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Abstract 

 

Stainless steel’s characteristic nonlinear, rounded stress-strain behaviour requires 

accurate recognition in numerical modelling. Its response to cold-working is far more 

pronounced than that of ordinary carbon steel and hence appropriate modelling of the 

cold-worked corner regions is very important. Despite the importance of geometrical 

imperfections, their measurement is not a very common practice and assumed models 

are generally adopted in numerical investigations – often without proper verification. 

This paper investigates all important aspects for modelling stainless steel cross-

sections through carefully designed parametric studies. Different cross-section types 

have been considered and the numerically obtained load-deformation responses have 

been compared with selected experimental results; the findings form the basis for 

specific guidelines. These proposals have been verified by application to all available 

stainless steel stub column tests obtained from different sources. The predicted 

numerical results have shown excellent agreements with those obtained 

experimentally.          

Ashraf, M., Gardner, L. and Nethercot, D. A. (2006). Finite element modelling of structural stainless 
steel cross-sections. Thin-Walled Structures. 44(10), 1048-1062. 
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1. Introduction 

 

Numerical techniques have now become an invaluable part of most structural 

research, since they can be employed as an efficient tool for analysing the behaviour 

of structures provided that suitable care is taken to ensure that the model is 

appropriate and the input parameters are accurately specified. The sensitivity to 

changes in these parameters also needs to be properly understood. Since it is not 

practical to verify all structural design guidance by testing, a better approach is to first 

conduct some tests, then to replicate the testing procedures using numerical 

techniques, and, once the numerical models have been verified, to generate further 

results through variation of appropriate parameters in the numerical model.  

 

A large number of test results have been used in the present study to develop a 

consistent finite element (FE) modelling technique using the general purpose FE 

software package ABAQUS [1]. This paper describes the development of the FE 

models, giving special emphasis to the appropriate guidelines for input parameters 

such as enhanced strength in the corner regions and the extent of this strength 

enhancement, initial geometric imperfections and the significance of residual stresses. 

Extensive parametric studies have been carried out to establish the proposed 

guidelines, which should assist with modelling of stainless steel structural elements 

and thus ensure dependable results.  
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A total of 136 stub columns obtained from 8 different testing programmes involving 4 

different grades as well as 6 different cross-section types have been considered in the 

present study. However, complete load-deformation behaviour was available only for 

28 stub columns with 4 different cross-section types and hence these results have been 

used in performing the parametric studies. The proposed guidelines were, later, used 

to model the complete set of stub columns to validate the accuracy of the proposed FE 

modelling technique.    

 

2. Material modelling 

 

The development of an appropriate FE model requires the correct representation of 

the corresponding material characteristics. Inaccurate or inappropriate modelling of 

the basic material behaviour will overshadow the performance of even the most 

refined FE models. Stainless steel exhibits a rounded stress-strain curve and strain 

hardens to a considerably greater extent than carbon steel, resulting in significant 

changes in material behaviour during cold-forming processes. This phenomenon leads 

to enhanced strength properties at the corner regions of stainless steel sections. 

Special care is required to accurately model the response of stainless steel cross-

sections with cold-worked corners.  

 

 

2.1 Modelling of flat material 

 

The degree of roundness of the stress-strain curve of stainless steel varies from grade 

to grade, with the austenitic grades demonstrating the greatest nonlinearity and strain 
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hardening.  Most of the commonly adopted models for stainless steel are discussed 

herein.  

 

2.1.1 Ramberg-Osgood model  

 

Ramberg and Osgood [2] proposed the expression given in Equation 1 for the 

description of material stress-strain behaviour, where E0 is Young’s modulus and K 

and n are constants.  

 

n

00 E
K

E 






 



  (1) 

 

This basic expression was later modified by Hill [3] to give Equation 2 where Rp is a 

proof stress and c is the corresponding offset (plastic) strain. 
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In both expressions the total strain is expressed as the summation of elastic and plastic 

strains which are treated separately. The power function is applied only to the plastic 

strain. The Ramberg-Osgood expression is a popular material model for nonlinear 

materials since its constants have physical significance and it also provides a smooth 

curve for all values of strain with no discontinuities. This expression has been used in 

an informative Annex of ENV 1999-1-1 [4] for describing the stress-strain behaviour 

of aluminium. The proof stress was taken as the value corresponding to the 0.2% 
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plastic strain giving the most familiar form of the Ramberg-Osgood expression as 

given by Equation 3.   
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This equation has been found to give excellent predictions of stainless steel material 

stress-strain behaviour up to the 0.2% proof stress 0.2 but greatly over-predicts the 

stresses beyond that level. Figure 1 shows a typical comparison between a measured 

stainless steel stress-strain curve and the Ramberg-Osgood equation (Equation 3).     

 

2.1.2 Modified Ramberg-Osgood model proposed by Mirambell and Real 

 

Mirambell and Real [5], as a part of their investigation of the flexural behaviour of 

stainless steel beams, devised a suitable analytical model for stainless steel stress-

strain behaviour. The basic Ramberg-Osgood expression was adopted for stresses up 

to 0.2 where the strain hardening exponent n was determined using the 0.05% proof 

stress 0.05 and 0.2. For stresses beyond 0.2 a modified Ramberg-Osgood formula 

was adopted by moving the origin of the basic Ramberg-Osgood expression of 

Equation 3 from (0, 0) to (t0.2, 0.2), where t0.2 is the total strain at 0.2. This is 

explained in Figure 2 and the proposed relationship is given in Equation 4.   
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where u is the plastic strain at ultimate strength, and m is an additional strain 

hardening exponent. E0.2 is the tangent stiffness at 0.2 which may be obtained using 

Equation 5. 
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The proposed relationship was found to be in good agreement with test results. Use of 

ultimate stress u and the corresponding strain u in Equation 4, however, makes its 

application limited to model tension behaviour only. 

 

2.1.3 Extension of modified Ramberg-Osgood model proposed by Rasmussen    

 

Rasmussen [6] adopted Mirambell and Real’s proposed [5] model, whereby the basic 

Ramberg-Osgood equation (Equation 3) is used up to 0.2, beyond which Equation 4 

applies. Rasmussen [6] proposed that the strain hardening exponent n be determined 

on the basis of the 0.01% proof stress and 0.2. Based on tensile coupon data obtained 

from [7-13] Rasmussen [6] proposed Equation 6 for the determination of the 

additional strain hardening exponent m. 
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Further expressions were also provided to determine u (Equation 7) and u (Equation 

8) in terms of 0.2, E0 and n. 
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The resulting model is able to describe the full stress-strain curve for stainless steel 

alloys by using the three basic parameters 0.2, E0 and n, and has been included in 

Annex C of prEN 1993-1-4 [14] to provide guidance for the modelling of the material 

behaviour of stainless steel.    

 

2.1.4 Material model adopted in the present study 

 

Gardner and Nethercot [15] recognised the value of Mirambell and Real’s [5] two-

stage model but noted that its application was limited to the description of tensile 

stress-strain behaviour because of its dependency on the ultimate stress u and the 

corresponding strain u. In compression, such parameters do not exist due to the 

absence of the necking phenomenon. It was therefore proposed by Gardner [16] that 

the 1% proof stress 0.1 and the corresponding strain t1.0 be used in place of the 

ultimate stress. The resulting model as recently proposed by Gardner and Ashraf [17] 

is given by Equation 9, which applies for stresses greater than 0.2. 
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where t0.2 and t1.0 are the total strains at 0.2 and 1.0 respectively and n'0.2,1.0 is a 

strain hardening exponent. Equation 9 has been found to give excellent agreement 
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with measured stress-strain curves in both tension and compression and is adopted in 

the present study.  

 

Ashraf [18] analysed all available coupon tests performed on stainless steel and 

proposed specific values for n, n'0.2,1.0 and 1.0/0.2 for commonly used stainless steel 

grades so that Equation 9 can be used with the knowledge of only 2 common 

parameters – 0.2 and E0. Table 1 lists the values proposed for the coefficients 

involved.    

 

2.2 Modelling of corner material 

 

The effect of cold-work on the corner material of stainless steel cross-sections has 

been investigated by Ashraf et al [19] and hence models have been proposed to 

predict the enhanced corner material strength from a knowledge of the flat material 

properties and the corner geometry. In most of the cases, Equation 10 has been used 

to predict the corner material strength. However Equation 11 has also been used in the 

case of roll-formed sections produced from austenitic Grade 1.4301, where virgin 

material properties were not available.  
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0.2,c = 0.82u,f  (11) 

 

where  0.2,c is the 0.2% proof stress of the corner material 

 0.2,v is the 0.2% proof stress of the virgin material 
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 u,f is the ultimate stress of the flat material 

 ri is the internal corner radius 

 t is the thickness of the cross-section 

  

In the absence of all sufficient test details to allow the determination of n, n'0.2,1.0 and 

1.0/0.2 values for corner materials, the values for these parameters were taken to be 

the same as those for the corresponding flat material.  

 

3. Basic aspects of FE modelling – Boundary conditions and analysis technique  

 

The ends of the stub columns were fixed against all degrees of freedom except for the 

vertical displacement at the loaded edges. Typical boundary conditions for different 

cross-section types are shown in Figure 3. Constraint equations were used to ensure 

that all nodes at the loaded end act as a group to move vertically when a concentrated 

load was applied to one of the nodes at the top end. 

 

In the present research, elastic linear analysis technique using the *BUCKLING 

command was employed to obtain the Eigenmodes, which were subsequently used to 

represent initial geometric imperfections. A ‘static stress analysis’ method was used to 

simulate the actual load-deformation response of the stub columns. The nonlinear 

effects arising from geometric and material nonlinearity were included using the 

‘NLGEOM’ option and *PLASTIC command respectively as stated in ABAQUS [1]. 

All the stub columns were treated as geometrically nonlinear static problems 

involving buckling, where the load-displacement response shows a negative stiffness 

making the structure ‘unstable’ after reaching the peak load. ABAQUS [1] offers 
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several techniques to analyse this type of problem and among the available options 

the ‘modified Riks method’ was chosen because of its simplicity and widespread use 

in similar applications.  

 

4. Selection of an appropriate element type 

 

Shell elements are generally used to model thin-walled structures. ABAQUS [1] 

includes general-purpose shell elements as well as elements that are specifically 

formulated to analyse ‘thick’ and ‘thin’ shell problems. The general-purpose shell 

elements provide robust and accurate solutions to most applications although, in 

certain cases, enhanced performance may be obtained using the thin or thick shell 

elements; for example, if only small strains occur and five degrees of freedom per 

node are desired. General-purpose shell elements include transverse shear 

deformation, whilst thin shell elements may be used in cases where transverse shear 

flexibility is negligible. For homogeneous shells this occurs when the thickness is less 

than about 1/15 of a characteristic length on the surface of the shell, such as the 

distance between supports.  

 

Stainless steel structural members are generally modelled using either of the 

following two shell elements available in ABAQUS: general-purpose S4R [20, 21] or 

thin-shell S9R5 [5, 22]. Both of these elements were considered in the present 

research, initially, to find the more suitable one to be used for the parametric studies. 

Keeping all other parameters the same, only the element type was changed and the 

resulting load-deformation results have been compared with the tests results. It is 

worth mentioning that the number of nodes was constant for both the cases, whilst the 
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number of elements was 4 times higher for models using S4R than the corresponding 

models using S9R5. The obtained numerical results for the peak load Fu and the 

corresponding deformation δu are compared to the test results in Table 2.  

 

The comparisons show that there is no significant difference between the results 

obtained using two commonly employed shell elements, except for a few stocky 

sections for which the load-deformation curves are observed to become very flat near 

the peak load Fu, making the prediction of u very difficult. However, overall the 9-

noded thin shell element S9R5 gives better predictions both in terms of average 

ultimate load and the corresponding deformation for the considered cases. Moreover 

this element requires less time to converge to a solution, and hence the thin shell 

S9R5 element has been used for modelling stainless cross-sections in the present 

study. 

 

5. Convergence study – selecting a suitable mesh 

 

One of the most important aspects of FE modelling is to identify a suitable mesh size 

for the accurate modelling of the structural response. Finer meshes are generally 

preferred to obtain better predictions although there is no general guideline for such 

fineness, which largely depends on the type of structure and analysis involved. Thus 

performing a convergence study is a pre-requisite for finding a suitable mesh for any 

FE investigation. Although finer meshes generally provide better predictions, they 

make the whole process more expensive in terms of the computational time. A 

compromise is therefore needed between the required level of accuracy and the cost 

of a solution.  
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Two different mesh sizes were used to simulate the load-deformation response of stub 

columns considered in the present research. For all cross-section types, the number of 

elements in the finer mesh was 4 times higher than the corresponding coarse mesh. 

Each of the stub columns was analysed using both of these meshes and the results are 

given in Table 3. The results show that there is a small improvement in predictions for 

both peak load Fu and the corresponding deformation u with the finer mesh. No 

further refinement was attempted since the predictions were found to be in good 

agreement with the test results and this finer mesh has been adopted in the subsequent 

FE models.   

 

6. Extent of corner enhancement 

 

Previous research showed that enhanced strength should be included beyond the 

curved corner of the numerical models to achieve the exact replication of the test 

results [22]. Karren [23] found that for carbon steel sections the effect of cold-forming 

extends beyond the corner to a distance approximately equal to the thickness t, whilst 

Abdel-Rahman and Sivakumaran [24] observed increased yield strengths up to a 

distance of 0.5ri beyond the corner. Stainless steel exhibits far more pronounced 

strain hardening than carbon steel and hence it is rather more important to investigate 

the extent of corner enhancement. Based on the results of a numerical investigation 

performed on stainless steel roll-formed hollow sections, Gardner [16] observed that 

if the corner properties are extended up to 2t beyond the curved portion good 

agreement with test results is obtained. 
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Most of the open cross-sections considered in the present research were formed by the 

press-braking process. The manufacturing process has been observed to affect the 

corner material properties [19] and hence a similar parametric study was carried out to 

investigate the extent to which corner enhancement continues beyond the curved 

region in the case of press-braked sections. Keeping all other parameters the same, 

three different cases were studied – enhanced strength only in the curved corner 

region, enhanced strength region extended to a distance t beyond the corner and 

enhanced strength region extended to a distance 2t beyond the corner, as shown in 

Figure 4. Ultimate load carrying capacity Fu and deformation at ultimate load u for 

each model are compared to the test results in Table 4.  

 

Table 4 clearly shows that for the press-braked stainless steel sections, the enhanced 

strength needs to be extended up to t beyond the corner to obtain the best predictions 

using FE models. The importance of inclusion of enhanced strength corner properties 

varies with the cross-section slenderness  [25] (which, in turn, influences the ratio of 

corner area to flat area), showing a more significant effect for the relatively stocky 

sections with low . As the section becomes more slender, the ratio of corner area to 

flat area reduces, local buckling becomes more dominant and the effect of enhanced 

strength corners loses its significance. All considered stub column models were 

analysed without any enhanced strength (FE Fu,c0) and the results were compared to 

those obtained using corner enhancement up to t (FE Fu,ct). The results are shown in 

Figure 5. This figure illustrates the importance of using corner properties in the FE 

models, especially for the relatively stocky cross-sections. The present research uses 

enhanced properties up to t and 2t beyond the corner for the press-braked and roll-

formed sections respectively.   
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7. Geometric imperfections 

 

Geometric imperfections are an inseparable property of real steel members, with the 

potential to significantly influence their structural behaviour. When performing an FE 

analysis to predict the ultimate load, the model should, in general, include both local 

and global initial imperfections.  

 

Despite the importance of initial geometrical imperfections, there are no general 

guidelines for their specification. Predictions are normally conducted by either 

modelling the structure with an assumed initial out-of-plane deflection or by using 

assumed small transverse forces. Accurate knowledge of distribution, shape and 

magnitude of imperfections is a prerequisite for numerically simulating the response 

of a structural member. In the absence of suitable measured data, the magnitude and 

distribution of imperfections – which is likely to be a complex function of the rolling 

and fabrication process, material strength and geometrical properties of the cross-

section – must be predicted. The present study aims to provide guidelines for 

predicting the shape and magnitude of initial imperfections for stainless steel stub 

columns for use in FE modelling.  

 

7.1 Literature review 

 

A detailed review of measured and predicted geometric imperfections in steel cross-

sections has been reported in [18]. The most commonly adopted technique to define 

the distribution of initial imperfections is to perform an elastic buckling analysis prior 
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to the non-linear analysis and to use one of the Eigenmodes, chosen depending on 

specific criteria, as the initial shape. The main challenge is to select an appropriate 

Eigenmode to represent the imperfect geometry of the structural component and to 

ensure that no buckling modes are inhibited. The maximum amplitude is often taken 

as a percentage of plate thickness; this type of relationship is, however, always likely 

to be case sensitive and no specific approach has, so far, been reported that is 

generally applicable. It should be noted that the initial geometric imperfections in 

numerical simulations are often employed not just to represent the imperfect geometry 

of the physical structural element, but also to account for other features such as 

residual stresses, non-homogeneity of material, eccentricity of loading etc., which 

may be difficult to model explicitly. Therefore, the choice of maximum amplitude of 

imperfection, for example, will depend on whether or not these other features have 

been explicitly incorporated into the model.  

 

Table 5 presents a summary of the previous research performed on geometric 

imperfections, where t is the plate thickness, 0 is the imperfection amplitude, σ0.2 and 

σcr are 0.2% proof stress of material and (elastic) critical plate buckling stress 

respectively. 

 

7.2 Modelling of distribution and magnitude 

 

The load-deformation responses of stainless steel stub columns with angle, channel, 

lipped channel and I sections reported by Kuwamura [34] and Stangenberg [35] have 

been used to investigate the effect of initial imperfections on structural response. No 

imperfection measurements were available for the stub columns considered and hence 
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numerically obtained load-deformation curves were compared to those obtained 

experimentally.  

 

The most commonly used technique, employing Eigenmodes to define the initial 

geometry of a structure, was adopted in the present work. The Eigenmodes were 

obtained from elastic buckling analyses of the stub column models. The worst 

imperfection shape, resulting in the greatest reduction in load-carrying capacity, often 

relates to the lowest Eigenmode, though it is not always the case. Figure 6 shows 

some typical Eigenmodes obtained for all the cross-section types considered. In this 

study, each of the first three Eigenmodes was used individually to investigate the 

effect of imperfection distribution on load-deformation response. Figure 7 shows the 

typical load-deformation behaviour for stub columns as a result of changing the shape 

of the imperfection distribution. 

 

In ABAQUS [1], the nodal displacements of an Eigenmode are normalised using the 

maximum displacement that occurs within a structure and thus the maximum 

displacement is set equal to 1. By specifying an appropriate multiplying factor, 

commonly known as the amplitude, the nodal co-ordinates of the Eigenmode under 

consideration are scaled accordingly. The present study is also concerned with 

devising a representative value for the amplitude to be used in the imperfection 

distribution defined using Eigenmodes. Schafer and Peköz’s [28] proposals for this 

amplitude have been used by various researchers, but were originally devised for 

carbon steel cross-sections and should be examined before use for stainless steel. 

Gardner and Nethercot’s [22] proposed relationship for imperfection amplitude 

includes both material and geometrical properties and gave good predictions for roll-
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formed stainless steel sections. Initial imperfections for all the stub columns 

considered in the present study were modelled using these two approaches and were 

compared with the test results. The obtained FE results are compared and discussed in 

the following section.  

 

7.3  Results and analysis 

 

Each stub column was analysed six times, including (separately) 3 Eigenmodes 

(Eigenmodes 1, 2 and 3) and 2 imperfection amplitudes; the load-deformation results 

are compared in Tables 6 and 7. The mean prediction of test results and coefficient of 

variation (COV) from the obtained FE results were also calculated and reported.  

From the scatter (COV) of results it may be observed that the peak load Fu is less 

sensitive to imperfection shape than is the corresponding deformation u. For the 

imperfection amplitude, Gardner and Nethercot’s [22] proposed technique gives 

relatively consistent results and predictions closer to the test results than Schafer and 

Peköz’s [28] proposed method. The best prediction is obtained when Eigenmode 1 is 

used in conjunction with the amplitude taken from Gardner and Nethercot’s [22] 

proposal. Angle sections were observed to be the most sensitive type of cross-section 

to the chosen imperfection mode.  

 

8. Residual Stresses 

 

Residual stresses are induced into cold-formed stainless steel members as a result of 

the deformations during the cold-forming process and due to the thermal gradients 

that occur during welding. Due to the inherent uncertainty associated with the 
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magnitude and distribution of residual stresses, their effect is often taken into account 

in numerical models with an appropriate increase in the magnitude of assumed initial 

geometric imperfections [35].  

 

Both Rasmussen and Hancock [7-8] and Gardner [16] observed that the tension and 

compression coupons cut from finished sections were curved longitudinally because 

of the through-thickness bending residual stresses. During testing, however, the 

coupons are straightened, which effectively re-introduces the bending residual stress 

into the coupons. Therefore, provided the material properties are established using 

coupons cut from within the cross-section, the effects of bending residual stresses are 

inherently present, and do not need to be defined explicitly in the numerical models. It 

is only the membrane stresses induced through welding that need to be explicitly 

defined in numerical models.  

 

Lagerqvist and Olsson [36] measured residual stresses in two welded I girders of 

austenitic and duplex stainless steel. The resulting residual stress patterns resembled 

established models for carbon steel, but no specific guidelines were proposed. In the 

case of angles, channels and lipped channels no residual stresses were included in the 

numerical models. However, in the case of the welded I sections, the thermally 

induced residual stresses were modelled following the established guidelines for 

carbon steel [37], as shown in Figure 8, since no specific guidance is available for 

stainless steel. The 0.2% proof stress 0.2 was adopted for stainless steel in place of 

the yield stress y.    
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Each of the I section stub columns was modelled twice – with and without residual 

stresses. The FE results are compared to the test results in Table 8. From the 

numerically obtained results it may be observed that the effect of residual stresses on 

the peak load Fu and the corresponding deformation u is not very significant. 

However, inclusion of residual stress was observed to cause small reductions in the 

stiffness of the stub columns, which resulted in higher values for u. Overall, it may 

be observed from the cases considered that the developed numerical models can 

accurately predict the stub column load-deformation response without explicit 

recognition of thermal residual stresses. Gardner and Nethercot [22] reached a similar 

conclusion when modelling stainless steel hollow sections.      

 

9. Proposed technique for numerical modelling and its verification 

 

The following proposals are made for use in the numerical modelling of stainless steel 

stub columns: 

 

(i)  Material behaviour may be accurately modelled using Equations 3 and 9 with 

the required parameters taken from Table 1. 

    

(ii) Corner material strength 0.2,c should be incorporated for cold-formed sections 

and may be obtained using either Equation 10 or 11. To obtain the complete 

stress-strain response, the modified Ramberg-Osgood parameters may be taken 

from Table 1 if they are not available from corner coupons. The corner 

enhancement should be extended up to t for the press-braked sections and 2t for 
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roll-formed sections beyond the curved corner portions, where t is the plate 

thickness. 

 

(iii) The thin-shell S9R5 element available in ABAQUS [1] has been observed to 

perform very well for the stub columns considered. The general purpose S4R 

also provides a similar level of accuracy. A convergence study is a pre-requisite 

to obtain accurate predictions. 

 

(iv)  Initial geometric imperfections in stub columns may be modelled using an 

appropriate deformed shape obtained from elastic buckling analysis (i.e. 

Eigenmodes). Eigenmode 1 may be used with an amplitude of 0 = 

0.023(0.2/cr)t to obtain accurate predictions for load-deformation behaviour, 

where 0.2 is the 0.2% proof stress of the material, cr is the (elastic) critical 

plate buckling stress and t is the plate thickness. 

 

(v) Bending residual stresses may be ignored in FE models if the material properties 

are taken from the coupons cut from the finished cross-section. Thermal residual 

stresses have been found to have an insignificant effect on the peak load and 

hence can be omitted if an accurate distribution is unknown. 

    

The aforementioned guidelines have been used to model all 136 stainless steel stub 

column tests available to date. A summary of the results is given in Table 9, whilst 

Figure 9 illustrates how the FE versus test prediction varies with cross-section 

slenderness . It is worth mentioning that the slenderness parameter  includes both 

material and cross-sectional properties [25]. 
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Given the variability in cross-section types, manufacturing processes and sources for 

the considered 136 stub columns, the overall mean prediction of 1.01 with a 

coefficient of variation (COV) of 0.08 for the peak load Fu may be considered to be 

acceptable. It should also be noted that the maximum scatter of prediction was 

observed for the welded cross-sections reported in [34]. In Kuwamura’s [34] testing 

programme, the I sections were welded by laser beam and TIG welding, whilst the 

SHS sections were formed in a rather unusual fashion – two press-braked channel 

sections were welded tip-to-tip using laser beam. It is well known that welding can 

result in high residual stresses, distortion of cross-sections and localised reduction in 

material strength (when welding cold-worked sections). Coupled with this, only 

limited material data were available for Kuwamura’s [34] tested cross-sections, which, 

given that significant variability in material properties can exist around structural 

stainless steel sections [38], creates further uncertainties. 

  

A limited number of failure modes was available for the considered stub columns. 

However, excellent agreement has been observed between the numerical and 

experimental deformed shapes. Figure 10 presents some typical failure modes for the 

different cross-section types. 

 

10. Conclusions  

 

Numerical modelling techniques for stainless steel cross-sections have been explained 

in detail, giving specific guidelines for the modelling of corner regions, initial 

imperfections and residual stresses. The numerical models for the press-braked and 
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the roll-formed stainless steel cross-sections produce the closest predictions to the 

tests when the enhanced corner properties are used up to a distance equal to or twice 

the plate thickness respectively, beyond the corner region. The initial imperfection 

distribution can be modelled using the first Eigenmode with the corresponding 

amplitude 0 = 0.023(0.2/cr)t. Thermal residual stresses have been observed not to 

have any significant effect on stub column resistance, and therefore may, in general, 

be ignored. The performance of all numerical models has been compared to the 

experimentally obtained load-deformation response and failure modes, where 

available. The obtained overall mean prediction for the resistance of 136 stub columns 

considered was 1.01 with a COV of 0.08, which demonstrates the accuracy of the 

proposed numerical technique.        
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Table 1: Compound Ramberg-Osgood parameters obtained from coupon test results. 

 

Type Grade 
Forming 
process 

Tension / 
Compression 

n n'0.2,1.0 1.0/0.2 

Austenitic 
1.4301 

Press-braked 
Tension 5.8 2.7 1.20 

Compression 5.3 2.5 1.20 

Roll-formed 
Tension 5.4 3.4 1.14 

Compression 4.3 2.7 1.25 

1.4306, 1.4318 - - 4.4 3.1 1.17 

Ferritic 
1.4016 - - 6.4 3.2 1.16 

1.4003, 1.4512 - - 7.3 3.3 1.14 

Duplex 1.4462 - - 5.0 3.4 1.15 
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Table 2: Load-deformation results obtained from FE models of stub columns using 

general purpose shell element S4R and thin-shell element S9R5.     
 

Section 
type 

Designation 
Test Results 

General purpose 
shell element: 

S4R 

Thin-shell 
element: S9R5 

Fu  
(kN) 

u  
(mm) 

FE Fu / 
Test Fu 

FE u / 
Test u 

FE Fu / 
Test Fu 

FE u / 
Test u 

Angle 

25  25  3 55.9 1.28 0.94 1.00 0.90 0.98 
30  30  3 59.4 0.70 0.99 1.27 0.97 1.20 
40  40  3 66.9 0.50 1.01 1.10 1.00 1.10 
40  40  3 65.6 0.45 1.04 1.27 1.03 1.31 
50  50  3 68.7 0.31 1.03 1.29 1.03 1.32 
60  60  3 69.6 0.25 1.05 1.24 1.06 1.24 

Channel 

50  25  3 106.0 2.10 1.04 1.77 0.95 1.29 
80  40  3 134.2 1.10 1.02 1.17 1.00 1.15 
100  50  3 146.2 0.90 1.02 0.93 1.01 0.93 
100  50  3 140.4 0.83 1.07 1.02 1.06 1.04 
150  50  3 156.0 0.85 0.99 0.87 0.99 0.84 
50  50  3 125.0 0.72 1.02 1.00 1.02 1.11 

Lipped 
Channel 

100  50  20  3 211.4 1.50 1.03 1.24 1.02 1.27 
150  50  20  3 197.0 1.60 1.02 0.96 1.00 0.93 
150  65  20  3 214.8 1.20 1.07 1.42 1.05 1.19 
200  75  25  3 232.8 1.40 1.03 1.21 1.02 1.14 
33  17  7  1 23.7 0.62 0.98 0.84 0.98 0.89 
50  17  7  1 21.7 0.50 1.05 1.04 1.04 0.98 
50  22  7  1 24.3 0.60 1.05 1.02 1.01 0.98 
68  25  8  1 26.1 0.62 1.06 1.29 1.05 1.31 

I section 

50  50  3  3 151.8 2.40 0.94 1.29 0.89 1.21 
50  100  3  3 190.7 0.73 0.95 1.18 0.94 1.12 
100  50  3  3 170.6 1.34 0.93 1.25 0.91 1.10 
100  75  3  3 199.2 1.07 0.97 1.08 0.96 1.08 
100  100  3  3 201.5 0.49 1.05 1.45 1.04 1.45 
150  100  3  3 200.0 0.61 1.12 1.20 1.12 1.20 
200  100  3  3 206.8 0.80 1.02 1.00 1.02 1.00 
200  150  3  3 230.4 0.89 1.04 1.20 1.03 1.12 

All Sections 
 Average 1.02 1.16 1.00 1.12 
 COV 0.04 0.17 0.05 0.13 
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Table 3: Load-deformation results obtained from FE models of stub columns using 
different meshes. 

 

Section 
type 

Designation 
Test Results Coarse mesh Fine mesh 
Fu  

(kN) 
u  

(mm) 
FE Fu / 
Test Fu 

FE u / 
Test u 

FE Fu / 
Test Fu 

FE u / 
Test u 

Angle 

25  25  3 55.9 1.28 0.90 0.99 0.90 1.00 
30  30  3 59.4 0.70 0.95 1.19 0.97 1.20 
40  40  3 66.9 0.50 0.96 1.00 1.00 1.10 
40  40  3 65.6 0.45 1.01 1.24 1.03 1.29 
50  50  3 68.7 0.31 1.02 1.35 1.03 1.29 
60  60  3 69.6 0.25 1.06 1.24 1.06 1.24 

Channel 

50  25  3 106.0 2.10 0.96 1.35 0.95 1.29 
80  40  3 134.2 1.10 1.01 1.12 1.01 1.15 
100  50  3 146.2 0.90 1.01 0.98 1.01 0.97 
100  50  3 140.4 0.83 1.06 0.98 1.06 1.00 
150  50  3 156.0 0.85 0.99 0.86 0.99 0.86 
50  50  3 125.0 0.72 1.02 1.03 1.02 1.03 

Lipped 
Channel 

100  50  20  3 211.4 1.50 1.03 1.31 1.02 1.27 
150  50  20  3 197.0 1.60 1.02 0.93 1.00 0.93 
150  65  20  3 214.8 1.20 1.07 1.55 1.05 1.19 
200  75  25  3 232.8 1.40 1.04 1.28 1.02 1.14 
33  17  7  1 23.7 0.62 0.98 0.90 0.98 0.89 
50  17  7  1 21.7 0.50 1.05 1.08 1.04 1.00 
50  22  7  1 24.3 0.60 1.04 1.05 1.01 1.00 
68  25  8  1 26.1 0.62 1.06 1.29 1.05 1.31 

I 
section 

50  50  3  3 151.8 2.40 0.88 1.16 0.89 1.21 
50  100  3  3 190.7 0.73 0.93 1.19 0.94 1.12 
100  50  3  3 170.6 1.34 0.91 1.13 0.91 1.10 
100  75  3  3 199.2 1.07 0.96 1.06 0.96 1.08 
100  100  3  3 201.5 0.49 1.04 1.57 1.04 1.45 
150  100  3  3 200.0 0.61 1.11 1.34 1.12 1.20 
200  100  3  3 206.8 0.80 1.04 1.08 1.02 1.00 
200  150  3  3 230.4 0.89 1.05 1.13 1.03 1.12 

All Sections 
Average 1.01 1.16 1.00 1.12 

COV 0.06 0.16 0.05 0.13 
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Table 4: Load-deformation results obtained from FE models of press-braked stub columns using different conditions for corner strength 
enhancement.  

 

Section 

type 
Designation 

Test Results 
Extent of enhanced strength used in FE models 

Corner only Up to t beyond corner Up to 2t beyond corner 

Fu (kN) u (mm) FE Fu/ Test Fu FE u/ Test u FE Fu/ Test Fu FE u/ Test u FE Fu/ Test Fu FE u/ Test u 

Angle 

25  25  3 55.9 1.28 0.81 0.99 0.90 1.00 0.96 0.77 

30  30  3 59.4 0.70 0.88 1.13 0.97 1.20 1.01 1.14 

40  40  3 66.9 0.50 0.93 1.02 1.00 1.10 1.01 0.96 

40  40  3 65.6 0.45 0.96 1.16 1.03 1.29 1.06 1.31 

50  50  3 68.7 0.31 0.99 1.23 1.03 1.29 1.04 1.35 

60  60  3 69.6 0.25 1.04 1.20 1.06 1.24 1.07 1.32 

Channel 

50  25  3 106.0 2.10 0.88 1.61 0.95 1.29 1.05 1.40 

80  40  3 134.2 1.10 0.95 1.13 1.01 1.15 1.07 1.27 

100  50  3 146.2 0.90 0.98 0.89 1.01 0.97 1.07 1.00 

100  50  3 140.4 0.83 1.02 1.00 1.06 1.00 1.12 1.13 

150  50  3 156.0 0.85 0.98 0.82 0.99 0.86 0.99 0.86 

50  50  3 125.0 0.72 0.98 1.00 1.02 1.03 1.09 1.24 

Lipped 

Channel 

100  50  20  3 211.4 1.50 0.93 1.19 1.02 1.27 1.11 1.38 

150  50  20  3 197.0 1.60 0.96 0.63 1.00 0.93 1.09 1.04 

150  65  20  3 214.8 1.20 1.00 1.00 1.05 1.19 1.14 1.73 

200  75  25  3 232.8 1.40 0.97 1.02 1.02 1.14 1.10 1.43 

33  17  7  1 23.7 0.62 0.90 0.79 0.98 0.89 1.06 0.90 

50  17  7  1 21.7 0.50 0.97 0.64 1.04 1.00 1.15 1.28 

50  22  7  1 24.3 0.60 0.98 0.55 1.01 1.00 1.12 1.27 

68  25  8  1 26.1 0.62 0.98 1.00 1.02 1.31 1.13 1.42 

All Sections 
Average 0.95 1.00 1.01 1.11 1.07 1.21 

COV 0.06 0.24 0.04 0.13 0.05 0.19 
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Table 5: Summary of the previous research performed on local geometric imperfections. 
 

Researcher 
Structural 

component/configuration 
Experimental/ 

Numerical 

Imperfection model proposed/used 

Comment 

shape magnitude 

Dawson and Walker 
[26] 

Simply supported steel 
plates under compression 
and bending. 

Experimental - 
0/t =  (y/cr)0.5

 

0/t =  (y/cr) 

Proposed imperfections can be used in designing 
cold-formed steel sections. 

Hopperstad et al. 
[27] 

Aluminium cruciform 
sections under compression. 

Numerical 
 = 0 

(y/b)cos(x/L) 
0.01t to 0.1t 

Stocky plates are more sensitive to imperfection 
amplitude. 

Schafer and Peköz 
[28] 

Cold-formed steel lipped 
channels 

Experimental Eigenmodes 
0 = 0.006w 
0 = 6te-2t 

Periodicity was observed in imperfection 
distribution. 

Sun  and 
Butterworth [29] 

Roll-formed steel angles 
subjected to eccentric 
compression.  

Experimental 
and numerical 

Half sine waves 
0.167t, 0.333t, 0.5t 

and 0.667t 
Amplitude of 0.333t observed to give best results. 

Chou et al. [30] 
Cold-formed steel lipped 
channels and hat sections 
under compression. 

Numerical Eigenmodes 
0.1t, 0.5t and  

[26] 
Dawson and Walker’s [26] proposed method with 
α = 0.3 gave consistent results. 

Gardner [16] 
Roll-formed stainless steel 
hollow sections under 
compression 

Experimental 
and numerical. 

1st Eigenmode 
0/t = 

0.023(0.2/cr) 

For SHS and RHS the proposed magnitude gave 
good predictions  

Kaitila [31] 
Cold-formed steel lipped 
channels  

Numerical Eigenmodes 
0 to h/200 where h 
is the web height.  

No general guidelines emerged from the study. 

Dubina and 
Ungureanu [32] 

Cold-formed steel channels 
and lipped channels 

Numerical 
Eigenmodes (1st and 

5th) and measured 
imperfections.   

[28] 
Actual distribution gave the best results when 
used in numerical modelling. Schafer and Peköz’s 
[28] proposal was found ‘helpful’. 

Cruise and Gardner 
[33] 

Hot-rolled and cold-formed 
stainless steel angles and 
hollow sections  

Experimental Half-sine wave 
Specific values of 
 to be used in [26] 

Dawson and Walker’s [26] proposal has been 
calibrated for stainless steel sections considering 
the effects of manufacturing process.  
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Table 6: Load-deformation results using imperfection amplitude from Schafer and 
Peköz’s [28] proposed model.  

 

Designation 

Imperfectio
n amplitude 

0 
(mm) 

Eigenmode 1 Eigenmode 2 Eigenmode 3 

FE Fu / 
Test Fu 

FE u / 
Test u 

FE Fu / 
Test Fu 

FE u / 
Test u 

FE Fu / 
Test Fu 

FE u / 
Test u 

L 25  25  3 0.15 0.85 0.68 0.85 0.82 0.90 1.22 
L 30  30  3 0.18 0.88 0.84 0.90 1.03 0.96 1.69 
L 40  40  3 0.24 0.92 0.79 0.93 0.91 0.99 1.29 
L 40  40  3 0.24 0.94 1.01 0.94 0.96 1.00 1.36 
L 50  50  3 0.30 0.96 1.34 1.01 1.68 1.13 2.33 
L 60  60  3 0.36 1.02 1.83 1.10 1.90 1.24 2.38 

C 50  25  3 0.21 0.91 0.98 0.91 0.88 0.92 1.13 
C 80  40  3 0.40 0.90 1.02 0.92 0.89 0.97 1.33 
C 100  50  3 0.53 0.92 1.04 0.94 0.93 1.02 1.64 
C 100  50  3 0.53 0.95 1.09 0.95 0.96 1.00 1.61 
C 150  50  3 0.83 0.88 1.14 0.86 1.07 0.90 0.95 
C 50  50  3 0.30 0.94 1.17 0.97 1.08 1.02 1.36 

CL 100  50  20  3 0.53 0.95 1.20 0.90 0.99 0.91 1.15 
CL 150  50  20  3 0.83 0.98 1.32 1.04 1.81 0.99 1.42 
CL 150  65  20  3 0.83 1.03 1.62 0.99 1.50 1.01 1.66 
CL 200  75  25  3 1.13 1.03 1.42 1.07 1.75 1.04 1.68 
CL 33  17  7  1 0.17 0.90 0.83 0.93 1.03 0.90 0.92 
CL 50  17  7  1 0.28 1.03 1.27 1.08 1.69 1.04 1.25 
CL 50  22  7  1 0.28 1.01 1.04 0.98 0.90 0.99 1.12 
CL 68  25  8  1 0.38 1.04 1.71 1.01 1.52 1.02 1.71 

I 50  50  3  3 0.27 0.79 0.45 0.80 0.61 0.82 0.81 
I 50  100  3  3 0.26 0.89 1.06 0.89 1.10 0.91 1.14 
I 100  50  3  3 0.57 0.83 0.65 0.83 0.66 0.85 0.76 
I 100  75  3  3 0.57 0.86 0.71 0.87 0.76 0.86 0.83 
I 100  100  3  3 0.57 0.94 1.44 0.99 1.42 1.01 1.70 
I 150  100  3  3 0.87 0.97 1.69 0.98 1.54 1.05 1.54 
I 200  100  3  3 1.17 0.94 1.63 0.96 1.56 0.99 1.44 
I 200  150  3  3 1.17 1.02 1.58 1.01 1.67 0.99 1.47 
I 160  80  10  6 0.83 0.95 0.52 0.96 0.46 0.95 0.48 
I 160  160  10  6 0.84 0.99 0.65 0.95 0.48 0.99 0.61 
I 320  160  10  6 1.80 0.97 0.85 0.98 0.73 1.00 0.92 
I 160  160  10  6 0.84 0.95 0.65 0.93 0.55 0.95 0.66 

All Sections 
Average 0.94 1.10 0.95 1.12 0.98 1.30 

COV 0.07 0.34 0.07 0.38 0.08 0.34 
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Table 7: Load-deformation results using imperfection amplitude from Gardner and 

Nethercot’s [22] proposed model.  
 

Designation 

Imperfectio
n amplitude 

0 
(mm) 

Eigenmode 1 Eigenmode 2 Eigenmode 3 

FE Fu / 
Test Fu 

FE u / 
Test u 

FE Fu / 
Test Fu 

FE u / 
Test u 

FE Fu / 
Test Fu 

FE u / 
Test u 

L 25  25  3 0.02 0.90 1.00 0.92 1.58 0.96 1.76 

L 30  30  3 0.02 0.97 1.20 0.96 1.51 1.02 2.56 

L 40  40  3 0.04 1.00 1.10 0.99 1.00 1.05 1.82 

L 40  40  3 0.04 1.03 1.29 1.05 1.45 1.13 2.31 

L 50  50  3 0.07 1.03 1.29 1.08 1.61 1.20 2.55 

L 60  60  3 0.10 1.06 1.24 1.16 1.77 1.31 2.30 

C 50  25  3 0.02 0.95 1.29 0.96 1.34 0.95 1.31 

C 80  40  3 0.04 1.01 1.15 0.99 1.18 1.03 1.27 

C 100  50  3 0.07 1.01 0.97 1.01 1.03 1.07 1.23 

C 100  50  3 0.07 1.06 1.00 1.04 1.07 1.10 1.22 

C 150  50  3 0.07 0.99 0.86 0.95 0.86 0.98 0.88 

C 50  50  3 0.07 1.02 1.03 1.02 1.04 1.03 1.06 

CL 100  50  20  3 0.02 1.02 1.27 1.00 1.19 1.00 1.23 

CL 150  50  20  3 0.06 1.00 0.93 1.06 1.72 0.99 1.18 

CL 150  65  20  3 0.06 1.05 1.19 1.02 1.26 1.05 1.58 

CL 200  75  25  3 0.11 1.02 1.14 1.08 1.92 1.07 1.73 

CL 33  17  7  1 0.01 0.98 0.89 0.99 1.03 0.98 0.96 

CL 50  17  7  1 0.02 1.04 1.00 1.07 0.74 1.05 0.98 

CL 50  22  7  1 0.02 1.01 1.00 1.01 0.87 1.03 1.14 

CL 68  25  8  1 0.04 1.05 1.31 1.02 1.44 1.04 1.70 

I 50  50  3  3 0.01 0.89 1.21 0.89 1.18 0.91 1.21 

I 50  100  3  3 0.06 0.94 1.12 0.93 1.21 0.95 1.28 

I 100  50  3  3 0.03 0.91 1.10 0.91 1.10 0.92 1.27 

I 100  75  3  3 0.03 0.96 1.08 0.96 1.07 0.96 1.08 

I 100  100  3  3 0.06 1.04 1.45 1.06 1.67 1.09 1.83 

I 150  100  3  3 0.06 1.06 1.20 1.13 1.38 1.18 1.55 

I 200  100  3  3 0.11 1.02 1.00 1.05 1.09 1.07 1.07 

I 200  150  3  3 0.14 1.03 1.12 1.04 1.03 1.08 0.99 

I 160  80  10  6 0.03 1.03 0.80 1.02 0.76 1.02 0.75 

I 160  160  10  6 0.03 1.05 1.03 1.06 1.03 1.08 1.15 

I 320  160  10  6 0.14 1.01 0.81 1.01 0.75 1.02 0.85 

I 160  160  10  6 0.05 0.99 1.00 0.99 0.93 0.99 1.02 

All Sections 
Average 1.00 1.10 1.01 1.21 1.04 1.40 

COV 0.05 0.14 0.06 0.26 0.08 0.35 
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Table 8: Load-deformation results obtained from FE models of I section stub 
columns with and without residual stresses. 

 

Designation 

Test Results Without Residual Stress With Residual Stress 

Fu (kN) u (mm) 
FE Fu / 
Test Fu 

FE u / 
Test u 

FE Fu / 
Test Fu 

FE u / 
Test u 

50  50  3  3 151.8 2.40 0.89 1.21 0.89 1.19 

50  100  3  3 190.7 0.73 0.94 1.12 0.94 1.18 

100  50  3  3 170.6 1.34 0.91 1.10 0.92 1.22 

100  75  3  3 199.2 1.07 0.96 1.08 0.97 1.17 

100  100  3  3 201.5 0.49 1.04 1.45 1.05 1.55 

150  100  3  3 200.0 0.61 1.12 1.20 1.15 1.38 

200  100  3  3 206.8 0.80 1.02 1.00 1.06 1.05 

200  150  3  3 230.4 0.89 1.03 1.12 1.05 1.22 

All Sections 
Average 0.99 1.16 1.00 1.24 

COV 0.08 0.11 0.09 0.12 
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Table 9: Summary of the predictions for peak loads for all stub columns considered. 

 

Cross-section 
type 

Production process 
No. of 
sources 

No. of stub 
columns 

FE Fu / Test Fu 

Mean COV 

Angle Press-braking 1 12 1.04 0.06 

Channel Press-braking 1 11 1.03 0.04 

Lipped 
Channel 

Press-braking 2 22 1.01 0.05 

I section Welded 2 20 1.04 0.09 

SHS 
Roll-forming and Press-
braking 

6 42 1.02 0.11 

RHS 
Roll forming and Press-
braking 

4 29 0.97 0.07 

All sections All possible processes 8 136 1.01 0.08 
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Figure 1: Comparison between the measured stress-strain curve and the Ramberg-
Osgood material model for an austenitic Grade 1.4301 tensile coupon with 0.2 = 296 
N/mm2 and n = 5.8. 
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Figure 2: Schematic diagram explaining development of modified Ramberg-Osgood 

Equation. 
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               Figure 3: Typical boundary conditions applied to the stub columns. 
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of freedom. 



 41

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure 4: Different cases considered to study the extent of corner enhancement.  
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Figure 5: Variation of the effect of corner enhancement with cross-section 
slenderness . 
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Figure 6: Typical Eigenmodes obtained by performing elastic analysis for stainless steel open sections. 
 

Eigenmodes 1, 2 and 3 for L 25  25  3 Eigenmodes 1, 2 and 3 for C 50  25  3 

Eigenmodes 1, 2 and 3 for CL 100  50  20  3 Eigenmodes 1, 2 and 3 for I 50  50  3  3 
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Figure 7: Typical variations in load-deformation behaviour of stub columns as a result of 

using different imperfection distributions (Eigenmodes). 
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Figure 8: Assumed residual stress distribution for welded I sections. 
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Figure 9: Comparison of the FE predictions for stub column peak load Fu with test results. 
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Figure 10: Typical failure modes obtained for different cross-section types. 
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