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To describe the mechanical behaviour of biological tissues and transport processes in biological tissues,
conservation laws such as conservation of mass, momentum and energy play a central role. Mathematically
these are cast into the form of partial differential equations. Because of nonlinear material behaviour,
inhomogeneous properties and usually a complex geometry, it is impossible to find closed-form analytical
solutions for these sets of equations. The objective of the finite element method is to find approximate
solutions for these problems.

The concepts of the finite element method are explained on a finite element continuum model of
skeletal muscle. In this case, the momentum equations have to be solved with an extra constraint, because
the material behaves as nearly incompressible. The material behaviour consists of a highly nonlinear pass-
ive part and an active part. The latter is described with a two-state Huxley model. This means that an
extra nonlinear partial differential equation has to be solved. The problems and solutions involved with
this procedure are explained. The model is used to describe the mechanical behaviour of a tibialis anterior
of a rat. The results have been compared with experimentally determined strains at the surface of the
muscle. Qualitatively there is good agreement between measured and calculated strains, but the measured
strains were higher.
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1. INTRODUCTION

To describe the mechanical behaviour of biological struc-
tures, conservation laws such as the balance of mass,
momentum and energy play a central role. These balance
laws, together with constitutive equations, describing the
material properties, and boundary and initial conditions
make it possible to mathematically solve a large variety of
problems, related to the functioning of biological systems.
The balance laws and constitutive equations form a set of
partial differential equations.

Many ‘soft’ biological materials undergo large defor-
mations (strains up to 100%) and large rigid-body
motions, meaning that a geometrically nonlinear theory
has to be used. Moreover, the constitutive equation, i.e.
the relationship between stress and applied strain in the
material, is usually nonlinear, anisotropic and inhomo-
geneous. Finally, the geometry of the object being studied
is complex. Consequently, closed-form solutions of the
mathematical equations cannot be found for non-trivial
problems. A powerful tool to find good approximate
numerical solutions for these equations is the finite
element method. This method transforms the partial dif-
ferential equations into a finite set of algebraic equations.
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This is accomplished by using an equivalent integral
expression of the partial differential equations (e.g. via the
use of weighted residuals formulation) and appropriate
spatial and temporal discretization.

The objective of the present paper is to explain the con-
cepts of a finite element model of contracting skeletal
muscle. Because the paper was part of a symposium on
‘modelling in biomechanics’, it is more focused on the
concept than on the results. A model for contracting skel-
etal muscle is chosen to elaborate on the solution strategy
and on some of the specific problems, typical for con-
tracting muscle. To stay within the scope of the journal,
the mathematics is kept to a minimum. For a more exten-
sive treatment of the subject, the reader is referred to an
excellent textbook on the finite element method
(Zienkiewicz & Taylor 1989) and some recent publi-
cations on skeletal muscle models (Gielen et al. 2000;
Maenhout 2002). In § 2 the physics of the model and the
governing equations will be summarized. After that, the
solution process is described in more detail. The paper
ends with an example of a simulation and some conclud-
ing remarks.

2. MODEL DESCRIPTION

The objective was the development of a continuum
model for contracting skeletal muscle that may be used as
a tool for studies on damage and adaptation of this tissue.
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A continuum model was necessary, because the work is
based on the hypothesis that local stresses and strains
result in local changes of the muscle tissue.

The basics of such a model are the balance of momen-
tum and the balance of mass (Hunter 1983). The model
was meant as a tool in research on the development of
pressure sores and to study Pompe’s disease. This means
that very fast movements of the muscle do not occur and
thus inertial forces and body forces can be ignored. In that
case the momentum balance reduces to a set of equilib-
rium equations for the stresses:

�·� = 0. (2.1)

In equation (2.1) � is called the Cauchy stress tensor, and
� is the gradient operator with respect to the current con-
figuration. Equation (2.1) represents a set of partial differ-
ential equations with derivatives to each of the coordinate
directions. Because we are dealing with a continuum, the
equation has to be applied at each point in space.

The deformation tensor F is a mapping of the unde-
formed reference configuration on the deformed configur-
ation. Consider an infinitesimal line element dx0 in the
undeformed reference configuration. After deformation
this line element is rotated and deformed to line element
dx. F is a mapping of the undeformed reference configur-
ation on the deformed configuration:

dx = F·dx0. (2.2)

Muscle consists of more than 70% water and behaves
as nearly incompressible. Nearly and fully incompressible
material behaviour can lead to ‘locking’ of elements in a
numerical procedure. This becomes visible as oscillations
in the displacement fields. For this reason it is better to
consider the material fully incompressible and account for
it properly in the numerical procedure.

Incompressibility is taken into account by an extra con-
straint that the determinant of F equals 1:

detF = 1. (2.3)

The determinant detF is a measure of the volume change.
The above equations are general equations, not specific

for any type of material. Beside these equations, we need
constitutive equations, specific for the material under con-
sideration, relating the stress � to the applied strain F.
There are numerous ways to do this. The correct equation
can be determined only by means of experiments.

For skeletal muscle, the following choice was made. It
is assumed that the total stress in the material is defined by
a superposition of a passive stress (caused by the stiffness
properties of collagen and cytoskeletal materials) and an
active stress that works only in the fibre direction (Gielen
et al. 2000). In mathematical terms this can be written as

� = �passive � �activeefef, (2.4)

where ef denotes the local fibre direction. The following
nonlinear relationship between stress and strain is chosen
for the passive stress:

� = �matrix � �fibreefef, (2.5a)

�matrix = G(F·F T � I ) � pI, (2.5b)

�fibre = m1�2(em2(�2�1) � 1) if � � 1,
�fibre = 0 if � � 1, (2.5c)
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where G is shear modulus and I is unit tensor. This means
that the passive stress in the muscle consists of an isotropic
part �matrix, following a Neo-Hookean material law (often
used for rubbers) and a nonlinear part �fibre that only
works in the fibre direction. In equation (2.5c) � is the
length change in the fibre direction. For the tendons and
the passive behaviour of the muscle the same material law
is used, but with different material parameters.

Within the context of the present paper, the active stress
is more interesting to discuss. In the literature, Hill-type
models are often chosen for the active stress. These are
phenomenological models, accounting for the length–
force and the velocity–force relationship of the muscle. In
the present paper, a model based on the sliding-filament
theory of Huxley (1957) is chosen, which was later
adapted by Zahalak (1981). This also is a phenomenologi-
cal model but at a different architectural level. A two-state
Huxley model is used, which means that cross-bridges are
either attached or detached. There are some disadvantages
of this model, especially for rapid events, which have been
extensively discussed in the literature (see Herzog 2000).
However, for relatively slow phenomena the model
gives good results, compared with experimental data
(Maenhout et al. 2000).

The basic theory focuses on an ensemble of myosin
heads, which are assumed to be capable of binding to
actin, to form a cross-bridge. During contraction, a frac-
tion of all cross-bridges is attached. Every attached cross-
bridge has its own dimensionless attachment length �. The
distribution of attached cross-bridges with respect to their
length is given by the function n(�,t) and the rate of
change of this distribution can be expressed with a modi-
fied two-state Huxley equation:

∂n(�,t)
∂t � u(t)

∂n(�,t)
∂�

= r(t)f(� )[� � n(�,t)] � g(� )n(�,t),

(2.6)

where u(t) is the scaled shortening velocity of a half sarco-
mere, f(� ) and g(� ) are the attachment and detachment
rate of the cross-bridges, respectively, � is an overlap fac-
tor, and r(t) is an activation factor, depending on the
amount of calcium in the myofibrillar space. It should be
noted at this point that equation (2.6) again is a partial
differential equation with a time derivative and a derivative
to the attachment length, which is a microstructural pro-
perty. The shortening velocity u(t) is a macroscopic pro-
perty.

The active muscle stress can be determined from the
distribution of attached cross-bridges n. It is assumed that
the cross-bridge force depends linearly on the attachment
length �. The active Cauchy stress �a generated by all
cross-bridges in a slice of half sarcomeres is described as

�a(t) = ca�� �

��

�n(�,t) d� = ca�Q1(t), (2.7)

where Q1 is the first moment of function n(�,t).
As can be seen from equation (2.7), the active stress 	a

does not depend on the exact shape but on the first
moment of the function n, ca is a material constant and
represents the maximal isometric stress with the maximum
number of cross-bridges attached and � is the extension
ratio in fibre direction. Zahalak (1981) has made plausible
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that it is not always necessary to determine the exact dis-
tribution function n, but it suffices to determine the first
moment Q1. This will be used later to simplify the numeri-
cal procedure. (Also see equation (3.4).)

The functions f(� ) and g(� ) represent the rate for
attachment and detachment, respectively, of myosin to
actin. These functions have to be determined in experi-
ments and depend on the type of species and the muscle
type (fast twitch or slow twitch). The overlap factor � is
a function of the actual length of a sarcomere and
accounts for the region of the filaments that overlap and
hence the number of cross-bridges that can be formed
potentially. The activation factor r(t) describes the calcium
activation in the Huxley cross-bridge model and is used
to trigger the muscle to contract or release the contraction.

It can be seen that if r = 0, the attachment term is zero
and only the detachment term is active, such that the
active stress will decrease. When r 
 0 the attachment
term plays a part in the equations and depending on the
other factors on the right-hand side the number of
attached cross-bridges (and thus the active stress) may
either increase or decrease.

A myosin head can only interact with an actin binding
site if two calcium ions are bound to the specific receptor
sites on the troponin molecule of that actin site. The frac-
tion activated actin is defined as r(t):

r(t) =
c2

c2 � �c � �2, (2.8)

with c representing the ratio of the free calcium concen-
tration in the myofibrillar space with respect to the
maximum myofibrillar calcium concentration and � the
troponin–calcium reaction ratio constant. The calcium
concentration is regulated by the electric stimulation caus-
ing the release of calcium from the SR. Zahalak & Ma
(1990), Ma (1988) and Zahalak & Motabarzadeh (1997)
derived a model for the calcium activation dynamics,
described by the following equations:

dCt

dt
= � �1 �

c
c∗�(t) � ��1

0 � c
c � km

�, (2.9)

Ct = c � 2bQ0 � r�2 �
�

c�(1 � bQ0), (2.10)

where Ct is the total calcium in the myofibrillar space. The
first term on the right-hand side of equation (2.9) is the
input rate of the calcium, with c∗ the average calcium con-
centration in the muscle and � the increase in total calcium
concentration due to one action potential. The stimulation
function (t) is used to control the active stress in the mus-
cle. The second term on the right-hand side of equation
(2.9) represents the rate at which the calcium is pumped
out of the cytoplasm into the SR and is based on the
classic enzyme kinetics theory, with �0 and km as the
Michaelis–Menten parameters. In equation (2.10) Q0 is
the zeroth moment of the actin–myosin bond distribution
function n(�,t) (see equation (3.4)).

To summarize, the equilibrium equations have to be
solved in each point of the muscle. By prescribing the
stimulation function (t), equation (2.9) allows a calcu-
lation of the total amount of free calcium Ct(t) in the cyto-
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plasm and the amount of calcium c(t) available for the
cross-bridge attachment (equation (2.10)). With this
information and equation (2.8) the activation factor r(t)
can be calculated and the Huxley equation (2.6) can be
solved for time-step t. When the active stress is known at
each point in the muscle the equilibrium equations,
together with constitutive equations for the passive behav-
iour of muscle and tendon, can be solved and strains and
total stress in the muscle calculated. There exists a
coupling between the deformation of the muscle and the
generated active stress by means of the contraction velo-
city u(t) and the overlap factor � in equation (2.6). The
finite element method is used to solve the partial differen-
tial (2.1). The reason for this is that the finite element
method is the best suitable method to deal with com-
plex geometries.

3. SOLUTION METHOD

The objective of the finite element method is to find
approximate solutions for boundary value problems, gov-
erned by partial differential equations. Clearly the set of
equations given in § 2 cannot be solved analytically. In the
set of equations above, the unknowns are the displace-
ments of material points in the muscle tissue as a function
of position and time t, the hydrodynamic pressure P, the
total calcium Ct and the free calcium c in the myofibril-
lar space.

The finite element method proceeds along three well-
defined steps.

(i) Transformation of the original differential equation
into an integral equation by means of the principle
of weighted residuals.

(ii) Discretization of the solution by interpolation. If an
approximate solution is found in a finite number of
points (nodes) an approximation field may be con-
structed by interpolation between these points.

(iii) Using the discretization, the integral equation is
transformed into a set of equations from which the
nodal values of the unknowns can be solved.

First of all the differential equation is transformed into
an integral equation by means of the weighted residual
method. This procedure is applied to the equilibrium
equation (2.1) and the incompressibility constraint,
equation (2.2). For this the equations are written in a
weak form (which will be explained below), by multiplying
the momentum equation by an arbitrary weighting func-
tion v and the incompressibility condition by a weighting
function q giving, after partial integration:

�
�

(�v)T:(�pI � �) d� = �
�

v·f d�, (3.1)

�
�

q( J � 1) d� = 0, (3.2)

with J = detF.
In equation (3.1) � represents the total extra stress in

the muscle, i.e. without the hydrostatic pressure and f in
the right-hand side of equation (3.1) represents the exter-
nal load. In these equations � represents the total volume
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that is occupied by the modelled structures, i.e. the muscle
and some tendons and connective tissue. It can be shown
that the integral equations (3.1) and (3.2) are equivalent
to the original partial differential equations, provided that
the weighting functions can be chosen arbitrarily. Effec-
tively, the method of weighted residuals transforms the
requirement that a function must be equal to zero on a
given domain at an infinite number of points, into a single
number, the integral that must be equal to zero.

After partial integration second-order derivatives of the
unknown displacement fields have disappeared from the
equations and only first-order derivatives are found; there-
fore the differentiability requirements imposed on the sol-
ution are reduced. That is why equations (3.1) and (3.2)
are called the weak form.

One of the problems with equations (3.1) and (3.2) is
that the domain � changes as a function of the solution.
The total volume does not change, but the shape does.
Because the shape is unknown beforehand, the integral in
the equation cannot be solved. That is why a reference
configuration has to be chosen and the equations are
rewritten with respect to this configuration. There are sev-
eral ways do this, but in the present formulation an
updated Lagrange procedure is chosen, meaning that the
last converged state in the solution process is the refer-
ence configuration.

This leads to a nonlinear set of equations, with respect
to the displacements and the pressures. This set can be
linearized by means of a Newton–Raphson iteration pro-
cess, which is the same as writing the left-hand side of
equations (3.1) and (3.2) in a Taylor series around an
estimated solution and ignoring higher-order terms in
the series.

By dividing the domain into simple shaped sub-domains
(elements), e.g. into triangles or quadrilaterals, spatial
discretization within these sub-domains is straightforward.
Furthermore, evaluation of the integral expression by
means of numerical integration on these sub-domains is
feasible.

To approximate the solution in each point of the
domain it is necessary to use an interpolation scheme. In
this case a different interpolation is chosen for the pressure
compared with the displacements. The displacement field
is quadratic and the pressure field is linear in the element.
The element is from the Taylor–Hood family with a con-
tinuous interpolation field for the pressure. It satisfies the
so called Babuska–Brezzi condition (Zienkiewicz & Taylor
1989) meaning that oscillations in the pressure field, due
to the incompressibility, are avoided. Finally this leads to
a set of algebraic equations that can be solved with stan-
dard methods:

� M Kup

Kpu 0
���s

�p� = �fg �, (3.3)

where �s are the unknown incremental displacements in
the nodes and �p are the unknown nodal pressures. The
matrices on the left-hand side are integrals over the
domain of the last converged incremental solution.

When the passive behaviour of the muscle is modelled
as a visco–elastic material, or when active behaviour is
involved, equation (3.3) becomes a time-dependent
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equation. In the present implementation each load step
represents a time-step.

The active load is derived by prescribing a stimulation
frequency as a function of time. By solving the algebraic
equation (2.10) and integrating the ordinary differential
equation (2.9) using a Euler explicit scheme the inter-
myofibrillar free calcium c(ti) as a function of time-step ti
is determined. This leads to a value of the activation func-
tion r(ti) at each time-step ti. With a known r(t) it is poss-
ible to solve the Huxley equation.

This is a partial differential equation that has to be
solved in each integration point of the finite element mesh.
In principle this is possible; however, n(�,t) has to be
stored at a large number of discrete values of the attach-
ment length � in each integration point and at each time-
step. This requires a lot of computer memory and data
transport. Although it is possible with modern computers
it is not the most efficient way.

It is possible to transform the partial differential Huxley
equation into an approximate set of three ordinary differ-
ential equations by means of the DM method as derived
by Zahalak (1981).

In general the kth moment of a distribution function n
is defined as

Qk(t) = � �

��

� kn(�,t) d�. (3.4)

As can be seen from equation (2.7), the active stress 	a

does not depend on the exact shape but on the first
moment of the function n.

It is possible to transform the partial differential Huxley
equation into an infinite set of coupled linear ordinary dif-
ferential equations, which is equivalent to the original
Huxley equation. By postulating a priori a reasonable
shape for the function n, a closed set of differential equa-
tions can be determined, meaning that the number of
equations is equal to the number of unknowns. By
assuming a normal distribution for the function n, Zahalak
approximated the partial differential Huxley equation
(2.6) by the following set of ordinary first-order differen-
tial equations:

dQ0/dt = b0 � f0(Q0,Q1,Q2), (3.5a)

dQ1/dt = b1 � f1(Q0,Q1,Q2) � u Q0, (3.5b)

dQ2/dt = b2 � f2(Q0,Q1,Q2) � 2u Q1. (3.5c)

The functions f0, f1 and f2 have been defined in Zahalak
(1981).

Now in each point in time and at each integration point,
with known r(ti), �(ti) and u(ti) and the moments Q�(ti) it
is possible to calculate the moments Q�(ti�1) by either a
Euler explicit scheme or a two- or four-step Runge–Kutta
time integration. The active stress is derived from the first
moment by means of equation (2.7).

To illustrate the potential of this model for skeletal mus-
cle, it is applied to describe the mechanical behaviour of
the TA muscle of a rat.

4. A MODEL OF A TIBIALIS ANTERIOR OF A RAT

The muscle geometry was derived from normal high-
resolution MRIs (figure 1a). The fibre directions were
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Figure 1. A 2D continuum model of the cross-section of the
mid-sagittal plane of the TA of the rat. (a) Geometry of the
model derived from MRI, (b) fibre direction, and (c) finite
element modelling grid. The distal tendon is dark grey and
the proximal aponeurosis is light grey.
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9.2 mm

32.0 mm
y

x z

Figure 2. A 3D model of the TA.

measured with diffusion tensor imaging and were
described by polynomial fits of the measured directions
(Van Donkelaar et al. 1999; Van Doorn et al. 1996). This
resulted in a geometry and fibre direction as shown in
figure 1b. The geometry was divided into iso-parametric
quadratic elements as shown in figure 1c. For the 3D
model, three elements were used in the transverse direc-
tion. The surface of the model representing the medial
side was chosen to be flat, while the surface representing
the lateral side was given a curvature as shown in figure 2.
The fibre directions in the transverse direction are chosen
parallel to the curvature in this direction.

To interpret the simulation results and compare them
with the MRI studies, the midline of the model is defined
in a way similar to the MRI experiments. The orientation
of the midline is shown in figure 3. For the 3D model the
midline cuts through the TA geometry at y = 3 mm based
on the definition of the midline in the SOO as defined in
Maenhout (2002).

The material parameters for the contraction model were
partly obtained from independent experiments described
in the literature and partly estimated on the basis of torque
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measurements on stimulated muscles. The model para-
meters for the DM model are given in table 1.

The model parameters for the calcium activation model
were determined by Zahalak & Ma (1990) and are given
in table 2. The parameters for the passive behaviour of
the muscle were determined by fitting the muscle model
on MRI data. The boundary conditions were also determ-
ined by means of MRI experiments.

Figure 4 gives an example of a typical result. The local
strains during tetanic contraction of the TA are given. The
total force generated by the muscle in this simulation
9.8 N (Maenhout et al. (2000) measured 14.6 ± 3.4 N).
The muscle tendon complex is kept at a fixed length. The
strain Exx is the normal strain in the z-direction, along the
length axis of the muscle (note, that this is not identical
to the muscle fibre direction). Exx and Eyy are the normal
strains in the x and y direction, respectively, both perpen-
dicular to the length direction of the muscle. The sagittal
and transverse strains are positive (ca. 0.03) in the mid-
area of the TA, meaning that the muscle becomes thicker
during contraction. The longitudinal strains are negative
(ca. �0.05), implying of course that the muscle shortens.
At the muscle ends the opposite is valid; sagittal and trans-
verse strains are negative, while the longitudinal strains are
positive. The latter is due to the fact that the whole muscle
tendon complex is held at the same length (isometric
contraction). The fairly stiff tendon and fascia and the
passive muscle properties result in a rather complex stress–
strain state in this part of the muscle. When properties
of the tendon or the passive muscle complex change, for
example due to surgical intervention or disease, the local
stress–strain state may change and the muscle will start to
adapt. The present model enables us to study these
changes at a local level.

Figure 5 shows strains at the surface of the muscle in
the simulations. These are compared with experimentally
determined strains of isometric contractions of rat TA.
Superficial local fibre strains were measured by 3D-video
analysis of surface markers (Maenhout 2002). Figure 5
shows that surface strains are positive at the muscle ends
and negative in the middle of the muscle. This is found
in the simulations and in the experiments. It is also clear
that, although qualitatively the same trend is seen, there
are considerable quantitative differences. The experi-
mental strains are higher than those obtained numerically.
Moreover, the minimum lies at a different position. The
latter is important, because the primary objective of the
model was to determine this inhomogeneous strain distri-
bution.

5. DISCUSSION

The objective of the present paper was to explain the
basic concepts of the finite element method and to show
its abilities on a model of a biological structure. For this,
a recently developed continuum model for contracting
skeletal muscle was chosen, because it illustrates nicely
that one of the major complexities in this type of analysis
is caused by the difficult constitutive behaviour of the
material. This especially is true for muscle, because apart
from the nonlinear passive properties, it has an active
component. Muscle is able to generate force by itself. It
is this active stress and the coupling of this stress with the
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Figure 3. Representation of the TA in the transverse (x–y) plane. (a) Spin echo image of the central transverse slice with the
definition of the SOO. The x-direction conincides with the sagittal (superficial–deep) direction and the y-direction coincides
with the transverse (medial–lateral) direction. (b) 3D model of the TA as already shown in figure 2 with the viewpoint in the
proximal–distal (z) direction.

Table 1. Parameter values of the DM model.

parameter f1 g1 g2 g3 �

value 163a 64a 200b 30b 0.2c

dimension s�1 s�1 — — —

a Maenhout et al. (2000).
b Zahalak (1981).
c Hatze (1981).

Table 2. Parameters that were used in the model for the cal-
cium activation.

parameter � �0 km B �

value 2.9 9.2 0.006 0.77 2.9
dimension — ms — — ms

deformation and deformation rate that makes this type of
analysis complicated.

Keeping in mind that determining the inhomogeneous
strain distribution in the muscle was the objective of the
modelling, it is clear that the authors have not reached
their goal yet. Qualitatively, the result is in agreement with
experiments, but quantitatively the difference between cal-
culated and measured strains is too large. There is one
obvious improvement that still has to be implemented
which may have a large influence on the results. Although
the geometry of the mid-sagittal plane of the muscle is
described reasonably well, in the transverse plane the
geometry deviates a lot from the real muscle (compare fig-
ure 3a,b). It is clear from, for example, heart models
(Bovendeerd et al. 1994) that the geometry, and especially
the local fibre direction, has a large influence on the
results. It may very well be that improving the geometry
(for which the data are already available from MRI
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measurements) will result in higher strains with a hope-
fully more realistic distribution.

This type of model is complex, with many material
parameters and difficult to validate. One might wonder if
this complexity is necessary and if it would not be possible
to reach the same or even better results with much simpler
representations of the real muscle. Many examples can be
found in the literature, where sometimes extremely simple
abstractions of reality resulted in a better understanding of
otherwise very complex phenomena. Also for contracting
muscle, much simpler models have been used in the past,
which were fairly successful. Many gait analysis problems
can be solved by using 1D-line elements for muscle with
simple contraction models.

However, sometimes the level of complexity as invoked
in the present paper is unavoidable. Research on technical
materials in the last two decades has shown that to under-
stand phenomena related to damage, adaptation or ageing,
it is necessary to incorporate the microstructure of these
materials in the analysis. This has even led to multi-level
finite element models in which different length scales are
integrated into one single analysis (Smit et al. 1998; Kouz-
netsova et al. 2001). It has been shown that this method
can be used to predict macroscopic material behaviour by
looking at the microscale and to use that as a tool to design
new improved materials. Recently this method has also
been proposed for biological materials (Breuls et al. 2002).
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Figure 4. Simulated strain field of the TA. The strain components according to the global x,y,z-coordinate system are given at
the time that the muscle is in tetanic contraction.

0.15

su
pe

rf
ic

ia
l s

tr
ai

n 
[–

]

0.10

0.05

0

–0.05

–0.10

–0.15

–0.20

scaled position from ankle to knee

0 0.2 0.4 0.6 0.8 1.0

Figure 5. Measured (video (open cicles), seven rats) and
simulated (asterisks) Green Lagrange strains at the surface of
the TA in a line from distal to proximal.

The same is true for skeletal muscle. If we want to under-
stand how muscle adapts to changes in the mechanical
state, we have to know local stresses and strains and this
can only be done by means of models that spawn such
results. Regarding the number of fibres present in a skel-
etal muscle, the only feasible way to do this at present is
to use an anisotropic continuum model like the one used
in this paper. However, it is not unlikely that in the near
future a multi-level approach has to be applied to account
for the typical micro-structure of the muscle.

Phil. Trans. R. Soc. Lond. B (2003)

6. NOTATION AND NOMENCLATURE

a scalar
a vector
a column with scalars
A second-order tensor
A matrix
A·a inner product of second-order tensor with

vector
trA trace of a tensor
: double dot product A:B = tr(A·B )
detA determinant of second-order tensor A
� Cauchy stress tensor
F deformation tensor
I unit tensor
G shear modulus
P hydrodynamic pressure
� extension ratio
n(�,t) distribution of attached cross bridges with

attachment length �
u(t) scaled shortening velocity of a half sarcomere
f(� ), g(� ) attachment and detachment rate, respectively
r(t) Calcium activation factor (between 0 and 1)
� overlap factor
Qi ith moment of the function n(�,t)
Ct total amount of calcium in the cytoplasma
c ratio of the free calcium concentration with

respect to the maximum calcium
concentration in the cytoplasma

�s unknown incremental displacements in the
nodes

�p unknown incremental pressures in the nodes
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GLOSSARY

DM: distributed moments
MRI: magnetic resonance imaging
SOO: slice of observation
SR: sarcoplasmatic reticulum
TA: tibialis anterior


