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Abstract - Finite Element modelling is a promising tool for further progressing the 1 

development of ultrasonic NDE of polycrystalline materials. Yet its widespread adoption has 2 

been held back due to a high computational cost, which has restricted current works to 3 

relatively small models and to two dimensions. However, the emergence of sufficiently 4 

powerful computing, such as highly efficient solutions on graphics processors is enabling a 5 

step improvement in possibilities. This article aims to realise those capabilities, to simulate 6 

ultrasonic scattering of longitudinal waves in an equiaxed polycrystalline material in both 2D 7 

and 3D. The modelling relies on an established Voronoi approach to randomly generate a 8 

representative grain morphology. It is shown that both 2D and 3D numerical data show good 9 

agreement across a range of scattering regimes in comparison to well-established theoretical 10 

predictions for attenuation and phase velocity. In addition, 2D parametric studies illustrate the 11 

mesh sampling requirements for two different types of mesh, to ensure modelling accuracy and 12 

present useful guidelines for future works. Modelling limitations are also shown. It is found 13 

that 2D models reduce the scattering mechanism in the Rayleigh regime.  14 

Pacs: 43.35Cg15 
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I. INTRODUCTION  1 

Scattering of ultrasonic waves in polycrystalline materials has been studied since the beginning of 2 

ultrasonic NDE. In a pioneering experiment, Mason and McSkimin1 discovered a fourth order frequency 3 

dependence for the scattering induced attenuation in polycrystalline aluminium, therefore termed 4 

Rayleigh scattering in the long-wavelength regime. At higher frequencies, when the wavelength 5 

becomes dimensionally comparable to the grain size, the attenuation behaviour is dominated by a 6 

stochastic mechanism2 where it reduces to a second order frequency dependence. Eventually, when the 7 

grain sizes are large, relative to the wavelength, there is a geometric regime3 where attenuation becomes 8 

frequency independent. Mathematical solutions to predict attenuation soon followed: foundations were 9 

laid by Lifshits and Parkhamvoski4, Bhatia and Moore5, Rohklin6, Hirsekorn7, and Kino and Stanke8. 10 

The approach by Kino and Stanke obtains attenuation for an idealised cubic polycrystalline material, 11 

valid across all regimes of scattering, and stands today as the Unified Theory.  12 

Models such as the Unified Theory have proven particularly useful to characterise polycrystalline 13 

materials by inversion from attenuation measurements9,10. For ultrasonic flaw detection however, the 14 

scattering induced grain noise is also of interest. In attempts to improve ultrasonic inspections11, which 15 

are limited by the signal to coherent noise ratio, efforts turned towards predicting the backscatter from 16 

microstructural noise12. This eventually led to the Independent Scattering Model13 (ISM) which has 17 

significantly benefited ultrasonic inspections14 today. However, the ISM neglects multiple scattering 18 

which thus limits its applicability to relatively weak scattering media15. 19 

More recently, researchers16-20 have considered Finite Element (FE) modelling to overcome this 20 

limitation and confront more challenging scattering scenarios. In contrast to existing theoretical 21 

approaches, its ability to simulate time-domain signals, incorporating both attenuation and noise, whilst 22 

also including complex physics such as multiple scattering17, makes FE a promising candidate. Its 23 

flexibility and high fidelity will probably be instrumental to further progressing the development of 24 

ultrasonic NDE of polycrystalline materials.   25 
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Yet its widespread adoption has been held back due to a high computational cost which arises from 1 

having to numerically discretise the material’s microstructure. This has restricted current works to 2 

relatively small models e.g. of the order of 1000s of grains, which, while representing impressive 3 

progress is still only sufficient for a reduced range of feasible scattering regimes, and to 2 dimensions. 4 

The latter limitation, a 2D model, obliges several simplifications including: 5 

(1) The representation of grain size distributions of a 3D material in a 2D model. Namely, the grain 6 

cross-sections seen on a slice of a 2D material do not correctly represent the grain sizes of a 3D material.  7 

(2) The stiffness matrix, which is reduced according to plane strain assumptions and renders the model 8 

infinite in the collapsed dimension. 9 

(3) The scattering phenomena, which aren’t fully reproduced. For example, Rayleigh scattering is a 3D 10 

phenomenon which is closely linked to the scattering cross-section which is proportional to volume and 11 

therefore reduced in 2D environments where the scattering can only occur in the two dimensions.  12 

This article presents recent developments of realistically large and detailed FE models of ultrasonic 13 

longitudinal wave propagation within polycrystalline materials, demonstrating and evaluating new 14 

simulation possibilities in 2D and 3D. It investigates the capability of FE to model the different 15 

scattering behaviours across regimes as predicted by the Unified Theory, and assesses the significance 16 

of 2D assumptions through comparison with 3D simulations.  17 

This advanced modelling is now becoming possible because of the emergence of sufficiently powerful 18 

computing and new, faster modelling tools. Specifically, we make use of a highly efficient GPU based 19 

solver21 for FE which has enabled larger studies e.g. up to 100,000 grains in 2D and 5000 in 3D. 20 

Although this approach can be suited to model a variety of microstructures, for this initial investigation, 21 

we consider a relatively simple microstructure, untextured, and comprising equiaxed grains of a single 22 

phase in a range between 100µm and 500µm.  The chosen material is a relatively strong scattering 23 

medium, Inconel 600, of cubic symmetry.  24 

As an example of the utility of modelling such as this, recent research22-24 has raised interesting queries 25 

regarding our current understanding of grain scattering, including the role of grains as Rayleigh 26 
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scatterers22 and whether it is not the material imperfections such as voids and inclusions which are 1 

contributing to that effect. FE can be useful in this matter by modelling a perfect polycrystalline 2 

microstructure, clear of flaws, and identifying the dominant scattering behaviour of the grains.  3 

The subsequent section provides a brief step-by-step outline for FE modelling of polycrystalline 4 

materials in 2D, continued by Section 3 which investigates its mesh sampling requirements. Section 4 5 

introduces the 3D model. The main body of results is presented in Section 5 where numerical 6 

simulations of a 2D and 3D model are compared to theoretical results obtained from the Unified Theory. 7 

Whilst this article does not undertake any experimental investigations, the currently established theory 8 

is the culmination of numerous experimental validations e.g.9,10, in pursuit of grain size characterisation.  9 

II. FE MODELLING OF POLYCRYSTALLINE MATERIAL IN 2-D 10 

Finite Element modelling of polycrystalline materials has been successfully undertaken in various fields 11 

of research25-27 including NDE16-20 where it has been limited to 2D. Although several approaches have 12 

been adopted, all of those mentioned here that consider geometrically varying grains, rely on Voronoi 13 

tessellations28 to numerically generate a morphology which is geometrically similar to a naturally 14 

occurring polycrystalline microstructure. This has been accepted as a good approach by researchers in 15 

crystallography and textured materials29. The next sub-sections provide a brief step-by-step description, 16 

and considerations for the aforementioned modelling approach, in 2D.  17 

A. Generating Random Polycrystals 18 

Generating a random polycrystalline microstructure, as achieved in16-20, starts by randomly distributing 19 

points, or seeds, in a 2D Euclidian space. An example of this is shown in Figure 1a where the seed 20 

density will determine the resulting average grain size. The coordinates of each seed become the site 21 

for a single grain by serving as an input to the Voronoi algorithm28. The algorithm subdivides the 22 

original space into regions, in the form of convex polygons, whereby each polygon encloses the area 23 

which is nearest to that particular seed (see Figure 1b). Once a Voronoi tessellation has been generated, 24 

depending on the type of mesh, it requires modification to make it suitable for FE modelling. This 25 

procedure involves clipping the boundaries for instance, previously described as regularization26. 26 
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B. 2D considerations 1 

When 3D models are not feasible, reducing a polycrystalline material to a 2D model (see Figure 1c) 2 

introduces certain simplifications. This includes the grain size distribution, which impacts, amongst 3 

other properties, the ultrasonic characteristics of the material. Whereas for 3D modelling approaches, 4 

the simple approach is to match the distribution of grain dimensions to that of the desired material, in 5 

2D, this is not as trivial. Namely, a random cutting plane through a 3D tessellation of grains will not 6 

intersect every grain through its centre, rather, some intersections will occur off-centre and therefore 7 

reproduce smaller cross-sections. The study of interpreting 2D representations of 3D grains forms the 8 

basis of stereology30 and is beyond the scope of this study. Here, we will assume a normal distribution 9 

of grain sizes in 2D (defined as the square root of area), as the one depicted in Figure 2, which assumes 10 

that our slice of a 3D material cuts every grain through its centre and therefore overestimates the grain 11 

sizes that would be seen in a proper 2D section. Whilst larger grains will increase the attenuation, we 12 

are making no claims regarding how this may compare to attenuation of a 3D material. Namely, it would 13 

be interesting as a future exercise to further investigate the opportunities and advantages of adjusting 14 

grain size distributions in 2D to better match the ultrasonic behaviour of a 3D material; this would be 15 

important for rigorous modelling in 2D and is by no means straightforward to achieve.   16 

The orientation distribution function (ODF) of a polycrystalline material is another factor which 17 

determines macroscopic properties. For a single phase material, each crystallite should be assigned the 18 

same anisotropic stiffness properties but with a random crystallographic orientation to define a 19 

macroscopically isotropic material (see Figure 1d). To achieve this, the three reference Euler angles, 20 

which define orientation, may be randomly distributed such that their orientations lie equally spaced on 21 

the surface of a sphere, as explained by Shahjahan17 for example. Figure 3 shows the result of rotating 22 

orientation angles in 3D for 2000 grains, illustrated by polar plots. As can be seen, as desired, a 23 

macroscopically isotropic material has been achieved.  24 

Finally, the 2D simplification leaves two possibilities, one in which the orientation distribution is only 25 

in the plane, hence a plane strain model is possible; the other in which the distribution is in 3D, and 26 

then needs to be approximated for 2D. Plane strain assumptions then neglect the stiffness constants 27 
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associated with the third dimension, when reducing the stiffness matrix from 3D to 2D. The latter is 1 

adopted here.  2 

C. Mesh Generation 3 

The minimum FE mesh discretisation for accurate modelling of wave propagation is usually constrained 4 

by the wavelength31. In this case however, whether using a structured or unstructured mesh, the objects 5 

to model, the crystallites, are often an order of magnitude smaller than the wavelength, which demands 6 

denser meshes which far exceed the said wavelength criteria. Two possibilities exist, which have 7 

previously each been adopted, either an unstructured mesh utilizing triangular FE elements (see Figure 8 

4a) to conform to the complex boundaries of the Voronoi tessellation, or an approximation of the grains 9 

with a structured mesh17 (see Figure 4b). The hazard with a structured mesh is that it leads to 10 

“staircasing” effects31 which become a poor approximation at coarse mesh densities and can lead to tip 11 

diffraction from edges, and also to disproportionately strong reflections from waves that are normally 12 

incident to the plane of the flats. When using an unstructured mesh however, the challenge is to maintain 13 

high quality triangles, i.e. close to equilateral shapes, such that there is minimal mesh scattering. For 14 

this purpose, several software solutions are available; for example the authors have found good results, 15 

both in terms of the quality of meshes (no large deviations from equilateral, no large variations in 16 

element sizes) and the time required to generate them, using a Free software tool, Triangle32.  17 

D. Efficient Simulations using GPU 18 

Due to the increased mesh density, FE modelling of polycrystalline microstructure is computationally 19 

expensive. To reduce this cost and thereby enable parametric studies, the work here employs a relatively 20 

new FE solver, Pogo21. Pogo exploits the sparsity and highly parallelizable nature of the time explicit 21 

FE method, which allows the very efficient use of graphical processing units (GPUs) instead of 22 

conventional computer processing units (CPUs) to execute the computations in parallel. It has been 23 

shown that this can result in speed improvements of up to two orders of magnitude21 when compared to 24 

commercially established CPU equivalent software. For example, timing of a typical simulation 25 

undertaken in this article, when running a 6.1x106 degrees of freedom model, was measured to be 67 26 



Wave scattering in a polycrystalline material 

 

8 /38  

 

times faster using 4x Nvidia GTX Titan graphics cards when compared to 2x Intel Xeon 8-core E5-1 

2690 2.9GHz CPUs using general purpose CPU software. 2 

III. MESH VALIDATION FOR 2D 3 

Here we investigate the spatial sampling requirements for both types of mesh mentioned in Section 2.3 4 

to guarantee sufficient modelling accuracy whilst also preserving computational cost. In order to 5 

achieve this, both the mesh scattering (Section 3.1) and mesh convergence (Section 3.2) are evaluated 6 

for a plane wave model.  7 

The studies in the following Sections 3.1 and 3.2 rely on three different realisations of a polycrystalline 8 

material, Inconel 600, using the material properties taken from Shahjahan17 and shown in Table 1. Each 9 

model consists of a different average grain size: 100µm, 250 µm and 500 µm. As computational costs 10 

increase for finer grains, this range was limited to keep costs manageable whilst also representing a 11 

range of grain sizes of interest to NDE.  12 

Figure 5 shows an example simulation by one of the models used in the study. It is a coarse-grained 13 

material represented in 2D by a strip 42mm long and 12mm wide in plane strain. A 3-cycle-toneburst 14 

with a 2MHz centre-frequency is applied to the line of nodes, at the left side where x=0mm, which 15 

forms the excitation line-source. The model uses symmetry boundary conditions at  the top and bottom 16 

edges (where y=0mm and y=12mm in Figure 5) such that the nodes are constrained in the y-direction. 17 

This creates a plane wave which can be seen to propagate in the positive x-direction. The backscatter 18 

can be recognised from the random fluctuations in amplitude trailing the plane wave. 19 

A. Mesh Scattering 20 

Successful simulation of grain scattering can only be achieved if the scattering from element 21 

boundaries, here termed mesh scattering, is significantly less than the grain scattering itself. Mesh 22 

scattering arises from heterogeneity introduced by irregular element shapes, such as those encountered 23 

in unstructured meshes, and can be reduced by increasing mesh density at the cost of additional 24 

computation. In order to assess this, we run some unstructured mesh models for which the grain noise 25 
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is eliminated, so that the noise is solely due to mesh scattering. This is achieved by assigning isotropic 1 

stiffness properties to the grains in this part of the study.  2 

To quantitatively compare results for different mesh densities, the mesh noise is represented by 3 

considering the average backscatter energy received by all of the individual nodes. This is calculated 4 

from both the temporally and spatially averaged intensity i.e. the root-mean-square (RMS) value of the 5 

time-domain backscatter received at the different nodal positions, denoted by 𝑆𝑟𝑚𝑠. The signal is 6 

windowed such that it corresponds to a time after the excitation signal and before the arrival of the 7 

reflected signal, which represents a time window where the received energy, in absence of mesh 8 

scattering, is anticipated to be zero. For clarity, this is analogous to analysing a time window in-between 9 

the frontwall and backwall of a typical pulse-echo time trace encountered in ultrasonic NDE. A 10 

worthwhile remark here is that the noise is combined such that it corresponds to the backscatter seen by 11 

infinitesimal receivers, whereas in more practical simulations, the mean displacement response across 12 

multiple nodes may be considered. Thus this is a relatively harsh case to present, but nevertheless allows 13 

useful comparisons. 14 

Figure 6 plots the mean mesh scattering noise (in dB, with reference to the peak of the excitation signal), 15 𝑆𝑟𝑚𝑠 as a function of the mean element edge divided by the wavelength, eλ-1, or elements per 16 

wavelength. As expected, the mesh scattering decreases as the mesh becomes more refined. In general, 17 

the mesh scattering is very low (i.e. all results here are below -40dB) for the range of investigated mesh 18 

densities. The unstructured mesh results seem independent of the grain size used once an initial 19 

threshold is exceeded.   20 

It is important to acknowledge that these results do not provide an all-encompassing criterion for mesh 21 

refinement. The refinement requirement will be model-specific and depend on the severity of the grain 22 

noise and on practical compromises on model size. It is crucial however, to suppress it to a controlled 23 

degree and this simple approach allows any candidate case to be evaluated.  24 

Structured meshes, which exhibit no variation in element shape, do not require the above considerations 25 

and hence clearly outperform unstructured meshes according to this criteria. However, as they do not 26 
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conform to the grain boundaries, it is yet unclear whether they can correctly model the scattering 1 

behaviour, which is addressed in the next section.  2 

B. Mesh Convergence 3 

It is also important to achieve adequate convergence of the propagating wave pulse. The same models 4 

are used as in the previous section, namely with three different grain sizes, except the anisotropic 5 

properties of the grains are now introduced (as described in Section 2.2) and thus the wave will be 6 

affected by grain scattering. Two metrics are employed to measure convergence, the centre-frequency 7 

attenuation, and the group velocity. 8 

As a measure of the propagating wave, the received displacements are now spatially averaged across 9 

all the nodes which lie on the right side edge where x=42mm in Figure 5, emulating a pitch-catch plane-10 

wave configuration. The centre-frequency attenuation convergence is calculated as a difference in 11 

amplitude between the peak of the received time-domain Hilbert envelope A and that of the converged 12 

solution Ac. The converged solution, Ac, is obtained from the highest available density mesh. Similarly, 13 

the measured group velocity Vg, which is calculated from the time-of-flight, as measured from the 14 

Hilbert envelope peak, is subtracted from the converged solution Vc. To clarify, an error of 0.05 would 15 

correspond to a 5% difference in group velocity from that of the converged solution.  16 

Figure 7 and 8 plot, as a function of the mean element edge length e per mean grain size d, the 17 

convergence of the centre-frequency attenuation and group velocity respectively, for three different 18 

grain sizes, using a structured (S) and unstructured mesh (F). As can be seen, both attenuation and 19 

velocity converge as mesh density is increased and velocity converges quickest. At ten elements per 20 

linear grain dimension, both metrics are converged to within 1% error for all grain sizes considered 21 

which agrees with the findings of Shahjahan17 for another type of mesh, a rectangular structured mesh.  22 

The progress of convergence reveals that both meshes converge at a similar rate, although the structured 23 

mesh seems to converge more monotonically. In the case for an unstructured mesh, the element size 24 

distribution can vary by several orders of magnitude within a single model which results in time 25 

stepping disadvantages in comparison to structured meshes. This is due to the need to satisfy the critical 26 
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time step33 throughout the model, defined by the smallest element length emin in the model, which may 1 

cause oversampling for other elements which are larger, increasing their chance of accumulating 2 

numerical noise.  3 

The results for the different grain sizes are somewhat unexpected, namely, the 100µm model seems to 4 

converge at a lower mesh density in comparison to the coarser grains. However, this can be explained 5 

by a lower grain scattering induced attenuation for the grain size model of 100µm (which has a larger 6 

wavelength to grain size ratio), and hence at coarse mesh densities, the mesh scattering, in that specific 7 

case, introduces similar levels of attenuation. It can also be noted that convergence for the 500µm grain 8 

model initiates with a relatively small error which increases before eventually converging again. 9 

Comparing the results for both figures shows however, that at the lowest mesh density, the received 10 

signal peak-amplitude may be within 2% of its converged solution (see Figure 7), the group velocity 11 

error remains unconverged and at a maximum (see Figure 8). The total attenuation is caused by both 12 

mesh and grain scattering (for reference, the mesh scattering induced attenuation will typically be in the 13 

order of a few percent for the models simulated here, whereas the grain scattering induced attenuation 14 

is typically an order of magnitude larger) , the latter is governed by differences in velocity by adjacent 15 

grains. At very low mesh density, the velocity error is large, and the low attenuation we see here may 16 

be a fortuitous result due to an artificially increased mesh scattering and reduced grain scattering. In 17 

any case, it is clear that we need both velocity and attenuation to be converged for a useful solution. 18 

The authors will refrain from advocating a particular choice of mesh, instead it has been shown that 19 

both types are viable options for modelling a polycrystalline microstructure and offer similar 20 

performance i.e. offer similar accuracy for the same computational cost. Therefore, the choice for which 21 

to use will be largely determined by the particular modelling application, which is also why within the 22 

modelling community today, both unstructured and structured meshes are in use. However, for the 23 

relatively simple models which will be considered in the subsequent sections, unstructured meshes add 24 

unnecessary complications, and hence we have selected structured meshes on this occasion.   25 
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IV. FE MODELLING OF POLYCRYSTALS IN 3D 1 

FE modelling of polycrystalline materials in 3D involves the same steps described in section 2, namely 2 

a similar Voronoi approach, although the seeds are now distributed in 3D, and a 3D version of the 3 

Voronoi algorithm is required. In contrast to 2D modelling, fewer simplifications are necessary to 4 

represent the grain property distributions in 3D. However, the computational cost is far greater, and 5 

therefore no parametric studies, like those undertaken in the previous section, were feasible. Instead, 6 

the knowledge gained from the 2D mesh studies, regarding the mesh requirements, was used to create 7 

a 3D model.  8 

The model created here measures 4x4x40mm and counts 5210 randomly orientated Inconel grains with 9 

an average grain size of 500µm. For a closer view, only a slice of the full model is shown in Figure 9 10 

which was created using Neper26. Similarly to the 2D model, a plane wave is created by imposing 11 

symmetric boundary conditions on the rectangular plane surfaces of the model and applying a 3-cycle 12 

tone burst to the nodes which lie on the end-surface, seen as a square plane surface at the end of the 13 

picture in Figure 10. The key statistics of the model are shown in Table 2. Once the model is solved, 14 

post-processing involves calculating the mean nodal displacement of the nodes which lie on the end-15 

face opposite to the excitation plane, thereby emulating a pitch-catch configuration. The results of this 16 

procedure and 2D models are discussed in the next section.  17 

V. VALIDATION AND COMPARISON OF 2D AND 3D 18 

The numerical results are evaluated for 2D and 3D FE models, adopting structured meshes on this 19 

occasion, and comparing their results with expectations from theory. Similarly to the mesh convergence 20 

study, both attenuation and velocity are measured, except that now both the attenuation and the phase 21 

velocity are evaluated as functions of frequency. 22 

The theoretical values were obtained by computing the complex longitudinal propagation constant as 23 

defined by the Unified Theory9 using the material properties outlined in Table 1. Our implementation 24 

was validated by reproducing both results (the attenuation and phase velocity plots) for another cubic 25 

polycrystalline material, iron, presented in the original article8. 26 
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The 2D FE models consist of six different models, three for each grain size, 100µm and 500µm, and 1 

each excited by a different centre-frequency 3-cycle-toneburst. The range of frequencies applied (see 2 

Table 2) are believed to represent a good range of interest, and were limited by increases in computation 3 

costs. The single 3D FE model, detailed in Section 4, is solved for various centre frequency excitations 4 

in the range of 1-3MHz. Both 2D and 3D model parameters are detailed in Table 2. To enable 5 

comparisons to theoretical results which provide results for a mean field, analogous to an infinite plane 6 

wave, the dimensions of each FE model are adjusted to ensure sufficient spatial averaging of the 7 

received displacements and reduce the effect of phase aberrations and noise. This is a demand which 8 

grows with frequency and grain size, thereby increasing computation costs, and therefore defined the 9 

frequency range of interest for this article. Similarly, although multiple realisations would ideally be 10 

considered to gather more statistics, only one realisation is considered here. Nevertheless, since a large 11 

number of grains are considered in each realisation, we do not expect to see significantly large variations 12 

in determined quantities, such as the attenuation and phase velocity.  13 

A. Attenuation 14 

We start by comparing the 2D and 3D FE results. The numerical attenuation is calculated by comparing 15 

the two frequency spectra corresponding to the transmitted signal and the pitch-catch received signal. 16 

This can be achieved by Fast Fourier transforming the windowed time-domain signals and dividing the 17 

resultant frequency amplitudes, as explained by Kalashnikov34 for example. Figure 11 shows 18 

attenuation against frequency for three cases. The results show that attenuation increases with both 19 

frequency and grain size, which suggests, at least initially, a good qualitative fit with the expected 20 

behaviour. By also plotting the power fitting coefficients for each simulation curve, we can further 21 

evaluate the results and determine the dominant scattering mechanism. This indicates that a fourth order 22 

frequency dependence for the Rayleigh regimes is only produced for the 3D simulation, whereas in 2D, 23 

only values close to three are produced. This might be explained by the 2D simplification, where the 24 

scattering cross-section is now proportional to the area and not volume of the grain; we expect that this 25 

would reduce the Rayleigh scattering to a third order frequency dependence in 2D, according to, for 26 

example the observations by Chaffai36, although we are not aware of formal proof. . This also confirms 27 
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that the grains behave as Rayleigh scatterers and shows that, in this specific case, other scatterers, such 1 

as voids or material imperfections were not required to explain the dominance of Rayleigh scattering at 2 

low frequencies22.  3 

Now we can compare the attenuation in the simulations to the theoretically predicted equivalent. 4 

According to the approach outlined by Stanke9, the results are normalised such that they are independent 5 

of the mean grain size d. In Figure 12, the attenuation coefficient α, normalised through multiplication 6 

with d, is plotted against the normalised frequency (product of wavenumber k and d) on a log-log scale. 7 

Some ambiguity exists regarding the appropriate choice of d, as previous works16 have used several 8 

values, namely, the mean grain size plus/minus one standard deviation of the grain size to match 9 

numerical and theoretical results. Although the choice of  d significantly affects the results, in this work 10 

we have only used the mean grain size to normalise the results.  11 

The Unified Theory, as shown in Figure 12, indicates the three scattering regimes; Rayleigh for kd<<1, 12 

stochastic kd≈1, and geometric kd>>1, which can each be recognised from their respective gradients, 13 

m, relative to their anticipated frequency dependence. In between the Rayleigh and stochastic regime, 14 

a transitional regime9 exists where the frequency dependence can vary before converging to the 15 

stochastic asymptote.  16 

As can be seen in Figure 12, the numerical results show good agreement with the established theory 17 

suggesting FE has the capacity to model the changing scattering behaviours across frequency. The 18 

match is not perfect, however, since the 3D model underestimates and overestimates at low and high 19 

frequency respectively. In this case, the 2D model seems to agree slightly better with the theory, but the 20 

difference is marginal, and as previously mentioned, largely dependent on the choice of d. This would 21 

suggest that even with a simple assumption which overestimates the grain size, good matching with the 22 

behaviour of a 3D material is possible. Given the complex and random nature of these materials, these 23 

results are considered to be satisfactory. 24 
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B. Phase Velocity 1 

Along with a complex frequency-dependent attenuation, propagating elastic waves in these materials 2 

exhibit small changes in phase velocity. Here we compare predictions of the Unified Theory to 3 

numerical results for phase velocity, obtained by comparing the phase angles of the transmitted and 4 

received signal. This can be achieved by Fast Fourier transforming the windowed time-domain signal 5 

and subtracting their unwrapped phase as explained by Kalashnikov34 for example. 6 

Figure 13 shows phase velocity as a deviation from the Voigt velocity35, which is an average velocity 7 

for an equivalent macroscopically isotropic medium, calculated from the material elastic constants in 8 

Table 1. The x-axis plots the same logarithm of normalised frequency log(kd) as described in the 9 

previous section.  10 

The results show that FE matches well with the Unified Theory, and there is good trend matching in the 11 

dispersive region, which is accurate to within 1%. The 3D results suggest a better match than 2D in this 12 

case. 13 

VI. CONCLUSIONS 14 

This article has set out to present and asses new progress in capabilities of Finite Element (FE) 15 

modelling to simulate ultrasonic scattering of longitudinal waves in an equiaxed and untextured 16 

polycrystalline material, for both 2D and 3D. The modelling adopts an established Voronoi approach 17 

to randomly generate a representative grain layout. Relying on a recently developed GPU FE solver, 18 

Pogo, large parametric studies in 2D and a single 3D model became feasible. The 2D parametric studies 19 

illustrated the mesh sampling requirements for two different types of mesh and different levels of mesh 20 

refinement, to ensure modelling accuracy and present useful guidelines for future modelling of these 21 

materials. During comparison to established theory, for both 2D and 3D, the numerically calculated 22 

attenuation and phase velocity showed good agreement across a range of scattering regimes. This 23 

suggests that even with relatively simple descriptions of these materials, this type of numerical 24 

modelling has the ability to capture the key physics. Modelling limitations were also found. It was 25 

shown that 2D models reduce the scattering mechanism in the Rayleigh regime. Overall, it is proposed 26 
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that the progress and understanding presented in this article will aid the ongoing improvement of FE 1 

simulations of ultrasonic NDE of polycrystalline materials. 2 
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Material Property Inconel 600 

C11 234.6 GPa 

C12 145.4 GPa 

C44 126.2 GPa 

ρ 8260 kg/m3 

Table 1: Material constants for cubic Inconel 60017.  
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Model 2D D=100µm 2D D=500µm 3D D=500µm 

Centre Frequencies 2MHz 3MHz 5MHz 1MHz 2MHz 3MHz 1,2,and 3MHz 

Number of grains 60 x103 100 x103 100 x103 30 x103 23 x103 25 x103 5 x103 

Length (mm) 100 50 50 150 75 25 40 

Width (mm) 6 20 20 50 75 250 4x4 

Degrees of Freedom 12 x106 20 x106 31 x106 5 x106 8 x106 8 x106 16x106 

Table 2: Parameters for three models with different grain sizes, 100 µm and 500µm for two 2D models, 

and 500 µm for a 3D model. 
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LIST OF FIGURES  

Figure 1: (color online) Illustration of the steps involving a Voronoi generation of 

polycrystals: (a) a random distribution of seeds; (b) the Voronoi tessellations produced by (a); 

(c) The regularized grain layout and (d) the random orientations assigned to each grain, here 

shown by arrows in the 2D plane for clarity (note zoomed scale of this image compared to the 

others). Colors are only illustrative. 

Figure 2: Grain size distribution for a typical random realistation of an input 100µm grain 

size material. The grain size D in this 2D case is defined by the square root of area.   

Figure 3: (color online) Typical pole plot (ODFs) for a randomly generated material. The 

distribution of grain alignments over the whole sphere shows for this example that the 

generated material is indeed isotropic. The scales indicate the distribution of probability 

density for the orientation angles of the <110> and <111> crystallographic axis.   

Figure 4: Typical grain meshed using (a) unstructured and (b) structured mesh. 

Figure 5: (color online) FE simulation of longitudinal plane wave propagating from left to 

right within a 2D slab of polycrystalline Inconel for different times after (a) 1.5µs (b) 4.5µs 

and (c) 7.5µs. The colour scale is the normalised displacement amplitude with reference to 

the peak excitation amplitude from -100% to 100%. 

Figure 6:  (color online) Mean normalised mesh scattering noise (in dB, with reference to the 

peak of the excitation signal) versus number of elements per wavelength for several 

unstructured meshes, each conforming to polycrystalline material with a different average grain 

sizes.  

Figure 7: (color online) Convergence of normalised centre-frequency attenuation against 

elements per grain for structured (S) and unstructured meshes (F). Results are shown for three 
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different grain size models, 100µm (triangular maker), 250µm (rectangular marker), 500µm 

(circular marker). The centre-frequency attenuation can be seen to converge within 1% at 

approximately 10 elements per grain.  

Figure 8: (color online) Normalised group velocity convergence against the number of 

elements per grain for structured (S) and unstructured meshes (F). Results are shown for three 

different grain sizes, 100µm (triangular marker), 250µm (rectangular marker), 500µm (circular 

marker).   Both meshes can be seen to converge to within 1% at approximately 6 elements per 

grain dimension 

Figure 9: (color online) Slice (4mmx4mmx10mm) of the 3D model of a polycrystalline material 

with 500µm average grain size where the shades denote different grains. The full model 

contains 5210 grains and 16x106 degrees of freedom. 

Figure 10: (color online) 3D FE simulation for a plane wave propagating throughout a 

polycrystalline material, Inconel, with an average 500µm grain size, shown at three different 

times: 1.5 µs, 3.5µs, and 5µs. 

Figure 11: (color online) Frequency dependent attenuation in dB/cm against frequency, for (a) 

100µm (b) 500µm grain sized material in 2D and (c) in 3D for 500µm. As expected the 

attenuation increases with frequency and grain size. The best-fit power coefficient is plotted 

for all nine (three per model) simulations, where the subscript denotes their centre-frequency 

in MHz. In the long wavelength to grain size ratios, the power coefficient approaches the 

Rayleigh result, whilst at higher frequencies, they converge towards the stochastic limit. 

Figure 12: (color online) Normalised attenuation coefficient versus normalised frequency for 

a longitudinal wave in polycrystalline Inconel for for three different models, a 100um 2D 

(triangular maker), 500um 2D (rectangular maker), and 500um 3D (circular marker). The 

three different scattering regimes are indicated (dashed lines) with their respective gradients 
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m. The attenuation results can be seen to compare well to the Unified Theory8 (black solid 

line).  The empty markers are for labelling purposes only, and hence are not indicative of 

sampling. 

Figure 13: (color online) Normalised variation of longitudinal phase velocity against 

normalised frequency, for three different models of polycrystalline Inconel, a 100um 2D 

(traignular marker), 500um 2D (rectangular marker), and 500um 3D (circular marker). The 

results can be seen to compare well to the Unified Theory8 for both 2D and 3D finite element 

results. The empty markers are for labelling purposes only, and hence are not indicative of 

sampling. 
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(d) 

Figure 1: (color online) Illustration of the steps involving a Voronoi generation of polycrystals: (a) 

a random distribution of seeds; (b) the Voronoi tessellations produced by (a); (c) The regularized 

grain layout and (d) the random orientations assigned to each grain, here shown by arrows in the 2D 

plane for clarity (note zoomed scale of this image compared to the others). Colors are only 

illustrative. 
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Figure 2: Grain size distribution for a typical random realistation of an input 100µm grain size 

material. The grain size D in this 2D case is defined by the square root of area.   
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Figure 3: (color online) Typical pole plot (ODFs) for a randomly generated material. The distribution 

of grain alignments over the whole sphere shows for this example that the generated material is 

indeed isotropic. The scales indicate the distribution of probability density for the orientation angles 

of the <110> and <111> crystallographic axis.   
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(a) 

 

(b) 

Figure 4: Typical grain meshed using (a) unstructured and (b) structured mesh. 
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(a) 

 

(b) 

 

(c)  

 

Figure 5: (color online) FE simulation of longitudinal plane wave propagating from left to right 

within a 2D slab of polycrystalline Inconel for different times after (a) 1.5µs (b) 4.5µs and (c) 7.5µs. 

The colour scale is the normalised displacement amplitude with reference to the peak excitation 

amplitude from -100% to 100%. 
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Figure 6:  (color online) Mean normalised mesh scattering noise (in dB, with reference to the peak of 

the excitation signal) versus number of elements per wavelength for several unstructured meshes, each 

conforming to polycrystalline material with a different average grain sizes.  
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Figure 7: (color online) Convergence of normalised centre-frequency attenuation against elements 

per grain for structured (S) and unstructured meshes (F). Results are shown for three different grain 

size models, 100µm (triangular maker), 250µm (rectangular marker), 500µm (circular marker). The 

centre-frequency attenuation can be seen to converge within 1% at approximately 10 elements per 

grain.  
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Figure 8: (color online) Normalised group velocity convergence against the number of elements per 

grain for structured (S) and unstructured meshes (F). Results are shown for three different grain sizes, 

100µm (triangular marker), 250µm (rectangular marker), 500µm (circular marker).   Both meshes can 

be seen to converge to within 1% at approximately 6 elements per grain dimension. 
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Figure 9: (color online) Slice (4mmx4mmx10mm) of the 3D model of a polycrystalline material with 

500µm average grain size where the shades denote different grains. The full model contains 5210 grains 

and 16x106 degrees of freedom. 
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Figure 10: (color online) 3D FE simulation for a plane wave propagating throughout a polycrystalline 

material, Inconel, with an average 500µm grain size, shown at three different times: 1.5 µs, 3.5µs, and 

5µs. 
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(a) (b) 

 

(c) 

 

Figure 11: (color online) Frequency dependent attenuation in dB/cm against frequency, for (a) 100µm 

(b) 500µm grain sized material in 2D and (c) in 3D for 500µm. As expected the attenuation increases 

with frequency and grain size. The best-fit power coefficient is plotted for all nine (three per model) 

simulations, where the subscript denotes their centre-frequency in MHz. In the long wavelength to grain 

size ratios, the power coefficient approaches the Rayleigh result, whilst at higher frequencies, they 

converge towards the stochastic limit. 
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Figure 12: (color online) Normalised attenuation coefficient versus normalised frequency for a 

longitudinal wave in polycrystalline Inconel for for three different models, a 100um 2D (triangular 

maker), 500um 2D (rectangular maker), and 500um 3D (circular marker). The three different 

scattering regimes are indicated (dashed lines) with their respective gradients m. The attenuation 

results can be seen to compare well to the Unified Theory8 (black solid line).  The empty markers are 

for labelling purposes only, and hence are not indicative of sampling.
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Figure 13: (color online) Normalised variation of longitudinal phase velocity against normalised 

frequency, for three different models of polycrystalline Inconel, a 100um 2D (triangular marker), 

500um 2D (rectangular marker), and 500um 3D (circular marker). The results can be seen to compare 

well to the Unified Theory8 for both 2D and 3D finite element results. The empty markers are for 

labelling purposes only, and hence are not indicative of sampling.  


