
Finite element modeling of nanoindentation on an
elastic-plastic microsphere
Jialian Chen 

Fujian Normal University
Hongzhou Li  (  lihongzhou@fjnu.edu.cn )

Fujian Normal University https://orcid.org/0000-0001-8005-1323

Original Article

Keywords: Microsphere, Finite element analysis, Nanoindentation, Plasticity, Mechanical properties

Posted Date: May 7th, 2020

DOI: https://doi.org/10.21203/rs.3.rs-25785/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

https://doi.org/10.21203/rs.3.rs-25785/v1
mailto:lihongzhou@fjnu.edu.cn
https://orcid.org/0000-0001-8005-1323
https://doi.org/10.21203/rs.3.rs-25785/v1
https://creativecommons.org/licenses/by/4.0/


1 

Finite element modeling of nanoindentation on an elastic-plastic microsphere 

Jialian Chen
a
, Hongzhou Li

a, b, * 

a
College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian, 

China 

b
Engineering Research Center of Polymer Resources Green Recycling of Ministry of Education, Fujian 

Normal University, Fuzhou 350007, Fujian, China 

 

 

Corresponding author. Tel.: +86 591 83426504; Fax: +86 591 83465225. 

 E-mail address: lihongzhou@fjnu.edu.cn (H. Li). 

  



2 

Abstract 

The understanding of the mechanical indentation on a curved specimen (e.g., microspheres and 

microfibers) is of paramount importance in the characterization of curved micro-structured materials, 

but there has been no reliable theoretical method to evaluate the mechanical behavior of 

nanoindentation on a microsphere. This article reports a computational study on the instrumented 

nanoindentation of elastic-plastic microsphere materials via finite element simulation. The finite 

element analyses indicate that all loading curves are parabolic curves and the loading curve for 

different materials can be calculated from one single indentation. The results demonstrate that the 

Oliver-Pharr formula is unsuitable for calculating the elastic modulus of nanoindentation involving 

cured surfaces. The surface of the test specimen of a microsphere requires prepolishing to achieve 

accurate results of indentation on a micro-spherical material. This study provides new insight into the 

establishment of nanoindentation models that can effectively be used to simulate the mechanical 

behavior of a microsphere. 
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1. Introduction 

Instrumented nanoindentation is perhaps the most commonly adopted and used technique in the 

characterization of mechanical behavior of microplastics, thin films, coatings, powders, small crystals 

and materials at small scales. One of the great advantages of the technique is that many mechanical 

properties of materials can be determined by the analyses of indentation load-displacement data alone, 

thereby avoiding the need to measure the area of hardness impression by imaging and facilitating 

property measurement at the sub-micron scale [1, 2]. In a nanoindentation test, an axisymmetric 

diamond indenter with a geometry known to high precision (usually a Berkovich tip, which has three-

sided pyramid geometry with the same area-to-depth ratio as the four-sided Vickers pyramid used 

commonly in microhardness testing) is pushed into the surface of test specimen with an increased force 

or displacement. As the force or displacement reaches a user-defined maximum value (sometimes 

moving just a few hundreds of atom into solid surface, indentation depth 20 or 30 nanometers), the load 

is then withdrawn. While loading-unloading is in progress, force-displacement curves are recorded via 

a Nanoindenter® instrument. The unloading curve is used to extract the mechanical properties 

(including elastic modulus and hardness) of test specimen via an analytical method, such as the Oliver-

Pharr method [3, 4]. For Oliver-Pharr method, the test specimen is assumed to be a flat surface with 

linear isotropic elastic-perfectly plastic material properties. A permanent hardness impression is formed 

during loading and unloading. When the indenter is unloaded, the elastic strains are recovered. Thus, 

instrumented nanoindentation has elastic and plastic deformation during loading, but only elastic 

deformation during unloading.  

Cheng and Cheng derived several scaling relationships for conical indentation in elastic-plastic 

solids with work hardening using dimensional analysis and finite element calculations [5]. They 

pointed out that some properties such as the elastic modulus are size independent [6]. The measured 
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values from macroscopic experiments are consistent with that predicted from first-principles quantum 

mechanics calculations. Oliver and Pharr reviewed the mechanics governing elastic-plastic indentation 

as they pertain to load and depth-sensing indentation testing of monolithic materials [7]. The 

measurement of contact stiffness by dynamic techniques allows for continuous measurement of 

properties as a function of depth. Stiffness is measured continuously during the loading of the indenter 

by imposing a small dynamic oscillation on the force (or displacement) signal and measuring the 

amplitude and phase of the corresponding displacement (or force) signal by means of a frequency-

specific amplifier [7]. The elastic and plastic properties of materials by employing instrumented sharp 

(geometrically self-similar indenters like Vickers, Pyramids, Berkovich or Cones) indentation may be 

computed from a single loading-displacement curve through a general theoretical framework proposed 

by Giannakopoulos and Suresh [8]. Their procedure can be used to accurately predict the indentation 

response from a given set of elastic-plastic properties (forward algorithms), and to extract elastic-

plastic properties from a given set of indentation data (reverse algorithms) [9]. Pileup (or sink-in) leads 

to contact areas that are greater than (or less than) the cross-sectional area of the indenter at a given 

depth. These effects lead to errors in the absolute measurement of mechanical properties by 

nanoindentation. The measured indentation modulus and hardness would be too high in the case of 

pileup and too low in the case of sink-in without accounting for the difference between the actual 

contact area and the cross-sectional area of the indenter [10]. Saha and Nix examined the effects of 

substrate on determining the mechanical properties of thin films by nanoindentation [11]. Compared to 

hardness, the nanoindentation measurement of the elastic modulus of thin films is more strongly 

affected by substrate. True contact area and true hardness of film can be determined from the measured 

contact stiffness, irrespective of the effects of pileup or sink-in around the indenter.   

Much research has been done on the indentation problem of a half-space by a rigid indenter [12-14]. 

However, not all small scale structures are flat. Examples of small scale microplastics and fibers 
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(typical diameter 10-20um) require material characterization. The material properties are not affected 

by the geometry of the test specimen, but the Oliver-Pharr procedure to obtain material properties will 

vary according to the geometry of the testing specimen. There has been no reliable theoretical method 

to evaluate the mechanical behavior of nanoindentation on a curved specimen. It is necessary to 

conduct reliable numerical simulations to evaluate the mechanical behavior of nanoindentation on a 

microsphere. The numerical simulations are usually carried out via the finite element method [15-30]. 

Phadikar and Karlsson investigated the possibility of extending instrumented indentation to non-flat 

surfaces [21-22, 27-29]. In this study, finite element method had been used to systematically 

investigate the mechanical behavior of nanoindentation on a microsphere. 

2. Theoretical Background 

The analysis of Sneddon for the indentation of an elastic half space by a flat, cylindrical punch leads 

to a simple relation between P  and h  of the form [31] 

4
=

1

Ga
P h


  (1) 

where P  is the indenter load, h  is the displacement of the indenter relative to the initial undeformed 

surface, a  is the radius of the cylinder, G  is shear modulus, and   is Poisson’s ratio of testing 

specimen. Noting that the contact area A  is equal to 2a  (i.e., the projected area or cross sectional area 

of elastic contact) and that shear modulus is equal to / [2(1 )]E  , differentiating P  with respect to h  

leads to  

2

2

(1 )

dP E A
S

dh 
 

 
  (2) 

where /S dP dh  is the initial stiffness of the unloading curve, defined as the slope of the upper 

portion of the unloading curve during the initial stages of unloading (also called contact stiffness), and 

E  is the Young’s modulus of testing specimen. For the Berkovich and Vickers pyramids, the 
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equivalent cone angle is 70.296°, and the area-to-depth relationship, also known as the area function, is 

given by 

2

c24.494A h   (3) 

where A  is the cross-sectional area of the indenter at a distance 
ch  (contact depth) back from its tip. 

Known the contact depth, and the shape of the indenter determined through the “area function”, the 

contact area is then determined. If the contact stiffness and contact area were known, Equation 2 and 

Equation 3 can be used to measure the elastic modulus of a material. Taking one complete cycle of 

loading and unloading data, three quantities are measured: one is the maximum load, another is the 

maximum displacement maxh  (the maximum displacement of the indenter relative to the initial 

undeformed surface), and the third is the unloading stiffness. 

Effects of non-rigid indenters on the load-displacement behavior can be effectively accounted for by 

defining an effective elastic modulus through the equation
 
[4] 

22

i

eff i

(1 )1 (1 )

E E E

 
    (4) 

where iE  and i  are the Young’s modulus and Poisson’s ratio of the indenter. If the indenter is a rigid 

body (i.e., iE   ), for any axisymmetric indenter, the effective elastic modulus 
effE  can be derived as 

 

[4]

 

eff
2

S
E

A


   (5) 

If the indenter is a conical indenter, then 

2 2

eff (1 ) (1 )
2

S
E E

A
 

      (6) 

The normal definition of hardness H  is  

maxP
H

A
   (7) 
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where maxP is the peak indentation load. 

The Young's modulus and hardness extracted from the Oliver-Pharr method are dependent on the 

initial stiffness of the unloading curve and the projected area of the indentation at the contact depth 
ch . 

To correct Oliver-Pharr’s solution accounting for the radial displacements, Hay used finite element 

method to calibrate Equation 2 and included a “correction factor” [32]. The correction factor is 

dependent on the half-included angle of indenter and Poisson’s ratio of a material 

OP

2

2

(1 )

E A
S 




 
  (8) 

where   is the correction factor, and 
OPE  is the Young’s modulus extracted according to Oliver-Pharr 

method. The correction factor appearing in Equation 8 plays a very important role when accurate 

property measurements are desired. This constant affects the elastic modulus calculated from the 

contact stiffness by means of Equation 8 because procedures for determining the indenter area function 

are also based on Equation 8. Oliver and Pharr proposed that 1.05   with a potential error of 

approximately ±0.05, based on their analysis of available results 1.0226 1.085   from experiments 

and finite element calculations [7]. 

3. Finite element Model 

To reduce testing, finite element analysis is used to calculate the load-displacement curves of 

nanoindentation during the loading and unloading, and the unloading curve can be used to determine 

the Young’s modulus of a material using the Oliver-Pharr method (reverse algorithms). Finite element 

analyses of nanoindentation tests were carried out on an elastic-plastic microsphere. Figure 1a shows 

the finite element model of a microsphere with 11.5µm radius and the mesh generated using ABAQUS, 

in which two dimensional CAX4R (continuum, axisymmetric, quadrilateral four-node reduced 

integration) and CAX3 elements were used in the mesh discretization of the microsphere. The whole 

model consists of 28651 elements and 28538 nodes. A finer mesh near the contact region and a 
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perfectly-plastic material. /y E  is initial yield strain. Phadikar showed that max / Rh  (R is the radius of 

the microsphere) is an appropriate non-dimensional factor [21]. Therefore, we selected / yE   and 

max / Rh  quantities to present our results. In order to research the effect of / yE   on indentation, the 

Young’s modulus and the Poisson’s ratio of the microsphere was set to be 10GPa and 0.2, respectively. 

The ratio of Young’s modulus of the microsphere over the initial yield stress of the microsphere, / yE  , 

was systematically varied between 10 and 1000 to cover the most mechanical properties of materials 

encountered in engineering. An elastic–plastic material with / 70yE    is fairly typical for a polymer 

(low-density polyethylene with 1.37GPE a , 20MPa
y

  , / 69yE   ; aluminum with 70GPE a ,

228MPa
y

  , / 307yE   ).  

Figure 2 shows that microsphere is penetrated with different indentation depths via the rigid 

Berkovich indenter to produce different maximum loads. All the loading curves at different indentation 

depths overlap and follow exactly the same loading curve. The load is proportional to the square of the 

indenter displacement during loading as 2

2

2 tan

(1 )

E
P h





 

, where   is the half-included angle of 

indenter. Therefore, the indentation curves exhibit parabolic loading and power-law unloading. The 

residual depth after full unloading is larger for deeper indentation. The area under the loading curve is 

the total work; the area under the unloading curve is the reversible work; and the area enclosed by the 

loading and unloading curve is the irreversible work. The total work and the reversible work are 

proportional to the maximum depth 3

maxh . 
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Figure 2 Loading and unloading curves for different indentation depths of / 10
y

E    

Figure 3a shows the loading and unloading curves for different / yE 
 
at indentation depth 0.115µm. 

As shown in Figure 3a, the indenter displacement in / 200 1000yE     is plastic, and only a small 

portion of elasticity is recovered on unloading. The surface around the indenter piles up. However, the 

indenter displacement in / 10 50
y

E   
 
is more elastic, a larger portion of elasticity is recovered on 

unloading. The surface around the indenter sinks in. For highly elastic solids, such as polymers, sink-in 

is often observed. / 100yE  
 
is a critical value for surface pileup or sink-in for this case. The surface 

near the indenter has a tendency to pile up around the indenter and forms a "crater" when / yE   is 

greater than 100. However, when / yE 
 
is less than 100, the surface near the indenter sinks in. The 

load of each curve in Figure 3b is normalized with respect to its maximum load in Figure 3a, 

respectively. As shown in Figure 3b, all loading curves overlap. It means that all loading curves in 

Figure 3a are proportional for different / yE  . It means that all loading curves for different materials 

can be calculated from one single indentation.  
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Figure 3 Loading and unloading curves for different / yE 
 
at indentation depth 0.115µm: (a) original 

curves, (b) curves normalized by maximum load 

Figure 4a shows the input Young’s modulus in the finite element code normalized with respect to 

Young’s modulus extracted according to the Oliver-Pharr method, OP/E E , as a function of normalized 

maximum indentation depth, max / Rh . The initial unloading slope was computed using the two points 

associated with the maximum load and 1% of the unloading curve as shown in Figure 2 and Figure 3a. 
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Then, the Oliver-Pharr modulus OPE  can be obtained according to Equation 2. The values 

c
OP 2

24.494 2
/

(1 )

hE
E E

S



 

   
in Figure 4 correspond to the "correction factor" extracted from the 

Oliver-Pharr method. The correction factor is not a constant with the increase of normalized maximum 

indentation depth even for the same /
y

E  . This means that the calculated elastic modulus of a 

microsphere using the Oliver-Pharr method according to simulated unloading curve is dependent on the 

indentation depth. As a consequence, suggesting that formula 2 is unsuitable for calculating the elastic 

modulus of nanoindentation involving cured surfaces. The surface of the test specimen of a 

microsphere requires prepolishing to achieve accurate results of indentation on a microsphere material. 

Figure 4b shows that as long as the ratio of Young’s modulus of the microsphere over the initial yield 

stress of the microsphere, / yE  , is the same value, the calculated OP/E E  is equal for the same 

indentation depth. It substantiates that Young’s modulus can be normalized with yield stress as a non-

dimensional quantity / yE  . 
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Figure 4 Normalized Young’s modulus OP/E E
 
as a function of maximum indentation depth over 

microsphere radius: (a) vary 
y , (b) vary

 
E

 
 

Figure 5 shows the final depth fh  (the residual depth relative to the initial undeformed surface) as a 

function of the ratio of maximum indentation depth over microsphere radius max / Rh . The final depth 

increases with the increase of / yE   and max / Rh . Figure 6 shows the loading and unloading curves for 

/ 10yE  
 
and / 20yE  

 
at indentation depth 0.115µm. It clearly shows that

 
the final depths after 

indentation are equal for the same /
y

E  . 
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Figure 5 Final depth as a function of maximum indentation depth over microsphere radius 
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Figure 6 Loading and unloading curves for / 10
y

E  
 
and / 20
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E  

 
at indentation depth 0.115µm 

The stress distribution inside the microsphere at any time during indentation, the residual stress 

distribution inside the microsphere, the permanent deformation of the microsphere can be predicted via 

finite element analyses. Figure 7 shows the stress fields at maximum indentation force, the permanent 

deformation and residual stress distributions inside the microsphere after full unloading. In the purely 
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5. Conclusion 

A computational study was undertaken to simulate the instrumented nanoindentation of elastic-

plastic microsphere materials. The ratio of Young’s modulus of the microsphere over the initial yield 

stress of the microsphere, / yE  , was systematically varied from 10 to 1000 to cover the most 

mechanical properties of materials encountered in engineering. Finite element simulation results 

indicate that the load is proportional to the square of the indenter displacement during loading as 

2

2

2 tan

(1 )

E
P h





 

. The total work and the reversible work are proportional to the maximum depth 3

maxh . 

The calculated elastic modulus of a microsphere using Oliver-Pharr formula according to simulated 

unloading curve was found to be dependent on the indentation depth, suggesting that this formula is 

unsuitable for calculating the elastic modulus of nanoindentation involving cured surfaces. The surface 

of the test specimen of a microsphere requires prepolishing to achieve accurate results of indentation on 

a micro-spherical material. 
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Figures

Figure 1

[See manuscript for �gure legend.]

Figure 2

Loading and unloading curves for different indentation depths of / 10



Figure 3

Loading and unloading curves for different / E ฀ y at indentation depth 0.115µm: (a) original curves, (b)
curves normalized by maximum load



Figure 4

Normalized Young’s modulus OP E E/ as a function of maximum indentation depth over microsphere
radius: (a) vary ฀ y , (b) vary E

Figure 5

Final depth as a function of maximum indentation depth over microsphere radius

Figure 6

Loading and unloading curves for / 10 E ฀ y ฀ and / 20 E ฀ y ฀ at indentation depth 0.115µm



Figure 7

[See manuscript for �gure legend.]


