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S U M M A R Y

Wells and boreholes are routinely steel-cased in oil and gas fields and geological storage sites.

There have been a number of studies on the effects of a steel-cased well on various electrical

and electromagnetic (EM) geophysical methods. In this paper, we examine the use of a steel-

cased well as a virtual vertical electric source for sensing deep localized resistive (e.g. CO2,

oil and gas) and conductive (e.g. conductive-proppant-filled fractures) targets when concentric

electric sources are grounded around the collar of the well. To simulate the casing effects, we

present a 3-D finite-element time-domain (FETD) algorithm with tetrahedral elements. The

FETD algorithm is designed to reduce memory usage in adaptive time stepping by utilizing

parallel direct and iterative solvers appropriately together. To avoid a larger number of tiny

elements required for discretizing a thin wall of the casing, the hollow casing is approximated

with a rectangular prism. By not discretizing the thin wall of and the curvature of the round

casing, the approximation not only reduces the number of unknowns by an order of magnitude

but also improves overall mesh qualities. We show that surface EM responses over the hollow

casing and the prism are practically the same. Through FETD modelling of a rectangular prism

as an approximation of a steel casing, we demonstrate that a steel casing can serve as a conduit

through which a high concentration of electrical currents can flow downward from the surface,

interact with deep localized reservoirs/fractures and produce a measurable perturbation in the

surface EM fields. Concentric electric sources can further improve both the sensitivity to the

deep targets and the overall magnitude of surface EM fields.

Key words: Numerical approximations and analysis; Downhole methods; Electromagnetic

theory.

I N T RO D U C T I O N

3-D numerical modelling of a steel casing in electromagnetic (EM)

geophysics has been studied in past decades. Early analyses on

the effects of the steel casing on EM responses were mainly based

on integral equation (IE) methods (Kaufman 1990; Schenkel &

Morrison 1990; Wu & Habashy 1994). The IE methods utilize the

symmetry of the casing and can efficiently model localized simple

geometric structures. Finite difference (FD) methods are generally

versatile and can simulate a casing-embedded complex earth model.

However, FD modelling of the steel casing is still considered chal-

lenging due to several numerical difficulties. First, because of its

high (e.g. 106–107 S m–1) conductivity and thin (e.g. a few centime-

tres) wall, its FD modelling requires an extremely fine (millimetre

scale) spatial discretization, resulting in a significant number (e.g.

a few ten millions) of unknowns in a matrix system. The resulting

computation cost is often intractable unless a scalable FD algorithm

is used on a large-scale parallel computer (Commer & Newman

2004; Commer et al. 2015). Second, mixing high-conductivity cells

of steel casings with low conductivity of the air can make a sys-

tem matrix of FD equations ill-conditioned (Hördt & Müller 2000).

When such fine cells are coupled with large cells used for modelling

reservoir-scale and regional-scale geology, the resulting system ma-

trix can be further ill-conditioned and pose a convergence issue with

iterative solvers (Newman & Alumbaugh 1995).

Finite element (FE) modelling has also been used to simulate

casing effects and has similar modelling challenges to those men-

tioned above. Due to prohibitive computational costs, 2-D and 2.5-

D FE modelling has been common. For example, Lee et al. (2005)

and Kim & Lee (2006) develop an FE method in the frequency-

domain and analyse EM fields in a non-uniform steel-cased bore-

hole. Pardo & Torres-Verdı́n (2013) use an adaptive hp FE method

(Pardo et al. 2007), where h and p are an element size and the

polynomial order of interpolation, respectively, and analyse the
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sensitivity of a borehole EM system to hydraulic fractures in a steel-

cased horizontal well. In these examples, they choose the cylindrical

coordinate system and assume the cylindrical symmetry of conduc-

tivity distributions about the casing. Thus, an anomalous zone is

modelled as a disk perpendicular to the casing. At the expense of

the limited modelling complexity, the FE modelling approaches can

be carried out without requiring significant computing resources.

In this paper, we present a full 3-D finite-element time-domain

(FETD) algorithm for modelling casing effects. The FETD algo-

rithm is designed to efficiently solve a large-scale FE problem in

the time domain resulting from steel-casing-embedded earth mod-

els. The FETD algorithm utilizes unstructured tetrahedral meshes

and can precisely discretize a round casing with small elements. Un-

like FDTD algorithms with structured rectangular grids, the small

elements do not extend to the computational boundaries, but their

sizes can progressively increase outwards from the casing. Owing to

the unstructured nature of tetrahedral meshes, the FETD algorithm

is expected to be suited to simulating casing effects even when cased

wells and anomalous structures do not confirm to the rectangular

grids.

Major difficulties of 3-D FETD modelling for the casing effects

include (1) a large number of unknowns resulting from a long (e.g.

a few kilometres) and thin (e.g. a few centimetres) hollow casing,

and (2) reliable and efficient mesh generation. Although tetrahedral

meshes are expected to economically discretize a casing-embedded

earth model, the discretization still requires a large number of ele-

ments (i.e. unknowns). The large number of unknowns is a particular

concern because FETD algorithms require directly solving the sys-

tem of FE equations at every time step regardless of implicit or

explicit time discretization (Gockenbach 2002). In addition, as will

be discussed later, an adaptive time-step control approach used in

our FETD algorithm further increases the memory requirement by

a factor of two (Um et al. 2010). It is also challenging to generate

good-quality meshes when a kilometre-scale long and centimetre-

scale thin casing structure needs to be discretized. In this case, a

mesh generator needs to split a number of poor-quality tetrahedral

elements inside and outside the casing into smaller good-quality

ones. This splitting process requires long computation times and

large storage. In certain circumstances, the splitting process fails

to generate smaller and well-rounded elements, leaving the poor-

quality elements in the final mesh. Such elements can be a source

of numerical noises in FETD solutions.

In this paper, our FETD modelling algorithm and meshing strat-

egy are designed to address the two major difficulties mentioned

above. First, to manage a large problem size, the FETD algorithm

utilizes both direct and iterative solver appropriately together, pre-

vents the memory usage from being doubled during the adaptive

time stepping. Thus, the memory usage is kept the same through the

FETD computation. To further reduce a large number of elements

(i.e. unknowns) required for representing a hollow steel casing, the

casing is approximated with a simple prism. We demonstrate that

surface EM responses over the casing and its corresponding prism

agree well with each other. As will be shown later, the choice of the

prism model over the hollow-casing model not only significantly

reduces the number of unknowns but also improves mesh qualities

and reduces mesh generation time.

Using the FETD algorithm with the prism representation of a

hollow steel casing, we simulate and analyse surface transient EM

(TEM) fields when both electric dipole sources and receivers are

grounded in the vicinity of a steel-cased well. As mentioned in

Hoversten et al. (2014) and Commer et al. (2015), a motivation

beyond this numerical experiment is the possibility that the steel

casing can serve as a direct conduit through which a high concen-

tration of electrical currents can flow downward, directly interact

with deep localized fractures and produce a measurable perturba-

tion in the surface TEM fields. One can also consider crosswell EM

systems to interrogate such fractures (Kim et al. 2014). However,

new boreholes/wells would not be available because of prohibitive

drilling costs in oil and gas fields and potential risks of leakages

in hazardous waste monitoring sites. Therefore, it is worth to max-

imally utilize existing wells for better characterizing deep targets.

Here, we further expand on the works of Hoversten et al. (2014)

and Commer et al. (2015) by demonstrating that a multi-source

configuration around a steel-cased well can significantly improve

both the sensitivity to the deep targets and the signal-to-noise ratio

of surface TEM fields.

The remainder of this paper is organized as follows. First, we

present a 3-D FETD algorithm designed to efficiently handle a

large number of unknowns resulting from the discretization of a

long steel casing. Using the FETD algorithm, we demonstrate that

a hollow steel casing can be approximated with a simple prism.

The accuracy of the approximation and its computational benefits

are discussed. Based on the approximation, we simulate surface

TEM fields in the vicinity of a steel-cased well whose one end

point is at the air-earth interface and the other end point is directly

connected with either a resistive (e.g. oil, gas and CO2) reservoir

or a conductive (e.g. graphite-coated sand proppant filled) fractured

zone. In order to boost the sensitivity and the signal strength, we

simulate the simultaneous excitation of multiple dipole sources that

are concentrically arrayed around the collar of a steel-cased well.

The resultant sensitivity and detectability are compared with those

of a single source configuration.

F E T D S O LU T I O N S T R AT E G I E S F O R

L A RG E - S C A L E P RO B L E M S

In this section, we briefly describe some key features of the FETD

algorithm used for simulating the casing effects. To simulate TEM

fields, we apply the standard Galerkin method to the electric field

diffusion equation as described in details in Um et al. (2010, 2013)

and get a system of FETD equations given as

Ck duk(t)

dt
+ Pk ek(t) + sk = 0, (1)

where

(i, j) element of conductivity matrix Ck =
∫∫∫

V k

σ knk
i (r) · nk

j (r)dV,

(2)

(i, j) element of permeability matrix Pk

=
∫∫∫

V k

1

μ
∇ × nk

i (r) · ∇ × nk
j (r)dV, (3)

i element of source vector sk =
∫∫∫

V k

nk
i (r) ·

∂js(r, t)

∂t
dV, (4)

unknown electric field vector ek =
[

ek
1 ek

2 ... ek
6

]

, (5)

µ is the magnetic permeability tensor, σ is the electric conductivity

tensor and js is an impressed electric current source. ni (r) is the

first-order edge elements (Nédélec 1986). V is a volume of an
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FE modelling of EM field near steel-cased well 903

individual tetrahedral element. The superscript k and the subscript

i denote the kth tetrahedral element and the ith edge of the element.

Eq. (5) is discretized using the second-order backward Euler

method, resulting in the final FETD formulation:

Ak(�t)ek
n+2 = Ck

(

4 ek
n+1 − ek

n

)

− 2�tsk
n+2

where Ak (�t) ≡ 3Ck + 2�tPk . (6)

After systems of FETD equations from each element are assem-

bled into a single large system of FETD equations (i.e. the global

version of eq. 6), the superscript k is dropped. We apply the ho-

mogeneous Dirichlet boundary conditions to the boundaries of the

computational domain, removing the external edges that consist

of the surfaces of the computational domain from eq. (6). The fi-

nal global system matrix is symmetric positive definite. Cholesky

factorization (Saad 2003) can be effectively used to solve eq. (6).

An efficient solution strategy for eq. (6) is to utilize both

the time invariance of matrix A with a constant �t and the

attenuation of TEM fields over time (Um et al. 2010). For ex-

ample, the time-stepping procedure of eq. (6) starts with a small

�t. The initial matrix factorization is reused as long as �t remains

constant. The computational cost of each time step is simply that of

backward and forward substitution. As high-frequency TEM fields

are increasingly attenuated over time, a larger �t can be used. To

check if a new larger �t can be used without affecting the accuracy

of the solution, the solutions are computed at a given time twice:

one with �t and the other with α�t where α is larger than 1 and

typically set to 2. To do this, it is required to have the factors of

both A(�t) and A(α�t). If a norm of the difference of the two

solution vectors is smaller than a tolerance that is empirically deter-

mined and is typically smaller than 10−4, �t is updated with α�t,

and A(�t) is discarded. Otherwise, the current �t is kept. Thus,

by successively introducing a larger �t at particular intervals and

re-factorizing A(α�t), one can speed up FETD solution processes.

This approach is summarized in Fig. 1(a).

Using the adaptive time-stepping technique that leads to fast

FETD computation, the FETD algorithm above has been success-

fully employed to analyse the effects of complex seafloor topogra-

phy on TEM fields (Um et al. 2012) and to monitor water flooding

in a reservoir (Colombo & McNeice 2013). Its parallel versions

have been presented and proven scalable (Fu et al. 2015). How-

ever, its major drawback is the fact that the approach doubles peak

memory usage. The increased memory usage may not be a serious

issue for small-to-medium-scale modelling problem with a number

of unknowns smaller than a few millions. However, the increased

memory usage is a particular concern in this study because the fine

discretization of a thin (e.g. a few ten centimetres) and long (e.g.

a few kilometres) casing can result in a large number of unknowns

(e.g. about 10 million unknowns even with a 200 m long casing)

as will be shown later. Along with the fine discretization, Cholesky

factorization requires a very large amount of memory. Thus, it

is important not to double peak memory usage in adaptive time

stepping.

To mitigate the memory overhead for the adaptive time-stepping

technique, we adopt a hybrid use of direct and iterative solvers as

shown in Fig. 1(b). As done in Fig. 1(a), we first complete the

Cholesky factorization for a given �t and start the time-stepping

process. Later, in order to check if α�t is acceptable, we do not

factorize A(α�t). Instead, we employ the conjugate gradient (CG)

method for solving eq. (6) with α�t. The current Cholesky factor

of A(�t) is used as a pre-conditioner for the CG method. We have

found that if α is not too large (e.g. α ≫ 2), the Cholesky factor of

A(�t) can serve as an effective CG pre-conditioner for eq. (6) with

α�t. This is analogous to an observation in the frequency (f) domain

that the factor of A(f) can be effectively used to pre-condition A(αf)

as shown in Um et al. (2013). If solutions of eq. (6) corresponding

to �t and α�t agree with each other within a tolerance bound, α�t

is accepted as a new �t. Then, we discard the factor of A(�t) and

compute a new factor of A(α�t) without doubling the peak memory

usage. Alternatively, we can completely switch from the Cholesky

direct solver to the CG solver and continue to use the factor of

A(�t) as the pre-conditioner for eq. (6) with α�t as long as FETD

solutions converge within a reasonable number of iterations. In this

way, we use 50 per cent amount of memory required for Fig. 1(a).

Until now, we have described the adaptive time-stepping FETD

algorithm that is suited to a problem with a large number of un-

knowns. In our implementation of the FETD algorithm, we utilize a

parallel factorization and triangular solver, MUMPS (Amestoy et al.

2001, 2006). The MUMPS solver is used together with a parallel

pre-conditioned CG solver found in PETSC library (Balay et al.

2014). Earth models with steel casings are discretized with tetrahe-

dral elements using TetGen mesh generator (Si 2013). In the next

sections, we analyse the TEM responses to deep 3-D targets in the

vicinity of a long steel casing. Along with the modelling analysis,

we summarize the overall computational cost associated with the

Figure 1. (a) The adaptive time-stepping technique shown in Um et al. (2010). (b) The new adaptive time-stepping technique with the hybrid use of direct and

iterative solvers. Chol, BFS and CG represent Cholesky factor, backward/forward substitution and conjugate gradient solver, respectively.
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modelling, demonstrating that it is practically feasible to directly

discretize a long steel-cased well and simulate its TEM responses

in a reasonable time frame.

A P P ROX I M AT I O N O F H O L L OW S T E E L

C A S I N G W I T H P R I S M

Before we study the role of a steel casing as a virtual vertical

source for sensing reservoirs and fractures, we examine the dis-

cretization rules of the steel casing and verify the accuracy of the

FETD solutions through their comparisons with reference solutions.

As a general rule, tetrahedral elements are smallest near a source

and gradually grow away from the source. The growth rate is em-

pirically determined but is usually less than or equal to a factor

of two from one edge to the next. In addition, the element size

should be fine around the casing due to its thin wall and the high-

conductivity contrast between the casing and its surround media.

Furthermore, because the FETD algorithm uses the homogeneous

Dirichlet boundary condition, the boundaries of the computational

domain should be sufficiently distant away from sources and re-

ceivers. For more details and examples, a reader is referred to Um

et al. (2010, 2012).

We first consider a hollow steel casing embedded into a uniform

lower half-space (0.033 S m−1). The round casing features a wall

thickness of 12.223 mm, a diameter of 135 mm (to the outer wall)

and a conductivity of 106 S m−1. Its relative permeability is set to 1.

The circumference of the casing is approximated using 36 edges of

the same length. The vertical casing starts from z = 0 m (i.e. the

air–earth interface) and extends down to 200 m in depth. The FETD

discretization of the hollow-casing model is shown in Fig. 2(a). To

ensure overall good mesh qualities for this particular discretization,

we utilize two quality measures for tetrahedral elements (Si 2013).

Figure 2. Cross-sectional views of a central portion of (a) the hollow steel-

casing FETD model and (b) the rectangular prism FETD model.

First, we enforce the maximum radius–edge ratio of a tetrahedron

(i.e. the ratio of the radius of its circumscribed ball to the length d

of its shortest edge) to be equal to or smaller than 1.5. Second, the

minimum allowable dihedral angle (i.e. an angle between two facets

of a tetrahedron) is set to 10◦. The quality of the resulting meshes

is examined by a mesh quality factor (COMSOL 2008) defined as

q =
72

√
3V

(

h2
1 + h2

2 + h2
3 + h2

4 + h2
5 + h2

6

)3/2
, (7)

where V is the volume of a tetrahedral element, hi is the length of

the ith edge of the element.

The mesh quality factor has been successfully used to evalu-

ate meshes for marine controlled-source EM modelling (Um et al.

2012) and proven as an effective measure for diffusive EM mod-

elling. For a regular tetrahedral element (i.e. an equilateral tetrahe-

dral element), q is equal to 1. It is known that when q is equal to

or greater than 0.1, shapes of the elements do not affect solution

accuracy.

It took about 20 min to generate the meshes on a 1.4 GHz sin-

gle core AMD Opteron processor. The resulting meshes consist of

8 421 559 tetrahedral elements. It turns out that 44 of 8 421 559 ele-

ments have quality factors smaller than 0.1. However, the elements

are distant from a central portion of the computational domain

where sources, receivers and the casing are placed. The average

quality factor of the 44 elements is not too low but is about 0.077.

Although it is not ideal to have the low-quality elements in the com-

putational domain, it is our experience that such elements do not

propagate serious numerical noises to FETD solutions. The model

has 9 778 426 unknowns.

To simulate the effects of the steel casing on surface TEM re-

sponses, a 10-m long x-oriented electric dipole source is excited

50 m distant from the casing. Receivers are placed along the x-

axis. The FETD solution processes consist of 9 Cholesky factor-

izations and 893 time steps. In the adaptive time stepping, the

pre-conditioned CG solver typically converges within 10 iterations.

Run time for the FETD solution is 347 min using 120 cores of Intel

Xeon R© processors with 480 GB memory. As a side note, the run

time for the FETD solution to the uniform half-space without the

casing is trivial. We were able to simulate the electric field responses

over the same range of time in 20 min with a single core of Intel i7

processor and 16 GB memory. The comparison highlights the direct

modelling cost of the hollow steel casing.

The electric field responses at selected receiver positions are

plotted in Fig. 3(a) and are compared with reference FDTD solutions

for verification. In the reference FDTD model, the curvature of the

steel casing is discretized with 12.223 mm cells. The validity of the

FDTD solutions to the steel casing model has been examined in

details in Commer et al. (2015). As shown in Fig. 3(a), both FETD

and FDTD solutions show good agreements. The FETD algorithm

and the FDTD algorithm have their own adaptive time-stepping

methods and produce the solutions at different time axes. Thus,

the two solutions are interpolated on the same time axis to plot the

relative differences of the two solutions as shown in Fig. 3(b). Except

the large relative difference at x = 11 m due to a sign reversal, the

relative errors in late times are bounded within about 5 per cent.

Note that neither the FDTD solutions nor the FETD solutions are

absolute reference solutions. Based on different spatial and temporal

discretization approaches and solution processes, each solution has

its own errors. In this study, we do not attempt to examine the

individual error sources of each solution for further reducing the

differences. Instead, we simply conclude that the two solutions show
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FE modelling of EM field near steel-cased well 905

Figure 3. (a) The surface electric field responses over the 200 m vertical casing that is embedded into the uniform half-earth model. (b) The relative differences

of the FETD solutions with respect to the FDTD solutions. (c) The comparison of the hollow-casing model and its corresponding prism models. The cross-

sectional views of the solid hexagonal prism model and the rectangular prism model are shown at the lower left corner of (c). (d) The relative differences of

the FETD prism models with respect to the FETD casing model.

good enough agreements for numerical modelling studies because,

as will be shown in the next two sections, a localized deep (e.g.

2 km) resistive/conductive target can produce anomalous responses

a few hundred per cent larger than the difference of FDTD and

FETD solutions.

As the steel-cased well is typically filled with drilling fluid, we

also simulate TEM responses to the fluid-filled casing. The con-

ductivity of the fluid is set to 0.33 S m−1, which is an order of

magnitude larger than that of the background medium. Figs 3(a)

and (b) show that the fluid-filled casing model and the hollow-

casing model produce the same surface responses. In other words,

the conductivity inside the steel casing has little effects on the sur-

face TEM responses. This observation can be explained with the

fact that most transient electric currents would flow through the

casing surfaces due to the large contrast of electrical conductivity

between the casing and its surrounding medium. This observation

implies that it is possible to approximate the hollow steel casing

with a solid cylinder by removing the inner wall of the hollow steel

casing. By avoiding discretizing the thin circular wall of the casing

with tiny elements, we would significantly reduce the total number

of elements required to represent the casing. The good agreements

of the FETD and FDTD solutions also imply that it is not critically

important to accurately represent the curvature of the steel casing

when surface TEM fields are simulated. A key benefit of a coarse

representation of the round casing is that it greatly reduces the total

number of elements.

In order to check if the hollow casing can be replaced with a sim-

ple and easily discretizable object, we compare the hollow-casing

responses with those from models with a solid rectangular prism

and a hexagonal prism as shown in Fig. 3(c). The size of the prisms

is equal to the outer diameter of the casing. Their conductivity is set

to that of the casing. For verification, the surface TEM responses

over the rectangular prism are computed using both the FETD al-

gorithm and the FDTD algorithm. The FDTD algorithm divides

(i.e. discretizes) the rectangular prism into four FD cells on the xy

plane. Their size is set to 67.5 mm (half the diameter). As shown

in Fig. 3(c), when a receiver is just 11 m distant from the prisms,

the surface responses over the prism models do not agree well with

those over the hollow-casing model. However, when a receiver is

distant more than 100 m from the prisms, we see overall excellent

agreements between the hollow-casing model and the prism mod-

els. The relative differences of the two prism model solutions with

respect to the casing model solution are also plotted in Fig. 3(d).

The relative differences are bounded within about 2 per cent in

intermediate-late times (3 × 10−3 to 10−1 s), confirming that the

prisms can be an alternative to the hollow casing.

The use of the prisms significantly reduces the computational

burdens of casing modelling. For example, the number of elements

and the number of unknowns for the rectangular prism model are

1 132 050 and 1 304 678, respectively. These numbers are about

13 per cent of those of the hollow-casing model. Owing to such

reductions, we were able to simulate the prism model in 39 min

with 30 cores of Intel Xeon R© processors with 120 GB memory.

The run time for generating tetrahedral meshes also reduces from

about 20 min to 36 s. The short run time would make it practically

possible to generate/update tetrahedral meshes in inverse modelling
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906 E.S. Um et al.

Figure 4. The histogram of quality factors for the final tetrahedral meshes. (a) The hollow steel-casing FETD model. (b) The rectangular prism FETD model.

applications. The choice of the rectangular prism over the hol-

low casing also improved overall mesh qualities. For the prism

model, all elements have quality factors larger than 0.1. Fig. 4 com-

pares the histogram of the quality factor of eq. (7) between the

hollow-casing model and the rectangular prism model. By avoiding

tiny elements required for the thin hollow casing, more tetrahe-

dral elements become close to the equilateral elements (quality

factor = 1.0), improving the overall mesh quality.

As a final note, one might consider not only simplifying the ge-

ometry of a casing but also changing its properties. For example,

one can attempt to increase the size of a prism and accordingly

decrease its conductivity. The increased minimum size of elements

and the decreased maximum conductivity would improve the con-

dition number of an FETD system matrix. The attempt is similar to

developing an effective medium theory for upscaling EM properties

of a steel casing. We see some success in such efforts, but it has been

our experience that it is difficult to maintain good agreements of true

and approximate casing solutions at a wide range of casing-receiver

offsets if multiple casing parameters simultaneously change. Thus,

in this study, we approximate a hollow casing with a corresponding

rectangular prism and fix its conductivity to that of the casing. Its

role as a virtual vertical source will be examined in reservoir-scale

models in the next two sections.

S E N S I T I V I T Y T O D E E P R E S I S T I V E C O 2

R E S E RV O I R

The first group of FETD simulations is performed for verifying

the sensitivity of a surface TEM configuration to deep localized

resistive CO2 targets (Fig. 5 and Table 1). A 2-km long round steel

casing features a wall thickness of 12.223 mm and an outer diameter

of 135 mm. The casing is approximated by a rectangular prism with

the side length equal to the outer diameter of the casing. The casing

is vertically embedded into a uniform half-space (10−1 S m−1). Note

that it is not difficult for FETD modelling to accommodate complex

background media. However, in these examples, we assume the

uniform background medium to clearly highlight the effect of the

steel casing on the targets. The conductivity of the air is set to

5 × 10−4 S m−1.

The time-lapse changes of the CO2 reservoir are shown in Fig. 5

and Table 1. The time-lapse models are designed to show vertical

and horizontal changes of the reservoir. Before the injection, we

Figure 5. The cross-sectional (top) and plan (bottom) views of the wire-

frame of the CO2 reservoir models.

assume the casing-embedded uniform half-space earth. As the CO2

injection starts, a 50-m thick resistive (10−2 S m−1) CO2 block

(block 1) is created. Later, the thickness of the reservoir increases

from 50 to 100 m by combining blocks 1 and 2 into one. Finally,

block 3 is added to the right side of block 1. The reverse time-lapse

changes of the reservoir would be similar to a recovery scenario of

hydrocarbon and gas. To highlight the role of the steel casing, we

simulate the four stages of the CO2 injection without (Models 1–4)

and with (Models 5–8) the steel casing (Table 1). At each stage, we

assume that the concentration of CO2 is spatially uniform inside the

blocks. Their conductivity values are uniformly set to 10−2 S m−1.

The conductivity value is slightly out of a typical range (3 × 10−2

to 3 × 10−1 S m−1, a personal communication with Dr. Michael

Wilt). Thus, one can consider the given modelling examples as a

high contrast case.
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Table 1. Eight earth models with and without the steel casing and

CO2 blocks.

Model Description

Model 1 Uniform half-space

Model 2 Uniform half-space + CO2 block 1

Model 3 Uniform half-space + CO2 blocks 1 and 2

Model 4 Uniform half-space + CO2 blocks 1, 2 and 3

Model 5 Uniform half-space + casing

Model 6 Uniform half-space + casing + CO2 block 1

Model 7 Uniform half-space + casing + CO2 blocks 1 and 2

Model 8 Uniform half-space + casing + CO2 blocks 1, 2 and 3

Four independent or simultaneous dipole sources are considered

as shown in Fig. 5. Each source is 50-m long and its polarization

direction is towards the casing. The inner end point of the dipole

source is 20 m distant from the casing. The ramp-off time of the

dipole source is set to 10−4 s. The source current is set to 1 A. The

array of x-oriented electric dipole receivers are placed along the pos-

itive x-axis. On average, the models consist of 5 962 179 tetrahedral

elements and 6 891 427 unknowns. The FETD solution processes

consist of 9 Cholesky factorizations and 893 time steps. The time-

step size is successively doubled from 2 × 10−5 to 5.12 × 10−3 s.

The average FETD run time is about 174 min using 120 cores of

Intel Xeon R© processors with 240 GB memory. On average, it takes

about 87 s for TetGen to generate FETD meshes on a single core

AMD Opteron processor 1.4 GHz. As a side note, it takes about

145 min to discretize the hollow steel casing. The resulting model

consists of 59 199 999 elements. Thus, the use of the rectangular

prism reduces the problem size by an order of magnitude.

Fig. 6 shows the inline electric field measurements with and

without the steel casing when a single source (source 1) is turned off.

Without the steel casing, the inline measurements fail to distinguish

the four models (Models 1–4) each other. Relative differences of

Model 1 and Models 2–4 are smaller than 0.2 per cent (not plotted

in this paper). In contrast, when the steel casing is embedded into

the earth model, it significantly changes overall shapes of sounding

curves (the middle column in Fig. 6). The first sign reversals due

to the near-surface steel casing (Commer et al. 2015) are observed

in early times. The presence of the resistive CO2 reservoirs makes

the second reversals appear slightly early in intermediate times.

Figure 6. Responses to the CO2 models with and without the casing (Fig. 5 and Table 1) at (a) 200 m offset, (b) 300 m offset and (c) 1000 m offset. A single

source (source 1) is used. Model 1 is a background half-space model. Model 2 has a 50 m thick CO2 reservoir block. In Model 3, the thickness of the block

is doubled. In Model 4, the block extends in the x-direction by 100 m. Models 5–8 correspond to Models 1–4, respectively, except that Models 5–8 have

the vertical casing at their centre. The left column shows horizontal electric field (Ex) responses when the steel casing is not embedded into the earth model

(Models 1–4). The middle column shows Ex responses when the casing is embedded into the earth model (Models 5–8). The right column shows the relative

Ex difference (%) of Model 5 and Models 6–8.
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This temporal shift of the second reversals result in large relative

differences between the reference model (Model 5) and the reservoir

models (Models 6–8), demonstrating the increased sensitivity of the

surface electric field measurements to the reservoirs.

Next, we examine the sensitivity of a multisource configuration

to the CO2 reservoirs when the configuration is deployed around the

vertical steel casing. Four horizontal electric sources (Sources 1–4)

are located concentrically around the steel casing as shown in Fig. 5.

The sources are synchronized and are turned off simultaneously. The

technical feasibility of this source layout has been demonstrated by

Mogilatov & Balashov (1996) and Helwig et al. (2010). Before the

four sources are turned off, the geometry of the initial direct current

flow is similar to that of a vertical electric source embedded into the

earth. After the turn-off, the high concentration of vertical currents

at the centre diffuses directly downwards and interacts with the

reservoirs. If the earth model has a vertical steel casing at the centre

of the sources, the transient vertical currents will tend to reside in

the steel casing and diffuse downwards very slowly due to the high

electrical conductivity of the casing. The effect of this long-lasting

vertical current can boost a virtual electric source created by the

concentric dipole configuration, leading to the enhanced sensitivity

to the reservoirs.

The resulting electric field measurements over the CO2 models

without the casing are compared in Fig. 7. Note that the measure-

ments do not have the sign reversals in early times. Without the steel

casing, the measurements show clear sensitivity to the three CO2

Figure 7. Responses to the CO2 models without the steel casing (Fig. 5 and Table 1). Sources 1, 2, 3 and 4 are used simultaneously. The left column shows

Ex responses over Model 1 (the uniform half-space model) and Models 2–4 (the CO2 models) at (a) 200 m offset, (b) 300 m offset and (c) 1000 m offset. The

right column shows the relative difference (%) of Model 1 and Models 2–4. The broken green lines indicate an assumed noise level.
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FE modelling of EM field near steel-cased well 909

Figure 8. Responses to the CO2 models with the steel casing (Fig. 5 and Table 1). Sources 1, 2, 3 and 4 are used simultaneously. The left column shows Ex

responses over Model 5 (the casing-only model) and Models 6–8 (the casing and CO2 models) at (a) 200 m offset, (b) 300 m offset and (c) 1000 m offset. The

right column shows the relative difference (%) of Model 5 and Models 6–8. The broken green lines indicate an assumed noise level.

models. The steel casing further boosts the sensitivity to vertical

and horizontal changes of the CO2 reservoirs (Fig. 8). The casing

also enhances the signal-to-noise ratio. For example, the presence

of the steel casing makes the electric fields measurable until about

0.4 s (see the crossing of the sounding curves and the assumed

noise level in Fig. 8). Without the steel casing, the electric fields are

measurable only until about 0.1 s. Note that the discussion above

about the signal-to-noise ratio is based on 1-A source. In practice,

depending on ground conditions, one can inject a larger amount of

source current (e.g. 10–100 A) and boost the measurements by a

few orders of magnitude, making it possible to measure later-time

responses from a deeper target. In short, the modelling examples

clearly demonstrate the benefits of the casing-aided multisource

configuration: the enhanced sensitivity and the improved signal-to-

noise ratio.

S E N S I T I V I T Y T O D E E P C O N D U C T I V E

F R A C T U R E D Z O N E

The second group of FETD simulations demonstrates the sensitivity

of the casing-aided surface source(s) to a deep conductive fractured

zone as shown in Fig. 9. Sources and receivers are kept the same
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910 E.S. Um et al.

Figure 9. The cross-sectional (top) and plan (bottom) views of the wire-

frame of the fracture model.

as in the previous example. The 2-km long steel casing features a

wall thickness of 20 mm and an outer diameter of 257 mm. Again,

the casing is approximated by a rectangular prism with the side

length equal to the outer diameter of the casing. The conductivity

of the casing is set to 5 × 106 S m−1. The conductivity of the

air and the background earth is set to 5 × 10−4 and 10−1 S m−1,

respectively. We consider a vertical fractured zone that is oriented

in the x-direction and is placed directly below the lower end point

of the casing without a gap. Its dimension is 100, 1 and 100 m in

the x-, y- and z-directions, respectively. It is assumed that the fluids

in the fractured zone contain a portion of highly conductive prop-

pants such as graphite-coated sands (Hoversten et al. 2014). Thus,

the conductivity of the fractured zone can also be highly conduc-

tive and is set to 125 S m−1. The fractured zone is the realization

of a thin conductive vertical fracture sheet whose dimension and

conductivity are 100–0.05–100 m and 2500 S m−1, respectively.

As a side note, the thin fracture sheet would be ideally modelled as

a large (metre scale) anisotropic structure using an effective medium

theory. Berryman & Hoversten (2013) present an effective medium

theory for approximating the fracture as a set of ellipsoids saturated

with fluids. Caudillo-Mata et al. (2014) propose an inversion-based

effective medium theory. Heagy et al. (2014) assign physical prop-

erties to a set of fractures using an analytic approach with a few

Table 2. Four earth models with and without the steel

casing and the fracture.

Model Description

Model 9 Uniform half-space

Model 10 Uniform half-space + fracture

Model 11 Uniform half-space + casing

Model 12 Uniform half-space + casing + fracture

assumptions. We also attempted to apply to the casing-and-fracture

model an effective medium theory (Commer & Newman 2008) that

is based on parallel circuits. The effective medium theory has been

proven robust to map geophysical properties from inverse mod-

elling meshes (i.e. coarse imaging meshes) to forward modelling

meshes (i.e. fine computational meshes) and vice versa. However,

it is our overall experience that an effective medium theory should

be applied carefully to a model that has an unusual large contrast

(≥4∼5 orders of magnitude) of electrical properties due to casings

and electromagnetically engineered fluids/proppants because their

presence can make the validity of an effective medium theory vary

from model to model. Although the anisotropic effective medium

approach has potential to significantly improve a way for us to

model fractures and steel casings, the evaluation of various effec-

tive medium theories for our casing-and-fracture model would go

beyond the scope of this work. Rather, in this modelling example,

our aim is very modest: to present the sensitivity analysis when the

fracture sheet is modelled as a conductive isotropic structure in a

volume-averaged sense.

To highlight the effects of the steel casing and the different source

configurations on the sensitivity to the fractured zone, we consider

four subsurface scenarios as described in Fig. 9 and Table 2. We sim-

ulate TEM responses over the four models with the inline configura-

tion (i.e. Source 1) and with the concentric source array (Sources 1,

2, 3 and 4). On average, the models consist of 4 582 421 tetrahedral

elements and 5 310 988 unknowns. The mesh generation is com-

pleted in about 157 s. The FETD solution processes consist of 9

Cholesky factorizations and 893 time steps. The time-step size is

successively doubled from 2 × 10−5 to 5.12 × 10−3 s. The average

FETD run time is about 125 min using 120 cores of Intel Xeon R©

processors with 240 GB memory.

Fig. 10 shows the electric field measurements with and without

the casing when Source 1 is turned off. In contrast to the resistive

reservoir in the previous example, the conductive fractured zone

makes the sign reversal appear slightly late. This observation is

consistent with the modelling result of Commer et al. (2015) where

a horizontal conductive fracture also results in a delayed sign re-

versal in time. This temporal shift of the reversal is responsible for

large relative differences of Models 11 and 12 as shown in Fig. 10.

The signal strength is above the prescribed field noise level and is

assumed measureable in practice.

Fig. 11 shows the electric field measurements resulting from the

multisource configuration. When the multisource configuration in-

volves the steel casing, both the signal strength and the sensitivity to

the vertical fractured zone are boosted, resulting in 10–30 per cent

perturbation in the surface electric field that would not be measured

without the casing. In summary, although the multisource configu-

ration is logistically challenging in practice (Mogilatov & Balashov

1996; Goldman et al. 2015), our examples clearly demonstrate po-

tential benefits of the multisource configuration for sensing deep

localized targets around the cased well.
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FE modelling of EM field near steel-cased well 911

Figure 10. Inline Ex responses to the fracture models (Fig. 8 and Table 2) with and without the casing at (a) 200 m offset, (b) 300 m offset and (c) 1000 m

offset. Model 9 is a background half-space model. Model 10 has the fractured zone. Models 9 and 10 correspond to Models 11 and 12, respectively, except

that Models 11 and 12 have the vertical casing at their centre. A single source (Source 1) is used. The broken green lines indicate an assumed noise level.

C O N C LU S I O N S

We have presented a 3-D FETD modelling algorithm designed

to efficiently solve a large-scale problem resulting from casing-

embedded earth models. The FETD algorithm utilizes a Cholesky

direct solver and a CG solver together and prevents its temporal

memory usage from being doubled during the adaptive time-step

process. Although unstructured tetrahedral meshes are expected to

be well suited to discretizing a long round casing of a thin wall, its

discretization turns out to be very expensive due to a large number

of tiny elements and long mesh generation time. In order to alleviate

the computational burdens, we show that a hollow steel casing can

be approximated with a rectangular prism without affecting the ac-

curacy of surface TEM responses. By avoiding discretizing the thin

wall of and the curvature of the casing, the prism approximation re-

duces the total number of unknowns by an order of magnitude. The

approximation also significantly reduces mesh generation time and

improves overall mesh qualities. Owing to the efficient FETD algo-

rithm and the prism approximation of the hollow casing, we have

been able to simulate TEM responses over the 2-km long casing-

embedded earth models in a reasonable timeframe. The demon-

strated reductions in the computational costs may be beneficial in

future inverse modelling approaches in order to aid the delineation
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912 E.S. Um et al.

Figure 11. Inline Ex responses to the fracture models (Fig. 8 and Table 2) with and without the casing at (a) 200 m offset, (b) 300 m offset and (c) 1000 m

offset. Sources 1, 2, 3 and 4 are used simultaneously. The broken green lines indicate an assumed noise level.

of the spatial distribution of fluids and fractures around the casing.

When a surface source is excited around the casing, a high con-

centration of the transient currents diffuses through the casing and

interacts with deep localized resistive/conductive targets below the

casing, producing a measurable perturbation in the surface TEM

fields. The anomalous fields can be measured at relatively short

offsets. The concentric source array further improves the overall

sensitivity of the surface TEM measurements to the targets.

In this paper, we have presented the numerical modelling works

as a proof of concept. In order to use the proposed casing-aided

surface-source TEM measurements in practice, we believe that it

is necessary to examine spatial variations of steel-casing properties

and include them into FETD modelling. Although we have assumed

that the steel casing has a uniform electrical conductivity and mag-

netic permeability in our modelling works, a typical well consists

of a number of individual steel casings with possibly different EM

properties. Thus, it is advisable to address the potential effects of

spatial variations of steel-casing properties on the surface TEM

measurements.

Besides the proposed surface TEM configuration, we can also

imagine that other EM systems such as surface-to-borehole,

borehole-to-surface and crosswell configurations also have poten-

tial to take advantage of a steel-cased well as an imaginary vertical

source. Pros and cons of their time-domain and frequency-domain
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applications also need to be addressed. In short, numerical mod-

elling of various EM configurations is desirable for further un-

derstanding the steel-casing effects and for effectively utilizing its

effects for better sensing a deep localized target.
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Nédélec, J.-C., 1986. A new family of mixed elements in R3, Numer. Math.,

50, 57–81.

Newman, G. & Alumbaugh, D., 1995. Frequency-domain modeling of

airborne electromagnetic responses using staggered finite differences,

Geophys. Prospect., 43, 1021–1042.

Pardo, D. & Torres-Verdin, C., 2013. Sensitivity analysis for the appraisal of

hydrofractures in horizontal wells with borehole resistivity measurements,

Geophysics, 78, D209–D222.

Pardo, D., Demkowicz, L., Torres-Verdı́n, C. & Paszynski, M., 2007. A

goal oriented hp-adaptive finite element strategy with electromagnetic

applications. Part II: Electrodynamics, Comput. Methods Appl. Mech.

Eng., 196, 3585–3597.

Saad, Y., 2003. Iterative Methods for Sparse Linear Systems, SIAM.

Schenkel, C.J. & Morrison, H.F., 1990. Effects of well casing on potential

field measurements using downhole current sources, Geophys. Prospect.,

38, 663–686.

Si, H., 2013. A quality tetrahedral mesh generator and 3D Delau-

nay triangulator, Version 1.5, User’s manual. WIAS Technical Report

No. 13.

Um, E., Harris, J. & Alumbaugh, D., 2010. Three-dimensional time-domain

simulation of electromagnetic diffusion phenomena: a finite-element

electric-field approach, Geophysics, 75, F115–F126.

Um, E., Alumbaugh, D., Harris, J. & Chen, J., 2012. Numerical modeling

analysis of short-offset electric-field measurements with a vertical electric

dipole source in complex offshore environments, Geophysics, 77, E329–

E341.

Um, E., Commer, M. & Newman, G.A., 2013. Efficient pre-conditioned

iterative solution strategies for the electromagnetic diffusion in the Earth:

finite-element frequency-domain approach, Geophys. J. Int., 193, 1460–

1473.

Wu, X. & Habashy, T.M., 1994. Influence of steel casings on electromagnetic

signals, Geophysics, 59, 378–390.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/2
0
2
/2

/9
0
1
/5

9
1
4
3
6
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2

http://www.geoconvention.com/uploads/abstracts/334_GC2014_Where_does_the_proppant_go.pdf
http://www.geoconvention.com/uploads/abstracts/334_GC2014_Where_does_the_proppant_go.pdf

