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Finite Element Multistep Discretizations

of Parabolic Boundary Value Problems

By Milos Zlarnal

Abstract.   The initial-boundary value problem for a linear parabolic equation in an in-

finite cylinder under the Dirichlet boundary condition is solved by applying the finite

element discretization in the space dimension and ^„-stable multistep discretizations

in time.   No restriction on the ratio of the time and space increments is imposed. The

methods are analyzed and bounds for the discretization error in the ¿2-norm are given.

1. Introduction.  The problem we are considering is the initial-boundary value

problem

du/dt = Lu for (x, t) e 9, x (0, °°),

(1.1) u = 0 onTx(0, °°),

m(x, 0) = g(x) in £2.

Here,

N

Lu= Z -t(ai>(xyt)~aix)u'

(1.2) '"'=1     '
N N

a(7(x) = ajt(x),        Z   aij(x)&j >aZ$h      a = const > °> a(x) > °>
!',/'= 1 1=1

and x = (x1, • • • , x^,) is a point of a bounded domain £2 in Euclidean /V-space RN

with a smooth boundary T.

Before formulating (1.1) in the weak variational form, let us introduce some nota-

tions.  The norm || • llL <-n) of the space ¿2(£2) and the scalar product are denoted by

|| • ||0 and ( •, • )0, respectively. Hm = W2(m)(£2), m = 0, 1, • • • , denotes the Sobolev

space defined by

IMU= ( Z  wd'vwi]'2.
H \|/|<m /

Instead of IML^«, , we write l|u||m. H^ is the closure of Vi^l), the set of infinitely

differentiable functions with compact support in £2, in the norm || • ||j. The energy

norm \v\. is defined by \v\2 = aiv, v),where a(u, w) is the energy bilinear functional
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aiv,w) = /n   _ £ a/y(x) — —' + aix)vwjdx.

The weak form of (1.1) is to find for t > 0 the function «G//J such that, besides

the initial condition, it satisfies

(1.3) (w, xp)0 + a(u, xp) = 0       V</> G //¿.

A well-known approach for getting an approximate solution of the problem (1.1)

consists in first applying the Galerkin principle to (1.3).  Let S be a finite-dimensional

subspace of Hl0.  The Galerkin solution is the function Í/6S which satisfies

(1 -4) iÙ, xp)0 + aiU, xp) = 0      VxpeS.

The Galerkin formulation yields a system of ordinary differential equations in time.  A

suitable discretization in time will give a computable approximate solution of the problem

(1.1).  The choice of finite element subspaces for S and of Crank-Nicolson and other

one step discretizations in time was considered in several papers published in recent

years (see references in [9]).  In [9], we chose for S finite-dimensional subspaces V%

of Hq which have the following approximation property: for any v G7/p + 1 n //¿, there

exists a function D G Vf{ such that

(1.5) ||ü-0||/<C/^+1-/INIí,+,, ■   / = 0, 1,

C being a constant independent of the small positive parameter h and of the function v.

Finite element subspaces constructed first for special domains, later for arbitrary curved

domains (see [8], [2], [10], [11]), possess this property.  The parameter h is, in gen-

eral, the maximum diameter of all elements.

In this paper, we again choose the subspaces Vji¡ for 5, and we discretize (1.4) by

a .40-stable linear multistep method. A0-stab\e linear multistep methods were introduced

for ordinary differential equations by Cryer [3]. When we apply the multistep method

(p, o), where

p(f) = Z V'- <*v > o,    o(o = Z 0/f'>
/=0 /=0

to the scalar equation x(/) = - Ax(i), x(0) = 1, the approximate values x" of xink) ik

is the time increment) are determined by Sy_0<yc',+/ = -k\Sj=0ß/xn+f. ^„-stability

requires that x" —■* 0 as n —■* °° for all positive Â.  This is fulfilled iff all roots fy(r),

; = 1, • • • , v, of the polynomial

(1.6) P(f) = Pff) + TOff)

satisfy |f .(t)| < 1 for every r > 0.

Denote by U" the approximate values of i/at the time level t = nk,  n = 0,1,'" ,

and assume that U°, U1, • • • , lf~l are given.  If we apply the scheme (p, a) to (1.4),

we get the recurrence relationship for U" :
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(1.7) /Z «jU"+,> A   +ka(z ßjU"+i> *)=0      V* € F*, n = 0, 1, • • •.

Besides A0-stability, we require that the method (p, o) be stable in the sense of

Dahlquist and of the order q > 1 and that the roots of the polynomial a(f) with mod-

ulus equal to one be simple.  Under the assumption that the solution of (1.1) is smooth

enough, we prove the following bound which is uniform for v < n < °° and which holds

without any restriction on the ratio kh"1:

sup     ||U" - IP ||0 < C\ Z II"7' - U% + (A* + » + **)log I\]g\\n
v<n<- [_/=„ k

—I

here u" are the exact values m(x, nk).

To see what computations the relationship (1.7) represents, let us choose a basis

u1, • • • , v¡ of V? (of course, in finite element subspaces, we do not choose an arbitrary

basis).  Let M be the so-called mass matrix, M = {(u,-, ty)0}{ •_,, and K the stiffness

matrix, K = {aiv¡, v)}\ -j.  Both these matrices are positive definite.   If v =

(«,,••• , V[)T (the superscript 7 denotes transposition) and IP = (a")^, where a" =

(a", • • • , a")r, then setting in (1.7) the basis functions vx, • • • , v¡ for xp, we get

(1.8) ¿(iytf + fyWQa" +/' = 0,      n = 0, 1, • • • .
/=o

Evidently, at every time step we have to solve a linear system with the same matrix

B = cv^M + ßvkK. This matrix is positive definite (from yl0-stability it follows ßv > 0;

see [3, Theorem 3.1]) sparse, banded,and its condition number does not grow too fast.

In the case of finite element subspaces, it follows that

(1.9) cond(fi) = Oikh~2).

Multistep methods require the determination of starting values U°, • • • , Uv~l,

and it is desirable that these values be calculated to an accuracy as high as the local

accuracy of the method.  This disadvantage of multistep methods can be overcome, at

least for v small (fv < 4), by computing U°, • • • , U" by the Crank-Nicolson (i.e.,

trapezoidal) method or by the Calahan method (a third order one-step method, see [9])

and using a step sufficiently small with respect to the step k of the main method.

For simplicity, we restricted ourselves to the homogeneous problem (1.1).  The

generalization of (1.7) for the nonhomogeneous equation du/dt = Lu + F(x, t) is

immediate:

(Z «jU"+>, xp)   +ka(z ßjUn+i, J)  = k(Z ßjF"+i(x), À
V=o /o \/=0 / \/=0 /o

VxpGV?, F"ix) = Fix,nk).
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The same bound for the error can be proved if t runs through a finite interval (0, 7>.

For the infinite interval <0, °°), such a bound cannot, of course, be proved unless some

assumption on the growth of Ff(x, t) is imposed.

The exact solution of the problem (1.1) has the property that

(i.io) IK*, Oll0<e~Vkllo

for any g G 72(£2).  Here \. is the smallest (positive) eigenvalue of the operator -Lu.

Under the additional assumptions that the roots of the polynomial p(f) with modulus

equal to one are real and the modulus of all roots of the polynomial a(f) is less than

one, we prove that scheme (1.7) preserves the asymptotic behavior characteristic of (1.1),

again without placing any restriction on the ratio kh~*: if U' G72(£2), / = 0, • • • ,v-l,

then ||c7"||0 decreases exponentially,

(1.11)       ||IP||0 <Ce~a°"k     max     \\U'\L,      a0 = const > 0,      n > v.

The backward differentiation multistep methods (see [7, p. 242]) with the step number

v < 6 possess all the above properties.

2. Preliminaries. For simplicity, we assume that

(2.1) aifix), a(x), g(x) G C~(£2),      r G C~.

We state some facts about the solution «(x, t) of (1.1). It is of the form lZ?=lgp~ 'f i//,(x)

where \ and </>,(x) are (positive) eigenvalues and (orthonormal) eigenfunctions, respectively,

of the problem

(2.2) -Lx¡j=\x¡j,      «//|r=0,

and g¡ are the Fourier coefficients of the initial value g(x). Ladyzenskaja [6, Chapter III,

Section 17] showed that if g G IT" and

(2.3) g\T =Lg\r = ---= L^-^hk = 0,

then u(x, t) EH™ for t > 0. Conversely, if u(x, t) elf" for t > 0 then g G H"1 and (2.3)

is satisfied.   The proof is based on two inequalities.   The first holds for any series

II - 112

(2.4) \\Z g,U*)
\\i= 1

<cZWsl
i'=i

(In the.sequel, C is a generic constant, not necessarily the same in any two places, which

does not depend on h, k, n, I, t, g.) Concerning the other, we need only the following

consequence: iîg GH™ and (2.3) is satisfied, then it holds that

(2.5) ZK^<C\\gfm.
1=1
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3. Convergence.  The main results of the paper are contained in the following

Theorem.   Let the linear multistep method (p, o) be stable in the sense of Dahl-

quist, A0-stable and of the order q > I, and let the roots of the polynomial a(f) with

modulus equal to one be simple.  Let (1.2) and (2.1) hold and g satisfy (2.3) with m =

max (p + 1, 2q) ithis requirement is equivalent to the assumption m(x, t) G Hm for

t > 0).  Then, for arbitrary h, k, the discretization error is bounded by

(3.1)       sup     \\u"-U"\\0<C x;iiu'-(/'ii0 + (/ip+i+^)iog|ii^
L/=o

//, in addition, the roots of the polynomial p(f ) with modulus equal to one are real and

the modulus of all roots of a(f) is less than one, then (1.11) holds for any U' G72(£2),

/ = 0, • • • , v - 1.

Proof.   We first write u" in the form «"=£" + t?" with if G Vpn being the Ritz

approximation of«", i.e., the orthogonal projection of u" onto F^-with the energy

norm [a( •, • )] '/2 (several authors have used this decomposition; we learned it from

Bramble, Thomée [1]). Hence,

(3.2) aiv", xp) = aiu", xp) = (- Lu", ¿>0 = (-""> *0o.      W> G V?,

and with respect to (1.5), we find (see, e.g., [10]) that

ur% <cftp+iii£KBiip_, <oip+iii«"iip+1.

By means of (2.4) and (2.5), we immediately obtain

(3.3) ll!"ll0<Crip+1llirllp+1.

Therefore it is sufficient to prove for e" = if - U"

(3.4) max    l|e"||0<C
v-1

Z  llc/llo+(ÄP + I+^)logpWj
L/-o 'k

i

If we use (3.2), we see that

(3.5)      ( Z «ftf +i,v)  + ka ( Z ßjV" +/. *>) = (*" - <f. *)o«   V* e Vh'

where

n" = Z (<*/""+/ - kßjü^i),      w" = Z ajïn+'-
7=0 /=0

Subtracting (1.7) from (3.5), we get

(3.6)      / ¿ a.e" +/, À   +ka(t ^ +/> *) = (*" ~ "" > *V   W> G F£.
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We write (3.6) in a matrix form.  For this purpose, let w be the vector w = M~ 1/2v

(v is the basis vector; see Introduction) and let us set e" = (e")rw  (notice that e" =

if -IP & VP).  Since (v, vr)0 = M and a(v, \T) = K, we have (w, wr)0 = / and

a(w, wr) = M~x l2KM~ '/2. The matrix S = M~' l2KM~l /2 is symmetric and positive

definite.  Putting the components w¡  (/ = 1, • • • , /) of the vector w for xp in (3.6),

we get

Z (a,I + ßfkS)eH+i = c",
/=0

where

(3.7) c   - W      w ' WV

Denote

(3-8)   S/(T) = ^Tß~r '      } = °' ' " " ' "    (S"(T) - 1}'      d" = («^ + W 'c"

(the matrix aj + ßvkS is positive definite since av > 0, ßy > 0). Then

(3.9) Z&ficS)^+i = dn
/=o

and this difference equation will be solved in the way described by Henrici [5, pp.

242-244].

We define the coefficients 7,(r)  (/ = 0, 1, • • • ) by

(3.10) ~~^ = [6„(t) + S^jWf + • • • + 50(T)f"] -1 = 7o(t) +7i(tX + ' * ' •

Similarly as in [5, p. 242], we can prove the estimate

(3.11) I7,(t)I<C,     r>0,   /=0, !,-••

(we leave out the proof even when it is not a trivial matter).  We also get the identity

(see [5, (5-160), p. 243])

0,

>0.(3.12) SviT)yliT)+8v_.iTyyl_liT) + '''+ô0ir)yl_viT)= ^    ¡!

Now we write (3.9) with n-v - I instead of n, multiply by y¡ikS) and sum for / =

0, 1, • • • , n - v.  After some rearranging and using (3.12), we obtain (see [5, p. 243])

^=-[K-i(kSyyn_vikS) + --'+50ikSryn_2v+.ikS)]ev-1-'--

(3.13)
-?>o(Mjyn_v(kS)e0 + Z Ji(kS)d"-v-'.

1=0

The coefficients ô,(r) are bounded functions in the interval <0, °°).  Therefore, 116^(^5)11 =

maxA \8AkA.)\ (by || • || we denote the Euclidean norm of a vector or a matrix) where A
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are the eigenvalues of S.   These are positive, consequently ||5-(fcS)|| < sup0<T|ô.(r)| =

0(1).  The coefficients 7,(7) are bounded by (3.11), hence \\y,ikS)\\ = 0(1), / = 0,

1, • • • .   Furthermore, the starting errors are bounded by

N'lo = tul-Uf-t% < \\u'-U% + ||!>'||0 < \\ul-U% +Chp+1Mp+l.

Hence

Z \\e%<Z ll"/'-í//llo+^í' + 1ll^llm.
;=0 /=0

Also  lid" II < \\iaj + ßJcS^W ||c"|| < a;1 ||c"||. Thus, we see that from (3.13) it

follows

\\en\\<C[Z He'll+ £ IIe'
\/=0 r=0

Since

we have

lle"ll^ = (e")r(w,wT)0e" = ||e"||2,

(3.14) Ik" ll0 < c(z II"7' - tf'ïlo + hp +l \\g\\m + Z llc'll).
\/=0 »-=0        /

We need a bound for ||cl.  cr is of the form (3.7).  If /G 72(£2) and /= Fw G

Vj¡ is the orthogonal projection of/onto V? with the norm || • ||0, we easily find that

f = (/, w)0 and that ||/||0 < ||/||0.  Since ||/||0 = ||f ||, we have ||f|| < ||/||0.  Therefore,

(3.15) Hd < «*% + IIo/||0.

To estimate Utt^Hq, we use the assumption that the scheme (p, 0) is of the order

q.   It means that for any function y it) G C^s\ s <q + 1, it holds that

(3.16) TaMt+ik)-kZßjyit+ik) = o(ks   max    \y(s\t+T)\]
;to   ' /=0   ' \      0<r<vk )

(it follows from the formula (5.178) in [5, p. 248]).  Set y{t) = e"X/i, s = q + 1. After

dividing by e   ' , we get

Z i^+ßjkk^-'^i = 0(^+1A?+1).
/=0

The Fourier coefficients iZ, of if are evidently equal to

Therefore,

—rich-      ^--»    . „  ,„  .   -
e       %Z («,-+ ßjkXJe

/=o
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«)2 <Ce~2rk\2^ + 1h2ü+»g2.

Since e-2rkX'k2\f < e-^ie^^'klxf <r~2frkh^ if r > I (due to xe~ax <

iea)-1 < (2a)"1), we have (tt!)2 < CV" V^i^X?^2 and

(3.17) lid2, = Z (O2 <CT V**1*2^,     r > 1.
i=i

Concerning tt°, we use (3.16) with s = q and we get

(3.18) lk0||2<CÂ:2£'||^.

The estimates for ||a/||0 can be obtained in a similar way.  Set zr = lZj=0OLjur+'

and write zr as the sum xr + yr, where yr is the Ritz approximation of zr.  Then

HxHlrj < Chp+1 lldp+1 ■  Since if is the Ritz approximation of u", we have yr =

V^otjif+i and xr = S^ayf+i = of, hence

(3.19) llcd0<Cfcp + 1||zlp + 1.

The Fourier coefficients z\ are equal to ^J=0aje   "+'     % - e~r   'g^l^cyr1 \

Because of the consistency of the scheme (p, a), it follows that 2L0a,- = 0.  Therefore,

2j=0a/.c_/fcX'' = 0(JtX,.), consequently (z?)2 < Ce"2rk\k\)2g2\ by means of (3.19),

we find in the same way as before that

(3.20) ll^ll2<Cr-2rfcX^2(p + ')||^,      r>l,

||co°||2<C/22<p + 1>||^.

(3.17), (3.18), (3.20) and (3.15) give

||c''|l<Cr-1e_1/2'"^1(^+1 +*,,)IISL,      r>l,

||c0||<CW + 1 + k«)\\g\\m.

We come back to (3.14).  If we find out that

¿||cni<C(rlP + 1+^)l0g|||g||m,
r=l

the bound (3.1) is proved.   For this purpose, it is sufficient to realize that

¿ r-ie-^i = ¿ r-\e-,Ak^ï = -log(l-e-,/^')= o(log1-).
r=l r=\

To prove the second part of the Theorem, we need a better estimate of the coef-

ficients 7¿(t).  According to our assumptions, the roots X of p(f) with modulus equal

to one are simple and real (i.e.,X = ± 1).  The associated roots f(r) of the polynomial

p(f) defined by (1.6) have the expansion f(r) = X + a.r + 0(r2),witha. = -a(X)/p'(X)
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=#= 0 (since ff(X) = 0 means that X would be a root of p(f)). Therefore, |f(r)| = |1 + X- la. t

+ 0(t2)|. The growth parameter a = \~1a. is different from zero and real, hence |f(r)|

= [1 + 2ar + 0(r2)]1/2. As a must be negative (otherwise |f(r)| > 1), we see that, for t

sufficiently small, |f(r)| < 1 -ct,c = xh\a\ > 0. The other roots of p(f) have modulus

less than one for t > 0. On the basis of these facts, we can prove that I7,(t)| <

C(l - Vict)1 for 0 < t < t. if t. is a sufficiently small number. In the interval (t. , °°),

it follows easily (from the assumption that the modulus of all roots of a(f) is less than

one) that |7,(t)| < C(l - #)',  0 < û< 1.  Hence

17X01 < C [max (1 - M ct, 1 - Ô)] ',      r > 0,

and, because the eigenvalues of the matrix kS are bounded from below by k\{, it holds

for k sufficiently small that

(3.21) ||7X*S)H < c0 - KcX.k)1 <Ce~a°'k,    aQ = %c\. > 0.

To complete the proof, we set IP = (a")Tw and get (in the same way as we got

(3.13))

a" = - tW*S>r*-.X*S) + ' ' * + 5o(^)T«-2v+ i(*S)]a"-1

-h0ikSyyn_vikS)¿>.

The estimate (1.12) follows immediately from (3.21).

4. Some Remarks.   1. To get the estimate (1.9) for the condition number of the

matrix B = oiJA + ßvkK, we assume the following additional properties of the basis

{u1, • • • , V[} of the space Vp: if xp = xrv G Vfi, then

(a) ch-N\\xp\\l < ||x||2 < Ch-N\\xp\\2,      c = const > 0,

(b) aixp,xp)<Ch-2\\xp\\2.

The finite element subspaces used in applications possess these properties.

Let A be an eigenvalue of the matrix B and x the corresponding eigenvector.  We

have a^x + ßvkKx = Ax; multiplying this equation by xT and setting xp = xTv, we get

Ml aixp.xp)

" llx||

Hence

\mkX < C(l + kh~2)hN,      Amin > c.hN,      c. = const > 0,

and, if we exclude the uninteresting case kh~2 —> 0, we have cond(ß) = Amax/Amin =

Oikh~2).

2.  The backward differentiation methods with v = q < 6 are stable in the sense
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of Dahlquist, the only root of p(f) with modulus equal to one is the principal root

f = 1 (see Cryer [4]), and they are y40-stable (actually, they are v4(a)-stable with 90° >

a > 18°, see [7, p. 242]).  Further, the only root of a(f) is zero.  Hence, these methods

fulfill all assumptions of the Theorem.

3. It.is known (see [7, p. 243]) that the implicit R-stage Runge-Kutta methods of

order 2R are ^4-stable.  It will be shown elsewhere that if we discretize (1.4) by means

of such a method, the error is bounded by

sup     II«» - U"\\0 < ||«° - U\ + Cihp + l + k2R)logU\g\\m,
Kn<°° K

under the assumption that gix) satisfies (2.3) with m = max(p + 1, AR).
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