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Finite Element Response Sensitivity Analysis Using Force-Based Frame Models

J. P. Conte1, M. Barbato2, and E. Spacone3. 

SUMMARY

This paper presents a method to compute consistent response sensitivities of force-based finite element models of

structural frame systems to both material constitutive and discrete loading parameters. It has been shown that force-

based frame elements are superior to classical displacement-based elements in the sense that they enable, at no signif-

icant additional costs, a drastic reduction in the number of elements required for a given level of accuracy in the com-

puted response of the finite element model. This advantage of force-based elements is of even more interest in

structural reliability analysis, which requires accurate and efficient computation of structural response and structural

response sensitivities. This paper focuses on material nonlinearities in the context of both static and dynamic

response analysis. The formulation presented herein assumes the use of a general-purpose nonlinear finite element

analysis program based on the direct stiffness method. It is based on the general so-called Direct Differentiation

Method (DDM) for computing response sensitivities. The complete analytical formulation is presented at the element

level and details are provided about its implementation in a general-purpose finite element analysis program. The

new formulation and its implementation are validated through some application examples, in which analytical

response sensitivities are compared with their counterparts obtained using Forward Finite Difference (FFD) analysis.

The force-based finite element methodology augmented with the developed procedure for analytical response sensi-

tivity computation offers a powerful general tool for structural response sensitivity analysis. 

KEY WORDS: Plasticity-based finite element model; material constitutive parameter; finite element response sen-

sitivity; force-based frame element; reliability analysis. 

1.  INTRODUCTION

Recent years have seen great advances in the nonlinear analysis of frame structures. Advances were led by

the development and implementation of force-based elements, which are superior to classical displace-

ment-based elements in tracing material nonlinearities such as those encountered in reinforced concrete

beams and columns (Spacone et al. [1-3], Neuenhofer and Filippou [4]). The state-of-the-art in computa-

tional simulation of the static and dynamic response of frame structures lies in the nonlinear domain to

account for material and geometric nonlinearities governing the complex behavior of structural systems,

especially near their failure range (i.e., collapse analysis). 
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Maybe even more important than the simulated nonlinear response of a frame structure is its sensitivity to

loading parameters and to various geometric, mechanical, and material properties defining the structure.

Finite element response sensitivities represent an essential ingredient for gradient-based optimization

methods needed in structural reliability analysis, structural optimization, structural identification, and

finite element model updating (Ditlevsen and Madsen [5], Kleiber et al. [6]). Many researchers dedicated

their attention to the general problem of design sensitivity analysis, among others, Choi and Santos [7],

Arora and Cardoso [8], Tsay and Arora [9], Tsai et al. [10]. Consistent finite element response sensitivity

analysis methods have already been formulated for displacement-based finite elements (Zhang and Der

Kiureghian [11], Kleiber et al. [6], Conte et al. [12,13]). In the present paper, these methods are extended to

force-based finite elements, also called flexibility-based finite elements in the literature. The objective of

this work is to extend the benefits of force-based frame elements for nonlinear structural analysis to finite

element response sensitivity analysis. 

The formulation presented here is based on the general so-called Direct Differentiation Method (DDM),

which consists of differentiating consistently the space (finite element) and the time (finite difference) dis-

crete equations of the structural response (Conte et al. [13]). It also assumes the use of a general-purpose

nonlinear finite element analysis program based on the direct stiffness method. This paper focuses on

materially-nonlinear-only static and dynamic structural response sensitivity analysis. 

2.  NONLINEAR STATIC AND DYNAMIC RESPONSE ANALYSIS OF STRUCTURES USING 
FORCE-BASED FRAME ELEMENTS

After spatial discretization using the finite element method, the equations of motion of a materially-nonlin-

ear-only model of a structural system take the form of the following nonlinear matrix differential equation:

(1)

where t = time, θ = scalar sensitivity parameter (material or loading variable), u(t) = vector of nodal dis-

placements, M = mass matrix, C = damping matrix, R(u, t) = history dependent internal (inelastic) resist-

ing force vector, F(t) = applied dynamic load vector, and a superposed dot denotes one differentiation with

respect to time. In the case of “rigid-soil” earthquake ground excitation, the dynamic load vector takes the

form  in which L is an influence coefficient vector and  denotes the input ground

acceleration history. Without loss of generality, a single component ground excitation is considered herein.

The potential dependence of each term of the equation of motion on the sensitivity parameter θ is shown

explicitly in Equation (1). The numerical integration scheme used to integrate the static and dynamic equi-

librium equations (1) is summarized in Appendix A. It serves as starting point in deriving the analytical

sensitivities of the finite element structural response predictions. 

M θ( )u·· t θ,( ) C θ( )u· t θ,( ) R u t θ,( ) θ,( )+ + F t θ,( )=

F t( ) MLu··g t( )–= u··g t( )
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2.1 Force-Based Frame Element

The last few years have seen the rapid development of force-based elements for the nonlinear analysis of

frame structures. In a classical displacement-based element, the cubic and linear Hermitian polynomials

used to interpolate the transverse and axial frame element displacements, respectively, are only approxima-

tions of the actual displacement fields in the presence of non-uniform beam cross-section and/or nonlinear

material behavior. On the other hand, force-based frame element formulations stem from equilibrium

between section and nodal forces, which can be enforced exactly in the case of a frame element. The exact

flexibility matrix can be computed for an arbitrary variation of the cross-section and for any section consti-

tutive law. The main issue with force-based frame elements is their implementation in a general-purpose

nonlinear finite element program, typically based on the stiffness method. Spacone et al. [1,2] presented a

consistent solution to this problem. They propose a state determination based on an iterative procedure that

is basically a Newton-Raphson scheme under constant nodal displacements. During the iterations, the

deformation fields inside the element (mainly curvature and axial strains) are adjusted until they become

compatible (in an integral sense) with the imposed nodal deformations. Neuenhofer and Filippou [4]

showed that the iterations are not necessary at the element level at each global (structure level) iteration

step, since the element eventually converges as the structure iteration scheme converges. The first (full

iteration) procedure is more robust near limit points and computationally more demanding at the element

level, but may save iterations at the global level. The second procedure is generally faster.

The force-based element formulation proposed by Spacone et al. [1,2] is totally independent of the section

constitutive law. The section state determination is identical to that required for a displacement-based ele-

ment. The section module must return the section stiffness and the section resisting forces corresponding to

the current section deformations. Different section models have been implemented, notably layer and fiber

sections and section with nonlinear resultant force-deformation laws. Appendix B presents the features of

the force-based frame element formulation, which are needed in deriving the analytical sensitivities of

force-based finite element models of structural frame systems. 

Geometric nonlinearities are not included in this paper, whose focus is on material nonlinearities. Two

frameworks for including geometric nonlinearities in a force-based beam formulation have been proposed,

one by de Souza [14] with earlier work by Neuenhofer and Filippou [15], who uses a corotational formula-

tion to include large displacements, the other by Sivaselvan and Reinhorn [16], who modify the shape of

the force interpolation functions to include the geometric effects. 
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3.  RESPONSE SENSITIVITY ANALYSIS AT THE STRUCTURE LEVEL

The computation of finite element response sensitivities to material and loading parameters requires exten-

sion of the finite element algorithms for response computation only. Let r(t) denote a generic scalar

response quantity such as displacement, acceleration, local or resultant stress, local or resultant strain, or

local/global cumulative plastic deformation. By definition, the sensitivity of r(t) with respect to the mate-

rial or loading parameter θ is mathematically expressed as the partial derivative of r(t) with respect to the

variable θ, i.e.,  where  denotes the nominal value taken by the sensitivity parameter θ

for the finite element response analysis. 

Assume that the response of a frame type structure modeled using force-based frame elements is computed

according to the element state determination algorithm described in Appendix B, Section B.2, imple-

mented within a general-purpose nonlinear finite element analysis program based on the direct stiffness

method, employing suitable numerical integration techniques such as Newton-Raphson or modified New-

ton-Raphson at the structure level and Gauss or Gauss-Lobatto at the element level. At each time step, after

convergence of the response computation, the consistent response sensitivities are computed. Following

the Direct Differentiation Method (DDM) (Conte [13]), this requires to differentiate exactly the finite ele-

ment numerical scheme for the response calculation (including the numerical integration scheme for the

material constitutive law) with respect to the sensitivity parameter θ in order to obtain the “exact” sensitiv-

ities of the computationally simulated system response, which itself is an approximation of the exact but

unknown system response1. As shown elsewhere for the displacement-based finite element methodology

(Zhang and Der Kiureghian [11]; Kleiber et al. [6]; Conte et al. [13]) and shown below for the force-based

finite element methodology, this procedure consists in computing first the conditional derivatives of the

element and material history/state variables, forming the right-hand-side (RHS) of the response sensitivity

equation at the structure level, solving it for the nodal displacement response sensitivities and updating the

unconditional derivatives of all the history/state variables. The response sensitivity calculation algorithm

propagates across the various hierarchical layers of finite element response calculation: (1) the structure

level, at which the general framework of response sensitivity computation is organized and the response

sensitivity equation is solved, (2) the element level, at which the element formulation (e.g., displacement-

based, force-based) is defined, (3) the section level (or integration/Gauss point level), at which the sec-

tional constitutive relations are defined, and (4) the material level characterized by the material constitutive

law (in differential form), its numerical integration, and the consistent/exact differentiation of the constitu-

1. The exact system response would require the exact solution of the (time continuous - space continuous) governing par-
tial differential equations for the physical model of the structure under consideration. 

r t( )∂ θ θ θ0=∂⁄ θ0
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tive law integration scheme which is needed in order to obtain the consistent response sensitivities at the

structure level. 

Assuming that  is the converged solution (up to some iteration residuals satisfying a specified toler-

ance usually taken in the vicinity of the machine precision) for the current time step [tn, tn+1], and differen-

tiating Equation (A2), in Appendix A, with respect to θ using the chain rule, recognizing that

 (i.e., the structure inelastic resisting force vector depends on θ both implic-

itly, through , and explicitly), we obtain the following response sensitivity equation at the structure

level:

(2)

where

(3)

The second term on the RHS of Equation (2) represents the partial derivative of the internal resisting force

vector, R(un+1), with respect to sensitivity parameter θ under the condition that the displacement vector

un+1 remains fixed. 

Notice that, once the numerical response of the system at time  is known, the matrix sensitivity Equa-

tion (2) is linear and has the same left-hand-side matrix operator as the consistently linearized Equation

(A4), in Appendix A, for the response at the last iteration before convergence is achieved for the current

time step [tn, tn+1]. Therefore, only the RHS of Equation (2) needs to be recomputed and since the factor-

ization of the tangent dynamic stiffness matrix, , is already available (stored in the computer) at the

converged time step , solution of the response sensitivity Equation (2) is computationally efficient

(only forward-backward substitution phase). 

un 1+

R un 1+( ) R un 1+ θ( ) θ,( )=

un 1+

1
β Δt( )2
----------------M α

β Δt( )
--------------C KT

stat( )n 1++ +
un 1+∂

θ∂
--------------- 1

β Δt( )2
---------------- M∂

θ∂
-------- α

β Δt( )
-------------- C∂

θ∂
-------+⎝ ⎠

⎛ ⎞ un 1+– –=

R un 1+ θ( ) θ,( )∂
θ∂

---------------------------------------
un 1+

F̃n 1+∂
θ∂

----------------+

F̃n 1+∂
θ∂

---------------
Fn 1+∂

θ∂
--------------- M∂

θ∂
-------- 1

β Δt( )2
----------------un

1
β Δt( )
--------------u· n 1 1

2β
------–⎝ ⎠

⎛ ⎞ u··n–+⎝ ⎠
⎛ ⎞+ +=

M 1
β Δt( )2
----------------

un∂
θ∂

-------- 1
β Δt( )
--------------

u· n∂
θ∂

-------- 1 1
2β
------–⎝ ⎠

⎛ ⎞ u··n∂
θ∂

--------–+ +

C∂
θ∂

------- α
β Δt( )
--------------un 1 α

β
---–⎝ ⎠

⎛ ⎞ u· n– Δt( ) 1 α
2β
------–⎝ ⎠

⎛ ⎞ u··n– +

C α
β Δt( )
--------------

un∂
θ∂

-------- 1 α
β
---–⎝ ⎠

⎛ ⎞ u· n∂
θ∂

--------– Δt( ) 1 α
2β
------–⎝ ⎠

⎛ ⎞ u··n∂
θ∂

--------–

tn 1+

KT
dyn

tn 1+
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4.  RESPONSE SENSITIVITY ANALYSIS AT THE ELEMENT LEVEL

4.1 Formulation

This section presents the algorithm developed for response sensitivity analysis of force-based frame ele-

ments. Within the direct stiffness assembly formulation at the global level, at every time (or load) step, the

element receives as input from the structure level the element nodal displacements , which are trans-

formed into the basic element deformations  (see Appendix B, Section B.1), and returns as output the

nodal resisting force vector  (see Appendix B, Section B.1) and the element

consistent tangent stiffness matrix. The element interacts with the section level (or integration point level)

transforming the element nodal deformations  into section deformations  and computing the basic ele-

ment resisting forces  from the section forces , themselves obtained through the material constitutive

integration scheme. In a displacement-based formulation, the relationship between element deformations

and forces and section deformations and forces is straightforward, namely:

(4)

(5)

where  is a transformation matrix between element deformations and section deformations, which is

independent of the sensitivity parameter . In contrast, in the force-based formulation, there is no simple

direct relation between the section deformations  and the basic element deformations , and an iterative

procedure (although a non-iterative one can also be used) is used to perform the element state determina-

tion as described in Appendix B, Section B.2, (Spacone et al. [1]). This fact complicates the derivation of

the sensitivities of force-based element response quantities as compared to the case of displacement-based

elements (Conte et al. [13]). While for displacement-based elements, the derivative of the section deforma-

tions-element deformations relation given in Equation (4) is straightforward, since  is independent of

the sensitivity parameter , i.e., , for force-based elements, the section deformations

are function of  both explicitly and implicitly (through the element deformations ), i.e.,

. 

In the derivations below, it is assumed that the operator  is the total derivative1 of the argument 

with respect to the variable , while the operator  is the partial derivative of the argument 

with respect to the variable x when the variable y is kept constant (or fixed).

In general, the dependence of section deformations, , and section forces, , on the element deforma-

1. Rigorously speaking, we should refer to this operator as absolute partial derivative if x is a scalar component of the vec-
tor of sensitivity parameters and absolute derivative if x is the vector of sensitivity parameters (Kleiber et al. [6]). 

p

q

P �REZ
T

�ROT
T

�RBM
T Q⋅ ⋅ ⋅=

q d

Q D

d x( ) B x( ) q⋅=

Q BT x( ) D x( )⋅ xd⋅

0

L

∫=

B x( )

θ

d q

B x( )

θ d x( ) d x q θ( ),( )=

θ q θ( )

d x( ) d x q θ( ) θ, ,( )=
d …( )

dx
-------------- …( )

x …( )∂
x∂

-------------
y

…( )

d D
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tions, , and sensitivity parameter, , can be expressed as

(6)

(7)

By the chain rule of differentiation, we determine the sensitivity of these quantities to parameter  as

(8)

where

(9)

The expression for  is obtained from

(10)

(11)

(12)

(13)

and substituting Equations (11) through (13) in Equation (10). 

From Equations (6) through (8), again by the chain rule of differentiation, we have

(14)

where

(15)

is the section consistent tangent stiffness matrix. 

Differentiating the (strong form) equilibrium equations,  (see Equation (B10) in

Appendix B), at the section level with respect to parameter , in the hypothesis of zero element distributed

loads (i.e., ), yields

(16)

Compatibility between basic element deformations  and section deformations  is expressed in weak

form through the principle of virtual forces as

q θ

d d q θ( ) θ,( )=

D D d q θ( ) θ,( ) θ,( )=

θ

dd
θd

------ d∂
q∂

------
θ

dq
dθ
------ d∂

θ∂
------

q
+⋅ B θ( ) dq

dθ
------ d∂

θ∂
------

q
+⋅= =

B x θ,( ) d∂
q∂

------
θ

fs x θ,( ) b x( ) kT
e( ) θ( )⋅⋅= =

B x θ,( )

d∂
q∂

------
θ

d∂
D∂

-------
θ

D∂
Q∂

-------
θ

Q∂
q∂

-------
θ

⋅ ⋅=

d∂
D∂

-------
θ

fs x θ,( )=

dD x θ,( ) b x( ) dQ θ( )⋅=

Q∂
q∂

-------
θ

kT
e( ) θ( )=

Dd
θd

------- ks x θ,( ) dd
dθ
------ D∂

θ∂
-------

d
+⋅ ks B x θ,( ) dq

dθ
------ d∂

θ∂
------

q
+⋅ D∂

θ∂
-------

d
+⋅= =

ks x θ,( ) D∂
d∂

-------
θ

=

D x θ,( ) b x( ) Q θ( )⋅=

θ

Dp x( ) 0=

Dd
θd

------- b x( ) Qd
θd

-------⋅=

q d
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(17)

which, after introducing the normalized coordinate  (with ) and performing numerical inte-

gration becomes

(18)

Differentiating the above relation with respect to parameter , we obtain

(19)

Contrary to the displacement-based formulation (in which ),  in the case of

the present force-based formulation for which  as shown in Equation (9). 

It is necessary to derive the conditional (with  fixed) derivatives of the basic element forces, , and sec-

tion deformations, , (needed to assemble the RHS of the response sensitivity Equation (2)) and the

unconditional derivatives of all the history/state variables at the element, section, and material levels,

respectively (needed in the computation of the conditional derivatives of the history/state variables at the

next time step). For this purpose, we merge Equations (14) and (16) to obtain

(20)

For the conditional derivatives (with  fixed, i.e., with ), Equation (20) reduces to

 , i = 1, ..., nIP (21)

while differentiation of the weak form of compatibility expressed by Equation (18) yields

(22)

Thus, in Equations (21) and (22), we have obtained a set of ( ) equations with ( ) scalar

unknowns where  denotes the number of integration points per element. These scalar unknowns are

 (2 unknowns for each integration point), and  (3 unknowns for each element). Equation

(21) provides 2 scalar equations per integration point, while Equation (22) gives 3 scalar equations for each

q bT x( ) x( )d xd⋅ ⋅
0

L

∫=

ξ 1   ξ   1≤ ≤–

q L
2
---  bT ξi( ) d ξi( ) wi⋅⋅{ }

i 1=

nIP

∑⋅=

θ

dq
dθ
------ L

2
---= bT ξi( )

d ξi( )d
θd

--------------- wi⋅ ⋅
⎩ ⎭
⎨ ⎬
⎧ ⎫

i 1=

nIP

∑⋅

d x θ,( ) B x( ) q θ( )⋅= d∂
θ∂

------
q

0≠

B B x θ,( )=

q Q

d x( )

ks B θ( ) dq
dθ
------ d∂

θ∂
------

q
+⋅⋅ b dQ

dθ
--------⋅– D∂

θ∂
-------

d
–=

q dq
dθ
------ 0=

ks ξi( )
d ξi( )∂

θ∂
---------------

q
b ξi( ) Q∂

θ∂
-------

q
⋅–⋅

D ξi( )∂
θ∂

----------------
d

–=

bT ξi( )
d ξi( )∂

θ∂
---------------

q
wi⋅ ⋅

⎩ ⎭
⎨ ⎬
⎧ ⎫

i 1=

nIP

∑ 0=

2nIP 3+ 2nIP 3+

nIP
d ξi( )∂

θ∂
---------------

q

Q∂
θ∂

-------
q
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element. The conditional derivatives  on the RHS of Equation (21) can be obtained through con-

ditional differentiation (with  fixed) of the constitutive law integration scheme at the numerical inte-

gration point level (i.e., section level), requiring the computation of the conditional (with  fixed)

derivatives of all the history/state variables at the section and material levels, as will be shown in Section 6. 

The proposed scheme to compute the conditional derivatives , , and

, which are needed to form the RHS of the response sensitivity equation at the structure level,

Equation (2), at time step , is described in the sections below.

(A) Conditional derivatives (for  fixed):

(A.1) Set derivatives of the basic element deformations  and section deformations  to

zero (i.e., consider  and , respectively, as fixed quantities):

(23)

(24)

(A.2) From the constitutive law integration scheme (during loop over the element integration points

for pre- response sensitivity calculations), compute  and then set up the following

linear system of ( ) equations (after looping over the integration points):

 , i = 1, ..., nIP (25)

(A.3) Solve Equations (25) for  and , i = 1,..., nIP .

(A.4) Form the RHS of the response sensitivity equation at the structure level, Equation (2), through

direct stiffness assembly. For example, the term  is computed as, using

Equation (B26), 

(26)

D ξi( )∂
θ∂

----------------
d

d x( )

d x( )

Dn 1+ ξi( )∂
θ∂

--------------------------
dn 1+

dn 1+ ξi( )∂
θ∂

-------------------------
qn 1+Qn 1+∂

θ∂
----------------

qn 1+
tn 1+

qn 1+

qn 1+ dn 1+ ξi( )

qn 1+ dn 1+ ξi( )

qn 1+∂
θ∂

---------------
qn 1+

0=

dn 1+∂
θ∂

---------------
dn 1+

0=

Dn 1+∂
θ∂

----------------
dn 1+

2nIP 3+

ks n 1+, ξi( )
dn 1+ ξi( )∂

θ∂
-------------------------

qn 1+

b ξi( )
Qn 1+∂

θ∂
----------------

qn 1+

⋅–⋅
Dn 1+ ξi( )∂

θ∂
--------------------------

dn 1+

–=

bT ξi( )
dn 1+ ξi( )∂

θ∂
-------------------------

qn 1+

wi⋅ ⋅
⎩ ⎭
⎨ ⎬
⎧ ⎫

i 1=

nIP

∑ 0=
⎩
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧

dn 1+ ξi( )∂
θ∂

-------------------------
qn 1+

Qn 1+∂
θ∂

----------------
qn 1+

R un 1+ θ( ) θ,( )∂
θ∂

---------------------------------------
un 1+

R un 1+ θ( ) θ,( )∂
θ∂

---------------------------------------
un 1+

Ab
e( )( )

T
�REZ

e( )T
�ROT

e( )T
�RBM

e( )T Q∂ n 1+
θ∂

----------------
qn 1+

⋅ ⋅ ⋅ ⋅
⎝ ⎠
⎜ ⎟
⎛ ⎞

e 1=

Nel

∑=
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(A.5) Solve Equation (2) for the nodal response sensitivities, . 

(B) Unconditional derivatives:

(B.1) Compute unconditional derivative  from the solution of the response sensitivity equation

at the structure level, Equation (2), as (see Section 3)1

, e = 1, ..., Nel (27)

(B.2) Using the conditional derivatives  computed during the pre- response sensitivity

calculation phase, set up the following linear system of ( ) equations: 

  , i = 1, ..., nIP (28)

(B.3) Solve Equation (28) for the unconditional derivatives , i = 1, ... , nIP, and . 

(B.4) Perform a loop over the frame element integration points, entering with  in the dif-

ferentiated constitutive law integration scheme, compute and save the unconditional derivatives

of the material and section history variables . These unconditional derivatives are

needed to compute the conditional derivatives required for response sensitivity computations at

the next time step, tn+2, namely , , and 

4.2 Sensitivity response with respect to discrete loading parameters

Three types of discrete loading parameters are of interest here, namely (1) nodal forces, (2) effective earth-

quake forces due to ground acceleration, and (3) distributed element loads. The nodal forces and effective

earthquake forces at time  affect only the term  on the RHS of the response sensitivity equation

at the structure level, Equation (2), through the part , see Equation (3). Obviously, at all subsequent

1. The partial derivative symbol  used in conjunction with the global structural response  represents the

absolute partial derivative (Kleiber et al. [6]) of  with respect to . 

un 1+∂
θ∂

---------------

dqn 1+
dθ

---------------

…( )∂
θ∂

------------- un 1+

un 1+ θ

dqn 1+
e( )

dθ
--------------- �RBM

e( )
�⋅ ROT

e( )
�REZ

e( ) dpn 1+
e( )

dθ
---------------⋅⋅ �RBM

e( )
�⋅ ROT

e( )
�REZ

e( ) Ab
e( ) un 1+∂

θ∂
---------------⋅⋅= =

Dn 1+∂
θ∂

----------------
dn 1+

2nIP 3+

ks n 1+, ξi( )
dn 1+ ξi( )d

θd
-------------------------⋅ b ξi( )

dQn 1+
dθ

-----------------⋅–
Dn 1+ ξi( )∂

θ∂
--------------------------

dn 1+

–=

L
2
--- bT ξi( )

dn 1+ ξi( )d
θd

------------------------- wi⋅ ⋅
⎩ ⎭
⎨ ⎬
⎧ ⎫

i 1=

nIP

∑⋅
dqn 1+

dθ
---------------=

⎩
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧

ddn 1+ ξi( )
dθ

-------------------------
dQn 1+

dθ
-----------------

ddn 1+ ξi( )
dθ

-------------------------

drn 1+ ξi( )
dθ

------------------------

Dn 2+ ξi( )∂
θ∂

--------------------------
dn 2+

dn 2+ ξi( )∂
θ∂

-------------------------
qn 2+

Qn 2+∂
θ∂

----------------
qn 2+

tn 1+
F̃n 1+∂

θ∂
---------------

Fn 1+∂
θ∂

---------------



11

time steps, , the last two terms on the RHS of Equation (2) are indirectly influenced by ,

through the temporal propagation of the unconditional response sensitivities at time .

Element distributed loads affect the formation and solution of the response sensitivity equation, Equation

(2), at two different levels: (1) at the structure level through the term  in which  depends on

the element distributed load (i.e., fixed end forces as equivalent nodal forces), and (2) at the section level of

each element affected by the distributed load in question through differentiation of the equilibrium equa-

tions, see Equation (B10), 

(29)

with respect to the distributed load parameter, i.e.,

(30)

4.3 Implementation in a general-purpose nonlinear finite element structural analysis program

For validation purposes, the above formulation for response sensitivity analysis using force-based frame

elements was implemented in a general-purpose finite element structural analysis program, namely

FEDEASLab Release 2.2 (Filippou [17]). FEDEASLab is a Matlab [18] toolbox suitable for linear and

nonlinear, static and dynamic structural analysis, which already provides a general framework for physical

parameterization of finite element models and response sensitivity computation (Franchin [19]). One of the

most important features of FEDEASLab is its strict modularity, that keeps separate the different hierarchi-

cal levels encountered in structural analysis (i.e., structure, element, section and material levels). There-

fore, the implementation of the response sensitivity computation scheme presented in this paper for force-

based elements can be used with any section model and/or material constitutive law (properly implemented

with provisions for sensitivity analysis) without any change in the code. 

Flow-charts of the computer implementation of the present algorithm for response sensitivity analysis are

presented in Figures 1 and 2, which also highlight the modularity of the general framework. It is worth not-

ing two main differences between displacement-based (Conte et al. [13]) and force-based frame elements:

(1) in the displacement-based formulation, there is no need to solve a linear system of equations at the ele-

ment level in order to obtain the conditional and unconditional derivatives of the nodal element forces

 and ; and (2) while for displacement-based elements, requiring  fixed is equiva-

lent to requiring  (i = 1, 2, ..., nIP) fixed, for force-based elements, it is necessary to compute the

conditional derivatives of the history/state variables imposing  fixed in order to obtain the condi-

tional (for  fixed) and unconditional derivatives of the nodal elements forces. 

tk tn 1+>
Fn 1+∂

θ∂
---------------

tn 1+

Fn 1+∂
θ∂

--------------- Fn 1+

Dn 1+ x θ,( ) b x( ) Qn 1+ θ( ) DP n 1+, x θ,( )+⋅=

Dn 1+ x( )d
θd

------------------------ b x( )
Qn 1+d

θd
----------------

DP n 1+, x( )d
θd

-----------------------------+⋅=

Qn 1+∂
θ∂

----------------
qn 1+

dQn 1+
dθ

----------------- qn 1+

dn 1+ ξi( )

dn 1+ ξi( )

qn 1+
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(1) Conditional derivatives:

un 1+∂
θ∂

---------------
un 1+

0=

qn 1+∂
θ∂

---------------
qn 1+

0=

dn 1+∂
θ∂

---------------
dn 1+

0=
�n 1+∂

θ∂
---------------

dn 1+

0=

Dn 1+∂
θ∂

----------------
dn 1+

�n 1+∂
θ∂

----------------
dn 1+

dn 1+∂
θ∂

---------------
qn 1+

    ;
Qn 1+∂

θ∂
----------------

qn 1+

Rn 1+∂
θ∂

----------------
un 1+

un 1+  fixed implies  qn 1+  fixed, since qn 1+ �
e( ) Ab

e( ) u⋅ n 1+⋅=

rn 1+∂
θ∂

--------------
dn 1+

  Section
Loop over

 Material

Figure 1.  Flow chart for the numerical computation of the response sensitivity with a force-based 
frame element: conditional derivatives. 

nIP integration

Form and solve

 Equation (25)

 Element

points

a linear system
of (2nIP + 3)
equations, 
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(2) Unconditional derivatives:

dun 1+
dθ

---------------

dqn 1+
dθ

---------------

ddn 1+
dθ

---------------     ;
dQn 1+

dθ
-----------------

ddn 1+
dθ

---------------
d�n 1+

dθ
---------------

dDn 1+
dθ

----------------
d�n 1+

dθ
----------------

drn 1+
dθ

--------------

Section Material

Figure 2.  Flow chart for the numerical computation of the response sensitivity with a force-based 
frame element: unconditional derivatives. 

 Element

Form and solve

Equation (28)

a linear system
of (2nIP + 3)
equations, 

Loop over
nIP integration
points
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5.  VALIDATION EXAMPLES

5.1 Response sensitivity analysis at the section level: homogeneous section with uncoupled axial and 

flexural response

In the following validation examples, the sectional behavior of the force-based frame element is modeled

using a very simple 2-D homogeneous section with uncoupled axial and flexural response. In this case, we

have

(31)

(32)

(33)

where  = axial strain at the reference axis,  = curvature,  = axial force,

 = bending moment,  = cross-section area,  = cross-section moment of inertia,

 = section consistent tangent stiffness matrix,  and  = consistent tangent

stiffnesses of the 1-D axial and flexural constitutive laws, respectively. 

The numerical section response at time  is given by

(34)

(35)

where  and  are defined as the axial force and bending moment normalized by the cross-

section area and moment of inertia, respectively. These “normalized” internal forces obey the material con-

stitutive laws described in Sections 6.2 and Appendix C. 

The section response sensitivities are

(36)

(37)

In the present study, the flexural constitutive law is defined as the 1-D J2 plasticity model, while the axial

behavior is taken as linear elastic. 

dn 1+ x( ) εn 1+
G x( )

χn 1+ x( )
=

Dn 1+ x( )
Nn 1+ x( )

Mn 1+ x( )
=

ks n 1+, x( )
ET n, 1+

1( ) x( ) A x( )⋅ 0

0 ET n, 1+
2( ) x( ) Iz x( )⋅

=

εn 1+
G x( ) χn 1+ x( ) Nn 1+ x( )

Mn 1+ x( ) A x( ) Iz x( )

ks n 1+, x( ) ET n, 1+
1( ) x( ) ET n, 1+

2( ) x( )

tn 1+

Nn 1+ x( ) A x( ) σn 1+
1( ) x( )⋅=

Mn 1+ x( ) Iz x( ) σn 1+
2( ) x( )⋅=

σn 1+
1( ) x( ) σn 1+

2( ) x( )

dNn 1+ x( )
dθ

------------------------- dA x( )
dθ

--------------- σn 1+
1( ) x( ) A x( )

σn 1+
1( ) x( )d
dθ

------------------------⋅+⋅=

dMn 1+ x( )
dθ

--------------------------
dIz x( )

dθ
--------------- σn 1+

2( ) x( ) Iz x( )
σn 1+

2( ) x( )d
dθ

------------------------⋅+⋅=
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5.2 Response sensitivity analysis at the material level: linear elastic constitutive law

The relations describing both the response and response sensitivities for a 1-D linear elastic material model

are

(38)

(39)

Note that the terms ,  and  in the above equations correspond to the terms ,

 and  in Equations (31), (33), (34) and (36). 

5.3 Response sensitivity analysis at the material level: 1-D J2 plasticity model

In the validation examples presented below, the simple 1-D J2 (or von Mises) plasticity model is used to

describe the nonlinear material flexural behavior. This rate-independent analytical constitutive model can

be found in the literature (Simo and Hughes [20]). The discrete constitutive integration algorithm is pro-

vided in Appendix C and its consistent differentiation with respect to the sensitivity parameter  is pre-

sented below.

The computation of sensitivities of material history/state variables remains unchanged for both displace-

ment-based (Conte et al. [13]) and force-based frame elements, because the unconditional derivatives of

the history/state variables are obtained from the exact differentiation of the same constitutive law integra-

tion scheme and the conditional derivatives are computed for the strain  fixed. Therefore, the condi-

tional derivatives of the history/state variables, , are simply obtained by substituting with zero

all the occurrences of the derivative  in the expressions for the unconditional derivatives of the his-

tory/state variables, . 

The only difference between the displacement-based and force-based formulations at the material level is

that a force-based frame element requires the computation of the derivatives of the history/state variables

under the condition that the section deformations  remain fixed in order to obtain the term

 in Equations (25) and (28). For a displacement-based element, fixing the element nodal dis-

placements, , or the element deformations in the basic system, , is

equivalent to fixing the section deformations  and therefore the strain  at the material level,

which is not the case for a force-based element as shown in Section 4.1 (see remark below Equation (19)). 

σn 1+ E εn 1+⋅=

σn 1+d
dθ

--------------- dE
dθ
------- εn 1+⋅ E+

dεn 1+
dθ

---------------⋅=

σn 1+ E εn 1+ σn 1+
1( ) x( )

ET n, 1+
1( ) x( ) εn 1+

G x( )

θ

εn 1+

…( )∂
θ∂

-------------
εn 1+dεn 1+

θd
---------------

d …( )
dθ

--------------

dn 1+
Dn 1+∂

θ∂
----------------

dn 1+
p tn 1+( ) pn 1+= q tn 1+( ) qn 1+=

dn 1+ εn 1+
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If no plastic deformation takes place during the current time/load step [tn, tn+1], the trial solutions for the

state variables given by the elastic predictor step are also the correct solutions, i.e., the elastic predictor

step is not followed by a plastic corrector step. Hence, dropping the superscript ‘Trial’ from Equations

(C6) and differentiating them with respect to the sensitivity parameter θ, we obtain

(40)

(41)

(42)

(43)

(44)

(45)

If plastic deformation takes place during the current time/load step [tn, tn+1], the discrete elastoplastic con-

stitutive equations in Appendix C are differentiated exactly with respect to the sensitivity parameter θ in

order to compute the derivatives of the history/state variables at time tn+1. The final results are (Conte et al.

[13]):

(46)

(47)

(48)

(49)

The derivatives of the remaining history/state variables, , , and , with respect to the sen-

d Δλ( )n 1+
θd

------------------------ 0=

dεn 1+
p

dθ
---------------

dεn
p

dθ
--------=

αn 1+d
θd

----------------
αnd
θd

---------=

εn 1+
pd
θd

-------------- εn
pd

θd
--------=

σn 1+d
θd

--------------- E
dεn 1+

dθ
---------------

dεn
p

dθ
--------–⎝ ⎠

⎛ ⎞⋅ dE
dθ
------- εn 1+ εn

p–( )⋅+=

σy n 1+,d
θd

--------------------
σy n,d

θd
-------------=

σn 1+
Triald
θd

---------------- E
dεn 1+

dθ
---------------

dεn
p

dθ
--------–⎝ ⎠

⎛ ⎞⋅ dE
dθ
------- εn 1+ εn

p–( )⋅+=

d Δλ( )n 1+
θd

------------------------
E Hiso Hkin+ +( )

σn 1+
Triald
θd

----------------
αnd
θd

---------–⎝ ⎠
⎛ ⎞ nn 1+⋅

σy n,d
θd

-------------–⋅

E Hiso Hkin+ +( )2
------------------------------------------------------------------------------------------------------------------------------ –=

dE
dθ
-------

dHiso
dθ

-------------
dHkin

dθ
--------------+ +⎝ ⎠

⎛ ⎞ σn 1+
Trial αn–( ) nn 1+⋅ σy n,–[ ]⋅

E Hiso Hkin+ +( )2
-------------------------------------------------------------------------------------------------------------------------------

dεn 1+
p

dθ
---------------

dεn
p

dθ
--------

d Δλ( )n 1+
θd

------------------------ nn 1+⋅+=

σn 1+d
θd

--------------- E
dεn 1+

dθ
---------------

dεn 1+
p

dθ
---------------–⎝ ⎠

⎛ ⎞⋅ dE
dθ
------- εn 1+ εn 1+

p–( )⋅+=

εn 1+
p

σy n 1+, αn 1+
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sitivity parameter θ are obtained by differentiating Equations (C4) as 

(50)

(51)

(52)

5.4 Application example: cantilever beam with distributed plasticity

The first test structure considered in this study consists of a cantilever  steel I-beam 8 meters in

length. The cross-sectional properties of the beam are:  and

, while its initial yield moment is . A 20 percent post-

yield to initial flexural stiffness ratio is assumed.

The axial behavior is assumed linear elastic, while the flexural behavior is described by a 1-D J2 plasticity

section constitutive law with the following material parameters: Young’s modulus ,

and isotropic and kinematic hardening moduli , , respectively. A

material mass density of four times the mass density of steel (i.e., ) is used to

account for typical additional masses (i.e., permanent loads). The beam is modeled with a single 2-D

Euler-Bernoulli frame element, see Figure 3, with lumped masses at the end nodes (mi = m/2 = 1200 [kg],

i = 1, 2). Five Gauss-Lobatto integration points are used along the beam. No damping is included in the

model. 

After application of gravity loads (modeled as distributed load q) due to self-weight and permanent loads,

the beam is subjected to (1) a nonlinear quasi-static analysis for a cyclic point load applied at the free end,

as shown in Figure 4, and (2) a nonlinear dynamic analysis for a ground acceleration history taken as the

balanced 1940 El Centro earthquake record scaled by a factor 3 (Figure 10). The equation of motion and

the response sensitivity equation were integrated using the constant average acceleration method with a

constant time step of Δt = 0.02 sec. 

The system response is highly nonlinear as shown in Figures 5, 11 and 12. Figures 6 and 7 and Figures 13

and 14 plot sensitivities to different material parameters (Hkin and My0) of a global response quantity taken

as the tip vertical displacement, for static and dynamic analysis, respectively. Sensitivities of a local

response quantity, namely the cumulative plastic curvature ( ) at the fixed end section, to material

parameters, are displayed in Figures 8 and 9 for static analysis and in Figures 15 and 16 for dynamic anal-

εn 1+
pd
θd

-------------- εn
pd

θd
--------

d Δλ( )n 1+
θd

------------------------+=

σy n 1+,d
θd

--------------------
σy n,d

θd
-------------

dHiso
dθ

------------- Δλ( )n 1+⋅ Hiso
d Δλ( )n 1+

θd
------------------------⋅+ +=

αn 1+d
θd

----------------
αnd
θd

---------
dHkin

dθ
-------------- Δλ( )n 1+ n⋅ n 1+⋅ H+

kin

d Δλ( )n 1+
θd

------------------------ nn 1+⋅ ⋅+=

W21 50×

A 9.484 10 3–×    m2[ ]=

Iz 4.096 10 4–×    m4[ ]= My0 384.2 [kN-m]=

E 2 108×   [kPa]=

Hiso 0  [kPa]= Hkin 5 107×   [kPa]=

ρ 31600 kg m3⁄[ ]=

χ
p
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ysis. Note that all these response sensitivity results are scaled by the sensitivity parameter itself and can

therefore be interpreted as 100 times the change in the response quantity per percent change in the sensitiv-

ity parameter. To improve the readability of the quasi-static cyclic analysis results in Figures 4 through 9,

lower-case roman letters were added corresponding to key loading points. Furthermore, global and local

response sensitivities to a discrete loading parameter (namely the ground motion acceleration at time

) are computed and plotted in Figures 17 and 18. In all these figures, the response sensitivity

results obtained using the consistent Direct Differentiation Method (DDM) are compared directly with

their counterparts obtained through Forward Finite Difference (FFD) analysis for three different values of

perturbation of the sensitivity parameter, carefully selected to clearly show the asymptotic convergence of

the FFD results towards the analytical DDM results. This convergence is further evidenced by the zoom

views shown in the insets of Figures 6 through 9 and 13 through 18. For this example, it can be concluded

that the FFD results validate both the response sensitivity analysis procedure presented in this paper and its

implementation in FEDEASLab. 

For quasi-static analysis, it is worth noting the presence of discontinuities in the response sensitivities to

the initial yield moment  for both global and local response quantities. These discontinuities occur in

time/load steps during which elastic-to-plastic material state transitions take place at some integration

points (Figures 7 and 9). The response sensitivity algorithm developed propagates consistently the discon-

tinuities in response sensitivities from the material, to the section, to the element, and to the structure level,

as confirmed by the FFD computations in this example. 

The sensitivity results obtained for this example also show that, among the sensitivity parameters consid-

ered, both the global and local response quantities selected are most sensitive to the initial yield moment

My0. 

t 6.00  sec=

My0



19

L = 8.00 m

Figure 3.  Cantilever beam model: geometry, static and quasi-static loads, and global response 
quantities.
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Figure 5.  Global response of the cantilever beam model for quasi-static cyclic analysis: 
reaction force versus tip vertical displacement.
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Figure 7.  Global response sensitivities to material parameters: tip vertical displacement 
sensitivity to initial yield moment, My0. 
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Figure 8.  Local response sensitivities to material parameters: cumulative plastic curvature 
sensitivity to kinematic hardening modulus, Hkin. 
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Figure 9.  Local response sensitivities to material parameters: cumulative plastic curvature 
sensitivity to initial yield moment, My0.
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Figure 11.  Global response of the cantilever beam model for dynamic analysis: tip vertical 
displacement history.
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Figure 13.  Global response sensitivities to material parameters: tip vertical displacement 
sensitivity to kinematic hardening modulus, Hkin. 
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Figure 14.  Global response sensitivities to material parameters: tip vertical displacement 
sensitivity to initial yield moment, My0.
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Figure 15.  Local response sensitivities to material parameters: cumulative plastic curvature 
sensitivity to kinematic hardening modulus, Hkin.

χp
∂ H

ki
n

∂----
----

-----
H

ki
n

⋅

Time   [sec]

5 10 15 20
−0.014

−0.012

−0.01

−0.008

−0.006

−0.004

−0.002

0
DDM
ΔM

y0
/M

y0
 = 0.02

ΔM
y0

/M
y0

 = 0.015
ΔM

y0
/M

y0
 = 0.001

Figure 16.  Local response sensitivities to material parameters: cumulative plastic curvature 
sensitivity to initial yield moment, My0.
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Figure 17.  Global response sensitivities to loading parameters: tip vertical displacement 
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5.5 Application example: 2-D frame with distributed plasticity

The second structure used as validation example is a five-story single-bay steel moment-resisting frame, a

finite element model of which is shown in Figure 19. All columns and beams are  steel I-beams

with an initial yield moment of . The material behavior is modeled as in the previ-

ous example (i.e., 1-D J2 plasticity model for bending and linear elastic model for axial behavior). The

mechanical properties and effective mass density of the material are the same as in the previous model. It is

worth mentioning that, even though it is assumed here that a single set of material parameters characterizes

all beams and columns of the frame, the DDM presented in this paper is capable to account for multiple

sets of material parameters for each material model used. 

Each of the physical structural elements is modeled by a simplified Euler-Bernoulli force-based, distrib-

uted plasticity, 2-D frame element. The inertia properties of the system are modeled through (translational)

lumped masses applied at the nodes, each element contributing half of its effective mass to each of its two

nodes. The frame has an initial fundamental period of 0.52 sec. 

After application of gravity loads, this frame is subjected to (1) a nonlinear static pushover analysis under

an inverted triangular pattern of horizontal lateral loads applied at floor levels as shown in Figure 19, with

the time history described in Figure 20, and (2) a nonlinear response history analysis for earthquake base

excitation, with the same seismic input, see Figure 10, as for the previous cantilever beam model. In the

dynamic analysis, the unconditionally stable constant average acceleration integration method is used with

a constant time step of Δt = 0.02 sec. 

Global response quantities (floor horizontal displacements) in the quasi-static pushover analysis are given

in Figures 21. Figures 22 through 27 show response sensitivity analysis results for the pushover analysis of

the present frame structure. In Figures 22 through 24, sensitivities to different material parameters (E, Hkin,

and My0) of the roof horizontal displacement (global response quantity) obtained through application of

the DDM developed in this paper are compared with the corresponding FFD results. Figures 25 through 27

show the sensitivities of the cumulative plastic curvature (local response quantity) at the fixed section of

the left base column (section A) to the same material parameters as above, again with their FFD counter-

parts. 

For the dynamic analysis, the response histories of the same global and local response quantities consid-

ered previously are shown in Figures 28 and 29. Figures 30 through 32 display the roof horizontal dis-

placement sensitivities to Young’s modulus, E, the kinematic hardening modulus, Hkin, and the initial yield

moment, My0, respectively; while the sensitivities of the cumulative plastic curvature at section A to the

material sensitivity parameters E, Hkin and My0 are plotted in Figures 33 through 35. Finally, global and

W21 50×

My0 384.2 [kN-m]=
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local response sensitivities to the ground motion acceleration value at time  are given in Fig-

ures 36 and 37, respectively. Notice that the global response sensitivity becomes non-zero directly at the

time of perturbation of the ground acceleration history, while the specific local response sensitivity consid-

ered here becomes non-zero only after the first yielding subsequent to the time at which the ground accel-

eration perturbation is applied. 

As in the first application example, the asymptotic convergence of the FFD results (for decreasing pertur-

bation Δθ of the sensitivity parameter) towards the response sensitivities evaluated analytically through the

DDM is highlighted by zoom views inserted in Figures 22 through 27 and Figures 30 through 37. All the

response sensitivity results are scaled by the sensitivity parameter itself according as in Section 5.4. The

discontinuities in the response sensitivities for both global and local quantities can be appreciated easily in

the quasi-static analysis results and with more careful inspection in the dynamic analysis results. The dis-

continuities in the dynamic local response sensitivities often appear as spikes. In this second more general

application example, it can also be concluded that the asymptotic convergence of the FFD results towards

the DDM results validates both the response sensitivity analysis procedure developed in this paper and its

computer implementation in FEDEASLab. 

The response sensitivity results obtained for this specific application example also show that: (1) in the

quasi-static pushover analysis, the roof displacement is most sensitive to changes in the initial yield

moment, My0, while the cumulative plastic curvature at section A is most affected by perturbations in the

value of the kinematic hardening modulus, Hkin, and (2) in the dynamic analysis, the Young’s modulus, E,

is the sensitivity parameter that affects most, among the sensitivity parameters considered, both the global

and local response sensitivities considered. 

t 6.00  sec=
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Figure 19.  Five story building model: geometry, self-weight and permanent loads, quasi-static 
horizontal lateral load and floor displacements.
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Figure 21.  Global response of the five story building model for pushover analysis: force at the 
roof level versus floor horizontal displacements.

P 5
   

[k
N

]

Floor Displacements  [m]

u1 u2 u3 u4 u5

−50 0 50 100 150 200 250
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

P
5
 (kN)

DDM
ΔE/E = 0.1
ΔE/E = 0.01
ΔE/E = 0.0001

Figure 22.  Global response sensitivities to material parameters: roof displacement sensitivity 
to Young’s modulus, E.

u 5∂ E∂----
----

E⋅

P5   [kN]



31

−50 0 50 100 150 200 250
−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

P
5
 (kN)

DDM
ΔH

kin
/H

kin
 = 0.1

ΔH
kin

/H
kin

 = 0.01
ΔH

kin
/H

kin
 = 0.001

Figure 23.  Global response sensitivities to material parameters: roof displacement sensitivity 
to kinematic hardening modulus, Hkin.
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Figure 24.  Global response sensitivities to material parameters: roof displacement sensitivity 
to initial yield moment, My0.
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Figure 25.  Local response sensitivities to material parameters: sensitivity of cumulative 
plastic curvature at section A to Young’s modulus, E.
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Figure 26.  Local response sensitivities to material parameters: sensitivity of cumulative plastic 
curvature at section A to kinematic hardening modulus, Hkin.
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Figure 27.  Local response sensitivities to material parameters: sensitivity of cumulative plastic 
curvature at section A to initial yield moment, My0.
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Figure 28.  Global response of the five story building model for dynamic analysis: floor 
displacement histories.

Time   [sec]

Fl
oo

r d
is

pl
ac

em
en

ts
  [

m
]

−0.02 −0.01 0 0.01 0.02
−8

−6

−4

−2

0

2

4

6 x 10
5

0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

Figure 29.  Local response of the five story building model for dynamic analysis: (a) moment-
curvature and (b) cumulative plastic curvature history, at section A.
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Figure 30.  Global response sensitivities to material parameters: roof displacement sensitivity 
to Young’s modulus, E.
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Figure 31.  Global response sensitivities to material parameters: roof displacement sensitivity 
to kinematic hardening modulus, Hkin.
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Figure 32.  Global response sensitivities to material parameters: roof displacement sensitivity to 
initial yield moment, My0.
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Figure 33.  Local response sensitivities to material parameters: sensitivity of cumulative 
plastic curvature at section A to Young’s modulus, E. 
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Figure 34.  Local response sensitivities to material parameters: sensitivity of cumulative plastic 
curvature at section A to kinematic hardening modulus, Hkin.
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Figure 35.  Local response sensitivities to material parameters: sensitivity of cumulative plastic 
curvature at section A to initial yield moment, My0.
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Figure 36.  Global response sensitivities to loading parameters: roof displacement sensitivity to 
earthquake ground acceleration at time  sec. t 6.00=
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Figure 37.  Local response sensitivities to loading parameters: sensitivity of cumulative plastic 
curvature at section A to earthquake ground acceleration at time  sec.t 6.00=
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6.  CONCLUSIONS

The formulation of a new procedure to compute response sensitivities to material constitutive parameters

and discrete loading parameters for force-based materially-nonlinear-only finite element models of struc-

tural frame systems is presented. This formulation is based on the consistent differentiation of the discrete

equilibrium, compatibility, and constitutive equations at the element and section (or integration point) lev-

els. Key comparisons are made between the existing displacement-based and the newly developed force-

based finite element response sensitivity analysis procedures. Ample details about the implementation of

the formulated approach in a general-purpose nonlinear finite element analysis program (FEDEASLab)

based on the direct stiffness method are provided. The formulation is general and applies to linear and non-

linear, static and dynamic structural analysis. 

Two application examples are presented, including a cantilever steel beam and a five-story one bay steel

frame, both subjected to static and dynamic loading. Without loss of generality, the nonlinear inelastic

material model used in the examples consists of the 1-D J2 plasticity model, which describes the section

moment-curvature constitutive law. The method developed applies to any material model that can be for-

mulated analytically. Global and local response sensitivity results obtained analytically using the method

developed are compared to their counterparts computed using forward finite difference analysis. It is found

that the finite difference results approach asymptotically (for decreasing perturbation Δθ of the sensitivity

parameter) the analytical response sensitivity results, which validates both the new formulation for force-

based structural response sensitivity analysis as well as its implementation in a general-purpose nonlinear

structural analysis program (FEDEASLab). 

The superior force-based structural analysis methodology with the addition of the method presented here
for analytical sensitivity computation offers a powerful tool for any kind of applications in which finite ele-
ment response sensitivity analysis results are needed. These applications include structural reliability,
structural optimization, structural identification, and finite element model updating. The extension of the
work presented here to include geometric nonlinearities will be the subject of future research by the
authors. 

APPENDIX A: NUMERICAL INTEGRATION OF EQUILIBRIUM EQUATIONS IN MATERIALLY-
NONLINEAR-ONLY STRUCTURAL ANALYSIS

We assume, without loss of generality, that the time continuous - spatially discrete equation of motion (1)

is integrated numerically in time using the well-known Newmark-β time-stepping method of structural

dynamics (Chopra [21]), which interpolates the nodal acceleration and velocity vectors at discrete time

 (  denotes the nominal time step size or time increment) astn 1+ n 1+( )Δt= Δt
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(A1)

where  and  are parameters controlling the accuracy and stability of the numerical integration algo-

rithm. Special cases of the Newmark-β method are the conditionally stable linear acceleration method

( , ) and the unconditionally stable constant average acceleration method ( ,

). Substitution of Equations (A1) into equation of motion (1) expressed at discrete time tn+1

yields the following nonlinear matrix algebraic equation in the unknowns un+1 = u(tn+1):

(A2)

where

Equation (A2) represents the set of nonlinear algebraic equations that has to be solved at each time step

 for the unknown response quantities . In general, the subscript  indicates that the

quantity to which it is attached is evaluated at time tn+1. In the direct stiffness finite element methodology,

the vector of internal resisting forces  in Equation (A2) is obtained by assembling, at the structure

level, the vectors of elemental internal resisting forces, i.e.,

(A3)

where  denotes the direct stiffness assembly operator from the element level (in local ele-

ments coordinates) to the structure level in global reference coordinates, Nel represents the number of finite

elements in the structural model,  and  denote the internal resisting force vector and nodal dis-

placement vector, respectively, of element e. 

We consider that a Newton-Raphson (or a modified Newton type) iterative procedure is used to solve

Equation (A2) over time step [tn, tn+1] through solving a sequence of linearized problems of the form

, i = 0, 1, 2, ... (A4)

where

u··n 1+ 1 1
2β
------–⎝ ⎠

⎛ ⎞ u··n
1

β Δt( )
--------------u· n– 1

β Δt( )2
---------------- un 1+ un–( )+=

u· n 1+ Δt( ) 1 α
2β
------–⎝ ⎠

⎛ ⎞ u··n 1 α
β
---–⎝ ⎠

⎛ ⎞ u· n
α

β Δt( )
-------------- un 1+ un–( )+ +=

α β

α 1 2⁄= β 1 6⁄= α 1 2⁄=

β 1 4⁄=

� un 1+( ) F̃n 1+
1

β Δt( )2
----------------Mun 1+

α
β Δt( )
--------------Cun 1+ R un 1+( )+ +– 0= =

F̃n 1+ Fn 1+ M 1
β Δt( )2
----------------un

1
β Δt( )
--------------u· n 1 1

2β
------–⎝ ⎠

⎛ ⎞ u··n–++ +=

C α
β Δt( )
--------------un 1 α

β
---–⎝ ⎠

⎛ ⎞ u· n– Δt( ) 1 α
2β
------–⎝ ⎠

⎛ ⎞ u··n–

tn tn 1+,[ ] un 1+ …( )n 1+

R un 1+( )

R un 1+( ) R e( ) pn 1+
e( )( ){ }

e 1=

Nel

A=

…{ }e 1=
NelA

R e( ) pn 1+
e( )

KT
dyn( )n 1+

i
δun 1+

i 1+
�n 1+

i=



41

(A5)

and

(A6)

The updated nodal displacement vector , or displacement vector at the end of the (i+1)-th iteration of

time step [tn, tn+1], is obtained as

(A7)

where  and  denote the total incremental displacement vector from the last converged step

and the last incremental displacement vector, respectively. In Equation (A5),  denotes the tangent

dynamic stiffness matrix and  represents the consistent or algorithmic (static) tangent stiffness

matrix, obtained by assembling, at the structure level, the element consistent (static) tangent stiffness

matrices.

APPENDIX B: FORCE-BASED FRAME ELEMENT

B.1 Notation

The algorithmic developments in this paper are based on the following notation for a 2-D frame element

also shown in Figure B1.  

: structure nodal displacement vector in global coordinates;

: structure resisting force vector in global coordinates;

Element nodal displacements in global coordinates:

Element nodal forces in global coordinates:

;  

 : “Boolean displacement address” matrix (displacement extracting operator). 

: “Boolean force address” matrix (force assembling operator).
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Element nodal displacements in local coordinates (with rigid body modes):

Element nodal forces in local coordinates:

; ;

; ;

 : rigid-end-zone transformation matrix;  : global-local rotation matrix; 

Element deformations in basic system:

where  represents the overall axial deformation of the member, while  and 
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Figure B1.  Notation used for element end forces and degrees of freedom in (a) global 
coordinates, (b) local element coordinates including rigid body modes, and (c) local element 

coordinates without rigid body modes (basic system coordinates). 
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denote the element end rotations relative to the chord. 

Element end forces in basic system:

where  represents the element axial force (constant in the absence of element dis-

tributed axial loads), and  and  denote the element end moments. 

; ;

 : transformation matrix that removes the rigid body modes

B.2 Newton-Raphson incremental-iterative procedure

This section summarizes the structure state determination procedure performed at the end of the (i+1)-th

global Newton-Raphson iteration (at the structure level) for the (n+1)-th load step, according to the force-

based frame element methodology (Spacone et al. [1]; Neuenhofer and Filippou [4]). This procedure is

needed in formulating the response sensitivity algorithm, since the latter is developed through exact differ-

entiation of the space and the time discrete equations for the finite element response. The structure state

determination procedure is obtained through direct stiffness assembly of the results of the element state

determination procedure which is summarized below. The element state determination procedure is itera-

tive in nature and the superscript j is used to denote the iteration number for the element state determina-

tion. The superscript i is used to denote the iteration number of the global Newton-Raphson procedure at

the structure level. 

B.2.1 Element state determination:

B.2.1.1 Initialization:

 : element consistent tangent stiffness matrix; (B1)

 : element end forces in the basic system; (B2)

 : section forces; (B3)

 : section deformations; (B4)

 : residual section deformation vector; (B5)

 : section (consistent) tangent flexibility matrix. (B6)
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B.2.1.2 Iterations (j = 1, 2, 3, ...):

Given the last incremental structure nodal displacement vector for the (n+1)-th load step,

, we obtain the last incremental basic element deformation vector, , as1

(B7)

We then compute:

 : increment of element end forces in the basic system; (B8)

 : updated element end forces in the basic system; (B9)

 : updated section forces at section x (B10)

in which  is the matrix of internal force interpolation functions (satisfying equilibrium

locally) and  is the vector of the section forces due to external forces applied along the

statically determined basic system;

 : section force increments; (B11)

 : section deformation increments; (B12)

 : updated total section deformations; (B13)

(B.2.1.2.a) Section state determination:

 : section resisting forces; (B14)

 : updated section tangent flexibility matrix; (B15)

 : updated residual section deformations; (B16)

 : updated element tangent flexibility matrix; (B17)

 : updated element tangent stiffness matrix; (B18)

 : element residual deformations. (B19)

where the section resisting forces  and section tangent flexibility matrix  are

evaluated through the section force-deformation relation.

1. To simplify the notation in section (B.2.1.2), we drop both the subscript  representing the time/load step and

the superscript  representing the iteration number of the global (structure level) Newton-Raphson iteration
cycle. 
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(B.2.1.2.b) Checking convergence:

If , the element iterative state determination proce-

dure is converged: update section and element variables and build the consistent tangent

stiffness matrix and the internal resisting force vector of the structure through direct stiff-

ness assembly. Otherwise (if not converged), perform another iteration (j+1) of element

state determination using:

(B20)

go to (B8) with  and repeat Equations (B8) through (B20) until convergence is

achieved. 

B.2.1.3 Updating:

 : updated element consistent tangent stiffness matrix; (B21)

 : updated element end forces in the basic system; (B22)

 : updated section forces; (B23)

 : updated section deformations; (B24)

 : updated section consistent tangent flexibility matrix. (B25)

B.2.2 Direct stiffness assembly:

 : (B26)

current structure resisting force vector;

 :

current structure consistent tangent stiffness matrix

As already mentioned in Section 2.1, a non-iterative alternative of the above (iterative) element state deter-

mination procedure has been proposed by Neuenhofer and Filippou [4], which reduces the computational

cost of nonlinear finite element analyses using force-based frame elements. The algorithm developed

below for finite element response sensitivity analysis using force-based frame models applies to both the

iterative and non-iterative element state determination procedures.
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APPENDIX C: MATERIAL RESPONSE INTEGRATION SCHEME FOR 1-D J2 PLASTICITY 
MODEL

The 1-D J2 rate constitutive equations must be integrated numerically to obtain the stress history for a

given strain history. Using the implicit backward Euler scheme to time-discretize the rate equations over

the time step [tn, tn+1], with step size , we obtain the following discretized material consti-

tutive equations:

1. Additive split of the total strain:

(C1)

2. Elastic stress-strain relation:

(C2)

3. Flow rule:

(C3)

where  is the discrete consistency parameter.

4. Hardening laws (linear kinematic and linear isotropic hardening):

(C4)

5. Kuhn-Tucker loading/unloading and plastic consistency conditions:

,  and (C5)

As a particular 1-D application of the very effective elastic-plastic operator split method with a concept of

return map which is based on the notion of closest-point-projection in the stress space (Simo and Hughes

[20]), the above discretized constitutive equations are solved for stress component  in two steps,

namely (1) a trial elastic step and (2) a plastic corrector step. In the trial elastic step, the plastic response is

frozen and, consequently, all of the current total strain increment ( ) is assumed to be

elastic. If the stress computed under this assumption satisfies the yield condition, then the current step is

elastic and the integration of the material constitutive law over time step [tn, tn+1] is complete. Otherwise,

the above discrete constitutive equations are solved for the discrete consistency parameter  and

finally for  (by the return map algorithm). The procedure is summarized below. 

Trial Elastic State:
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∫ λ· n 1+ Δt⋅≅=
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p
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p
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Δεn 1+ εn 1+ εn–=

Δλ( )n 1+

σn 1+



47

(C6)

IF  { } THEN

Update all the history/state variables at time tn+1 by assigning the corresponding trial values to them,

i.e., . 

Compute the consistent material tangent stiffness: 

(C7)
and EXIT. 

ELSE 

Plastic Corrector Step Using the Return Map Algorithm:

The plastic corrector step is based upon satisfying the consistency condition in discrete form:

(C8)

where 

(C9)

(C10)

(C11)

From Equations (C9) and (C10), it can be shown that

(C12)
and

(C13)
Substituting Equations (C11) and (C13) in Equation (C8), the discrete consistency condition can be
rewritten as
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(C14)

The discrete consistency parameter  can be obtained from the above equation as

(C15)

It can be shown that the consistent tangent material stiffness is given by

(C16)

Given  and once  is known, the material history/state variables at time tn+1 (i.e., ,

, , , ) are obtained from Equations (C3), (C4), and (C9). The above discrete

constitutive integration scheme for 1-D J2 plasticity is represented graphically in Figure C1 for an

elasto-plastic step. 

Note that the terms  and  in the above equations correspond to the terms  and

 in Equations (31), (35) and (37), while the term  in Equation (33) corresponds to

, given by Equation (C7) or Equation (C16) depending on the material state (i.e., elastic or

plastic, respectively).
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