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Finite Element Modeling of a Plate 
with Localized Piezoelectric Sensors 
and Actuators 
This paper presents the numerical modeling of a plate structure containing bonded 
piezoelectric material. Hamilton’s principle is employed to derive the finite element 
equations using the mechanical energy of the structure and the electrical energy of the 
piezoelectric material. Then, a numerical model is developed based on Kirchhoff’s plate 
theory. A computational program is implemented for analyzing the static and dynamic 
behavior of composite plates with piezoelectric layers symmetrically bonded to the top and 
bottom surfaces. A set of numerical simulations is performed and the results are compared 
with those from analytical formulation available in the literature and with software 
ANSYS

®
. 

Keywords: Finite element technique, Kirchhoff’s plate theory, composite plates, 
piezoelectric material 
 
 
 

Introduction 

In recent years, there has been an increase in the development of 

light-weight smart or intelligent structures for several engineering 

applications. One reason for this is that it is possible to create 

structures and systems coupled with suitable control strategies and 

circuits exhibiting self-monitoring and self-controlling capabilities 

(Hagood and von Flotow, 1991). Moreover these systems are 

capable of adapting themselves to changing operating conditions. 

The advantage of incorporating this special type of material into 

the structure is that the resulting sensing and actuating mechanism 

becomes part of the structure itself. This is possible due to the direct 

and inverse piezoelectric effects: when a mechanical force is applied 

to a piezoelectric material, an electrical voltage is generated (direct) 

and, conversely, when an electric field is applied, a mechanical 

force is induced (inverse). With the recent advances in piezoelectric 

city technology, it has been shown that piezoelectric actuators based 

on the converse piezoelectric effect can offer excellent potential for 

active vibration control techniques, especially for vibration 

suppression or isolation (Fuller et al, 1996).1 

Crawley and de Luis (1987) studied the modeling of one-

dimensional piezoelectric patches embedded into the body of beams 

and formulated the moment generated by a voltage applied to the 

piezoceramics. Tzou and Tseng (1990) presented a piezoelectric 

finite element approach aiming at applications to distributed 

dynamic measurement and control of advanced structures. 

Dimitriadis et al. (1991) investigated analytically the behavior of 

two dimensional patches of piezoelectric material symmetrically 

bonded at the top and bottom surfaces of elastic distributed 

structures. Chen et al. (1996) verified mathematically and 

numerically the general finite element formulations for piezoelectric 

sensors and actuators derived from the principle of virtual work. 

Charette et al. (1997) presented an analytical model and an 

experimental study for the response of plates actuated by 

piezoceramics elements. In that work, the formulation is based on 

energy equations and allows to consider any boundary conditions at 

the edges of the plate and to take into account the dynamic effects 

(mass loading and stiffness) of the piezoelectric actuators on the 

plate response. Hansen (1998) describes an approach for modeling 

piezoelectric beams and plates that leads to a well-posed system of 

partial differential equations that retain the coupling between the 

mechanical system and a potential equation for the electrical 

components. Reddy (1999) presented the theoretical formulations 

                                                           
Paper accepted January, 2004. Technical Editor: José Roberto de F. Arruda. 
 

for the analysis of laminated composite plates with integrated 

sensors and actuators. That contribution used the Navier solutions 

and finite element models based on the classical and shear 

deformation plate theories. Lam and Ng (1999) presented the 

theoretical formulations based on the classical laminated plate 

theory and Navier solutions for the analysis of laminated composite 

plates with integrated sensors and actuators and subjected to both 

mechanical and electrical loadings. 

Recent research has focused on the applications of piezoelectric 

sensor and actuator in smart structures (Lima Jr, 1999). Lin and 

Huang (1999) presented a formulation methodology to the vibration 

control of composite structures with bonded piezoelectric sensors 

and actuators. Vibration suppression of composite smart structures 

by using piezoelectric sensors and actuators were also analyzed 

numerically by Chou et al. (1997) and experimentally by Yang and 

Lee (1997). 

Other engineering applications using finite element model of 

smart structures have been reported. Ledda et al. (1999) presented 

the development of a finite element method to determine 

theoretically the first resonance frequency of a  PVDF-TrFE 

transducer and Lopes et al. (2000) used the finite element 

formulation in order to generate the training data for a neural 

network to correlate the frequency response function (FRF) and the 

electrical impedance of smart structures. 

The present work investigates the influence of piezoelectric 

patches symmetrically bonded to the opposite plate surfaces on the 

static and dynamic behavior of the composite structure. For this 

purpose a finite element approach based on Kirchhoff’s plate model 

is used. An important motivation of this work is to present a finite 

element modeling of a plate with localized piezoelectric sensors and 

actuators using a formal and clear methodology. The methodology 

developed is validated using results obtained from the analytical 

theory of plates and from software ANSYS®, which were 

considered as reference for comparison purposes. The above 

mentioned analytical theory is dedicated to two-dimensional 

piezoelectric elements and is used to compute the resonant 

frequencies and the vibration displacement distribution of a thin 

rectangular plate with simply supported boundary conditions for 

various excitation frequencies and two different sensor and actuator 

locations. Software ANSYS® is used to determine the static and 

dynamic displacement distributions of the same structure, using 

various three-dimensional piezoelectric elements. 
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Figure 1. Coordinate system of a laminated finite element with integrated 
piezoelectric material. 

Nomenclature 

a = half length of the finite element in x direction, m 

A = relative to surface area 

b = half length of the finite element in y direction, m 

C = elastic constant, N/m2 

Cs = piezoelectric sensor capacitance, F 

D = electric displacement vector, C/m2 

e = piezoeletric stress coefficient, C/m2 

E = Young’s modulus, N/m2 

f  = force, N 

h = thickness, m  

K = stiffness matrix 

M = mass matrix 

q = displacement field vector 

qi = nodal displacement field, m 

T = kinetic energy, J 

u = displacement field in x direction, m 

U = potential energy, J 

v = displacement field in y direction, m  

V = volume, m3
 

w = displacement field in z direction, m 

W = work, J 

Greek Symbols 

ε = strain field 

σ = stress, N/m2 

ν = Poisson ratio 

θu = rotation about u-axis 

ξ = dielectric tensor 

ζ = nodal displacement vector 

Φ = electric potential, Volts 

ω = frequency, rad/s 

ρ = material density, kg/m3 

Subscripts 

a = refers to the actuator  

b = relative to the body 

p=  relative to the plate structure 

s = relative to the sensor 

sa = relative to the sensed voltage in the actuator 

x = relative to x direction 

y=  relative to y direction 

qq = relative to the stiffness 

qΦ = relative to the piezoelectric stiffness 

ΦΦ = relative to the dielectric stiffness 

Superscripts 

e = relative to the element 

S = relative to constant strain  

T = matrix transpose 

Finite Element Discretization 

In the present formulation, the following assumptions (Reddy, 

1999) are considered: 

• the piezoelectric layers are perfectly bonded together; 

• the formulation is restricted to linear elastic material behavior 

(small displacement and strains); 

• this formulation uses the Kirchhoff assumption (thin plate) in 

which the transverse normal remains straight after deformation 

and they also rotate such that they always remain perpendicular 

to the mid-surface. 

Therefore, as shown in Fig. 1, the displacements field u, v, and 

w can be expressed by the Kirchhoff hypotheses as (Reddy, 1999): 
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where x and y are the in-plane axes located at the mid-surface of the 

plate, and z is along the plate thickness direction as seen   Fig. 1. In 

addition, u and v are the displacements in the x and y-axes, 

respectively, whereas w is the transverse displacement (or also 

called deflection) along the z-axis. 

Because the transverse shear deformation is neglected, the strain 

field can be written in terms of the displacements as: 
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For isotropic material, the relation between plane stress (σ ) and 

strain ( ε ) is given by: 

 

{ } [ ]{ }εσ D= , (3) 

 

where { } { }Txyyx τσσσ =  and [ ]D  matrix is: 
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where ν  is the Poisson ratio and Ep denotes the Young’s modulus 

of the plate. 

Consider a four-node rectangular plate bending element based 

on classical plate theory (Bathe, 1982), where the element is shown 

in Fig. 1. Each node of the element possesses three degrees of 

freedom: a displacement w  in the z direction; a rotation about x-

axis ( xθ ); and a rotation about y-axis ( yθ ) as shown in the Fig. 1. 

The displacement function w is assumed to be: 
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where (see Fig. 1): 
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The transversal displacement field (w) can be expressed by: 
 

{ } { }cPw
T= , (7) 

 

where the coefficient vector { }c  is represented by the relation given 

below: 
 

{ } { }Tccccccc 1254321 …= , (8) 

 

and 
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Vector { }iq  is defined as a nodal displacement field in the 

rectangular element: 
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where: 
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Combining Eqs. (5) and (10) with Eqs. (11.1), (11.2) and (11.3) 

at the four nodal points yields the following matrix expression: 
 

{ } [ ]{ }cXqi = , (12) 

 

where [X] is a 12 × 12 matrix given by Eq. (13). 
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Therefore, the coefficient vector { }c  can be computed from Eq. 

(12), as: 
 

{ } [ ] { }iqXc
1−= . (14) 

 

Substituting Eq. (14) into (7) yields: 
 

[ ]{ }iw qNw = , (15) 

 

where [ ]wN  is the shape function matrix in the z direction given by: 

 

[ ] { } [ ] 1−= XPN
T

w . (16) 

 

Substituting Eq. (16) into (2) results in the following equation: 
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Manipulating Eq. (17) it is possible to obtain: 
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in which 
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The displacement field u, v, and w can be expressed by vector 

{ }q  as: 

 

{ } { }Tvuwq = .   (20) 

 

Substituting Eqs. (1.1), (1.2) and (1.3) into (20) yields: 
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Substituting Eq. (15) into (21) gives the expression below: 
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where [ ]T
ML and [H] are given by: 
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Fundamental Formulation of the Piezoelectric 

Phenomena 

In this work the following linear constitutive relations for 

piezoelectric materials are employed (Taylor et al., 1985): 
 

{ } [ ]{ } [ ]{ }EeC
E −= εσ , (24) 
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where the superscript S means that the values are measured at 

constant strain and the superscript E means that the values are 

measured at constant electric field, {σ} is the stress tensor, {D} is 

the electric displacement vector, {ε} is the strain tensor, {E} is the 

electric field, [CE] is the elastic constants at constant electric field, 

[e] denotes the piezoelectric stress coefficients, and [ξS] is the 

dielectric tensor at constant mechanical strain. 

The relation between [e] and [d], the piezoelectric strain 

coefficient, is: 
 

[ ] [ ][ ]dCe
E= . (26) 

 

The application of voltage to the element is analogous to the 

application of heat to a bimetallic strip. The voltage aΦ  across the 

bender element forces the bottom layer to expand, while the upper 

layer contracts, as depicted in Fig. 2. 
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Figure 2. Curvature of a plate produced by the expansion of one 
piezoelectric layer and contraction of the other. 

 

The result of these physical changes is a strong curvature; this 

implies in a large deflection at the tip when the other end is clamped 

(see Fig. 2). The tip deflection may be much larger than the change 

in length of either ceramic layer. Due to the reciprocity effect, 

deformation of the sensor will produce a charge across the sensor 

electrode, which is collected through the sensor surface as an 

electric voltage sΦ . 

When only the poling direction is taken into account, the applied 

or sensed electric potential through the actuator or sensor element is 

given by the following equation (Lopes et al., 2000): 
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where h and Φ  (see Fig. 2) are the thickness and the maximum 

electric potential at the external surface of the corresponding 

piezoelectric element (actuator and sensor), and z (za and zs) is 

defined over the intervals: 
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Now, assuming that the electric field (E) is constant through the 

actuator and sensor elements thickness, the gradient operators are: 
 

h
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d
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Obtaining the Element Matrices 

Hamilton’s principle is employed here to derive the finite 

element equations. 
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where t1 and t2 are two arbitrary instants, T is the kinetic energy, U 

is the potential energy, We denotes the work done by electrical 

forces, and Wm is the work done by magnetic forces, which is 

negligible for piezoelectric materials. The total kinetic energy T and 

the potential energy U of the composite structure are described by 

the following relations: 
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where { q } is the differentiation of {q} with respect to t, {q} is 

given by Eq. (22) and dV is defined by: 
 

sap dVdVdVdV ++=  (32) 

 

where the subscript p, a and s refer to the plate, actuator and sensor 

elements, respectively, and dVp, dVa, and dVs are given by: 
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The work done by electrical forces and magnetic forces is given 

by: 
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where D is the electric displacement vector, fb is the body force, fA is 

the surface force, and σq is the surface electrical stress. 

Substituting Eqs. (24) into Eq. (31.2) and substituting Eq. (25) 

into (34.1) yields, respectively: 
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Substituting Eqs. (31.1), (34.2), (35), and (36) into (30), results: 
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Substituting Eqs. (22), (18) and (29) into (37), yields: 
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where: 
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Allowing arbitrary variations of {qk} and {Φ}, two equilibrium 

equations written in generalized coordinates are now obtained for 

the k-th element: 
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where [ ]e
K  is the extended element stiffness matrix and ][ e

qqM  is 

the element mass matrix. 

Integrating the mechanical stiffness matrix ][ e
qqK  in the z 

direction yields: 
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where ih  is given by: 
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and [Di] or [Da], [Dp], and [Ds], for i = 1,2,3, are calculated by Eq. 

(4) for the piezoelectric and plate material properties, respectively, 

and dA is equal to dxdy. 
 

The element mass matrix is integrated in the z direction 

resulting: 
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=
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3
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1
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M
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i
e
qq XdALHLXM ρ , (44) 

 

where aρρ =1 , pρρ =2 , sρρ =3 , and [ ]iH  (for i = 1,2,3) are: 
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The electrical-mechanical coupling stiffness matrix ][ e
qK Φ  and 

dielectric stiffness matrix ][ e
KΦΦ  are integrated in the z direction 

with respect to the thickness of each piezoelectric layer (where dV = 

dVa and dV = dVs), yielding: 
 

[ ] ( )[ ] [ ] [ ]∫−
Φ +−=

A

z
T

a
T

K
T
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e
q dABeLXhhhK

2
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1
, (46.1) 
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[ ] [ ]
s

S
s

s
e

h

ab
K

ξ4
−=ΦΦ . (46.4) 

 

The Eqs. (42), (44), (46.1), and (46.3) are integrated numerically 

by using the Gauss-quadrature integration method (Bathe, 1982): 
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T
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where (ξ, η) are the Gaussian integration point coordinates and Wξ 

and Wη are the associated weight factors. 

Obtaining the Global Matrices 

Each of these element matrices can be assembled into global 

matrices. The assemblage process to obtain the global matrices is 

written as: 
 

[ ] [ ] [ ][ ]∑
=

=
N

k

k
e
qq

T
k TMTM

1

, (48) 

 

[ ] [ ] [ ][ ]∑
=

=
N

k

k
e
qq

T
kqq TKTK

1

, (49) 

 

where N is the number of finite elements and [ ]kT  is the distribution 

matrix defined by: 
 

( ) ( )
( )⎩

⎨
⎧

=
≠

=
imjif

imjif
jiT

k

k
k

1

0
, , 

 

for i =1, 2, …, 12, and j = 1, 2, …,ndof (50) 
 

where ndof  is the number of degrees of freedom of the entire 

structure, and mk denotes the index vector containing the degrees of 

freedom (3 dof) of the n-th node (1, 2, 3 or 4 – see Fig. 1) in the k-th 

finite element given by: 
 

{ }kkkk nnnm 31323 −−= , (51) 

 

Considering that na actuators and ns sensors are distributed in 

the plate, Eqs. (40) and (41) can be written in the global form: 

{ } { } [ ] { } { } 0][][][

1

=−Φ++ Φ
=
∑ FKTKM iq

n

k

T
ikqq

ie

ζζ , (52) 

 

[ ] [ ] { } [ ] { }( )∑
=

ΦΦΦ =+Φ+ζ
ien

k
aiikiq QKTK

1

0 , (53) 

where [ ]
ikT  is the distribution matrix (Eq. 50) which shows the 

position of the k-th element in the plate structure by using zero-one 

inputs, where the zero input means that no piezoelectric 

actuator/sensor is present, and one input means that there is an 

actuator/sensor in that particular element position, 
ien  is the number 

of finite elements of the i-th piezoelectric actuator/sensor, and { }ζ  

is the nodal displacement vector of the global structure. 

In the piezoelectric sensor there is no voltage applied to the 

corresponding element (Qa = 0), so that the electrical potential 

generated (sensor equation) is calculated by using Eq. (53), yielding: 
 

{ } [ ] [ ] [ ] { }∑
=

Φ
−

ΦΦ−=Φ
ien

k

iksiqsis TKK

1

1 ζ for i = 1, 2, …, ns (54) 

 

The total voltage { }Φ  is composed by the voltage { }sΦ  that is 

sensed by the sensor, the voltage { }saΦ  that is sensed by the 

actuator (see Eq. 54), and by the applied voltage { }aΦ . Then, { }Φ  

can be expressed by the following equation: 
 

{ } { } { } { }asas Φ+Φ+Φ=Φ . (55) 

 

The global dynamic equation can be formed by substituting Eq. 

(54) into Eq. (55) and then into Eq. (52). Thus, moving the forces 

due to actuator together with the mechanical forces to the right hand 

side of the resulting equation, yields: 
 

[ ]{ } { } { } { }
jelqq FFKM +=+ ζζ ][ * , (56) 

 

where ][ *
qqK , and { }elF  (electrical force) are given by, respectively: 

 

[ ] [ ]elqqqq KKK −=][ * , (57) 

 

and 
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k

T
jkjel KTF
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1

, for j = 1, 2, …, na (58) 

 

where [ ]elK  is the electric stiffness written as: 
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. (59) 

 

The system static equation is written by using Eq. (33) as 

follows: 
 

{ } { } { }( )elqq FFK += −1* ][ζ . (60) 

Closed Form Solutions for Rectangular Plates 

The classical theory of plates is based on the same assumptions 

described previously. The equation of motion governing the linear 

bending of elastic plates in the absence of thermal loads and without 

elastic foundation is given by Reddy (1999) as: 
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( )tyxfwhwD pp ,,4 =+∇ ρ , (62) 

 

where ( )2

3

112 ν−
= pEh

D  is the flexural rigidity of the plate, and 
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∂

∂
=∇  is known as the biharmonic 

operator. 

The response of the plate can be written assuming that the 

solution is of the form: 
 

( ) ( ) ( )∑∑
∞

=

∞
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=
1 1

,,,

k l

klkl tyxtyxw ηφ , (63) 

 

where φ(x,y) is a function of the spatial coordinates given by 

(Dimitriadis, 1991): 
 

( ) ( ) ( )
b

l

a

k
ysinxsinyx lklkkl

πγπγγγφ === ;;, , (64) 

 

ηkl(t) is a function of time, Lx and Ly are the plate length and width, 

respectively, and m = n = 1,2,3, ... 

According to Dimitriadis (1991), assuming that the piezoelectric 

elements are perfectly bonded to the plate surface, which implies 

that strain continuity is satisfied at the interface, the external loading 

of the plate, represented by the actuator induced moments, can be 

written as: 
 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+

∂

∂
Λ=

2

2

2

2

0,,
y

R

x

R
Ctyxf , (65) 

 

where: 
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a
ah

d
Φ=Λ , (66.3) 

 

( ) ( ) ( )[ ] ( ) ( )[ ]
2121

, aaaa yyHyyHxxHxxHyxR −−−−−−= . (66.4) 

 

Λ is the induced strain, d is given by Eq. (26), Φa is the applied 

voltage, R(x,y) is the generalized location function expressed as a 

function of the Heaviside function (Southas-Little and Inman, 

1999), and 
1ax , 

2ax  and 
1ay , 

2ay  are the boundaries of the 

piezoelectric actuator (see Fig. 3). 
 

 

Figure 3. Plate and piezoelectric material coordinate system. 

 

Fuller et al. (1996) have derived an expression for the charge 

generated by a two-dimensional distributed sensor, which is given 

by: 
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where es is the piezoelectric material stress constant and 
1s

x , 
2sx  

and 
1s

y , 
2sy  are the boundaries of the piezoelectric sensor. 

The electrical voltage generated by the sensor can be obtained 

through the following relation: 
 

( ) ( )
s

s
s

C

tQ
t =Φ , (68) 

 

where Cs is the sensor capacitance. 

Considering that ns sensors are distributed on the plate, and 

substituting Eq. (63) into (67) and then into (68), yields (assuming es 

= es31 = es32) (Fuller et al, 1996): 
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where 
isΓ is given by: 
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Considering also that na actuators are distributed on the plate, 

the dynamical equation of the system is obtained by substituting 

Eqs. (65) and (63) into (62), yielding: 
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where: 
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and 
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The static solution for the application of a constant electric 

voltage to the actuators can be obtained by substituting klη  

(calculated from Eq. 71) into Eq. (63), yielding: 
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Numerical Examples (Model Validation) 

In order to verify the accuracy of the presented finite element 

formulation2, the numerical results are compared with the close 

form solutions and with those from software ANSYS®. 

Static Displacement Distribution 

The first validation case is the comparison between the static 

displacement distribution obtained from the numerical techniques 

presented. 

In the upcoming validations a rectangular plate and piezoelectric 

material with the following characteristics are used (see Table 1): 
 

Table 1. Material and geometrical properties of plate and piezoelectric. 

 Piezoelectric  

Properties Sensor Actuator Plate 

E (Young’s modulus) 2 69 207 

ρ (Density) 1780 7700 7870 

ν (Poisson) 0.3 0.3 0.29 

h (Thickness) 0.205×10-3 0.254×10-3 1×10-3 

ξS (Piezo dielectric) 1.06×10-10 1.6×10-8 ---- 

e (Piezoelectric strain) 0.046 -12.5 ---- 

C (Capacitance) 5.2×10-9 6.3×10-7 ---- 

Geometry (Lx× Ly) 0.1×0.1 0.1×0.1 0.6×0.4 
 

The influence of the piezoelectric patches on the static behavior 

of the structure is investigated. 

The configuration, illustrated in Fig. 4, shows the corresponding 

layout of the piezoelectric actuators and sensors symmetrically 

bonded to the plate surfaces. 
 

xL

Y

X

yL

1

2 3

 

Figure 4. Piezoelectric actuators and sensors test configuration. 

                                                           
2 The structure was modeled by a 24×16 finite element mesh (N =384). 

The placements of the piezoelectric elements are shown in Table 

2. 
 

Table 2. Piezoelectric element positions on the plate structure. 

 Material 

Position (m) 1 2 3 

x1 0.25 0.15 0.35 

y1 0.05 0.25 0.25 
 

Figure 5 shows the total plate displacement amplitude calculated 

by using Eq. (74) – closed form solution, Eq. (60) – FEM, and 

software3  ANSYS®, when a static input voltage (Φa) is applied to 

actuators (1, 2 and 3) for the following magnitude: 
 

{ } { }111−=Φa  (75) 
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Figure 5. Static displacement distribution obtained by using the closed 

form solution (a), the finite element technique (b), and software ANSYS® 
(c). 

 

As can be seen from Fig. 5, both approaches give close results 

for the static displacement distribution. 

                                                           
3 The structure was modeled by a 60×40 finite element mesh. Each 

element is characterized by a three dimensional solid with eight nodes with 

up to four degrees of freedom at each node (three displacements and one 

electric potential). The piezoelectric (e) and dielectric (ξ) matrices are 

defined in the Appendix. 
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The static displacement distribution is calculated by using 

numerical techniques for two particular sections of the plate (y = 

Ly/2 and x = Lx/2), as illustrated in Figs. 6 and 7, respectively. 
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Figure 6. Comparison of the static displacement distribution (section  y = 
Ly/2) for the numerical techniques presented. 

 

0.00 0.10 0.20 0.30 0.40

Position y (m)

-6.00E-7

-3.00E-7

0.00E+0

3.00E-7

6.00E-7

w
(L

x
/2

,y
) 

(m
)

Legend

FEM

CLOSED FORM

ANSYS®

 

Figure 7. Comparison of the static displacement distribution (section  x = 
Lx/2) for the numerical techniques presented. 

 

The electric potentials generated by the piezoelectric sensors are 

then computed by using Eq. (69) where klη  is given by: 
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The obtained results for each technique used can be seen in 

Table 3. 
 

Table 3. Electric potentials generated by the piezoelectric sensors. 

 Electric Potential (Volts) 

Sensor FEM CLOSED FORM ANSYS® 

1 +0.0162178 +0.0139268 +0.0116576

2 -0.0162150 -0.0139280 -0.0115743

3 -0.0162150 -0.0139280 -0.0115743
 

As can be observed the results presented again satisfactory 

agreement. 

Dynamic Displacement Distribution 

Now the closed form solution for thin rectangular plates for two-

dimensional piezoelectric elements with simply supported boundary 

conditions, the present finite element technique, and the software 

ANSYS® are used to calculate the total displacement distribution in 

z direction for the structure for various excitation frequencies, using 

the piezoelectric actuators/sensors configuration as shown in Fig. 4. 

The analysis of the dynamic response of the plate due to the 

excitation caused by a sinusoidal voltage applied to the actuator 

layer with no mechanical loading at different time instants is shown. 

The value of the applied voltage amplitude (Φ) was 1.0 Volt and 

the excitation frequency (ω) was 185 rad/s for the actuator 1, 310 

rad/s for the actuator 2, and 440 rad/s for the actuator 3. The 

excitation frequencies are chosen between two natural frequencies 

of modes (k,l) (see Eq. 73):    (1, 1) and (2, 1) for the first excitation 

frequency, (2,1) and (1,2) for the second, and (1,2) and (3,1) for the 

third excitation frequency. 

The results for the displacement distribution in z direction, by 

using the closed form solution (see Eq. 63, where klη  is obtained by 

Eq. 71), are compared with those obtained from the present finite 

element model (Eq. 56) and software ANSYS® (time increment: 0.1 

ms). 

Figures 8, 9, and 10 show the transversal displacement 

distribution w(x,y,t) for three different time instants: 0.005, 0.01, and 

0.02 seconds, respectively. 
 

 
 

 
 

 

Figure 8. Dynamic displacement distribution (at 0.005 s) obtained by using 
closed form solution (a), the present finite element technique (b), and 

software ANSYS® (c). 
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Figure 9. Dynamic displacement distribution (at 0.01 s) obtained by using 
closed form solution (a), the present finite element technique (b), and 

software ANSYS® (c). 
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Figure 10. Dynamic displacement distribution (at 0.02 s) obtained by using 
closed form solution (a), the present finite element technique (b), and 

software ANSYS® (c). 
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Figure 10. (Continued). 

 

The dynamic displacement distributions in two particular 

sections of the plate (y = Ly/2 and x = Lx/2) are illustrated in Figs. 11 

and 12, respectively. 
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Figure 11. Comparison of the dynamic displacement distribution (section 
y = Ly/2) at time instants: 0.005 s, 0.01 s, and 0.02 s. 

 



Finite Element Modeling of a Plate with … 

J. of the Braz. Soc. of Mech. Sci. & Eng.     Copyright © 2004 by ABCM     April-June  2004, Vol. XXVI, No. 2 / 127

0.00 0.10 0.20 0.30 0.40

Position y (m)

-1.20E-6

-8.00E-7

-4.00E-7

0.00E+0

4.00E-7

8.00E-7

w
(l
x
/2

,y
) 

(m
)

Legend

FEM

CLOSED FORM

ANSYS
®

t = 0.005 s

t = 0.001 s

t = 0.01 s

 

Figure 12. Comparison of the dynamic displacement distribution (section 
x = Lx/2) at time instants: 0.005 s, 0.01 s, and 0.02 s. 

 

Finally, the electric potentials generated by the sensors in the 

time interval from 0 to 0.01 seconds are illustrated in Fig. 13. 
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Figure 13. Comparison of the electric potential responses of each sensor. 

 

The results above show that the present modeling technique is 

also effective for the dynamic response of the plate due to an 

excitation caused by the actuator layer in comparison with the 

results from the closed form solutions and the software ANSYS®. 

Small differences found for the transversal displacement values are 

due to the consideration of the 3D solid elements used in the 

ANSYS® model formulation. 

It is important to mention that, as closed form solutions do not 

include mass and stiffness effects from the piezoelectric, significant 

differences with respect to the other techniques are found, according 

to Figs. 6, 7, 11 and 12. 

Conclusions 

A finite element formulation based on Kirchhoff’s plate model 

has been developed for the analysis of smart composite structures 

with piezoelectric materials. 

All important steps were presented in detail, in such a way that 

the modeling technique used can be easily understood. Besides, 

various computational tests were performed (static and dynamic 

ones) demonstrating the efficiency of the methodology used. 

Results were presented for a simply supported rectangular thin 

plate excited and sensed by various rectangular actuators and 

sensors bonded symmetrically to both sides of the plate. The results 

for the static and dynamic analysis obtained by the present finite 

element technique show good agreement with those from the exact 

solutions and software ANSYS®. The present solutions are useful 

for understanding the electromechanical coupling in intelligent 

structures under dynamic conditions. Besides, the present 

methodology is useful for the design of vibration control devices. 
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Appendix 

In the software ANSYS®, the elastic (CE), piezoelectric (e), and 

dielectric (ξ) matrices for the actuator (a) and sensor (s) materials 

are defined below (see Table 1). 
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