
fracture plane. If a T-junction is formed by this process, the adjacent element is
also subdivided to remove it.

When the fracture plane intersects an element close to one of its edges, a
degenerate wedge may be formed as a result of splitting. The solution proposed
by O’Brien and Hodgins [3] is not to allow degenerate elements to be created;
this is accomplished by rotating the fracture plane by a small amount to align it
with an edge in the mesh. This approach suffers from fracture directions being
occasionally influenced by the geometry of the surface subdivision. We adopted a
reverse approach: instead of snapping the fracture plane to a near parallel edge,
we snap the edge to the fracture plane, as illustrated in Fig.5.
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Fig. 5. Example of snapping a node to a fracture plane. a) The node and fracture
plane are identified, b) simple node insertion can lead to degenerate elements, c) our
approach is to snap the node to the fracture plane, d) the resulting mesh does not
contain degenerate elements.

The accuracy of the nodal stress calculation depends highly on the shapes of
the elements [10]. The closer the top faces of elements are to equilateral trian-
gles, the more precise are the stress calculations. Unfortunately, even though the
edge-snapping technique prevents formation of degenerate elements, the intro-
duction of a fracture into the mesh can produce elements of sub-optimal shapes.
To further improve the mesh around a fracture after it has been extended, we
employ the angle smoothing algorithm developed by Zhou and Shimada [9].
Since a global application of mesh smoothing would require re-computation of
all elemental stiffness matrices, we only apply the smoothing to the mesh nodes
around the fracture tips.
Local multi-resolution calculation of nodal stress at crack tips. The
elements around a fracture tip must be very small in order to calculate the
stress at the fracture tip correctly. On the other hand, once the nodal stress has
been evaluated, the need for such small elements disappears. To reconcile these
requirements, we evaluate nodal stresses at fracture tips using a local multi-
resolution method (Fig 2c). First, we extract a sub-model from the original
model, consisting of the mesh in the neighborhood of the fracture tip. This
sub-model is then refined around the fracture tip to a user-controlled level of
detail with the algorithm of Rivara and Inostroza [5]. The equilibrium state of
the refined mesh is calculated next; this is followed by the computation of the
nodal stress at the fracture tip. The refined sub-model is then discarded. The
end-result is the original mesh and a more accurate approximation of the stress
at the fracture tip. This process is illustrated in Fig. 6.

3 Results and Discussion

Sample bark and mud patterns synthesized using the presented method are
shown in illustrated in Figs. 7 and 8. The different patterns were obtained by
varying simulation parameters, including the thickness of the material layer,
rate of growth and shrinkage, Young’s modulus, threshold stress of the material,
fracture toughness, etc. The average size of the models used to generate these
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Fig. 6. Illustration of the local multi-resolution calculation of stresses and fracture
propagation. a) View of a fracture before it is extended. b) Nodes close to the fracture
tip are identified. c) All elements sharing the selected nodes are identified. d) A sub-
mesh with the selected elements is created. The nodes on its boundary are treated
as fixed. e) This mesh is refined and the stress at the fracture tip is computed with
increased precision. f) The sub-model is discarded and the calculated stress at the
fracture tip is used to extend the fracture.

Fig. 7. A variety of bark-like patterns generated by the proposed method.

Fig. 8. Generated fracture pattern in dried mud.
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patterns was between 60 and 150 thousand elements. The running times were of
the order of few hours on a 1.4GHz Pentium IV computer.

We found that the largest performance improvement was achieved due to
the dynamic subdivision of elements around the fractures. The local equilibrium
(relaxation) calculation algorithm also improves the simulation efficiency. For
example, the mud pattern in Fig. 8 was generated in approximately two hours
using the local relaxation algorithm. The same pattern took almost eight hours
to synthesize when the local relaxation was turned off. This large improvement
in the simulation time is due to the fact that fractures reduce the global effects
of localized changes.

In conclusion, this paper shows that the finite element method is a viable
tool for modeling not only individual fractures, but also fracture patterns. The
acceleration techniques presented in this paper, taken together, decrease the com-
putation time an order of magnitude, compared to the non-accelerated method.
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