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Finite Element Multistep Discretizations
of Parabolic Boundary Value Problems

By Milo¥ Zldmal

Abstract. The initial-boundary value problem for a linear parabolic equation in an in-
finite cylinder under the Dirichlet boundary condition is solved by applying the finite
element discretization in the space dimension and A-stable multistep discretizations

in time. No restriction on the ratio of the time and space increments is imposed. The

methods are analyzed and bounds for the discretization error in the Lz-norm are given.

1. Introduction. The problem we are considering is the initial-boundary value
problem

oufot = Lu  for (x, t) € Q x (0, ),
1.1) u=0 onT x (0, ),
u(x, 0) =g(x) in Q.

Here,

N o9 ou
L = — vl -—— —
¢ i,,'z=1 ax; <a" ) axj) e,

(1.2)
N N
a,(x) = a;,(x), > a; (g =>a Y £}, o =const >0, a(x)>0,
i,j=1 i=1
and x = (x,, * * * , xp) is a point of a bounded domain £ in Euclidean N-space RN
with a smooth boundary I'.

Before formulating (1.1) in the weak variational form, let us introduce some nota-
tions. The norm || - ||, 2(2) of the space L,(2) and the scalar product are denoted by
Il lly and (-, * ) respectively. H™ = Wé’")(ﬂ), m=20,1, -, denotes the Sobolev
space defined by

) 1/2
Woll,_ e = ( > IID’vII(2,> .

[j1<m

Instead of llvll,,, , we write [lvfl,,. H(} is the closure of T(2), the set of infinitely
differentiable functions with compact support in £, in the norm ||+ ||;. The energy
norm |v|, is defined by Ivlf = a(v, v),where a(v, w) is the energy bilinear functional
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& v ow
, = (x) — — + .
a(v,w) fa L,j§=l a;(x) o, ox, a(x)vw:' dx

The weak form of (1.1) is to find for # > 0 the function u € H(l, such that, besides
the initial condition, it satisfies

(1.3) (@, 0) +alw, 9)=0 Vy€EH).

A well-known approach for getting an approximate solution of the problem (1.1)
consists in first applying the Galerkin principle to (1.3). Let S be a finite-dimensional
subspace of H(l,. The Galerkin solution is the function U € S which satisfies

(1.4) U, 9)o +aU, ) =0 WES.

The Galerkin formulation yields a system of ordinary differential equations in time. A
suitable discretization in time will give a computable approximate solution of the problem
(1.1). The choice of finite element subspaces for S and of Crank-Nicolson and other
one step discretizations in time was considered in several papers published in recent
years (see references in [9]). In [9], we chose for S finite-dimensional subspaces V%

of H} which have the following approximation property: for any v € H?*! N Hj, there
exists a function & € ¥} such that

(1.5) o = oll; < ChP+ ol 4y, - =01,

C being a constant independent of the small positive parameter 4 and of the function v.
Finite element subspaces constructed first for special domains, later for arbitrary curved
domains (see [8], [2], [10], [11]), possess this property. The parameter A is, in gen-
eral, the maximum diameter of all elements.

In this paper, we again choose the subspaces V7 for S, and we discretize (1.4) by
a A -stable linear multistep method. A ,-stable linear multistep methods were introduced
for ordinary differential equations by Cryer [3]. When we apply the multistep method
(p, 0), where

14 v .
) =3 0‘,~§j, @, >0, o)=73 ﬁ,vi']’
j=0 j=0
to the scalar equation x(t) = — Ax(¢), x(0) = 1, the approximate values x" of x(nk) (k
is the time increment) are determined by El'fzoa].x”” =~ KkNZ/_oBx" +i. A -stability
requires that x” — 0 as n — oo for all positive A. This is fulfilled iff all roots ¢ (1)
j=1,++-, v, of the polynomial

(1.6) p() = pE) + 10(5)

satisfy |{;(7)| <1 for every 7> 0.

Denote by U™ the approximate values of U at the time level t = nk, n=0,1,+-
and assume that U°, U', + -+, U""! are given. If we apply the scheme (p, 0) to (1.4),
we get the recurrence relationship for U”:

’
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V . V .
(1.7) (Za,.U"*’,ga) +ka<26jU"+’,«p>=0 Ve EVY, n=0,1,+-.
0 =0

=0

Besides 4 -stability, we require that the method (p, o) be stable in the sense of
Dahlquist and of the order ¢ > 1 and that the roots of the polynomial o(¢) with mod-
ulus equal to one be simple. Under the assumption that the solution of (1.1) is smooth
enough, we prove the following bound which is uniform for ¥ < n < o0 and which holds
without any restriction on the ratio kh™!:

v<n<oo ]:0

V—l . .
sup [ - U"l, < C[ 2 ! = Uy + nP ! +k")log,%lkllm];

here 4" are the exact values u(x, nk).

To see what computations the relationship (1.7) represents, let us choose a basis
vy, ***, v, of VP (of course, in finite element subspaces, we do not choose an arbitrary
basis). Let M be the so-called mass matrix, M = {(v;, Yo }f',i=1 , and K the stiffness
matrix, K = {a(y;, vj)}f, j=1- Both these matrices are positive definite. If v=
(v, * ** , )T (the superscript T denotes transposition) and U" = («*)7v, where a” =
(@f, -, oz;')T, then setting in (1.7) the basis functions v, * * * , v, for ¢, we get

(1.8) i(ailw+ﬁikK)a"+i=0, n=0,1,---.
j=0

Evidently, at every time step we have to solve a linear system with the same matrix

B = o,M + B,kK. This matrix is positive definite (from A ,-stability it follows 8, > 0;
see [3, Theorem 3.1]) sparse, banded,and its condition number does not grow too fast.
In the case of finite element subspaces, it follows that

(19 cond (B) = O(kh™?).

Multistep methods require the determination of starting values U°, « -+ , U™ !,
and it is desirable that these values be calculated to an accuracy as high as the local
accuracy of the method. This disadvantage of multistep methods can be overcome, at
least for » small (v < 4), by computing U®, « + + , U” by the Crank-Nicolson (i.e.,
trapezoidal) method or by the Calahan method (a third -order one-step method, see [9])
and using a step sufficiently small with respect to the step k of the main method.

For simplicity, we restricted ourselves to the homogeneous problem (1.1). The
generalization of (1.7) for the nonhomogeneous equation du/dt = Lu + F(x, t) is
immediate:

(i o U, tp) " ka( > 6,07, 90) - k< > BF ), «a)
j=0 o j=0 j=0 0

Vo € VP, F"(x) = F(x, nk).
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The same bound for the error can be proved if ¢ runs through a finite interval <0, T.
For the infinite interval {0, =), such a bound cannot, of course, be proved unless some
assumption on the growth of F,(x, ¢) is imposed.

The exact solution of the problem (1.1) has the property that

-\
(1.10) lutx, B)lly <€ ligl,

for any g € L,(2). Here A, is the smallest (positive) eigenvalue of the operator — Lu.
Under the additional assumptions that the roots of the polynomial p({) with modulus
equal to one are real and the modulus of all roots of the polynomial o({) is less than
one, we prove that scheme (1.7) preserves the asymptotic behavior characteristic of (1.1),
again without placing any restriction on the ratio knlif U € L,(Q), j=0,,v-1,
then ||U" ||, decreases exponentially,

—agnk .
(111) WUy <Ce ®" max U7y, @, =const>0, n>v.
0<j<v—1

The backward differentiation multistep methods (see {7, p. 242]) with the step number
v < 6 possess all the above properties.

2. Preliminaries. For simplicity, we assume that
.1 a;(x), a(x), g(x) € c*Q), Trec~.

We state some facts about the solution u(x, £) of (1.1). It is of the form Zlf’;lg,e”}‘i’ v,(x)
where \; and ¥,(x) are (positive) eigenvalues and (orthonormal) eigenfunctions, respectively,
of the problem

(22 Ly =Ny, YIp =0,

and g; are the Fourier coefficients of the initial value g(x). LadyZenskaja [6, Chapter III,
Section 17] showed that if g € H™ and

2.3) glp=Lglp =<+ = LLen=Drlg o,

then u(x, ¥) € H™ for ¢t > 0. Conversely, if u(x, ) € H™ for t >0 then g € H™ and (2.3)
is satisfied. The proof is based on two inequalities. The first holds for any series
i 18V ):

2 o0
<C Y N'gl

m i=1

(24)

i g,'ll’,'(x)
i=1

(In the sequel, C'is a generic constant, not necessarily the same in any two places, which
does not depend on A, k, n, [, 7, g.) Concerning the other, we need only the following
consequence: if g € H™ and (2.3) is satisfied, then it holds that

2
(2.5) A"g2 < Cliglly,.

™

i=1
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354 MILOS ZLAMAL

3. Convergence. The main results of the paper are contained in the following
THEOREM. Let the linear multistep method (p, o) be stable in the sense of Dahl-
quist, Ay-stable and of the order q > 1, and let the roots of the polynomial o() with
modulus equal to one be simple. Let (1.2) and (2.1) hold and g satisfy (2.3) with m =
max (p + 1, 2q) (this requirement is equivalent to the assumption u(x, t) € H™ for
t = 0). Then, for arbitrary h, k, the discretization error is bounded by

v—1 . . 1
(B.1)  sup W - U, < C[z lul = Ully + (#° '+ k%)log X Ilgllm] .
v<n<eo j=0

If, in addition, the roots of the polynomial p($) with modulus equal to one are real and
the modulus of all roots of o(%) is less than one, then (1.11) holds for any U’ €EL,(Q),
j=0,++,v—1.

Proof. We first write 4" in the form u” = £" 4 " with n”* € V§ being the Ritz
approximation of u", i.e., the orthogonal projection of 4" onto V7 .with the energy
norm [a(+, +)]!/? (several authors have used this decomposition; we learned it from
Bramble, Thomée [1]). Hence,

(32 am", ¢) = a@",9) = - Lu", 9)g = 4", )y, VO EV},
and with respect to (1.5), we find (see, e.g., [10]) that
1"y < CHP M ILU M ,—y < CHPHH "l 4y -
By means of (2.4) and (2.5), we immediately obtain
(33 1€y < ChP*1ligll, 4 -

Therefore it is sufficient to prove for €* = " — U"

v—1
i 1
n < j p+1 -
34) pax lle” lly C[/;) lle’lly + (r +k‘7)logk Ilgll,,,].

If we use (3.2), we see that

v Y
(3.5) (Zv: on*, ¢> + ka (Z g™, w) =" - ", ¥ VPEV,
()

j=0 j=0
where
- n+j n+j n < n+j
™ —j—§>(aiu kga"t), " = g)aiz .
Subtracting (1.7) from (3.5), we get

v . v .
(-6) (z aje"+',¢> +ka(2 B,~€"+’,¢> = (" - ", 9, VOEVE.
0

j=0
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We write (3.6) in a matrix form. For this purpose, let w be the vector w = M~ 172y

(v is the basis vector; see Introduction) and let us set €” = (¢")”w (notice that €” =

7" — U™ € VP). Since (v, vI'), = M and a(v, vT') = K, we have (w, wT), =T and
a(w, wT) = M~12KM~1/? The matrix S = M~'/2KM~'/? is symmetric and positive
definite. Putting the components w; (i =1, +«+ , ) of the vector w for ¢ in (3.6),

we get
v
2 (ol + BkS)e" ™t = cn,
j=0
where
3.7) ¢ =@ - W, Wy
Denote

a. + f.1
B8) 8 =757, =0y M=, & =@+pES) "

(the matrix o, J + kS is positive definite since o, >0, §, > 0). Then
v
+j—
39 Ig 8 (kS)e" = d"

and this difference equation will be solved in the way described by Henrici [5, pp.
242-244].
We define the coefficients y,(r) (! =0,1,+--)by
1
pE, 7

Similarly as in [5, p. 242], we can prove the estimate

(3.10) S[8,(N)+8, (N + -+ +8,(n)¢"] -1 _ 74() oy (O +

(3.11) MMI<C, 130, 1=0,1,

(we leave out the proof even when it is not a trivial matter). We also get the identity

(see [5, (5—160), p. 243])
(.12) 8, (M) +8,_ (M () + 00 F (M, (D)= {(l), >0,

1>0.

Now we write (3.9) with n — v — I instead of n, multiply by v,(kS) and sum for / =
0,1, +++,n—v. After some rearranging and using (3.12), we obtain (see [5, p. 243])

== [6,_,(kSyy, _,(kS) + =+ +8(KSYY, 5, (K] =2+
(3.13) -
= 8o (kSYY,_, (kS)E® + 3 7 (kS

1=0
The coefficients & l-(T) are bounded functions in the interval {0, o). Therefore, ||8i(kS)||=
max, |8j(kA)I (by ||+ || we denote the Euclidean norm of a vector or a matrix) where A

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use




356 MILOS ZLAMAL

are the eigenvalues of S. These are positive, consequently 118, (kS < supy ., |8I(T)|
0(1). The coefficients ,(7) are bounded by (3.11), hence II'y,(kS)ll =0(1), I=
1, + - - . Furthermore, the starting errors are bounded by

leZly = llu/ = U7 = Elly < ! = Ullly + IE/lly < I/ = Ully + CHP* 1 gll, ., -
Hence

v—1 . v—1 . X +1
2 el < X N = Ulllg + ChP™ Cligll,,
j=0 j=0

Also 14”11 < li(a,Z + B,&S)~ M le”ll < oy tllc”l. Thus, we see that from (3.13) it

follows
v—1 . n—v
le"ll < C<Z el + 3 IIC'II>-
j=0 r=0
Since
le™ 15 = (€)T(w, wh)oe” = lle™ 1%,
we have
v—-1 X 3 n—v
(3.19) lle” g <C<Z /= U'lly +HP* gl + > IIC’II>.
j=0 r=0

We need a bound for [Ic"[l. ¢ is of the form (3.7). If fE L,(Q) and f=fTw e
VP is the orthogonal projection of f onto V¥ with the norm ||+ |l,, we easily find that
f=(f, w)y and that ||fll, < lIflly. Since [Ifll, = IIfll, we have [Ifil < Ifll,. Therefore,

(3.15) eIl < lim"llg + el -

To estimate [|7"|l,, we use the assumption that the scheme (p, 0) is of the order
q. It means that for any function y(f) € C®), s < g + 1, it holds that

v (s
(3.16) ;_Zo ay(t + 1K)~k Z Bt +jk) = o(ks Cmax DO +¢)|>

(it follows from the formula (5.178) in [S, p. 248]). Set y(¢) =e Mt , 8 =q + 1. After
dividing by ¢ ', we get
14

3 (@ +BkA)e RN = 0k N,

The Fourier coefficients 7} of 7" are evidently equal to
N —jk A
g, 2 (@ + BikA)e
j=0

Therefore,
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—2rkA;
(M) < Ce TR D\2(a+1)g2.

L —2rkA —rkNy, —YhrkA,
Since e KINZ <e l(e AN e )P <r if r > 1 (due to xe™** <

(ex)~! < (2w)~ 1), we have (7)) < Cr2 ~rk}“k”)\zqg and

rk)\l

(3.17) 12 = Z(ﬂ’)2<0_2 MR, e

Concerning 7°, we use (3.16) with s = g and we get

(3.18) 7012 < Ck*9igl2,.

The estimates for [|w"[l, can be obtained in a similar way. Set z" = 21’.’=oaju’+j
and write z" as the sum x" + y, where " is the Ritz approximation of z". Then
Ix"lly < CHP Tz ll,4- Since 1" is the Ritz approximation of ", we have y" =
22 oy 7t and x" = E" —0% £+ = ¢y hence
(3.19) ety < CHP* 1z, , .

—(r+j)kA,
The Fourier coefficients z] are equal to 2” Paatk ig.=e '8,2]';009 TN

Because of the consistency of the scheme (p, o) 1t fo]lows that 2 —0% = 0. Therefore,
e TN O(k\,), consequently (z/)? < Ce 2'“’(k)\,)zgl ; by means of (3.19),
we find in the same way as before that

_9 —rkA
lw 2 < Cr=2e " 1p2@HD g2 - p >

b

(3.20)
l® I3 < CR*P D) g2,

(3:17), (3.18), (3.20) and (3.15) give

lerll < Crle” P M Eett 4 kgl r>1,
101 < CP*1 + k9)lgll,,

We come back to (3.14). If we find out that

hnd 1
+1 =
> "l <C@P ™ +k)log X Igll,,

r=1

the bound (3.1) is proved. For this purpose, it is sufficient to realize that

3l P o 3 rlE MMy = —1og(1—e #My = 0(log llc)
r=1 r=1
To prove the second part of the Theorem, we need a better estimate of the coef-
ficients y,(). According to our assumptions, the roots A of p({) with modulus equal
to one are simple and real (i.e,A = * 1). The associated roots {(7) of the polynomial
p(¥) defined by (1.6) have the expansion {(7) = \ +a,7 + O(7%),witha, =—o(\)/p'(\)
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# 0 (since o(\) = 0 means that A would be a root of p({)). Therefore, [(7)| = |1 + A~ lalr
+ 0(7%)|. The growth parameter a = )\“al is different from zero and real, hence [¢(7)I
= [1+ 2ar + O(r*)] /2. Asamust be negative (otherwise [{(r)| > 1), we see that, for 7
sufficiently small, [§(7)| < 1 —c7, ¢ = %lal > 0. The other roots of p({) have modulus
less than one for 7 > 0. On the basis of these facts, we can prove that |v,(7)| <

C(1 - %er) for 0 <7< 7, if 7, is a sufficiently small number. In the interval (7, =),
it follows easily (from the assumption that the modulus of all roots of (%) is less than
one) that |y,(r)| < C(1 = 9)', 0 <9 < 1. Hence

l7(M < C[max(1 = %er, 1 -], 7>0,

and, because the eigenvalues of the matrix kS are bounded from below by kA, , it holds
for k sufficiently small that

aolk
b

(3:21) 7, (&SI < C(1 = %eh k) <Ce ap = Ych, >0.

To complete the proof, we set U" = (a”)7w and get (in the same way as we got

(3.13)
a" == [8,_, (kSyy,_,(kS) + + =+ +8(kS)Y, _2, 4, kS)] 2"
— oo =8, (kS)y,_,(kS)a°.
The estimate (1.12) follows immediately from (3.21).

4. Some Remarks. 1. To get the estimate (1.9) for the condition number of the
matrix B = o, M + B,kK, we assume the following additional properties of the basis
{vy, *** , vy} of the space VF: if p = xTv e VE, then

(@) ch~Nldiz < lIxI> <cn Mgl3, ¢ = const >0,

(b) a(p, 9) < Ch™2|lpl2.

The finite element subspaces used in applications possess these properties.
Let A be an eigenvalue of the matrix B and x the corresponding eigenvector. We
have o, Mx + §,kKx = Ax; multiplying this equation by xT and setting ¢ = x7v, we get

2
—a "‘p"o a(&P, ¢)
P x?

Hence

Apay SCA + k=K, A, >c,hY, ¢, = const >0,

and, if we exclude the uninteresting case kh~2 —> 0, we have cond (B) = Apax/Dmin =
O(kh™?).
2. The backward differentiation methods with v = g < 6 are stable in the sense

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use




FINITE ELEMENT MULTISTEP DISCRETIZATIONS 359

of Dahlquist, the only root of p({) with modulus equal to one is the principal root
¢ = 1 (see Cryer [4]),and they are A -stable (actually, they are A(«)-stable with 90° >
a > 18°, see [7, p. 242]). Further, the only root of o(¢) is zero. Hence, these methods
fulfill all assumptions of the Theorem.

3. It.is known (see [7, p. 243]) that the implicit R-stage Runge-Kutta methods of
order 2R are A-stable. It will be shown elsewhere that if we discretize (1.4) by means
of such a method, the error is bounded by

sup " — Ul < llu® - UOlly + CP*! + K*R)log L gl
1<n<e k=Tm

under the assumption that g(x) satisfies (2.3) with m = max(p + 1, 4R).
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