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Abstract 

 
This thesis focuses on engineering, specifically structural, systems that are 

approximated by finite element models (FEMs). Initial FEMs are found to have 

poor accuracies and improved or updated models are sort. From the literature we 

note that a common set of challenges still persists in all FEM work. These are; 

which aspects of the model are most uncertain, how can we efficiently update the 

model and finally how do we know that our chosen model is the best for the 

system at hand. This is the finite element model updating problem. 

These challenges are reinforced by the number of different FEMs that can be 

proposed for any one system and the difficulty of determining the best model 

from these. Moreover all the said challenges are applicable to all possible FEMs. 

To address these challenges we propose that the FEM updating problem be 

analyzed in a multi-model context. What is implicit in this proposal is that 

updating one model in isolation will not be very informative. This proposed 

context requires that all proposed methods in this thesis be general enough to be 

applicable to any set of FEMs.  

To address the challenge of identifying the most uncertain parameters of a FEM, 

we propose using an evolution based procedure; population based incremental 

learning (PBIL). The main assumption for this method is that a list of uncertain 

model parameters can be represented as a vector. PBIL then probabilistically 

selects and updates, from this vector, the most uncertain parameters. To verify the 

consistency of this PBIL method, it is tested on two different objective functions 

and under two different measurement datasets.   

The second challenge of finding an efficient way to update a FEM is also 

addressed via an evolution based procedure. In the proposed multi-model 

framework, efficiently means updating models quickly and without bias. We thus 

propose the updating of multiple FEMs using particle swarm optimization (PSO). 

This approach allows all models to be simultaneously updated and evaluated 

under one scheme. The result is the interaction of models as they are updated and 
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an accuracy ordering of these. Simulations of a real beam are carried out on a 

number of models and two objective functions. 

To determine whether our chosen model is the best in the multi-model setting we 

propose using the Bayesian model evidence statistic. The model evidence is 

calculated using the Nested sampling algorithm. Jeffrey‟s scale is used to evaluate 

the significance of model evidence differences. Simulations on two real systems, 

using multiple models for each, are performed. The proposed method concisely 

shows and justifies the model ordering.   
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Chapter 1 

Introduction to Finite Element Model Updating 

1. Introduction 

This chapter describes the model updating problem faced by every initial model 

of a sufficiently complex system and the challenges posed by the problem. It also 

describes the systematic approach followed in addressing each challenge. This 

thesis does not assume the reader is familiar with the field of finite element 

models. For such a reader – the words „finite element model‟- can be replaced by 

the words „mathematical model‟ without any loss of specificity. Science and 

specifically engineering is concerned with the understanding of natural 

phenomenon and or systems. To understand any system the general scientific 

process is: measure1 the natural system, devise a mathematical model to describe 

and explain the behavior of the said system and finally check that the model is a 

good approximation of this system.  

To this end finite element models (FEMs) are a particular class of models used 

to mathematically describe the mechanics and dynamics of complex engineering 

systems. These systems may be for example; biological (e.g. the mechanics of 

knee joint movement) or electrical (e.g. magnetic field in a motor) or mechanical 

(the stresses on a vehicle chassis). Besides mathematically describing such 

complex systems, modeling is also used to predict and analyze unforeseen 

                                                 
1 The word measure is used generically but it is clear that some phenomenon cannot be physically measured. In such cases 
some aspects of the phenomenon of interest can be gathered to form data. 
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behaviour of these real systems in a variety of settings. System modeling forms an 

important stage of many engineering design problems. The results from the model 

either confirm or highlight limitations of the design. An analyst is usually 

interested in the accuracy, confidence range and more critically the correctness of 

the assumed mathematical model. In this thesis the model domain is structural 

finite element models (FEMs). 

1.1 Background 

In finite element modeling, dynamic structures are analyzed by discretizing the 

structure into constituent elements. When assembled these elements constitute a 

system described by a second-order matrix differential [1,2,3] equation of the 

form: 

                                           ( ) ( ) ( ) ( )t t t t  Mx Cx Kx f                                            (1.1) 

    
where M, C and K are of equal size and are the mass, damping and stiffness 

matrices, or alternatively the system matrices,    f (t)  is the input force, )(),( txtx  and 

)(tx are the response vector displacement, velocity and acceleration respectively. 

If equation (1.1) is transformed to the modal domain [1, 2] and the structure 

considered is lightly damped or undamped,  C  0 , the corresponding eigenvalue 

equation for the jth mode becomes: 

                                                       

 2m m
j j

 
   
 

M K 0 

                                 (1.2) 
 

where m
j  and m

j  are the jth measured (superscript m ) system natural frequency 

and its corresponding mode shapes, together known as modal properties. If the 

natural frequency and mode shape are replaced by analytical values 

(superscript a )  then the eigenvalue equation is not exactly satisfied, but becomes: 
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                                                2a a
j j j

 
   
 

M K                                         (1.3) 

where 
 
 j  is the residual vector for the jth analytical frequency, a

j , and the 

corresponding mode shape a
j . In the above setting, given a set of measured 

system modal data, D , the finite element model problem is to determine the model 

that realistically approximates the mass and stiffness matrices while producing 

modal data as close to the measured modal data as possible (so called data-match). 

If these predictions are not sufficiently accurate, the residual vector will be non-

zero and some aspects of the model will need to be modified. This exercise is 

made more difficult by the fact that a multitude of mathematical models of the 

structure, with varying levels of complexity, can be developed, leading to non-

unique solutions for any particular system. Two main directions of research have 

been established in the area of finite element model updating; direct and indirect 

(iterative) methods. 

In the direct model updating paradigm [2,4,5] the model modal parameters are 

directly equated to the measured modal data. Model updating is then characterized 

by the direct updating of the system matrices‟ elements. This effectively 

constrains the modal properties and frees the system matrices for updating. This 

approach often results in unrealistic elements in the system matrices e.g. large and 

physically impossible mass elements. In the indirect or iterative model updating 

approach [2,3,6,7] the updating problem is formulated as a „relaxed‟ optimization 

problem with no hard constraints on the analytical modal outputs. This means 

physical system parameter values (e.g. structural thickness, mass, etc) are 

iteratively updated and the resultant analytical modal outputs are optimized to 

minimize their difference from the measured data. The iterative updating scheme 

has been applied within the classical eigenvalue sensitivity analysis [1,2,8,9,10,11 

12,13,14] model regularization [15,16,17,18] maximum likelihood methods 

[2,4,5,9,19] evolution based optimization [20,21,22,23,24] and more recently, 

Bayesian approaches [3,7,25,26,27].   
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1.2 The Finite Element Model Updating Problem (FEMUP) 

 
Finite element models are limited by definition; they are an approximation of a 

real system and will thus never produce dynamic results that are equal to the 

measured system‟s data. The question is then what can be done to the initial 

model for it to better reflect the real system‟s dynamic results? This leads to the 

need for automatic and intelligent methodology to improve models. This has to be 

attained whilst using realistic characteristic parameters of the system in question.  

It is clear from the problem background that there are many ways to tackle this 

FEMUP. To see what the problem is fundamentally about and to provide a global 

perspective we have plotted Figure 1.1. This figure shows three spaces, S1, S2 and 

S3, each inscribed by an oval. The S1 space is the space of all possible 

measurements of the real system. S2 is the space of all possible initial models and 

S3 is the space of all possible updated models. The real system of interest exists 

outside the space S1. This is due, amongst other reasons, to the measured data 

being incomplete from the impracticality of capturing the full dynamics of the 

system at every degree over the full behaviour range. This fact is shown by the 

different accuracy measurement datasets possible for a particular real system. In 

the case shown dataset 3 is the most accurate measurement of the system because 

the distance2 between the two is smallest. 

The figure also shows three hypothetical models of a particular measured system; 

MA (α1, α2, α3, α4, α5), MB (β1, β2, β3) and MC (λ1, λ2, λ3, λ4). The figure shows their 

initial positions prior to updating and their potential positions after updating. The 

location of the ideal optimal model is also shown in S3. This particular „optimal 

model‟ is the closest any model can be to the real system. Practically we do not 

work with the real system per se but consider the measured data to sufficiently 

represent the real system. 

 

                                                 
2 Distance is a generic word for the difference magnitude between two points. This will be appropriately defined later in the 
thesis. 
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Figure 1.1 Finite element model updating scheme 
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1.3The need for FEM updating  

 
Assume our model to be MC and measured dataset to be dataset 2. As depicted in 

Figure 1.1 the initial model MC is initially „far‟ from the measured dataset. The 

main reason for creating the model is for it to be as accurate in approximating the 

measured data as possible. The goal therefore is to reduce the distance between 

this initial model and the measured dataset. For a given model reducing this 

distance is achieved by improving or updating the initial model. 

1.3.1 The challenges 

In practice engineers often propose a number of models for one real system for 

example the three models; MA (α1, α2, α3, α4, α5), MB (β1, β2, β3) and MC (λ1, λ2, λ3, 

λ4) proposed in Figure 1.1. Each model has its own type and number of uncertain 

parameters. Before performing model updating, a number of fundamental 

questions need to be addressed, these are: 

 Which aspects of the model need to be updated? 

Said differently, which features/parameters of the initial model are 

uncertain or incorrectly modelled? The above question effectively cast 

model updating as a system identification problem [29,30,31,32,33,34]. 

System-identification is concerned with the development of parameterized 

mathematical approximations to some complex system whose features or 

order is unknown and is to be identified. This simply translates to which 

and how many model parameters are sufficient to correctly capture the 

dynamics of the underlying process/system. In the FE models of concern 

there are a variety of structural parameters that can be mathematically 

modeled [35,36,37]. These can vary from geometric to material properties. 

Some of the most difficult and uncertain geometric parameters to model 

are points of structural variation such as joints and/or welds. Material 

uncertainties arise from incorrectly proposed properties due to lack of 

manufacturing and/or operational condition knowledge. 
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 Given that a model can have a large number of uncertain parameters we 

do not want to blindly search for the parameter combination that produces 

a good solution. This combination parameter search can easily become a 

combinatorial problem. A significant constraint to such a procedure is that 

the updated parameters must remain physically realistic. That is when 

updated the values of the parameters must be within practical limits.  

The first challenge therefore is to automatically identify and or select the most 

uncertain parameters in our proposed FE model. The next question is; 

 How can the chosen model be efficiently updated? 

Ideally as straight a line as possible is required to move from the initial 

model in space S2 to the optimal model position in Figure 1.1. Realistically 

this trajectory will not be straight but will be determined by the form of the 

initial model, the model parameter set and the mechanics of the proposed 

updating procedure.  

Since each FE model is different the challenge here is to design an 

updating procedure independent of any particular FE model. In this 

context of multiple models this is our efficiency criterion. 

The final question to be considered in model updating should be; 

 Is the final updated model the best one? 

As concluded in [13,38,39] it is difficult to compare and decide on the best 

model in a set of competing models of one system. This question essentially 

requires some form of proof that the updated model is the best. All models, 

constrained by the practicality clause, will attain certain optimal positions 

once updated. One can then simply calculate the distances between these 

positions and measured data and determine the closest model. In Figure 1.1 

the updated model MC achieves the smallest distance while MB the largest. 

This does not strictly mean MC is the best updated model. Perhaps MC is not 
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significantly better than MA and or MA may require less „adjustments‟  to 

achieve a position close to MC even thou it is more complex than MC. 

Therefore the challenge here is to develop an evaluation criterion for which 

model is the best in a given set.  

1.4 Thesis Approach 

 
As can be seen from the general FEM updating problem overview given above; 

the challenges faced by any one specific FE model are faced by all possible FE 

models. The approach taken in this work is to propose addressing the stated 

challenges within the multi-FE model framework. We assume a number of 

potentially correct FE models are a priori proposed for any one measured real 

system. The advantage is that whichever set of models one starts off with the 

proposed method in each chapter will be viable.  

1.5 Research Objectives  

 
The thesis objectives are as follows: 

 Propose and implement an automatic procedure to identify and select the 

most uncertain parameters in any FEM. The aim is to propose a generic 

method that can be used on any model. The attraction of such a proposal 

would be that anyone can plug their model onto this algorithm and it will 

automatically produce the model‟s most uncertain parameter(s). 

Furthermore the optimal parameter selection will be reproducible. 

 Design and implement an efficient FEM updating procedure in the context 

of multiple competing models. The aim here is to be able to update 

multiple FE models in one procedure and to determine which model is the 

best. Updating one model in isolation is not that informative given that 

someone else can propose a different model for the same system. 

 Propose and evaluate a relative goodness measure for the updated FEM. 

After developing a model goodness measure, quantify why a particular 
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model is better than another. This is fundamental to FE updating especially 

in the multi-model context. 

1.6 Thesis Scope 

 
This thesis addresses the following: Given a set of competing initial FE models; 

how can we identify the most uncertain parameters in each model, efficiently 

update the models and determine which model is the best updated model. 

This thesis has the following limitations: 

 This work is not concerned with finding the optimal system measurement 

data. This means we do not address how to obtain the best real system 

measurements i.e. to locate the best position in space S1. It is assumed this 

can always be improved on with, for example, better measuring 

instruments but doing so will not change the fundamental FE model 

updating problem. 

 This thesis is not concerned with finding the best working domain(s); 

whether it is the frequency, time or a combination of both, to address the 

problem. The model updating methods proposed herein are general 

enough, albeit were developed on a specific domain, to be implementable 

for any chosen domain. 

 This work is not concerned with individually optimizing any one particular 

FE model as each model exists in a pool of other potentially correct 

models. 

 This thesis only considers lightly damped structures as examples but the 

updating methods proposed are general enough to be adaptable to heavily 

damped systems. This is because we do not consider specific model details 

but general problems that are faced by any FEM updating scheme. 
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1.7 Thesis Contributions 

 
 To address the first challenge this thesis proposes and implements a 

variation of an evolution based algorithm for identifying the most 

uncertain model parameters. 

 The method proposed simultaneously identifies and updates these parameters 

over a number of iterations. The result is a selection of the updated, most 

uncertain parameter combinations, which result in a good model.  Furthermore 

one has a history of which other parameter combinations performed well at 

different stages of the updating process. When the proposed method was used 

with a particular objective function it arrived at the final best parameter set early 

on in the evolution process. This is a very attractive aspect of this method as 

evolution processes are normally computationally expensive. 

 To address the second challenge the thesis proposes and implements an 

evolution based algorithm for multiple FEM updating.  

This method simultaneously updates any number of proposed FEMs over a set 

number of generations. The result is the fittest (or most accurate) model on the 

problem. Again one has a history of which model was the leading model at each 

generation. This is helpful when one needs to study the behaviour and interactions 

of the models throughout the generations. This approach to model updating is 

attractive in that we have a global picture of how competing models behave and 

compare as opposed to updating one model at a go and not having an idea how 

other models would perform under the same evaluation. 

 To validate that one model is the best, a Bayes‟ theorem based measure is 

proposed and implemented on a number of competing FE models.  

The result is one; an updated set of FEMs and two; their performance comparison 

and ordering with justification using established statistical measures. One 

measure, Jeffrey‟s scale defines the significance in the differences between the 
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updated models. The other measures reveal how the model used the parameter 

space while it was updated. The by-product of the method is the posterior 

probability distribution of the model updating parameters. These posterior 

probabilities can further be used to understand how the modal properties change 

within this probability distribution.  

1.7.1 Publications 

 
The following papers contributed to the results presented here and were published: 
 

 Mthembu L, Marwala T, Friswell M.I., Adhikari S, Finite Element Model 

Selection Using Particle Swarm Optimization, In Proceedings of the 

XXVIII International Modal Analysis Conference (IMAC), 1- 4 February, 

2010, Jacksonville, Florida, USA. 

 Republished by Springer as: Mthembu L, Marwala T, Friswell M.I, 

Adhikari S, Finite element model selection using Particle Swarm 

Optimization, Dynamics of Civil Structures, Vol. 4, Conference 

Proceedings of the Society for Experimental Mechanics Series, 2011, 

Volume 13, 41-5. 

 Mthembu L, Marwala T, Friswell M.I, Adhikari S, Model selection in 

finite element model updating using the Bayesian evidence statistic, 

Mechanical Systems and Signal Processing, 25 (7) (2011) 2399-2412. 

 Mthembu L, Marwala T, Friswell M.I, Adhikari S, FE Model Updating 

Using a Population-based Incremental Learning Approach. 

Mechanical Systems and Signal Processing (Submitted 2011). 

1.8 Chapter Summary  

 
             This chapter started by introducing the general idea of models. A concise 

background to finite element models was then presented. The FEM updating 

problem is given together with a graphical illustration of the fundamental meaning 

of the problem. The reasons for updating the initial model have been presented as 

that an initial finite element model of a system needs to be updated because it 

results in an approximation that differs from the measured real system results. The 

http://www.springerlink.com/content/?Author=Tshilidzi+Marwala
http://www.springerlink.com/content/?Author=Michael+I.+Friswell
http://www.springerlink.com/content/?Author=Sondipon+Adhikari
http://www.springerlink.com/content/x87v82/
http://www.springerlink.com/content/x87v82/
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need for model updating and the challenges of FEM updating are further 

explained using the same graphical illustration. The first challenge was identified 

to be the ability to develop an automatic FEM uncertain parameter identification 

or select methodology.  The second challenge was identified as the ability to 

develop an efficient updating procedure and the third was to propose measure how 

good any updated model is in a set of models. The thesis scope lists the issues not 

addressed in this work and the reason thereof. The next two sections covered the 

research objectives and the novel thesis contributions. 

1.9 Thesis Layout 

 
As a guide to each chapter, a statement to be immediately addressed is posted in 

the beginning of the chapter. Each chapter then introduces the proposed method to 

address the question. A graphical explanation of the idea is presented for Chapters 

2 and 3. Next a detailed technical description of the method is presented. Finally 

some simulation results and discussion of the application of the proposed method 

are presented. The thesis concludes with an Appendix of modeled structures. 

Chapter 2. This chapter addresses the uncertain parameter selection problem. An 

automatic uncertain parameter selection or identification procedure is 

introduced by applying it on a mechanical structure. 

Chapter 3. This chapter addresses the efficient FEM updating problem. An 

efficient method to simultaneously update a number of competing 

models is introduced. The main assumption in this chapter is that such 

a list of competing models is a priori available or can easily be 

generated. 

Chapter 4. This chapter addresses the question of best updated FEM 

identification. A method to measure or provide evidence that the 

updated model is the best is presented.  

Chapter 5.  This chapter concludes the thesis. A summary of the proposed 

methods is presented.   Their assumptions, advantages and limitations 

are expanded. 
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CHAPTER 2 

Uncertain Parameter Identification 
 

How to identify the most uncertain parameters of a model? 
 
 

Given an initial model with a certain number of parameters and the fact that the 

analytical results of this model do not equate to the measured results means there 

is some inherent system modeling uncertainty. There are certain aspects of real 

systems that are currently known to be difficult to model accurately. For structural 

systems these can vary from member joints, sensors, damping and substructure 

characterization etc. This chapter focuses on the identification of such uncertainty, 

specifically the identification of parametric uncertainty in the initial model. 
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2.1 Introduction 

 
Since FEM updating is a system-identification problem, it is concerned with 

which and how many model parameters are sufficient to correctly capture the true 

dynamics of the real system. This problem is further complicated by the constraint 

placed on the quantification of the model parameters. An evolution-based 

approach for optimal FEM updating parameter selection is proposed. The 

assumption of which is that an initial model with a set of potential updating 

parameters exist. The modeling uncertainty in this case becomes which 

combination of these will result in a good FE model. The proposed algorithm, 

population based incremental learning (PBIL), provides an automatic mechanism 

to finding the optimal combination of updating parameters and updating them. 

This procedure addresses the, “Which and how many model parameters are 

required for a good FE model?” challenge set out in Chapter 1. A number of 

papers have proposed other methods (mainly parameter sensitivity analysis) for 

parameter selection e.g. [46,59,68]. 

2.2 Chapter outline 

 
Section 2.3 introduces the population based incremental learning idea and 

presents its interpretation in different contexts.  Section 2.4 shows the graphical 

interpretation of the mechanics of the algorithm. Section 2.5 presents the technical 

description of the algorithm. Sections 2.6 and 2.7 introduce the modelled structure 

and the candidate FE models used in the simulations.  Sections 2.8 and 2.9 discuss 

the proposed PBIL pseudo code used in all of the experiments and two 

cost/objective functions are defined. The experimental results are presented in 

Section 2.10 and Section 2.11 concludes the chapter.  

2.3 Population-Based Incremental Learning (PBIL) 

 
The PBIL algorithm was first introduced by Baluja [42]. The algorithm is a 

variation on the standard evolution-based class of search algorithms, the most 

popular of which is the Genetic Algorithm [23,43,44,45,46]. A Genetic Algorithm 

(GA) was applied to FEM updating in [7,16,21,22]. GAs have recently been 
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applied to damage detection in beams [17,20,24]. The characteristic performance 

dynamics of GAs has been studied in detail in [43,44]. All evolution based 

algorithms share the same fundamental characteristics; 

 They consist of individuals - each individual is a potential solution to the 

problem  

 There is some form of reproduction and or mutation operation(s) 

 The algorithms are stochastic 

 There is a fitness/cost/performance function 

 The evolution stopping criterion is normally the predefined number 

generations 

The individuals form a population which exists within a generation. These 

individuals evolve/update via specific operations not unlike biological ones. There 

is an element of randomness introduced to the evolution process. Each 

individual‟s performance/fitness on the problem is evaluated through some 

predefined cost function. All these characteristics are also applicable to the PBIL 

algorithm [47]. PBIL has been used in a number of fields e.g. to minimize 

frequency span allocation in telecommunication networks [48], to solve the 

Prisoner‟s Dilemma problem [47], to find the optimal position for the watermark 

on an image [49] and to solve general inverse problems with constrained 

parameter values[50]. The next two sections describe the typical implementation 

of PBIL in the area of pattern recognition (PR) [51,52,53] and our adaptation to 

the FEM context. 

2.3.1 PBIL in the PR context 

 
In pattern recognition measured data is derived from some phenomenon, e.g. 

housing prices, stock market valuations, images, biomedical gene analysis etc. 

This data is often characterized by a large number of parameters (i.e. data is high 

dimensional) due to the lack of certainty on what features/parameters essentially 
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determine the observed phenomenon. For example housing prices have a large 

number of parameters that could affect them; house location, room sizes, 

proximity to schools, age, etc. To understand patterns in this type of data, PBIL is 

typically applied as a feature-selection/reduction method [54,55,56]. In that 

research area one seeks a small subset of parameters that captures the essence of 

the normally high dimensional data. This is particularly useful in the clustering 

problems where the data label is unavailable [57,58]. This is useful in visualizing 

and forming lower complexity mathematical models to the data for prediction 

purposes. The PR implementation of PBIL does not place a constraint on the final 

number of data parameters. For example, by applying PBIL in feature selection, 

data with 30 parameters could be reduced to just 4 parameters that explain the 

data well. In the PR implementation of PBIL the other 26 parameters are simply 

discarded/eliminated from the model. This will result in a much simpler 

mathematical model to capture the underlying patterns in the data. 

2.3.2 PBIL in the FEM context 

 
The main difference between the implementation of PBIL in the PR and FEM 

context is if structural thickness, for example, is an uncertain parameter it cannot 

be eliminated from the model. An FE structural model cannot have the thickness 

variable eliminated as the thickness is part of the geometry that describes the 

structure. In the FEM context a PBIL eliminated uncertain parameter means that it 

is not chosen to be updated. The said parameter retains its mean/prior or measured 

value in the updated model. This means in every generation, all individuals 

always have d potential updating parameters but not all d will be simultaneously 

updated at any one generation. 

2.4 Graphical Interpretation 

 
Figure 2.1 shows a hypothetical setting of one model, MA with five uncertain 

parameters (α1, α2, α3, α4, α5), each parameter a potential updating parameter. G1 

to G4 are the chosen number of generations the algorithm will run for. The 

algorithm is set to have a population of three individuals. Every generation always 

has three potential solutions to the model updating problem; MA1, MA2 and MA3 
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and each model also always has five parameters. In the first generation three 

random models are generated by randomly selecting parameters to be updated 

from the five available. These selected parameters are identified by „1‟ meaning a 

parameter is chosen for updating and the „0‟ means not. The outcome is; 

MA3(0,1,1,1,0), MA2(1,0,0,0,1) and MA1(1,0,1,0,0). The parameters are then 

updated. The evaluation of this particular set of individuals using the chosen 

objective function produces a minimum error for model MA3(0,1,1,1,0). This can 

be seen by the shorter distance between this model and the measured data in 

Figure 2.1. 

After this evaluation the argument is model MA3(0,1,1,1,0) performed better 

because of its chosen parameters. Future models should have similar 

traits/parameters/features to model MA3(0,1,1,1,0). In generation G2 the second, 

third and fourth parameters in other models begin to have a higher probability of 

being selected for updating. Models MA1 and MA2 start adopting some of model 

MA3‟s features. Model MA2 adopts the fourth parameter whilst retaining its 

previous set of parameters. Model MA1 selects the second parameter for updating. 

These models are prevented from wholly adopting all model MA3‟s features by  

„relaxing‟ the probability vector (see Section 2.5 equation 2.4). 
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Figure 2.1 General PBIL updating scheme 
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In the second generation model MA3(0,1,1,1,0) changes slightly to 

MA3(0,1,0,1,0) due to some randomness in the algorithm. This updated model still 

evaluates well and its features are reinforced on the others. In generation G3 

models MA1 and MA2 change some of the selected updating parameters but model 

MA3 does not. In the last generation all the models do not change their updated 

parameters but may change the magnitude of the updated parameters. This is 

shown by the evaluation of model MA1 surpassing that of MA2 in the last 

generation even though the selected updating parameters have not changed.  

The next section presents the general mathematical operators of the PBIL 

algorithm. 

2.5 PBIL Operators 

 
Let n be the number of individuals in every population of every generation, gen. 

Each individual (potential solution) is denoted by a vector of parameters given in 

[42] by: 

                                             njppppI jdjjjj  1     },.....,,{ 321                          (2.1) 

Ij is the jth individual in the population and pj3 is the jth individual‟s third updating 

parameter. The problem dimension (d) is defined by the maximum number of 

potential updating parameters for that particular model. Thus for d model 

parameters the maximum number of valid individuals (parameter combination) 

that can be generated is 2d-1.  

In the first generation each individual is a vector of randomly selected parameter 

combinations. Subsequent generation individuals are generated based on the 

probability vector (pv). The probability vector tracks the best performing 

parameter combination in each generation and probabilistically aligns future 

individuals to have these combinations. The probability vector is the same 

dimension as each population individual, i.e. it has d elements. Before the first 

generation of individuals are generated this vector is set to [42]: 

    {0.5}     pv d                                              (2.2)
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asserting our priori uncertainty of which of the d model parameters is likely to be 

selected for updating. Setting the probability to 0.5 means each parameter has a 

50% chance to be selected.  A vector s with d elements - the same size as pv - has 

its entries randomly generated from a uniform distribution. The entries of s and pv 

are compared by a relational operator (see Table 2.4). The result of this operand is 

a binary vector m. The indices of the true m entries correspond to the model 

parameters selected for updating. The false entries are not updated. At the end of 

each population the probability vector is updated. This is done through [42]:  

 0.9 0.1pv pv bk                                           (2.3) 

where bk is the binary code vector that records the best performing parameter 

combination after each population. Applying equation 2.3 results in the 

probability vector increasing the probability of future vector-m entries being 

similar to the bk vector. This is not completely desirable as it can lead to a 

premature convergence of the algorithm to a sub-optimal set of updating 

parameters. To maintain diversity of future generated individuals the probability 

vector is immediately computed as follows:  

                                          0.95 0.05 ( 0.5)pv pv pv                                    (2.4) 

This particular form of this equation was found to give the best population 

diversity while retaining focus on the better features. Section 2.8 outlines the 

implementation of the FEM-PBIL algorithm. The next section describes the 

modelled structure. 

2. 6 Modelled Structure - GARTEUR SM-AG19 Testbed 

Three FE models of the GARTEUR SM-AG19 testbed aeroplane structure were 

used to evaluate the uncertain parameters selection ability of the PBIL algorithm. 

Appendix A2 gives background information of the GARTEUR SM-AG19 testbed.  
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2.6.1 Finite Element Models 

 
All the FE models are modelled using the Structural Dynamics Toolbox, SDT® 

6.2, for Matlab®. Figure 2.2 shows the two types of structural element choices; 

plate and beam, used to model the GARTEUR aeroplane. In our models all 

element materials are standard isotropic. The beam model uses Euler–Bernoulli 

type elements and the plate model uses Kirchhoff shells. Two real experimental 

data; one from the DLR center, Gottingen, Germany and the other data from the 

Imperial College of Science, Technology and Medicine (IC), United Kingdom are 

considered. The natural frequencies measured by these three institutes are shown 

in Table 2.1. 

Table 2.1 Measured modal data from two Institutes, DLR and IC 
 

 
Mode 

No. 
1 2 3 4 5 6 7 8 9 

In
st

it
u

te
 

DLR 

N
a

tu
ra

l 
F

re
q

u
en

cy
 (

H
z)

 

6.38 16.10 33.13 33.53 35.65 48.38 49.43 55.08 63.04 

IC 6.54 16.55 34.86 35.30 36.53 49.81 50.63 56.39 64.96 

Difference (%)  

(DLR-IC)/IC 
 -2.50 -2.79 -5.22 -5.27 -2.46 -2.95 -2.42 -2.37 -3.04 
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Figure 2.2a Plate FEM of Garteur SM-AG19 structure 

 

Figure 2.2b Beam FEM of Garteur SM-AG19 structure 
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2.7 Candidate FE Models 

 
  Three models used for comparison consist of one plate element model and two 

beam element models for the same GARTEUR SM-AG19 test structure [correct 

39]. The models are named according to their finite element types, e.g. model B3 

is a beam element model, and the model numbering is arbitrary. The beam models 

B1 and B3 have 6 and 7 updating parameters respectively while the plate model P1 

has 8 parameters. As can be seen from Table 2.2 the updating parameters are quite 

varied across the three models . 

The updating parameter numbering varies according to the property considered 

and the part of the test structure updated e.g. E2I2min, means the Young‟s Modulus 

and the Second moment of inertia of the vertical tail are updated. Table 2.2 shows 

the three chosen models and the types of updating parameters used. The plate 

model has two parameters for the main wing; one for aluminium (unconstrained) 

and one for the sandwich part (constrained). The spring stiffness updates the four-

spring parameters on the wing to fuselage connection (see Appendix A2.1).  

2.7.1 Initial FE models 

 
In order to qualify the model updating capabilities of the proposed PBIL 

algorithm, three models with standard material/geometric properties based on the 

previously identified (20,55,59) updating parameters are simulated. Table 2.3 

shows the FEM natural frequency (NF), percentage natural frequency difference 

(PNFD) and average error (Avg. Error) results for each model compared to the 

two measured data. The STDmdl column lists the natural frequency of each model 

using standard material properties (SMP) and geometric measurements (GM).  

 The ∆f (%) column lists the percentage difference between the STDmdl and 

measured natural frequency data from the relevant institute. The last row lists the 

Average Error (Avg. Error) which is the sum average of the absolute error 

between the STDmdl and the measured data. 
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Table 2.2 FEMs and updating parameters for GARTEUR SM-AG19 structure 
 

Model 

Name & 

Element 

Type 

Fuselage Wing R-Wing L-Wing 
Wing/Fuselage 

connection 

V - 

Tail 

Wing 

Thickness 
R-Drum 

L - 

Drum 

Overall 

Density 

Residual 

Type 

P2 (Plate) E1  G1 E6   G6   E7  G7 (Steel) E2   G2 Wt 
Mass 
(Ml) 

Mass 
(Mr) 

ρ Frequency 

B1 (Beam)   
I6MIN, 

I6MAX,J6 
I5MIN, 

I5MAX, J5 
 I2min    ρ Frequency 

B3 (Beam) E1I1min 
E4 I4MIN, E4 

I4MAX, ρ4 
G6J6 G5J5  

E2 

I2min 
    Frequency 

 
E Imin,max: minimum and maximum bending stiffness. GJ: torsional rigidity. E: Young’s modulus. G: shear modulus. ρ: mass density. 

MR/ML: right and left mass. WT: wing thickness.  Frequency: natural frequency. 
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Table 2.3 NF, PNFD and Avg. Errors for P1, B1 and B3 using SMP and GM 
 

Model P1 Model B1 Model B3 

STDmdl DLR IC STDmdl DLR IC STDmdl DLR IC 

Wn Hz ∆f (%) ∆f (%) 
 

∆f (%) ∆f (%) 
 

∆f (%) ∆f (%) 
1 

6.69 -4.87 -2.30 5.77 9.64 11.85 5.76 9.65 11.86 
2 

18.99 -18.01 -14.80 15.44 4.10 6.70 15.44 4.11 6.71 

3 
40.47 -22.16 -16.10 30.98 6.49 11.13 31.10 6.11 10.77 

4 
41.56 -23.96 -17.75 31.49 6.08 10.79 31.66 5.59 10.32 

5 
41.88 -17.47 -14.64 33.78 5.25 7.53 33.82 5.14 7.43 

6 
53.34 -10.26 -7.09 45.15 6.67 9.35 45.15 6.67 9.36 

7 
53.51 -8.27 -5.71 54.82 -10.90 -8.27 54.79 -10.86 -8.23 

8 
57.69 -4.74 -2.31 56.14 -1.93 0.44 56.13 -1.91 0.45 

9 
71.20 -12.95 -9.61 60.02 4.79 7.60 60.01 4.80 7.61 

 
Avg. Error 13.64 10.40 

 
6.21 8.19 

 
6.21 8.19 

 

In both sets of measured data, model P1 has the highest average error. Clearly 

the initial beam models are a better approximation of the given GARTEUR SM-

AG19 structure based on both measured dataset. The main difference between 

model B1 and B3 is that model B1 mainly updates structural geometric parameters 

bar density. B3 updates a combination of material and geometric parameters as 

seen in Table 2.3. The next section describes the PBIL code implemented to 

update the parameters of these three models. 

2.8 PBIL Pseudo-Code 

 
The FEM-PBIL pseudo-code with additional algorithm settings used in all 

simulations is presented in Table 2.4. This is the Matlab® algorithm 

implementation for one FE model.  

2.8.1 PBIL Pseudo Code Description 

 
In Line 4 the initial FE model with standard material/geometric values for the d 

parameters is evaluated. The fitness is the objective function used to measure the 

goodness (error) of the model, see Section 2.9. The resultant model fitness value 

is defined as the best so far in Line 5a. Next the probability vector is initialized 

such that all entries have an equal chance for update selection in Line 6.  
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Table 2.4 FEM-PBIL algorithm pseudo code 
 

1.    gen = 30; n=500;               %  No.  of Generations & Population size                                                                       

2.     d =  6;                               %  No. of potential update parameters, 6 for model B1                

3.     Iinit = [µ];                          %  Set update parameters to Standard/mean 
material/geometric values.                                               

4.     imdl_fit = init_fit (Iinit);    %  Calc Fitness* of initial FEM.                                                

5a.   best_fit = imdl_fit;            % Best fitness value so far is initial FEM result.                                                        

5b.   worse_fit = imdl_fit;        % Worse fitness value so far                                                 

6.     pv = [0.5];                        % Set all d Probability Vector entries equal to 0.5.    

% Begin Iterations 

7.    for 1 to gen                        %  Number of generations                                                                                                                   

8.          for  1 to n                    %  Number of individuals in a population  

9.               s = rand (d);            % Generate d random numbers from uniform  

                                                   %  distribution [0,1].                                                                          

9.               m = s < pv;              % Evaluate inequality. The vector m is equivalent to  

                                                   % an individual.                                                                                                  

10a.           Update model parameters that correspond to true m entries  & 

10b.           Set model parameters for which m is false to standard measured values. 

11a.             current_fit = Fitness of model with updated parameters (& un-updated  

                                          parameters).                                          

11b.              iff current_fit < best_fit                                                                                                 

12.                   best_fit = current_fit;     % Current fitness is now best fitness                                                                                 

13.                  bk = m;                        % Keep vector m which is the proxy     

                                                             % for current best parameter combination                                                                                             

14.              elseif current_fit > worse_fit                                                                                

15.                  go back to loop  

16              end if loop       

18.     end % End Population loop 

19.       Apply equation 2.3;        % Update probability vector                                                                          

20.       Apply equation 2 4;        % Relax probability vector                                                                                                   

21.  end  % End Gen loop 

*The above code assumes the problem fitness or objective function has been pre-
defined (see Section 2.9). 



27 

 

In every generation when each individual is generated, d uniform random 

numbers are generated to form vector s. This vector is compared to the current 

probability vector in Line 9. The vector s entries corresponding to random 

numbers that are less than 0.5 are assigned true (1) and the others are set to false 

(0) in the vector m.  Vector m is a proxy for an individual. The model parameters 

that correspond to the true entries in the m vector are selected for updating. Those 

that correspond to the false entries are set to standard material/geometric values. 

In Line 10a each selected parameter is updated using:  

                                         iii                                               (2.5a) 

steprmeanwhere   ),12(,                     (2.5b) 

The variable r is a random number from a uniform distribution between [0, 1] and 

σ is the step size (See Table 2.5). This form of updating is chosen to eliminate 

large variations in the updating of each parameter. This is critical if a parameter is 

to be consistently considered important by the probability vector.  As an example 

Figure 2.3a shows the sampling of the density parameter space using equation 

2.5a over 200 iterations. This figure clearly shows the small steps taken in 

updating the density parameter.  

Sampling from a normal distribution significantly varied the potential-updating 

parameter values between populations and generations. This resulted in a 

consistently varying best-parameter combination through successive generations. 

Figure 2.3b shows the sampling of the density parameter from the normal 

distribution space over 200 iterations.  
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Figure 2.3a Density samples using Equation 2.5 
 

Line 11a evaluates the fitness of the finite element model with the updated 

parameters. If the current FEM fitness is better than the last best fitness its binary 

mask (m) is stored in the vector bk in Line 13. At each generation the probability 

vector is updated as shown in Lines 19 and 20 (as discussed in Section 2.5). 
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Figure 2.3b Density samples from a normal distribution 

2.9 Fitness Functions 

 
To determine if the best updating parameter combination is affected by the 

choice of objective function we compare two cost/objective/fitness functions; the 

Bayesian Information Criterion (BIC) [60,61,62,63] and the average Squared Sum 

of Errors (SSE).  

The BIC function is given by the following equation: 

                                                      mdm log)log( 2                                            (2.6a) 

where,  

                                               
m

ff
m

i

femdata




 1

2

2

)(

                                           (2.6b) 
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and d is the number of model parameters to be updated, m is the number of 

measured modes, dataf and femf  are the measured and analytical natural frequencies 

respectively. The average sum of squared errors is given by [60]:  

                                                   21

2)(








m

ff

SSE

m

i

femdata

                               (2.7) 

The first term of equation 2.6a is commonly referred to as the data-fit term and 

the second term is known as the model complexity penalty term. This assumes a 

model‟s complexity is determined by the number of free variables in the 

mathematical model. The minimization of the average sum of squared error 

objective function does not account for model complexity but only measures how 

well a given model approximates the measured data. Thus minimizing the BIC as 

opposed to the SSE function will mainly reduce the number of free model 

parameters.  

The next section presents the simulation results obtained by the FEM-PBIL 

algorithm for the two objective functions. 

2.10 Simulations 

 
In all simulations the number of generations, gen, is set to 30 and the population 

size, n, is set to 500. To confirm the consistency of the proposed PBIL algorithm 

three simulation runs of each model were run for each of the two objective 

functions. All models used the updating parameter settings shown in Table 2.5.  



31 

 

Table 2.5 Prior mean and step values for potential updating parameters 
 

Parameter Mean 

(µ) 
Step (σ) Limits 

Min / Max 

 Parameter Mean 

(µ) 

Step (σ) Limits 

Min / Max 

E1-4 (Pa) 7.2e10 3.16e9 6.0e10 8.2e10 I5min (m
4) 8.3e-9 3.2e-11 7.63e-9 9.9e-9 

G6 (Pa) 2.8e10 3.16e9 1.8e10 3.2e10 I5max (m
4) 8.3e-7 3.2e-9 7.63e-7 9.9e-7 

ρ4, ρ (kg/m3) 2700 31.62 2.4e3 3.0e3 I6min (m
4) 8.3e-9 3.2e-11 7.63e-9 9.9e-9 

Mr, Ml, Mt (kg) 0.18 1e-3 0.15 0.20 I6max(m
4) 8.3e-7 3.2e-9 7.63e-7 9.9e-7 

I1min (m
4) 1.56e-6 3.16e-9 1.27e-6 1.96e-6 J5 (m

4) 3.1e-8 3.2e-10 2.8e-8 3.8e-8 

I2min(m
4) 8.33e-9 1e-11 7.63e-9 9.9e-9 J6 (m

4) 3.1e-8 3.2e-10 2.8e-8 3.8e-8 

Springs (S1) 

N/m 

1e12 1e-11 9.6e11 1.45e12 Wt (m) 9.99e-3 1e-4 9.0e-3 1.1e-2 
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Figure 2.4a shows the results of three different simulation runs of model B1 

using SSE as the objective function and Figure 2.4b shows three simulation runs 

of model B1 using BIC as the objective function. These figures show the evolution 

of the best updating parameter combination (BUPC) within 30 generations. The 

horizontal axis is the number of model updating parameters, counting left to right 

as listed in both Tables 2.6a and 2.6b for each model. The vertical axis lists the 

generations in which the current best-updating-parameter combination is 

achieved. The colours white or black indicate whether the particular updating 

parameter was selected for updating or not respectively. Since Figure 2.4 presents 

model B1 results, the number of potential-updating-parameters is six, as shown on 

the horizontal axis. 

Each graph shows the current BUPC and the final BUPC. The current BUPC is 

the parameter combination that achieves a better error than the previous best error 

so far in the algorithm iterations. This means within any one generation a number 

of current BUPC can be found. The final BUPC is the model‟s optimal parameter 

combination given the algorithm stopping criterion (i.e. maximum number of  

gen = 30 in this case). 

2.10.1 SSE as the Objective Function 

 
The first simulation in Figure 2.4a selected the final BUPC, in generation (gen) 

number 26, to be parameters 1, 3, 4. The second simulation lists the final BUPC 

as 1, 2, 4 in gen 28 and the third run lists the final BUPC as parameters 1, 5 which 

was found in gen 17. These final BUPC did not improve the objective function 

value in the subsequent 4, 2 and 13 remaining generations respectively. When 

using the SSE as the objective function the algorithm does not converge to the 

same final BUPC on different simulation runs. 

 Secondly the most frequently selected updating parameter is sometimes not one 

of the final best updating parameters (results not shown). Thirdly the algorithm 

still obtains new current BUPC at later generations (generations close to the 

algorithm stopping criterion) when compared to the BIC function case. 
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Figure 2.4a BUPC evolution for B1 using DLR data and SSE 
function 

2.10.2 BIC as the Objective function 

 
All simulations in Figure 2.4b found the final BUP to be updating parameter 

number 1.When using the BIC error function the updating parameter combination 

that becomes the final BUPC is identified earlier in the algorithm generations. 

Even though this parameter is identified earlier on, the parameter updating process 

still improves the FE model error in subsequent generations hence the additional 

11 current BUPC after the initial identification of this parameter. When using the 

BIC function the most frequently selected parameter is always the final BUP. 

Selecting the BUPC using the BIC function results in a fewer updating 

parameters. This is not surprising as the BIC objective function penalizes the 

number of model parameters as well as the SSE term. 
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Figure 2.4b BUPC evolution for B1 using DLR data and BIC 
function 

2.10.3 Results Summary 

 
Table 2.6 shows the combined results of the three simulations for each model, on 

the BIC objective function and each measured dataset. Table 2.7 shows similar 

results to Table 2.6 but using the SSE as the objective function.  All simulations 

were on both IC and DLR data. In these tables the Average Percentage Selection 

Frequency (APSF) of each parameter over the three simulation runs is shown as a 

percentage. The average selection frequency is the number of times a particular 

parameter is selected as one of the current best updating parameters over the total 

number of counts that a current BUPC is found.  
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Table 2.6 APSF for each parameter for BIC function 
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B

IC
) 

 

 

  E2 E5 E6 Ml Mr Mt S1 Wt 

M
o
d
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P
1
 

IC 2 % 15 % 9 % 46 % 52 % 4 % 6 % 2 % 

DLR 20 % 13 % 16 % 9 % 22 % 16 % 4 % 78 % 

 

 

 ρ I2min I5minJ5 I5maxJ5 I6MINJ6 I6MAXJ6 

 

M
o
d

el
 

B
1
 

IC 82 % 9 % 9 % 9 % 0 % 9 % 

DLR 59 % 14 % 5 % 5 % 9 % 18 % 

 

 

 E1I1min E2I2min E5I5min E5I5max G5J5 G6J6 ρ 

 

M
o
d

el
 

B
3
 

IC 12 % 23 % 18 % 8 % 20 % 16 % 74 % 

DLR 7 % 17 % 28 % 17 % 17 % 0 % 67 % 
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For example in Figure 2.4a parameter number 1 (ρ) was selected 18 out of 19 

counts in the first simulation, 16/16 in the second, 13/14 in the third, as the current 

BUP thus an average selection frequency of 96% (see Table 2.7, DLR data, model 

B1). Comparing Table 2.6 and 2.7, the most frequent BUP for model B1 is 

independent of objective function and measured data. The most frequent BUP for 

model B3 is consistent for both BIC and SSE functions and across both measured 

data.  

Table 2.8 shows the final BUPC that produced the best results from the three 

simulation runs for each model. The final BUPs are identified by their numbering, 

according to their listing sequence in Tables 2.6 and 2.7. For example, model P1 

identified parameter number eight (Wt) as the final BUP when using the BIC 

objective function for DLR data while under the SSE function, Wt was identified 

as the BUP for both data. When the algorithm fitness was set to the BIC function, 

all models resulted in a single BUP. This is evident from the differences in 

parameter selection frequency magnitude of one parameter over all the others as 

shown in Tables 2.6 and 2.7.  

The single BUP that is found when using the BIC function is always present 

(and is at a high selection frequency) in the final BUPC of the SSE function 

across all models. There was some variation in the final BUPC for each model 

that used the SSE function in the three simulations. Thus the parameters listed in 

Table 2.8 are those that produced the lowest error in the three runs. When using 

the BIC the final BUPC was consistent across all simulations and these are listed 

in Table 2.8.   
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Table 2.7 APSF for each parameter for SSE function 
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IC 33 % 37% 56 % 85 % 87 % 41 % 57 % 80 % 

DLR 48 % 32 % 32 % 64 % 87% 36% 46 % 84 % 

 

 

 ρ I2min I5minJ5 I5maxJ5 I6MINJ6 I6MAXJ6 

 

M
o
d

el
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1
 

IC 95 % 39 % 42 % 52 % 38 % 47 % 

DLR 96 % 47 % 53 % 57 % 40 % 36 % 

 

 

 E1I1min E2I2min E5I5min E5I5max G5J5 G6J6 ρ 

 

M
o
d

el
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3
 

IC 25 % 53 % 34 % 54 % 59 % 68 % 100 % 

DLR 33 % 44 % 74 % 32 % 66 % 60 % 100 % 
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Table 2.8 Final BUPC for each FEM on all data for both objective functions 
 

 Model P1  Model B1  Model B3 

DLR -

SSE 

DLR -

BIC 
IC- SSE IC- BIC 

 
DLR -

SSE 

DLR -

BIC 
IC- SSE IC- BIC 

 
DLR -

SSE 

DLR -

BIC 
IC- SSE IC- BIC 

Parameter 

Number 
2,4,5,8 8 2,4,5,7,8 4 

 
1,3,4 1 1,3,5,6 1 

 
3,5,7 7 5,6,7 7 
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Table 2.9 shows the average (over the three simulations) and percentage errors 

for the three models on all the measured data for the different objective functions. 

Comparing the results from Table 2.9 and Table 2.3, model P1 benefited the most 

from the model parameter selection and updating process. For the P1 model the 

most uncertain parameters were the main wing thickness and the accelerometer 

masses on the wind drums. Model B3 has the main wing density (ρ4) as the most 

uncertain parameter for both measured data. In both cases the updated density 

value was lower than the standard material value. Model B1 updated the 

GARTUER structure‟s overall density the most. The final updated density value 

was also lower than the standard material value of 2700 kg/m3. 

Overall the average model errors between the BIC and SSE objective functions 

for each model are within 1% even though all models selected one final BUP 

when using the BIC function. Furthermore when all the models were evaluated 

with the BIC function they always settled on the BUP earlier in the algorithm 

iterations. This can be considered as the algorithm‟s „confidence‟ on the particular 

BUP more so when the number of candidate uncertain parameters is high. The 

ability to quickly (i.e. early in the evolution process) find the BUPC and to 

achieve a good error margin is a very attractive property for using the BIC as the 

objective function for FEM updating. 
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Table 2.9 PNFD and Avg. Errors on DLR, IC data for both objective functions 
 

 Model P1  Model B1  Model B3 

DLR -

SSE 

DLR -

BIC 
IC- SSE IC- BIC 

 DLR -

SSE 

DLR -

BIC 
IC- SSE IC- BIC 

 DLR -

SSE 

DLR -

BIC 
IC- SSE IC- BIC 

Wn ∆f (%) ∆f (%) ∆f (%) ∆f (%)  ∆f (%) ∆f (%) ∆f (%) ∆f (%)  ∆f (%) ∆f (%) ∆f (%) ∆f (%) 

1 13.76 13.24 12.35 10.87  7.81 8.66 9.69 9.24  8.89 9.04 11.29 11.05 

2 0.58 0.43 -0.35 -1.69  2.01 2.99 4.20 3.72  3.71 3.82 6.45 6.34 

3 -1.91 -4.00 -1.09 -2.47  4.97 5.68 9.30 9.03  5.99 6.13 10.68 10.68 

4 -0.86 -2.93 -0.02 -3.55  4.60 5.29 8.94 8.75  5.57 5.93 10.46 10.59 

5 -9.39 -9.43 -7.93 -8.34  3.18 4.15 5.00 4.58  4.24 4.24 6.58 6.16 

6 5.40 5.41 5.06 3.99  4.59 5.57 6.91 6.38  4.67 4.67 7.53 6.65 

7 -4.40 -4.79 -2.71 -3.12  -13.26 -12.15 -11.07 -11.66  -11.64 -11.67 -8.98 -9.29 

8 0.39 -0.31 1.67 0.99  -3.97 3.00 -1.97 -2.47  -2.54 -2.59 -0.18 -0.45 

9 -0.40 -0.49 0.32 -0.51  2.68 3.66 5.10 4.61  4.03 4.04 6.93 6.64 
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2.11 Chapter Summary 

 
Two important aspects in FE model updating are considered. Firstly a method of 

automatically selecting the best updating/uncertain parameter combination from 

an initial potential-updating-parameter set is proposed. Secondly the updating of 

the selected parameters is proposed, both aspects within a population based 

evolution framework.  

Three, two beam and one plate element, FE models of the GARTEUR SM-

AG19 test bed are compared on two different measured datasets. The influence of 

two different objective functions, BIC and SSE, on the selection and updating of 

the uncertain parameters using the proposed algorithm is studied. The algorithm 

under the BIC objective function always results in a FE model with fewer 

updating parameters than the SSE function. This is an attractive aspect of the BIC 

cost function. The other attraction is the algorithm identifies the most uncertain 

model parameter early on in the algorithm iterations when the BIC function was 

employed.  Using the SSE function produced results that varied up to the end of 

the algorithm counter. This is an undesirable characteristic of such objective 

functions because one is never certain whether running the algorithm for extra 

iterations would produce a vastly different BUPC. 

The plate element model benefited the most from the proposed updating-

parameter selection and updating algorithm. All models had consistent 

performance across both measured data sets and objective functions. 
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CHAPTER 3 

Probabilistic Model Selection and Updating 
 

How to efficiently update a FEM? 

 
 

As seen from the previous chapter, a number of competing finite element models 

of one real structural system can be developed. Using the designers‟ 

understanding of the problem and its uncertainties this chapter proposes the 

simultaneous updating of all the proposed models. This way no model is a priori 

preferred for updating but each is objectively evaluated in a group setting to be the 

best or worst. This paradigm essentially casts the FEM updating as a model 

selection problem. This approach, it will be argued, is an efficient way of not only 

updating a FE model in a group setting but a convenient procedure of evaluating 

multiple models simultaneously. 

3.1 Introduction 

 
Given multiple initial FE models, each developed a priori from engineering 

judgment, a choice of the best model for a system has to be made. An evolution-

based approach for optimal FEM selection is proposed. The main assumption is 

that all models occupy the same dimension in space, i.e. all models can be 

represented by the same number of uncertain parameters. The proposed method, 

particle swarm optimization (PSO), uses the evaluation of each model to influence 
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the performance of another. This procedure addresses the, “How can the chosen 

model be efficiently updated?” challenge set out in Chapter 1. 

3.2 Chapter outline 

 
Section 3.3 introduces the particle swarm optimization algorithm idea and 

presents its interpretation in a number of domains. Section 3.4 shows the graphical 

interpretation of the mechanics of the algorithm. Section 3.5 presents the technical 

details of the PSO algorithm. Section 3.6 describes the simulated structural beam 

model. Section 3.7 defines the candidate FE models used in the simulations. 

Section 3.8 explains the adopted FE model representations and the algorithm 

settings. Section 3.9 defines the objective function used in the simulations. 

Section 3.10 presents four simulation results of the PSO algorithm on the 

modelled beam. Section 3.11 concludes this chapter. 

3.3 Particle Swarm Optimization (PSO) 

 
Particle swarm optimization was first developed by Kennedy and Eberhart [64]. 

PSO is a population-based stochastic search algorithm inspired by the social-

psychological behaviour of biological entities in nature when they are foraging for 

resources. The population/swarm of entities in nature could be that of birds, fish 

and or ants etc searching for food [64,65,66]. Each entity in the swarm is able to 

dynamically adapt individually and through group influence to the environment 

while in search of resources. The swarm adapts by stochastic moving towards 

previously good regions in the environment. This means the movement of the 

swarm in the search space has some random elements to it but this movement 

generally tends to converge to optimal point(s) in the search space. 

3.3.1 Variations on PSO 

The swarm behaviour metaphor has been adopted by the evolutionary 

computation community [66,67] where the biological entities are called particles, 

the swarm is called a population, the environment is the solution space and the 

resource is the solution to the problem. One of the main differences between 

evolutionary and classic swarm based algorithms is the way the particles interact. 
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In a typical evolutionary algorithm (e.g. Genetic algorithm [44]), particles 

combine and mutate within a population and over generations. In swarm based 

approaches for example, particles communicate instead of merging. There is no 

evidence of one method being superior to the other but consensus is that both 

these approaches are well suited to problems where the solution search space is 

too large to search exhaustively [43,59,66,67,68].  

3.3.2 PSO in other contexts 

 
The mathematical interpretation of this analogy is that instead of starting with 

one point searching for a minimum or maximum of a function it is advantageous 

to start with a number of points at different positions on the function space. These 

initial points will stochastically 'move' through the problem search space 

searching for the minimum/maximum solution point. This means each considered 

point/particle can potentially find the optimal solution to the problem and indeed 

the more points the quicker a solution can be found.  

In the FEM updating context and approach proposed in this paper; each particle 

is a potentially correct initial model to the finite element modeling problem. Here 

we assume the first thesis challenge of the number and identify of updating 

parameters has been settled. The FE model search space3 is defined by the number 

of updating parameters in the models; specifically the maximum number of 

updating parameters defines the complete search space. Obviously if the models 

do not have the same number of free parameters then some models will only 

search a subset of the full search space nonetheless they will be embedded in the 

full space (See Section 3.8 for the chosen particle representation). PSO has been 

used to update one FEM in [69] and use to design an induction cooker in [70]. 

Recently it has been used for fault diagnosis of a turbo pump motor [71]. In [72] a 

variation of PSO is used to derive a set of optimal parameters for the pattern 

recognition classifier [54,55] that uses wavelet kernel functions. In [73] PSO is 

used as a wrapper [54,55] to reduce the number of measured variables in a dataset. 

                                                 
3 The concept of FEM search space is a hypothetical one. All models are all searching for the best 
approximation of one real system even though they might have different updating parameters.  The 
updating parameters represent the different positions in this space. 
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In [74] PSO has been used to design ultrasonic motors. In [75] PSO is used for 

image watermark extraction. With regards to FEM updating, the approach 

followed in this thesis is simpler and more informative than the approach followed 

in [69] where only one FE model was updated.  

3.4 Graphical Interpretation 

 
Figure 3.1 shows a populations of four potentially correct FE models; 

MA(α1,α2,α3,α4,α5), MB(β1,β2,β3, β4), MC(λ1,λ2,λ3) and MD(Φ1,Ф2) to be updated. 

The algorithm is set to run over five iterations (I1-I5). Since model 

MA(α1,α2,α3,α4,α5) has the highest number of updating parameters the hypothetical 

search space has five dimensions. All models have to be expanded to have five 

dimensions thus the zeroes in the other four models. Initially model 

MA(α1,α2,α3,α4,α5) has the best approximation on the problem. The PSO algorithm 

marks this model as the global best. Other models are influenced to „move‟ 

towards MA(α11,α21,α31,α41,α51) thus their arrows point towards where this model 

is. 

In the second iteration each model has updated its parameter values; this is noted 

by the iteration counter next to the parameter number subscript. After the second 

iteration model MC(λ12,λ22,λ32) has a better approximation accuracy. All models 

thus change and move towards this current global best model. This is called global 

or social behaviour. Similar to PBIL in the previous chapter there is some element 

of individual dynamism and the models do not fully move towards the leading 

model but also consider their previous best positions before they move. This is 

called local behaviour. This swarm behaviour has a tendency of focusing the 

search; previously spread out models are now concentrated on certain regions in 

the search space.  After five algorithm iterations model MC(λ15,λ25,λ35) has the 

best accuracy on the problem. 
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Figure 3.1 General PSO updating scheme 
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3.5 PSO Operators 

 
In the PSO algorithm each particle is described by its vector position in the 

search space as in equation 3.1 below [66,68]: 

                                          },...,,{ 321 idiiii mmmmm                                       (3.1) 

where i  is an arbitrary particle and d is the problem dimension defined by the 

maximum number of updating parameters for the models. The particle position 

features (mid's) are the potential solution variables. To evaluate each particle on 

the problem one substitutes the particle position to the model/ function.  The 

velocity of the i-th particle is represented by: 

                                                         },...,,{ 321 idiiii vvvvv                                   (3.2) 

Each particle also stores its (local) best ever position as it searches the problem 

space. This is represented by: 

                                                       
},...,,{ 321 idiiii ppppp 

  
                             (3.3) 

The swarm also has a record of the best ever position by any particle, this is 

known as the global (socially) best solution which is represented by: 

                                                 
},...,,{ 321 gdgggg ppppp 

     
                            (3.4) 

Each iteration of the PSO algorithm updates the position and velocity of each 

particle. The particle velocity is updated through the following equation [45,94]:  

                               
)()()1()( 2211 ikgkikikkkik mprcmprctvwtv 

  
          (3.5) 

and the particle position is updated using equation 3.6 [45,94]: 

                                                 
)()1()( tvtmtm ikikik 

  
                                 (3.6) 

where { 1... }i m and { 1... }k d which means each particle's position and velocity 

parameters /dimensions are updated on each iteration of the algorithm. See 
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Section 3.8.2 for the PSO algorithm pseudo code. In equation 3.5, c1 and c2 ∈ ℝ 

are constants weighting that normally vary between 2 and 4 [66]. The random 

constants ]1,0[, 21 Urr   introduce randomness to the search process.  In order to 

prevent the tendency of the particle position and velocity to explode in magnitude, 

Mmax, Mmin, Vmax and Vmin are defined for each particle dimension.  

 

Thus if 

maxMmik   then maxMmik   

minMmik   then minMmik   

Similarly if 

maxVvik   then maxVvik   

minVvik   then minVvik   

The setting of these limits on each dimension of the problem would depend on 

the analyst‟s understanding of the problem. The types of constraints are also very 

much dependent on the problem, for example some particle dimensions might be 

known to be constrained to be positive values, and in that case the absolute |Mmax| 

or |Vmax| might be applicable [66,68]. 

A modification to the original PSO algorithm by [67,76] introduced wk, the 

inertia weight variable. This variable controls the influence of the previous 

velocity on the current velocity value. An adaptive inertia weight is often used to 

improve the algorithm‟s search from an initially explorative (global) search to a 

more local search as this variable decreases. This also has a tendency to improve 

the algorithm‟s convergence rate [66]. This variable is specified by the starting 

weight (wstart), wf is the fraction of iterations over which the inertia weight is 

decreased and wend the final inertia weight value The initial wk in equation 3.5 is 

wstart and it is decrease by deckk www   where:  
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endstart
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

 

                                    (3.7) 

from the first iteration up to iteration N x wf, thereafter wk is wend. The (pik- mik) 

term in equation 3.5 measures how far each particle is currently from its personal 

best position (local) and (pgk- mik) measures how far each particle is from the 

global (social) best particle in the swarm. This means the middle term in equation 

3.5 tends to control the particle‟s velocity based on the particle‟s own best 

position while the last term allows the particle to be influenced by the best 

performing particle in the swarm.  

In the next section we present the finite element models and propose a particular 

representation of these in the particle swarm context. 

3.6 Modelled Structure H-beam  

 
The finite element models updated in this chapter were all developed from the 

unsymmetrical H-beam previously used in [7,28]. The details of the modelled 

beam are described in the next section but more in detail in appendix A1. 

3.6.1 Unsymmetrical H-Beam 

 
A simple unsymmetrical H-beam shown in Figure 3.2 is modelled. This 

unsymmetrical H-beam is suspended on rubber bands The measured natural 

frequencies of interest of this structure occur at; 53.9Hz, 117.3Hz, 208.4Hz, 

254Hz and 445Hz which correspond to modes 7, 8, 10, 11 and 13 respectively. 

The aluminium beam material has a Young‟s Modulus of 7.2x1010 Pa, the beam 

length is 600mm with a width of 32.2mm and a section thickness of 9.8 mm. The 

left edge has a length of 400mm, the right edge length 200mm and a density of 

2700 kg/m3. 

Figure 3.2 shows that the beam is divided into elements numbered from one to 

twelve. Each finite element model used standard isotropic material properties and 

Euler Bernoulli beam elements to approximate the beam sections of the structure. 

The beam is free to move in all six degrees of freedom. 



50 

 

 

Figure 3.2 Model M2 of a 12 element Unsymmetrical H-Beam 

3.7 Candidate FE Models 

 
All models in this example assume the only uncertain beam property is its 

Young‟s Modulus (E). To design different models of the beam, beam elements are 

grouped differently. The beam is modelled by eight competing models, mi, i = 

1...8. Model m1 assumes the whole beam‟s Young‟s modulus is the updating 

parameter to be updated from the average given material value. Model m2 has two 

parameter, E1 and E2; the elements numbered 1,4, 6,7,8,9 (all forming parameter 

E1) are to be varied equally while elements 2, 3, 5, 10, 11, 12 (all E2) are to be 

varied equally (see Figure 3.2 for the element numberings). 

Model m2 models the elements connected near the structural joints as one 

parameter and those away from the joints as another.  Model m8 assumes the left 

edge together with the first horizontal element, the horizontal section and right 

edge together with the last horizontal element are best updated differently, thus 

the three parameter arrangement. Table 3.1 lists the rest of the models and their 

parameterizations. 
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Table 3.1 Unsymmetrical H-Beam FEM parameters 
 

Model 

Identity 

No. of Model 

Parameters 

Parameter Labels Element grouping 

m1 1 E1 {1-12} 

m2 2 E1 & E2 {1,4,6-9} & { 2,3,5,10-12} 

m3 3 E1 E2 E3 {1,4,6-9}, {2,3,11,12} & {5,10} 

m4 4 E1 E2 E3 E4 {1,4,6-9}, {2,3} {11,12} & {5,10} 

m5 5 E1 E2 E3 E4 E5 {1,4,6-9}, {2,3} {11,12},{5} & {10} 

m6 2 E1 E2 {1,2,3,4} & {5-12} 

m7 2 E1 E2 {1- 6} & { 7-12} 

m8 3 E1 E2 E3 {1-5}, {6-9} & (10,11,12} 

 

Perhaps the most important step in the implementation of the PSO algorithm is 

the choice of particle representation. This fundamentally dictates the problem 

search space and the ease of algorithm implementation. The next section presents 

the model representation adopted in the current finite element model updating 

procedure. 

3.8 PSO Algorithm 

 

3.8.1 Particle Representation 

 
Each particle or finite element model (mi...m) is described by the following Ei  

vector arrangement: 

m1 = [E1,0,0,0,0];   m2 = [E1,E2,0,0,0];   m3 = [ E1,E2,E3,0,0];  m4 = [E1,E2,E3,E4,0];  

m5 = [E1,E2,E3,E4,E5];  m6 = [E1,E2,0,0,0];  m7 = [E1,E2,0,0,0]; m8 = [ E1,E2,E3,0,0]; 



52 

 

where in each case the updating parameter is sampled from a normal distribution 

defined as: 

                                            
2

...5 0.5 20N.miE q e                                        (3.8) 

and the mean                    

                                                        Pax 10102.7  

The q variable samples random numbers from a normal distribution between 

 [-∞, ∞]. The parameter location or grouping of the models as described in Table 

3.1 nullifies the concern that models m2, m6 and m7 seem to be described by the 

same parameter vector. This choice of model representation sets the problem 

search space to five dimensions. Even though all the models search the five 

dimensional space, each is actually constrained to only searching a particular 

manifold of the space. This contextually means each subspace is assumed to have 

an optimum somewhere which the particle is supposed to find guided by 

individualistic and social performance. This means if model m5 finds the best 

solution within the group (thus it is pg) at some coordinate/parameter values, all 

the other particles will adapt towards model m5„s parameter values.   In this 

particle representation, all the particle parameters will incrementally change 

towards model m5‟s values, even the zeros in the particle vector description. But 

since, for example, model m2, m6 and m7 are only dependent on the first and 

second updating values, it does not matter what happens to the zero features! Each 

model will somewhat also resist moving towards model m5‟s coordinates by also 

incrementally moving towards their own previous best positions. 

3.8.2 PSO Pseudo-Code 

 
In this section the FEM-PSO pseudo-code algorithm together with the parameter 

settings used in the simulations are presented in Table 3.2. In Table 3.2 if the 

original PSO algorithm is implemented i.e. the inertia variable is eliminated, the 

last If statement condition is not executed and the velocity equation does not have 

wk on the first term.  
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Table 3.2 The FEM-PSO Algorithm Pseudo Code. 
 

% Set constants 

I  = 1000;         % The number of iterations 

c1 = c2 = 2;        % Individual and Group Influence 

m =  8;              % Number of potentially correct models 

wstart = 1.2;       % Initial inertia weight 

wf= 0.5;            % Inertia decrement factor 

wend = 0.4;      % Final inertia weight 

 

%Initialise 

 

wdec                    % Using equation 7. 

mi..m                 % Randomly initialise the models 

pi...m                 % Randomly initialise particle best solution e.g. pi=mi 

 

% Compute 

 

F(mi..m) -       % Calc FEM Fitness objective function in section 4.4 

Identify Pg &  Start Iteration count =1 

 

Repeat 

   while iteration< N do 

              for all mi ..m do 

                 for each dimension d 

                        Calculate particle velocity(vi) using equation 5 

                        Update particle position (mi) using equation 6 

                  end for   

                  Compute F(mi) &  Update pi   if mi(t) > pi(t-1) 

              end for 

              Update pg if any pi > pg(t-1) 

              if iteration < |N wf|  

                 wk = wk-wdec 

               end if 

         iteration = iteration +1; 

    end while 

return pg 
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3.8.3 Model parameter constraints 

 
In our FEMU problem the constraints placed on the particle velocity and 

position in the algorithm were as follows; the maximum parameter magnitude 

Mmax for each dimension was set at 7.5e10 N.m-2 and the minimum, Mmin, was set 

at 6.5e10 N.m-2. The maximum velocity magnitude was set to the difference 

between Mmax and Mmin. The minimum velocity was set to 1e9 N.m-2. This means 

the velocity in this algorithm was tracing a factor of the standard deviation of the 

parameter values (i.e. the second term in equation 3.8) and the particle position 

was determining the mean parameter value (Ei) in equation 3.8.  

3.9 Objective Functions 

 
A number of fitness or objective functions are available in the scientific 

literature. In the FEMU problem Occam‟s razor is very much applicable. Occam‟s 

razor is also known as the law of parsimony and can be expressed as “Entities are 

not to be multiplied beyond necessity”. Here these statements can be interpreted to 

say one seeks a model with the fewest updating parameters that will produce FE 

model results closest to measured lab results. In this paper we compare two 

objective/fitness functions; the Akaike Information Criterion (AIC) [60,61,68,76] 

and the Squared Sum of Errors (SSE).  The AIC proposes that one should 

exchange the complexity of the model with its goodness of fit to the measured 

data [61,76]. The AIC function is given by the following equation [68]:  

                                                   
2log( ) 2AIC n d                                        (3.9) 

where, 

                                         

2

2 1

( )
n

data results
i

msrd fem

n
 





                                (3.10) 

(also known as the standard deviation) and d is the number of model parameters, n 

is the number of measured modes, msrddata is the measured data and femresults are 

the finite element model results.  
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The squared sum of errors is given by  

                                     

2

1

( )

2

n

data results
i

msrd fem

SSE 





                                  (3.11) 

As it can be seen from equations 3.9 to 3.11, the first term of equation 3.9 is 

effectively the SSE and is commonly referred to as the data-fit term [51,77,78,79] 

and the second term is known as the model complexity penalty term. This 

assumes a model‟s complexity is determined by the number of free variables. This 

is not always the correct way to define model complexity as argued in [77,80]. In 

[80] it is argued that there is not necessarily a relationship between number for 

parameters and model complexity. The observed data can determine the model 

complexity. A complex model can have few parameters. 

 The minimization/maximization of the squared sum of error objective function 

does not account for model complexity but only measures how well a given model 

fits the data. In [78] it is argued that model selection should not only be based on 

data-fit term. We would expect the implementation of the AIC function as the 

objective function in the PSO algorithm to be biased to models with fewer 

parameters.  

3.10 Simulation Results 

 
The simulations presented in this section are all modelled using Version 6.0 of 

the Structural Dynamics Toolbox (SDT®) for MATLAB®. A number of 

simulations were run using different setting of the PSO algorithm parameters. 

Initially the number of iterations in all settings was set to I =1000 but it was found 

that the algorithm consistently converged before Max = 500 iterations. In each of 

the experiments the convergence figures will only focus on the main convergence 

part of the graph, where necessary the figure will be expanded to show 500 

iterations. 
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Table 3.3 PSO simulation parameter settings 
 

PSO Parameter Simulation  

No.1 

Simulation 

No. 2 

Simulation 

No. 3 

Simulation 

No. 4 

C1 Local influence 2 2 2 2 

C2 Global 

Influence 

2 2 2 2 

w 0 0 Adaptive Adaptive 

Objective function AIC SSE AIC SSE 

 

3.10.1 Simulation number 1 

 
In this simulation the original PSO algorithm is implemented on the FEM 

updating problem, this means there is no inertia variable as shown in Table 3.3. 

Figure 3.3 shows the convergence plot of the AIC objective function over the 200 

iterations of the algorithm. Figure 3.4 shows the variation of the best particle (pg) 

in the swarm (global best model - GBM) over 10 iterations 
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Figure 3.3 AIC convergence vs. PSO iterations 
 

 

Figure 3.4 AIC GBM number vs. PSO iterations 
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Figure 3.3 illustrates that the PSO algorithm rapidly converged close to the 

ultimate minimum error within the first 70 algorithm iterations. The global best 

model in this simulation started off as model m2 but after 3 iterations it changed to 

model m1 and remains unchanged for the rest of the simulation. The model order, 

based on the minimum of the objective function for these PSO settings was m1, 

m6, m2, m7, m8, m3, m4 and then m5. 

3.10.2 Simulation number 2 

 
This simulation is the same as simulation 1 except the objective function has 

been changed to SSE. Figure 3.5 shows the convergence plot of the SSE objective 

function over the first 100 algorithm iterations. Figure 3.6 illustrates the 

convergence behaviour of global best model over 100 iterations.  

 

Figure 3.5 SSE convergence vs. PSO iterations 
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Figure 3.6 SSE GBM number vs. PSO iterations 
 

The objective function (in Figure 3.5) did not improve much after 100 iterations 

even though the global model changed. A relatively small improvement occurred 

(not shown) due to model m6 becoming the global best model after 300 iterations. 

It is clear from Figure 3.6 that the objective function had a significant role in the 

updating of the model parameters. Initially model m3 was the pg then the global 

best changed to being m6, m2, m4, m7, m2 then finally model m6 was again the pg 

(not shown). The final objective function based model order in this simulation 

was m6, m1, m2, m5, m4, m8, m3 and then m7. This is different to the results in 

simulation 1 where the less complex models attained lowest errors. 

3.10.3 Simulation number 3 

 
In simulation number 3 the PSO algorithm has been changed by introducing the 

adaptive inertia weight. As mentioned in Section 3.5 the inertia parameter allows 

the algorithm to initially explore a wider search area and near the end to exploit 

the local search space.  This is evident from Figure 3.7, where the search 
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converged much earlier in the iteration count than in figure 3.3 whilst using the 

same objective function. The weighted AIC error also decreased with more units 

than the un-weighted function in Figure 3.3. 

 

Figure 3.7 Weighted – AIC convergence vs. PSO iterations 
 

Figure 3.8 also supports the initial exploration to local exploitation concept 

because different models were initially the global best, pg, as opposed to the case 

in Figure 3.4 but later on in the algorithm a firm favourite was converged on. 

The final model order in this simulation was m1, m6, m7, m2, m3, m8, m4 and then 

m5. Perhaps the AIC objective function is too critical of the model complexity as 

it seems to always select models according to it. 
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Figure 3.8 Weighted – AIC GBM numbers vs. PSO iterations 

3.10.4 Simulation number 4 

 
In simulation number 4 the PSO algorithm has the adaptive inertia weight but 

uses the SSE as the objective function. Figures 3.9 – 3.10 show the results of this 

simulation. The inertia adaptive weight does not seem to be that influential under 

the SSE objective function.  The adaptive inertia weight has the opposite effect to 

the SSE as to the AIC function.  

The final model order in this simulation was m4, m1, m3, m6, m2, m7, m5 and then 

m8. Clearly the SSE objective function is not concerned with the complexity of 

the finite element model. The best model in this case is the most complex. It is not 

easy to directly compare the objective function magnitudes the algorithms 

converge to. This would have allowed for better analysis of why different models 

behave so differently under different objective functions. More conclusive 

decisions on the choice of objective function in this type of updating methodology 

can only be made with further experiments on different types of objective 

functions. 



62 

 

 

Figure 3.9 Weighted – SSE convergence vs. PSO iterations 
 

 

Figure 3.10 Weighted –SSE GBM number vs. PSO iterations 
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3.11 Chapter Summary 

 
To summarize, we have argued that FEM updating should be performed in a 

multiple model framework. This is not only convenient but necessary as no FE 

model can be designed in isolation. A particle swarm based method of FEM 

updating and selection is proposed to implement this framework. The method, 

PSO, updates FEM parameters using a stochastic-population based procedure. 

Each potentially correct model of a structure is treated as an adaptive particle in 

the FEM updating problem space. This space is defined by the number of 

potentially updatable model parameters. 

 A number of simulations, using two different objective functions, are performed 

on eight competing FE models of a particular structure. The particle swarm based 

optimization approach to FEM updating offers the researcher an ability to 

simultaneously update and select the best model in a given group. One attractive 

aspect of this updating procedure is that the updating of the models affects each 

other. This means each candidate model has the potential to change its accuracy 

position as the group updating is performed.   

An important aspect in using PSO for model updating is the choice of fitness 

function. This function is crucial in obtaining a reasonable best model. The 

limitation of the PSO updating procedure implemented in this chapter is that one 

cannot qualify the significance of the difference between the updated models. 

PSO only provides the model accuracy ordering. This limitation is addressed in 

the next chapter. 
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CHAPTER 4 

 Bayesian Model Selection and Updating 

 

How to establish that your model is the best? 

There are multitudes of FEM updating procedures in this field so one can 

potentially update a particular model in a number of ways. Furthermore there is no 

consensus on the best method or a way of objectively comparing such updating 

methods and indeed the updated FE models themselves. This is a fundamental 

problem faced by any FEM updating practitioner. As a first step this chapter 

attempts to address the objective comparison measure for updated FE models. 

This is essentially a model selection problem and Bayes‟ theorem is well suited to 

quantify model selection probabilities.   

4.1 Introduction 

 
Having addressed the first two FEM updating challenge of: 

 Which aspects of the model need to be updated and which are actually 

updated? 

 And proposed an efficient FE model updating scheme 



65 

 

The pertinent question becomes - With what certainty can we guarantee that our 

updated model is the best one? This we propose ought to be an essential and 

necessary statistic to establish before any FEM updating exercise can be 

considered complete.  

Having accepted that the most probable model can best be established from a set 

of candidate models we can proceed to the model selection problem. In this regard 

we propose using the Bayesian evidence statistic to assess the probability of each 

updated model. This Bayesian measure makes it possible to evaluate the need for 

alternative updating parameters in the updating of any initial FE model. The 

model evidences are compared using the Bayes factor, which is the ratio of 

evidences. Jeffrey‟s scale is then used to quantify the significance in the model 

evidence differences. The Bayesian evidence is calculated by integrating the 

likelihood of the data given the model and its parameters over the a priori model 

parameter space using the Nested Sampling (NS) algorithm. This algorithm 

samples the likelihood distribution by using a hard likelihood-value constraint on 

the sampling region while providing the posterior samples of the updated model 

parameters as a by-product.  

4.2 Chapter outline 

 
The next section introduces the Bayesian inference approach in the context of 

finite element model updating. Section 4.4 expands on the marginal likelihood 

function and its interpretation as the evidence measure. Section 4.5 introduces 

nested sampling. Section 4.6 and 4.7 introduce Bayesian model selection and the 

FE models used in the experiments. Section 4.8 summarizes the chapter. 

4.3 Bayesian Inference 

 
  Bayesian inference [26,51,77,81,82] allows one to quantify uncertainties in 

quantities of interest in a formal way. Bayesian inference is often implemented in 

two settings; parameter estimation [83,84,85] and model selection [78,86,87,88]. 

In [83] Bayesian inference is used to estimate Markov random field parameters 

for image reconstruction. In [84] it is used to estimate the parameters of 
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probability distributions. In [28] the parameter estimation context of the Bayesian 

framework was implemented to obtain the posterior probability distributions of 

FEM parameters. By obtaining the posterior probability of the updating 

parameters the probability distribution of the modal properties may be calculated.  

This gives the researcher a quantitative measure of the confidence intervals of the 

modal data and updating parameters of the model.  

 

In general parameter estimation is concerned with the plausibility of a given 

model‟s parameters based on some observed measurements and this is often 

carried out using standard Bayes theorem and/or sampling methods e.g. Markov 

Chain Monte Carlo (MCMC) [77,89,90]. In contrast, model selection deals with 

the mathematical hypothesis of the ability of the model(s) to approximate a 

particular observed/measured quantity. 

4.3.1 Parameter Estimation 

 
  In parameter estimation the mathematical model (in our case a particular FE 

model) is often assumed to be true. The model is then allowed to approximate the 

measured data and the plausibility of the model parameters can be inferred from 

their posterior probability. This probability is calculated via Bayes theorem as: 

 

                                  )|(

)|(),|(
),|(

HDP

HPHDP
HDP

 
                                   

(4.1) 

 

where the left hand side is the posterior probability of the updating parameters for 

the true model H, given some data D,   are the updating parameter(s). The prior 

probability of the model parameters is ),( HP  and ),|( HDP  is the likelihood of 

the model. The denominator )|( HDP is called the marginal likelihood, or the 

evidence [51,77,80,82,91,92] of the model where the parameters have been 

marginalized out. Bayes theorem automatically incorporates the updating of the 

parameters by definition; it updates the prior probability distribution of the model 

parameter values with the likelihood (under the assumed parameters) of the model 

approximating the measured data. The likelihood function is the difference 
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between the model (using the assumed updating parameters) and the real system 

data. The updated parameter values are then revealed in the posterior probability 

distribution. This probability quantifies the plausibility of the chosen parameters 

to approximate the observed data.  Bayes theorem assumes we have some a priori 

knowledge of the model parameter value distribution or the possible variation of 

the parameter values.  

4.3.2 Model Comparison/Selection 

 
In model selection a number of candidate finite element models for a system are 

formulated and compared to determine which model best approximates the 

measured data. In general, Bayesian inference provides a platform to evaluate 

which model(s) is (are) the most probable for given measured dataset(s).  

 

In this thesis one measured data set is observed and the finite element model that 

best approximates this data is determined. The posterior probability of each model 

within a set of plausible models is given by Bayes theorem: 

 

                                      )(
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(4.2)
 

where )( iHP is the prior probability of each model and )(DP is the probability of 

the data. Since the denominator is independent of the models, we may neglect its 

influence so that Bayes theorem reduces to: 

 

                                        
)()|()|( iii HPHDPDHP 
                                        (4.3) 

 

The first term on the right side of equation 4.3 is the denominator term (or 

evidence) from equation 4.1. On the assumption that each designed model is 

equally likely to match the data, the evidence term is then the deciding factor on 

which model is the most probable for a particular observed dataset. Model 

selection for FEM has been presented in [25,79]. In [79] the posterior distribution 

of the model was assumed to be a normal distribution, which is known to work for 

certain types of models [51,77]. The updating method proposed in this paper does 
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not place any prior assumption on the form of the posterior distribution of the 

model but has recently [89] been shown to perform better for normally distributed 

functions. In [79] a recently proposed MCMC type posterior probability sampling 

algorithm (TMCMC from [89]) was implemented. This algorithm estimates the 

model evidence by sampling the posterior probability distribution of the model by 

a sequence of non-normalized intermediate probability functions. This algorithm 

uses a number of free tuning parameters; namely a variable to balance the 

sampling steps, the number of intermediate probability distribution functions 

(PDF), the tempering parameter and the control parameter [79,89]. The algorithm 

proposed in this work is believed to be simpler to implement.  

  In the next section we explain the concept of Bayesian evidence. We then 

introduce an algorithm called Nested Sampling [93] to efficiently estimate the 

model evidence.  

4.4 Bayesian Evidence 

Equation 4.1 shows that the evidence term is a normalizing factor and can be 

written as [93]: 

                             dHPHDPHDPevidence iii  )|(),|()|(
                       

(4.4) 

This equation may be interpreted as follows; given a unit of parameter space 

d with a model having a prior parameter probability of )|( iHP  over this space, 

the posterior probability distribution of the model over the same space will depend 

on how well the model with these parameters approximates the data ),|( iHDP  . 

For the posterior distribution, the evidence is proportional to the two terms of the 

integrand in equation 4.4. The first term is the data- approximation (likelihood) 

component ),|( imp HDP 
 
due to the most probable model parameter values, mp .  

4.4.1 The Likelihood function 

 
We assume the likelihood function to be a normal function, with the function 

exponential E given by the difference between the measured and analytical 

natural frequencies at the measured modes. Thus this likelihood can be written as 

[28,38,77,81]: 
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where E is the error matrix. Subscript j represents the jth modal property 

and i represents the ith measurement position on the structure. pN
 
represents the 

number of measured mode-shape coordinates and mN  is the number of measured 

modes. The uncertain error variance at each measured position on the structure is 

 , and represents the uncertainty between the measured and analytical outputs.  

4.4.2 Information Gain 

 
The second term in equation 4.4,  dHP i )|( , is the model complexity penalty 

term (or the information gain). This information gain relates the prior probability 

of the model updating parameter values to the posterior distribution of the updated 

parameter values. In the posterior distribution the most probable updating 

parameter values occupy a smaller peaked region than in their initial prior 

distribution. This change factor is equal to the fraction of the posterior parameter 

space to the prior parameter space [51,77,90] and effectively measures how much 

information the model has extracted from the data. The information gain measure 

can be calculated as [90]:  
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(4.6) 

equation 4.6 clearly shows that if the posterior parameter distribution is a 

substantially small fraction of an initially large prior distribution space, as is the 

case for complex models, then the natural logarithm of that ratio becomes large. 

This is the factor that penalizes the model complexity in the evidence calculation. 

The bigger the value of this factor the more information needs to be extracted 

from the measured data to update the suggested model parameters.  The 

complexity of the model influences the value of the information gain and 

therefore affects the value of the Bayesian evidence. 
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4.4.3 The Evidence Reformulated 

The evidence formulation of equation (4.4) can be re-written as [93,95,96] 

                                            dLZ )()(
                                            

(4.7) 

where ( )L   is the likelihood and ( )   is the prior distribution. Analytically 

evaluating this integral may be difficult or impossible if the product of the prior 

and likelihood is not simple. This often happens when, for example, the parameter 

space has high dimension, which requires the calculation of multidimensional 

likelihoods. 

The most popular approach to approximate such integrals is to apply numerical 

techniques such as importance sampling and thermodynamic integration [32,61] 

although these encounter the problem that the prior parameters are distributed in 

regions where the likelihood function is not highly concentrated. Other sampling 

techniques, for example TMCMC [21,94] that are based on the Markov Chain 

Monte Carlo (MCMC) paradigm can be used, but these tend to only sample the 

peaks of the posterior distribution which can under-sample most of the narrow 

best- approximation regions [32]. Recently Skilling [93,95,96] proposed the 

nested sampling algorithm, which is able to efficiently estimate integrals of the 

form shown in equation 4.7. The algorithm works by transforming the 

multidimensional parameter space integral into a one dimensional integral where 

classical numerical approximation techniques to estimate the area under a function 

can be applied.  

The astronomy and cosmology community [85,87,97,98] has been quick to 

adopt and successfully apply the nested sampling algorithm for quite a range of 

observed data and models. In [91] the Bayesian evidence framework is used to 

identify optimal damage features in spectral data. The Bayesian evidence has also 

been used doe financial model selection [92]. 
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4.5 Sampling  

4.5.1 Nested sampling 

 
  Nested sampling is a Monte Carlo, but not a Markov Chain, sampling method. 

The main idea behind the method is to divide the prior parameter space into „equal 

mass‟ units and to order these by model likelihood. The total prior mass is 

denoted by X and each unit in this prior mass is dXddHP   )()|( . 

The likelihood function is written as [95]: 

                             

                         )()(),|( XLLHDP                        (4.8) 

in this space. This formulation transforms the likelihood into a function of a single 

parameter. The evidence integral from equation 4.6 then becomes:  

                                       
 
1

0
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(4.9) 

The algorithm supposes that the likelihood can be evaluated at all iX  such 

that )( ii XLL  , where iX
 
is a sequence of values that decreases from 1 to 0 such 

that 1.....0 012  XXXX N  
as illustrated on the right image of Figure 

4.1.a. The left image shows 10 samples and the likelihood iso-contours in the 2-

dimensional posterior probability parameter space. Figure 4.1.b shows these 

samples ordered by their likelihood in the 1D space. The red line shows the 

second highest likelihood sample in both spaces.The one dimensional integral 

function in equation 4.9 is easily estimated by any numerical method. For 

example using the trapezoid rule gives: 
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where                     

                                            i i iZ L b ,
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and iL
 
is the likelihood at that sample. 
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Figure 4.1 a) NS =10 in 2D Iso- Contour. b) Likelihood ordering 

 
In the context of finite element model updating, the algorithm achieves this 

approximation in the following manner: 

1. Sample N updating parameter values (e.g. Young‟s Modulus values) from 

some prior probability distribution (based on the assumed distribution of 

the Young‟s modulus values in the structure). Evaluate their likelihoods. 

2. From the NS samples select the sample that results in the lowest likelihood, 

say 1iL  . 

3. Increment the evidence by some summation rule, e.g. 1( )
2

i
i i i

L
Z X X    

for the trapezoid rule. 

4. Discard the sample with the lowest likelihood ( 1L ) in the original N 

samples. Replace it with a new sample drawn uniformly from the prior 

parameter distribution within the remaining prior volume 1[0, ]X . This new 

sample must satisfy the constraint that its likelihood is larger than the 

discarded sample‟s likelihood ( 1newL L ).  

5. Repeat steps 2-4 until some stopping criterion is reached. This could be 

the desired precision on the evidence or some iteration count. 
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For further details and advances on nested sampling see [94,96,99]. The next 

section presents the experiments performed on two structures and introduces the 

candidate finite element models, together with the evaluation of their evidences. 

4.6 Model Definition and Comparison 

 

  In FEM a mathematical model ( iH
 
in Section 3) is defined by the identity and 

location of the updating parameters. In the first example models were designed to 

have a different number of free (updating) parameters at different positions along 

the same structure. The number of free-parameters in a model is one measure of 

the complexity of that mathematical model, although this has recently been 

questioned in the context of the evidence of a complex model [80].  

Classically, complex models tend to over-approximate the data but in the 

Bayesian context this is not necessarily the case. In this paper we also wish to 

determine the relationship between the complexity of the finite element model and 

how well it matches the measured data, and, according to Occam‟s razor, the 

model with fewer parameters is preferred. In the Bayesian formulation of the 

model updating problem this condition is implicit.  Jeffrey‟s scale [82,90,100,101] 

is often used to determine the significance of the difference between model 

evidences. This measure is calculated from the ratio of model evidences, also 

known as Bayes Factors. Table 4.1 shows the interpretation of this measure used 

in this paper.   

4.7 Applications of Bayesian Evidence 

 

  To investigate the applicability of the Bayesian evidence statistic to quantify and 

qualify different models we provide two examples. The first example considers a 

simple unsymmetrical H-beam structure used in chapter three and the second 

example considers the more complex GARTEUR SM-AG19 structure used in 

Chapter 2. In both examples we use measured data from real physical 

experiments. 
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Table 4.1 Significance ratios used in Jeffrey‟s scale 
 

ij ZZ /  )/(log 2 ij ZZ  )/(log ije ZZ  )/(log10 ij ZZ  Evidence against Hi 

1 to 3.2 0 to 1.7 0 to 1.2 0 to 0.5 Weak 

3.2 to 10 1.7 to 3.3 1.2 to 2.3 0.5 to 1 Substantial 

10 to 100 3.3 to 6.6 2.3 to 4.6 1 to 2 Strong 

> 100 > 6.6 > 4.6 > 2 Decisive 

>  1000 >10 >7 >3 Beyond Reasonable 
Doubt 

4.7.1 Example 1:  Unsymmetrical H-Beam 

This structure is described in detail in Appendix A1 as before.  To validate that 

the model evidence calculation can reveal the most plausible finite element model, 

eight illustrative models of the unsymmetrical beam are developed and the 

evidence of each is calculated. The objective is then to determine from the 

evidence, the most probable model from this set. 

4.7.1.1 Candidate Mathematical Models 

 
All models in this example assume the only uncertain property of the beam is its 

Young‟s modulus (E) value. Beam elements are grouped differently to form a 

particular number of parameters for each model. The beam is modelled by eight 

competing models, Hi, i = 1...8. Model H1 assumes the whole beam‟s Young‟s 

modulus is the variable to be updated from the initial standard material value. 
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Figure 4.2 Model H5 of a 12 element Unsymmetrical H-Beam 
 

This means model H1 has one parameter, E. Model H5 has five parameters, 

E1,E2,E3,E4,E5 the elements numbered 1, 4, 6-9 are grouped together to form 

parameter E1, while elements numbered 2, 3 form E2, elements numbered 11,12 

form E3 , element number 5 forms E4 and element 10 forms E5. The design of 

model H6 assumes the dynamics of the whole left edge of the beam is different 

from the rest of the structure and this is modelled by grouping the first four 

elements together (to form E1) and grouping the last eight in another parameter 

(E2). Model H8 assumes the left edge together with the first horizontal element, the 

horizontal section and right edge together with the last horizontal element are 

different and thus the model has three parameters. For completeness Table 4.2 

lists the rest of the models and their parameterizations. 
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Table 4.2 Model parameters and labels for eight H-Beam FEMs 
 

Model 

Identity 

No. of Model 

Parameters 

Parameter Labels Element grouping 

m1 1 E1 {1-12} 

m2 2 E1 & E2 {1,4,6-9} & { 2,3,5,10-12} 

m3 3 E1 E2 E3 {1,4,6-9}, {2,3,11,12} & {5,10} 

m4 4 E1 E2 E3 E4 {1,4,6-9}, {2,3} {11,12} & {5,10} 

m5 5 E1 E2 E3 E4 E5 {1,4,6-9}, {2,3} {11,12},{5} & {10} 

m6 2 E1 E2 {1,2,3,4} & {5-12} 

m7 2 E1 E2 {1- 6} & { 7-12} 

m8 3 E1 E2 E3 {1-5}, {6-9} & (10,11,12} 

 

4.7.1.2 Prior Model and Nested Sampling Parameters 

 
  Each model was run through the stochastic nested sampling algorithm three 

times. The number of Young‟s modulus updating parameters sampled for each 

model was set to N=250 and the nested sampling algorithm‟s stopping criterion is 

set to a maximum of 300 iterations. The exploration for a new sample, point 

number 4 in Section 4.1, in the nested sampling algorithm had 20 MCMC steps. 

The updating variables were assumed to be identical but independent and were 

sampled from a normal prior distribution )|( iHP  with a mean of 7.2x1010 N.m-2 

and a variance of approximately 0.55x1020. 

 The inverse standard deviation of the error probability or likelihood 

function, ),|( iHDP  , is the error between successive measured and initial model 

modal properties. It is set to uniformly vary between approximately 1 and 0.10. 
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4.7.1.4 Results and Discussions 

 
Figures 4.3 and 4.4 plot the log likelihood values for Ns = 250 samples for 

model H1 and H5 before and after the implementation of nested sampling. In each 

model the lowest log-likelihood after nested sampling is much higher than before 

the algorithm was applied. Figures 4.3 and 4.4 show that, for both models, the 

nested sampling algorithm was able to sample approximately 70% percent more 

updating parameter values that minimize the difference between the measured 

data and the initial finite element model using the hard log-likelihood constraint as 

set out in the nested sampling algorithm point number 4.  
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Figure 4.3 Log likelihood values for Ns = 250 from model H1 
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Figure 4.4 Log likelihood values for Ns = 250 samples from model H5 
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Tables 4.3 and 4.4 present the results of the stochastic simulations of the eight 

finite element beam models.  These results are the posterior most probable 

parameter values based on the normal likelihood probability simulation from the 

three runs of the nested algorithm of each model in the set.  

 

From the results in Table 4.3, model H3 has, on average, the widest posterior 

distribution of all of the Young‟s modulus values and model H1 has the smallest 

posterior distribution. Model H5‟s Young‟s Modulus value of 7.16x1010 N.m-2 is 

the closest to the standard material modulus while model H1„s modulus is the 

most varied at 6.82x1010 N.m-2. In all of the models, the E1 updating parameter 

has the lowest Young‟s modulus value and with quite small variances from the 

mean. 

 
Not only is this the parameter that changes most, but also the parameter updating 

algorithm is confident in these E1 posterior parameter updating values. The 

significance of this parameter‟s value is further supported by the relatively high 

averages for the E2 updating parameters (which occupy the same location as E1) in 

models H6, H7 and H8. This suggests that in order for the finite element model to 

better approximate the real unsymmetrical H-beam the left side of the beam model 

should be less stiff than the standard aluminium beam. Table 4.5 shows the 

Bayesian log-evidence, data match and the information gain results of the nested 

sampling algorithm. 
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Table 4.3 Posterior mean and SD of updating parameter over three runs of NS 
 

 MODEL H1 MODEL H2 MODEL H3 MODEL H4 MODEL H5 MODEL H6 MODEL H7 MODEL H8 

 MEAN STD MEAN STD MEAN STD MEAN STD MEAN STD MEAN STD MEAN STD MEAN STD 

E1 6.8E+10 2.3E+09 6.8E+10 2.7E+09 6.6E+10 4.9E+09 6.8E+10 3.1E+09 6.7E+10 3.9E+09 6.8E+10 1.4E+09 6.8E+10 2.1E+09 6.8E+10 2.5E+09 

E2 - - 7.1E+10 6.0E+09 7.5E+10 6.9E+09 7.3E+10 6.8E+09 7.3E+10 5.9E+09 7.4E+10 7.1E+09 7.3E+10 5.9E+09 7.1E+10 7.5E+09 

E3 - - - - 7.0E+10 5.3E+09 7.1E+10 4.9E+09 7.4E+10 6.6E+09 - - - - 7.2E+10 7.2E+09 

E4 - - - - - - 7.2E+10 7.0E+09 7.2E+10 5.9E+09 - - - - - - 

E5 - - - - - - - - 7.3E+10 5.6E+09 - - - - - - 

1/σ 

(rads) 0.13  0.11  0.18  0.14  0.14  0.13  0.15  0.14  
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Table 4.4 Log Evidence, Data-Match and I-Gain for Unsymmetrical 
H-Beam Models 

 
Model Log Evidence Data-Match Information Gain 

H1 -25.43 -22.89 2.54 
H2 -23.39 -21.23 2.17 

H3 -31.22 -28.12 3.11 

H4 -25.94 -23.35 2.58 

H5 -25.38 -22.93 2.45 

H6 -25.22 -22.66 2.55 

H7 -27.36 -24.62 2.74 

H8 -25.95 -23.19 2.75 

 
  Table 4.4 shows that model H2 has the highest log-evidence and model H3 has 

the lowest log-evidence for the set of models. Model H3 extracted the largest 

amount of information from the data to update its three parameters and was 

accordingly penalized for that. Surprisingly model H5, which is the most complex 

model, extracted less information to update its five parameters and has a higher 

evidence measure than less complex models H1, H3, H4, H7 and H8. Similarly 

models H3, H7 and H8 extracted more information than the more complex model 

H4.  

This demonstrates that the Bayesian evidence measure not only penalizes the 

complexity of a model but also the amount of information the model extracts from 

the data to update its extra parameters. Models H6 and H7, which are similar, have 

a poorer data-match and they extract more information from the data than their 

complex equivalent model H2, which has a higher evidence measure. In the 

similarly arranged models H3, H4 and H5, the simplest model extracts the most 

information to update its parameters. Systematically splitting E2 in model H3 to 

become E2 and E3 in model H4 and E4 in model H4 to become E4 and E5 in model 

H5 has resulted in less information being extracted from the data. 
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  The results demonstrate a common phenomenon that occurs when an extra 

variable is introduced whose effect on the model is similar to an existing 

parameter. This can often lead to over-fitting in classic regression but in Bayesian 

analysis this effect is counter-acted by a penalty that is imposed on any extra 

parameter through the information the model requires to update it. In order to 

evaluate/interpret the significance of the different Bayesian evidence measures we 

use Jeffrey‟s scale, with the results shown in Table 4.5.  

 

Table 4.5 Jeffrey‟s scale and significance of Bayesian evidence 
 

Model ij ZZ /
 

)/(log ije ZZ
 Evidence against model iH  

H3/H2 1.33 0.28 Weak 

H3/H8 1.24 0.22 Weak 

H3/H6 1.23 0.21 Weak 

H6/H2 1.07 0.06 Weak 

H7/H2 1.16 0.16 Weak 

 
It is clear from Table 4.5 that there is no real difference between all models. 

Jeffrey‟s scale highlights which models are more alike, for example model H2 and 

model H6 are more alike than H2 is to H7.  

 

The Bayesian evidence statistic used in conjunction with Jeffrey‟s scale shows 

that an increased number of parameters will not necessarily result in a 

significantly better model. In the next section we present the second application 

example of Bayesian model updating using the nested sampling algorithm. 

4.7.2 Example 2: GARTEUR SM-AG19 Testbed 

 This structure is described in detail in Appendix A2 as before. Three of the 

seven FE models, as presented in [54], are compared using our proposed Bayesian 

evidence statistic.  
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4.7.2.1 Candidate Mathematical Models 

 

  The three models used for comparison consist of one plate element model and 

two beam element models for the same GARTEUR SM-AG19 test structure. 

Table 4.6 details the location and type of uncertain parameter for each model. 

The models are named according to their finite element types, e.g. model B2 is an 

Euler-Bernoulli beam element model, and the model numbering is arbitrary. The 

lowest number of updating parameters in the three model set is from model B2 

with 6 parameters and the maximum is model P2 and B1 with 8 parameters each. 

As can be seen from Table 4.6 the updating parameters are quite varied across the 

three models. The updating parameter numbering is according to what property 

and which part of the test structure is updated e.g. E1I1min, means the Young‟s 

Modulus and minimum second moment of area of the fuselage are updated.  
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Table 4.6 FEMs and updating parameters for GARTEUR SM-AG19 structure 
 

Model 

Name & 

Element 

Type 

Fuselage Wing R-Wing L-Wing 
Wing/Fuselage 

connection 

V - 

Tail 

Wing 

Thickness 
R-Drum 

L - 

Drum 

Overall 

Density 

Residual 

Type 

P2 (Plate) E1  G1 E6   G6   E7  G7 (Steel) E2   G2 Wt 
Mass 
(Ml) 

Mass 
(Mr) 

ρ Frequency 

B1 (Beam)   
I6MIN, 

I6MAX,J6 
I5MIN, 

I5MAX, J5 
 I2min    ρ Frequency 

B3 (Beam) E1I1min 
E4 I4MIN, E4 

I4MAX, ρ4 
G6J6 G5J5  

E2 

I2min 
    Frequency 

 
E Imin,max: minimum and maximum bending stiffness. GJ : torsional rigidity. E: Young’s modulus. G: shear modulus. ρ: mass density. 

MR/ML: right and left mass. WT: wing thickness.  Frequency: natural frequency. 
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4.7.2.2 Standard Properties 

 
In order to quantify the model updating capabilities of the proposed nested 

sampling algorithm, we ran the three models with standard material property and 

measured geometric values for the uncertain parameters. Table 4.7 shows the 

FEM natural frequency, percentage frequency difference and average error results 

for each model compared to the two measured data sets. 

 

Table 4.7 NF, PNFD and Avg. Errors for P2, B1 and B2 using SMP 
and GM 

P2 B1 B2 

STDwn DLR IC STDwn DLR IC STDwn DLR IC 

 
∆f (%) ∆f (%) 

 
∆f (%) ∆f (%) 

 
∆f (%) ∆f (%) 

6.55 -2.61 -0.10 5.77 9.64 11.85 5.77 9.63 11.85 
18.59 -15.48 -12.34 15.44 4.10 6.70 15.44 4.09 6.70 
39.97 -20.65 -14.66 30.98 6.49 11.13 31.11 6.11 10.77 
40.54 -20.91 -14.85 31.49 6.08 10.79 31.66 5.59 10.32 
41.16 -15.45 -12.67 33.78 5.25 7.53 33.82 5.13 7.42 
52.33 -8.16 -5.05 45.15 6.67 9.35 45.16 6.66 9.34 
53.12 -7.47 -4.93 54.82 -10.90 -8.27 54.82 -10.90 -8.28 
57.10 -3.66 -1.25 56.14 -1.93 0.44 56.14 -1.93 0.44 
69.94 -10.95 -7.67 60.02 4.79 7.60 60.02 4.79 7.60 

         Avg Error 4.29 3.08   2.23 2.93   2.19 2.89 
 

STDwn is the natural frequency of each model using standard material properties and geometric 

measurements. ∆f (%) is the percentage difference between the STDwn and measured natural 

frequency data from each institute. Note: The Avg Error is the sum average of the absolute error 

between the above two natural frequencies. 

 

 In both sets of measured data and model comparisons, model B2 has marginally 

lower average errors to B1 and model P2 has the highest average error. Clearly 

before updating, the plate model P1 is a poor model of the given GARTEUR 

structure using this measured data. The main difference between B1 and B2 is that 

model B1 has a split main-wing which uses separate updating parameters for the 

left (I5MIN I5MAX J5) and right wing (I6MIN I6MAX J6) while B2 updates the whole 

wing under one parameter (I5MIN I5MAX J5). Model B1 only has one material 
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property (ρ - overall density) to update and the rest of the parameters are 

geometric in nature. 

4.7.2.3 Prior Model and Nested Sampling Parameters 

All model updating parameters shown in Table 4.8 except for the masses (MR, ML) 

and wing thickness (WT) are sampled from a normal prior distribution. The masses 

and thickness are sampled from a uniform distribution between 0.15kg and 0.2kg 

and 9.5mm to 11mm respectively.  Each model‟s nested sampling algorithm was 

run at the following settings: number of samples, N = 250; maximum number of 

iterations is 1500; and the number of MCMC steps is 15. The mean and variance 

values for all of the updating parameters are shown in Table 4.8.  The inverse 

variance of the error probability function ),|( iMDP  is set to vary uniformly 

between 0.5 and 0.25. These values determine the assumed average variances of 

the difference between the measured and model natural frequencies for all models. 

Table 4.8 Prior mean and variances for updating parameters 

Parameter Mean Variance  Parameter Mean Variance 

E1-6 7.2e10 Pa 1e19 I2min 8.33e-9 m4 2e-20 

E7 21 e10 Pa 3e20 I5min 8.33e-9 m4 2e-10 

G1-6 2.8e10 Pa 1e19 I5max 8.33e-7 m4 2e-15 

G7 8.17E10 Pa 1e19 I6min 8.33e-9 m4 2e-20 

ρ 2700 kg/m3 2e4 I6max 8.33e-7 m4 2e-15 

ρ5 2700 kg/m3 2e4 J5 3.12e-8 m4 2e-19 

MR & ML 0.15-0.20 kg Uniform 
distribution 

J6 3.12e-8 m4 2e-19 

I1min 1.56e-6 m4 2e-14 WT 9.95-11 mm Uniform 
distribution 
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In the next section we present the results of the application of the nested sampling 

algorithm to the GARTEUR SM-AG19 Testbed using the three models. 

4.7.2.4 Results and Discussions 

 

The Nested Sampling (NS) updating algorithm improved all of the models of the 

given structure. There is a maximum of a 70% and a minimum of a 11% 

improvement in the average natural frequency errors after NS. The maximum 

parameter value variations for all models are less than 8% of the standard values. 

The updated finite element model results are presented in Table 4.9. After nested 

sampling model P1 achieves the lowest average error. This is not surprising as this 

model has the most updating parameters but practically this model will be 

computationally expensive to run. A better method to evaluate the updated models 

is to look at the model evidence statistic.  

 

Table 4.10 shows the model evidences. According to these evidences and the 

Jeffrey‟s scale in Table 4.1, none of the models has a better than weak Bayesian 

evidence over the others for both sets of measured data.  Model B2 has the highest 

evidence and the highest information gain for the DLR data. This means the 

model used the prior parameter space efficiently to find the best posterior 

parameter values. This model‟s mean posterior values produced the highest model 

approximation to the measured DLR data; this is shown by the 0.10 data-match 

value. With regards to the IC data, model P2 has the highest evidence but the 

lowest information gain. Again this model did not use the prior space efficiently; 

this is further confirmed by the data-match value being the worst in the model 

sets.  
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Table 4.9 NF, PNFD and Avg. Errors for P2, B1 and B2 using NS 
outputs for updating  

 
 Model Performance 

DLR 

Measured 

Data P2 DLR B1 DLR B2 DLR 

ωn ωn ∆f (%) ωn ∆f (%) ωn ∆f (%) 
6.38 5.75 9.89 5.88 7.84 5.94 6.92 
16.10 16.67 -3.56 15.73 2.29 15.84 1.60 
33.13 34.50 -4.13 31.50 4.91 32.05 3.25 
33.53 34.57 -3.11 32.03 4.48 32.71 2.46 
35.65 39.00 -9.40 34.37 3.61 34.69 2.70 
48.38 47.42 1.98 46.05 4.81 46.61 3.66 
49.43 51.14 -3.46 55.03 -11.32 54.28 -9.81 
55.08 54.60 0.88 56.15 -1.95 55.41 -0.60 
63.04 64.54 -2.39 60.73 3.66 60.83 3.50 

 

      Avg Error 

 

1.29 
 

1.84 
 

1.41 
 

 Model Performance 

IC 

Measured 

Data P2 IC B1 IC B2 IC 

ωn ωn ∆f (%) ωn ∆f (%) ωn ∆f (%) 
6.54 5.86 10.39 5.99 8.48 6.00 8.24 
16.55 16.96 -2.47 16.03 3.14 15.96 3.57 
34.86 35.23 -1.06 32.10 7.91 32.77 5.99 
35.3 35.31 -0.03 32.67 7.45 33.69 4.55 
36.53 39.47 -8.05 35.06 4.04 35.23 3.56 
49.81 48.17 3.29 46.95 5.74 47.26 5.11 
50.63 51.76 -2.23 55.98 -10.57 55.08 -8.78 
56.39 55.35 1.85 57.17 -1.38 56.07 0.58 
64.96 65.48 -0.81 61.77 4.92 60.98 6.13 

 

      Avg Error 

 

0.972 
 

2.24 
 

1.94 
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Table 4.10 FEM Log Evidences, Data-Match and I-Gain for 
GARTEUR SM-AG19 models 

 
Model Log 

Evidence 
Data -Match Information Gain 

P2 (DLR) -3.60 -3.07 0.53 

B1 (DLR) -1.68 -0.92 0.76 

B2 (DLR) -1.29 0.10 1.39 

P2 (IC) -3.17 -2.90 0.27 

B1 (IC) -3.92 -2.68 1.24 

B2 (IC) -3.73 -0.83 1.90 

 

As concluded in [39] it is difficult to assert the best model for the GARTEUR 

structure. In this experiment the proposed Bayesian evidence statistic reveals that 

no model that is significantly better than the others. Furthermore this Bayesian 

measure provides quantitative information for why this is so. Model B2 is 

attractive in its use of parameter space but model B1 is attractive in its use of 

fewer updating parameters for comparable performance. The plate model is not 

optimal for any of the measured data, especially with the 8 updating parameters, 

but there is no clear evidence against it. It should also be noted that the three 

models chosen, and the parameters selected, were the best models in the opinion 

of the seven groups involved in the original benchmark exercise [9,10,38,39,102].  

4.8 Chapter Summary 

 
  In conclusion, we have argued that model selection should be integrated into the 

finite element model updating problem. Specifically, a Bayesian model updating 

perspective to the problem of finite element model updating is introduced. This 

paradigm is shown to be well established in other areas of science with little work 

available in the finite element updating literature. 

 

Bayesian inference is able to simultaneously update the models whilst also 

incorporating a statistic to evaluate the evidence for each model. The theory of 
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Bayesian inference is presented together with a method to stochastically 

approximate the Bayesian evidence statistic. This method, nested sampling, was 

recently introduced as an efficient way of estimating integrals of the form needed 

to determine the model evidence. 

 

  We demonstrated the applicability of Bayesian model updating and the 

estimation of the evidence through two structural examples. In each example a 

number of competing finite element models are proposed to approximate the 

structure. Each model is unique and has a specific number of parameters and 

parameter identities. The method is initially demonstrated with a simple 

unsymmetrical structure, followed by a complex structure modelled by three 

completely different finite element type models. Bayesian inference is then 

applied to update each model. The evidence of each model is estimated from the 

updating parameter priors and the likelihood of the parameters after the data has 

been taken into consideration. The evidence calculation revealed that model 

complexity is not necessarily proportional to the model evidence. Two important 

factors affect the model evidence; these are how the model approximates the data 

and the amount of information each model extracts from the data to update its 

parameters. This is largely influenced by the choice of model parameters.  

 

The Bayesian model evidence calculation allows the engineer to determine if 

there is any advantage in updating certain parameters in his/her model and what 

evidence one has that the chosen model is better than other models. To put the 

model evidences in context we further showed the significance of the model 

Bayesian evidence differences by using Jeffrey‟s scale. This statistic allows the 

engineer to determine if the model evidence differences are significant enough to 

warrant discarding some models.  
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Chapter 5 

Summary and Future Work 
 

5.1 Summary 

 
Mathematical models form the basis of any scientific exercise. They are 

designed to describe, analyze and predict the behaviour of non-trivial complex 

systems. To narrow the field of models the thesis focuses on a specific type of 

mathematical models; finite element models (FEMs). The main limitation of any 

model lies is the definition of a model; it is an approximation of the real system. 

This means the analytical model results will not match the real system 

measurements. The question then becomes what can be done to the model to 

improve/update its approximation accuracy. This is the problem of finite element 

model updating. 

With the definition limitation and the realization that any system can be 

modelled in a multitude of ways we described three fundamental challenges faced 

by any model. The first challenge is intrinsic to the model and asks what aspects 

of the model are uncertain for the model to result to a particular accuracy. The 

second challenge is how can such a model be efficiently updated and the last 

challenge is how do we know that any updated model is the best for a particular 

system. These challenges formed the basis of the approach followed in this thesis. 
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 A graphical perspective to model updating highlighted the goal, challenges and 

limitations of the endeavor. Each challenge was noted to be general enough not to 

be specific to any one model. This allowed for a multi-model framework approach 

to FEM updating. Thus all the methods developed to address these challenges are 

also not specific to any one FEM but are applicable to all. 

The thesis began by addressing the first challenge in Chapter 1. A method to 

search for an optimal updating parameter set for any FE model was developed. 

This method considers all possible uncertain parameters and collates them to form 

a vector. The algorithm, population based incremental learning (PBIL), searches 

this vector for the best parameter combination using an evolution based strategy. 

The uncertain parameter vector is probabilistically sampled for a good parameter 

combination and each combination is substituted to the model and evaluated on an 

objective function. Three, two beam and one plate element, models for one system 

are simulated on two objective functions and two measurement datasets. The 

Bayesian Information criterion (BIC) objective function arrives at the best 

updating parameter combination (BUPC) early on the algorithm iteration. 

Furthermore the most frequently selected parameter combination under the BIC is 

always the final BUPC. This is not the case for the sum of squared errors (SSE) 

objective function. The beam models were consistent on the best updating 

parameter across both datasets and functions. The plate model consistently 

benefited the most from the PBIL parameters selection and updating across all 

datasets and objective functions. The beam models slightly improved their 

average errors under this algorithm. 

Having identified and updated the most uncertain parameters of a model in 

Chapter 2, we required a most efficient way of updating a FE model especially in 

a context of other models of the same system. To this end we developed an 

efficient method to simultaneously update a number of competing FE models. We 

argued that optimizing one model in seclusion is neither optimal nor informative 

with respect to other models. The proposed method, particle swarm optimization 

(PSO), is based on the behaviour of multiple biological entities foraging for food.  
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We implemented and analyzed the performance of this method on eight 

candidate FEMs of an unsymmetrical H-beam. The method was tested using two 

error functions; the Akaike Information criterion (AIC) and Sum of Squared errors 

(SSE). Using the AIC as the objective function always resulted in the simpler 

model having the best performance. This was not necessarily the case with the 

SSE function. The introduction of the adaptive inertia weight to the basic 

algorithm improved the convergence rate in both the AIC and SSE objective 

function experiments. This constant allowed the algorithm to initially explore 

wide updating parameter space and to later focus on the local parameter space.  

The model accuracy ordering under the AIC function was consistent before and 

after the introduction of the adaptive inertia weight. The SSE was not consistent in 

its choice of best model under such settings. Using PSO to update FE models 

proved to be efficient especially in the multi-model context. 

In the last chapter we attempted to address one limitation of the PSO type 

algorithm when it is used to compare updated FE models. The proposed method 

simultaneously updates and quantifies the evidence for any one model. This 

allows for an objective measure of how good one updated model is over another. 

This is of fundamental importance in our multi-model setting. This method is 

called nested sampling. Nested sampling samples the FEM updating parameter 

space using a hard constraint on new samples. This allows for incremental 

improvements in model likelihood. This model updating is carried out within a 

Bayesian framework with the model parameter posteriors as a by-product. This 

nested sampling and Bayesian approach allows for the proposed model marginal 

likelihood or evidence to be evaluated. Jeffrey‟s scale then uses this Bayesian 

statistic to qualify model differences after the updating.  

NS was implemented on two mechanical structures each with multiple models. 

Two different measurement dataset were used for the second structure. For one 

structure some models were clearly better than others and this could be explained 

by the proposed method. For the second structure it was clear from the method 

results that the models are similar. 
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5.2 Conclusions 

 
Throughout all the thesis experiments one common conclusion is that the 

choices of the objective function is very important in any optimization scheme. 

Understanding the behaviour of a chosen function under different settings, e.g. 

different measurement datasets, is paramount. The FEM updating problem cannot 

be settled if the error function is not compared to other functions. 

Fundamentally this thesis argues that any FEM updating problem is practically 

posed in a multi-model setting. It is concludes that updating one model in 

isolation is not informative in this setting. This thesis is therefore; finite element 

models of the same system should either be: 

1. Updated simultaneously  or 

2. Be updated in the context of other models. 

The first point does not favor any model over others and the second forces the 

need for a quantitative and qualitative measure of best model for the system. 

5.3 Future Work 

 

5.3.1 Multi Model Framework 

 
Within the multi-model updating framework an objective evaluation or 

comparison of well-established updating procedures should be carried out. This 

work could be carried out on a few well know methods using one common 

structure, a priori chosen set of updating parameters and one objective function. 

This study would be useful in a number or ways, it would: 

 Reveal which updating procedures are FE model specific and why. 

 Which updating methods are universal and why. 
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5.3.2 Objective Function 

 
A good choice of objective function was shown to be critical in obtaining a 

certain type of updating parameter set. Future work could study multiple objective 

functions and their influence on FEM updating especially the resultant updating 

parameters.  

Limitation should not be placed on the number of functions perhaps addressing a 

multi-parameter problem like FEMU is better addressed in a multi-objective 

function setting. Each function could minimize/maximize a particular type of 

parameter e.g. material and the other function could target geometric type 

parameters. This multi-objective function optimization should act as a weighting 

for the different parameter types.   

5.3.3 Sampling Updating Parameter Space 

 
Achieving an optimal updating parameter set in the shorted time depends not 

only on the updating procedure but on how the parameter space is sampled. A 

common assumption is to sample from a Gaussian distribution. This is not always 

optimal and other distributions can be more representative for certain types of 

parameters.  

Understanding a prior how these classes of (e.g. structural) parameters are 

distributed should minimize algorithm sampling time. This issue is most pertinent 

when the number of updating parameters (the search space) is large and efficient 

sampling techniques are required. 

5.3.4 Validating FE models 

 
 The FEM updating problem is often limited to approximating the given measured 

data. Closely matching this data is often seen as having validated the updated 

model. Updated models are rarely tested on „unseen‟ data. This is mainly because 

measured data is expensive and often limited to a dozen measured modes.  

To overcome the data shortage more data from the same distribution as the 

measured data should be generated to form the „unseen‟ set. With the 
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understanding of the properties (e.g. distribution, noise etc.) of this new data 

reasonable validation can be performed on the updated FEM. This would not only 

validate the updated model but the posterior distribution of the updated parameters 

could also be validated within the unseen data distribution.  
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Appendix 

 

 

All the FE models are modelled using the Structural Dynamics Toolbox, 

 SDT® 6.2, for Matlab®. 
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Appendix A1 

The Unsymmetrical H-Beam 

 

The unsymmetrical H-shaped aluminium beam shown in figure A1.1 was used 

initially used by [37-39, 40, 41]. The H-beam structure had three thin cuts of 1mm 

that went half-way through the cross section. The cuts were introduced to 

elements 3, 4, 5. The structure with these cuts was used so that the initial FE 

model gives data that are far from the measured data, so as to test the proposed 

updating procedures on the FEMU problem. The structure was suspended on 

elastic rubber bands.  

The beam structure was excited using an electromagnetic shaker and the response 

was measured using an accelerometer. The beam was divided into 12 elements. It 

was excited at point C and the acceleration was measured at 15 positions shown 

by open arrows.  The structure was tested freely-suspended. The beam is free to 

move in all six degrees.  A roving accelerometer was used for testing. The mass of 

the accelerometer was found to be negligible compared to the mass of the H-

beam. 

 

Figure A1.1 The 12 element Unsymmetrical H- Beam 
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The measured natural frequencies of interest of this structure occur at; 53.9Hz, 

117.3Hz, 208.4Hz, 254Hz and 445Hz which correspond to modes 7, 8, 10, 11 and 

13 respectively. This aluminium H-Beam had the properties shown in Table A1.1 

below and these we called the standard material and geometric properties in the 

thesis. 

Table A1.1 SMP and measured GP of Unsymmetrical H-beam 
 

Material (Aluminium), Young‟s Modulus (E)  7.2x1010 N.m-2 

Length 600 mm 

Width 32.2mm 

Section Thickness 9.8 mm 

Left Edge Length 400 mm 

Right Edge length 200 mm 

Density 2700 kg/m3 

 

All finite element model used standard isotropic material properties and Euler 

Bernoulli beam elements to approximate the beam sections of the structure. 
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Appendix A2 

GARTEUR SM-AG19 

 

In 1995-1996 this GARTEUR SM-AG19 structure was used as a benchmark 

study by 12 members of the GARTEUR Structures and Materials Action Group 

19 [4,5,54]. One of the aims of the study was to compare the different 

computational model updating procedures on a single common test structure [3, 4, 

8, 20, 32, 36]. The benchmark study also allowed participants to test a single 

representative structure using their own test equipment. Two experimental test 

results; data from DLR, Gottingen, Germany and data from the Imperial College 

of Science, Technology and Medicine (IC), U of K are considered in this thesis.  

The aeroplane has a length of 1.5 m and a width of 3 m. The depth of the 

fuselage is 15cm with a thickness of 5cm. Figure A2.1 shows the two types of 

structural element choices; plate and beam, used to model the GARTEUR 

aeroplane in this thesis. In our models all element materials are standard isotropic. 

The beam model uses Euler–Bernoulli type elements and the plate model uses 

Kirchhoff shells. The natural frequencies measured by these two institutes are 

shown in Table A2.1. The difference between these is also shown in Table A2.1. 

Table A2.1 Measured NF data from two institutes; DLR and IC 
 

 
Mode 

No. 
1 2 3 4 5 6 7 8 9 

In
st

it
u

te
 DLR 

N
at

u
ra

l 

F
re

q
u

en
cy

 

(H
z)

 

6.38 16.10 33.13 33.53 35.65 48.38 49.43 55.08 63.04 

IC 6.54 16.55 34.86 35.30 36.53 49.81 50.63 56.39 64.96 

Difference (%)  

IC/DLR 
 -2.50 -2.79 -5.22 -5.27 -2.46 -2.95 -2.42 -2.37 -3.04 
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Figure A2.1 FEM of Garteur SM-AG19;Plate and Beam models 
 

The following figures (A2.2 and A2.3) show the first nine modes of the PLATE 

model of the GARTEUR Structure using standard material and geometric data. 
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Figure A2.2 First four models of plate model 
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Figure A2.3 Fifth to ninth modes of plate model 
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The following two figures show the first nine modes of the BEAM model of the GARTEUR Structure using standard material and 

geometric data. 

 

Figure A2.4 First four modes of beam model 
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Figure A2.5 Fifth to ninth modes of beam model 


