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Finite-Element Simulation of the Depolarization

Factor of Arbitrarily Shaped Inclusions
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France
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An understanding of the polarization characteristics is vital to the rational design of future dielectric nanostructures. In this work, a
finite-element methodology has been applied to simulate 2-D two-phase heterostructures containing a dielectric inclusion with arbitrary
shape. The development does not impose any restriction on the shape of the inclusion. Given the paucity of experimental and numerical
data, we set out to investigate systematically the trends that shape and permittivity contrast between the inclusion and the host matrix
have on the depolarization factor (DF). The effect of the first- versus second-order concentration virial coefficient on the value of the DF
is considered for a variety of inclusion shapes and a large set of material properties. Our findings suggest that the DF for a 2-D inclusion
is highly tunable depending on the choice of these parameters. These results can provide a useful insight for the design of artificial
two-phase heterostructures with specific polarization properties.

Index Terms—Composite materials, depolarization factor, effective permittivity, finite element.

I. INTRODUCTION

T
HE MAIN goal of this paper is the depolarization factor

(DF) of arbitrarily shaped polarizable inclusion in 2-D het-

erostructures. Since analytical calculation of the response of an

arbitrary composite material is typically intractable, numerical

simulation is the standard method to extract the effective proper-

ties of these complex media. For that purpose we use a finite-el-

ement (FE) methodology to derive the effective permittivity of

the mixed medium. As an illustrative application of this tech-

nique, we consider a number of 2-D systems with different kinds

of inclusion geometry and orientation with respect to the ap-

plied electric field. One aim of the calculations outlined below

is to illustrate how the DF depends on the permittivity ratio be-

tween the inclusion and the host matrix. We devote a significant

amount of our efforts to demonstrate that the DF is strongly in-

fluenced by the boundaries roughness.

II. METHODOLOGY AND COMPUTATIONAL ASPECTS

A. Depolarization Factor

The dielectric 2-D heterostructure is divided into two phases:

one phase characterized by different shapes, isotropic permit-

tivity , and surface fraction distributed in another phase

characterized by isotropic permittivity and surface fraction

. Anisotropy can arise out of some asymmetry in the mi-

crostructure, e.g., distribution of oriented nondiscoidal inclu-

sions in a matrix. In this case, the DF is the tensor
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in a Cartesian system of coordinates. The trace of is unity,

and therefore, . For other isotropic cases,

the DF is a scalar . For simplicity, the following for-

mulation is written in terms of scalar quantities. However, the

procedure is easily generalized by considering permittivity and

depolarization tensors.

In many instances the effective permittivity can be scaled

to collapse to a common set of master curves described by

(1)

where is a functional of inclusion shape and

permittivity mismatch only. By now, a broad choice of analytic

expressions is available for the function which may score very

well if compared to experimental or numerical data [1], [2]. For

example, the Maxwell Garnett (MG) [1], [2] form for is given

by

(2)

Note that the roles of host and inclusion in (2) are not reciprocal.

In other instances, the function appearing in the right-hand

side of (1) is more complex, e.g., for Böttcher equation [also

termed symmetric Bruggeman (SBG)] [1], [2], it can be com-

puted as in (3), shown at the bottom of the next page.

Note that the roles of host and inclusion media are reciprocal.

In practice, laboratory or numerical data can be approximated

arbitrarily accurately with (2) or (3) only in the dilute limit, i.e.,

when is sufficiently small.

The question now is whether the MG and SBG analyses give

different set of values. At the heart of this study enters a

linearized version of (1) as fitting parameter. For the dilute limit

we expanded (2) and (3) to first-order in . In its simples form

this series expansion is
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(4)

where

This expression leads to three results. First, we show that the

leading first-order corrections are similar for MG and SBG

equations. Thus, the value of we obtain is, up to the level of

approximation based on the dilute limit, model-independent.

Second, (4) allows the determination of which is independent

of .

Before examining the trends of the DF, it is instructive to look

at the series expansion to second-order in . The second-order

expansion of may be written as

(5)

with coefficients

obtained using the computer package Maple. Thus, at higher

than linear order approximation, the values are model-depen-

dent and can differ from those determined by using the first-

order approximation depending on the range of which is

considered. In general, this comparison depends on the system

under consideration and the level of accuracy required. Such

effect will be discussed in this work. For the purposes of the

present discussion, the DF will be analyzed by fitting the effec-

tive permittivity data by means of (4) for , or

using (5) for .

B. Finite-Element Methodology

We consider a general 2-D system which can be defined as a

bounded domain in the complex plane of surface which has

effective permittivity , in which there is no source charge, as

illustrated in Fig. 1. Solving the problem at hand means finding

expressions for the scalar potential and electric field

everywhere within the domain . The local potential dis-

tribution inside is given by the conservation of electric dis-

placement flux through the “surface” , i.e., Laplace partial dif-

ferential equation

(6)

Fig. 1. Cartoon sketch of the unit square cell of a typical 2-D composite struc-
ture containing a single inclusion (shaded region). The model space can simu-
late a capacitor by applying a potential difference between the top and bottom
faces of the model space. The evaluation of the effective permittivity, along the
direction corresponding to the applied field, i.e., " = " , requires that the con-
servation of the electric displacement flux through the “surface” S has to be
solved subject to appropriate the relevant boundary conditions for the potential.
We fix V = 0 V and V = 1 V and assume that (@V =@n) = 0 on the other
side faces. L and S have both been set to unity.

Fig. 2. Schematic diagrams of the structural motifs of the inhomogeneous mix-
tures considered in this work. (a) Disk. (b) Equilateral triangle. (c) Square. (d)
Regular pentagon. (e) Regular hexagon. (f) Regular octogon. (g) Rectangle of
dimensions 2a and 2b. (h) Ellipse of semimajor axis a and semiminor axis b. (i)
Sierpinski triangle (third iteration). (j) Sierpinski square (third iteration).

where and are the local permittivity and potential, re-

spectively. In the case at hand, the effective permittivity along

the direction corresponding to the applied field, i.e., ,

is found by integration via ,

where denotes the difference of potential imposed in

the -direction, is the composite thickness in the same direc-

tion, and is the “surface” of the unit cell perpendicular to the

applied field. The potential on the top face of the square, ,

is fixed at a value of 1 V, while that on the bottom face, , is

fixed at 0 V. One then solves (6) subject to appropriate boundary

conditions. The algorithm was similar to that used in [3]. For

simplicity, we will focus our discussion on 2-D deterministic

two-phase heterostructures. In all cases, the simulation cell is

a square of length .

Periodic boundary conditions are enforced in the direction

for these structures. All data were obtained using the FE element

as implemented in the commercial finite-element solver Comsol

(3)
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Fig. 3. Number of vertices dependence of DF for polygons. Open circles and
squares correspond to the values ofA deduced from first-order and second-order
approximation, respectively, for (" =" ) = (20=2), whereas solid circles and
squares the values of A deduced from first-order and second-order approxima-
tion, respectively, for (" =" ) = (1=100). For comparison, the DF data (solid
triangles) of Garboczi and Douglas [4] are also shown for polygons in the limit
(" =" ) ! 1.

Multiphysics and the procedure sorted out on a personal com-

puter (PC) with a Pentium IV processor (3 GHz). Comsol Multi-

physics permits the closely controlled generation of FE meshes

through the use of input files containing complete instructions

for node-by-node and element-by-element mesh specification,

along with imposition of boundary conditions. In this work, the

-axis was defined as pointing in the direction of the applied

electric field.

Before proceeding, it is useful first to present in Fig. 2 the

relatively simple prototypical types of inclusion that were se-

lected in this study: regular -gons, ellipse, rectangle, Sierpinski

square, and triangle fractal structures. The ellipse is character-

ized with semimajor axis and semiminor axis . The dimen-

sions of the rectangle are .

As noted in the Introduction, despite concentrated efforts,

very few exact results on the DF are known. The only data to

which to compare our calculated DF are the values given by

Douglas and Garboczi [4], [6] for the -gons inclusion which

are in good agreement with our value (see below).

III. RESULTS AND DISCUSSION

Unless otherwise noted the DF values plotted in the figures

are those obtained using (5).

A. Effect of Varying the Inclusion Shape and Orientation With

Respect to the Applied Electric Field

Consider first the case of polygons (Fig. 3). Remarkably,

we found a general trend in series of polygons, i.e., the values

of are substantially higher as the number of vertices of the

inclusion increases when respectivelyl . Overall,

this trend appears to be independent of permittivity ratio over

the range of permittivity ratios considered. For polygons,

achieves its absolute maximum for disk when respectively

Fig. 4. Aspect ratio dependence of DF tensor components for ellipse (�) and
rectangular ( ) inclusion displayed on a semilog plot. (" =" ) = (20=2). The
lines are guides for the eyes.

Fig. 5. Plot of the angular dependence of the DF. Inclusion rotations are per-
formed about the y -axis. Symbols are: (�) ellipse and ( ) rectangle. The per-
mittivity contrast is set to (" =" ) = (20=2), and the aspect ratio is (a=b) =
(1=3). The lines are guides for the eyes.

, i.e., in the limit . A com-

parison of the two approximations, i.e., (4) and (5), indicates

that while there are slight differences in the actual values, the

resulting DF are comparable. It is difficult to decide which

of these procedures provides the better description in general.

The data from Douglas and Garboczi [4], [6] are presented for

comparison. They are close to the current results.

The effect of anisotropic inclusions, i.e., ellipse and rectangle,

for an electric field polarized in the - and -directions is now

considered. As displayed in Fig. 4, there is significant effect

of inclusion asymmetry on DF. The identical mild “S”-shaped

profile is observed for both inclusions.

For purpose of comparison, we plot the DF tensor compo-

nents for two polarizations in Fig. 4. From this graph, one di-

rectly verifies that . Our simulation indicates that a

difference of about one order of magnitude can be evidenced

between the longitudinal and transverse DFs. But even more re-

markable is the effect of the orientation of ellipse and rectangle

with respect to the applied electric field, qualitatively almost

identical for both inclusions. This is illustrated in Fig. 5, where
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Fig. 6. Iteration number dependence of the DF for the Sierpinski tri-
angle. Full circles correspond to (" =" ) = (20=2), and full squares to
(" =" ) = (1=100). The lines are guides for the eyes.

Fig. 7. Same as in Fig. 6 for the Sierpinski square.

we found that the angular dependence of DF is well represented

by a law.

For comparison and completeness, we have undertaken fur-

ther calculations on fractal inclusions. The same simulations

were run using the same set of parameters for the first four it-

erations of the fractal patterns. Figs. 6 and 7 suggest that, for

sufficiently large iteration number, the DFs converge either to 0

or to 1.

B. Effect of Varying Permittivity Contrast Ratio

To further investigate our findings, the same systems were

subjected to different permittivity contrast between the con-

stituent materials. All other parameters were unaltered. Specif-

ically, we consider a set of situations corresponding to small

and large permittivity contrast ratio . On examining the

data plotted in Fig. 3, we observe that an absolute minimum

(respectively maximum), corresponding to the case of disk, for

DF is obtained when (respectively ).

Moreover, the values of are substantially lower (respectively

higher) as the number of vertices of the inclusion increases

when (respectively ). this effect can be

interpreted as being due to the Keller-Dykhne duality (or phase

exchange) relation [2], i.e., , which

implies that when . Subsequently, the

focus of our attention has been on Sierpinski fractal inclusions.

Results in Figs. 6 and 7 suggest two different and opposite

trends for this type of inclusion. As before, this behavior

originates from the duality symmetry. Moreover, it is found

that and at large

iteration number.

For reason of mathematical analogy, the results of this study

translate immediately into equivalent results for the demagne-

tizing factors for a uniformly magnetized inclusion with an ar-

bitrary shape.

IV. PERSPECTIVES

Our approach is expected to be particularly useful to con-

struct models of electromagnetic wave transport in complex

2-D systems, e.g., monolayer colloidal suspensions confined

between narrowly spaced glass plates [5], where shape, rough-

ness, and other morphological parameters all contribute to the

macroscopic dielectric response. In principle, the method, the

FE approach, and our conclusions apply to structures of any

dimension.
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