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Abstract—Many surface acoustic wave (SAW) devices con-
sist of quasiperiodic structures which are designed by succes-
sive repetition of a base cell. The precise numerical simula-
tion of such devices including all physical effects is currently
beyond the capacity of high end computation. Therewith,
we have to restrict the numerical analysis to the periodic
substructure. By using the finite element method (FEM),
this can be done by introducing special boundaries, so called
periodic boundary conditions (PBCs).

To be able to describe the complete dispersion behavior
of waves including damping effects, the PBC has to be able
to model each mode which can be excited within the peri-
odic structure. Therefore, the condition used for the PBCs
must hold for each phase and amplitude difference existing
at periodic boundaries. Based on the Floquet theorem, this
criteria is fulfilled by our two newly developed PBC algo-
rithms.

In the first part of this paper we describe the basic theory
of the PBCs. Based on the FEM, we develop two different
methods which allow the calculation of phase and attenua-
tion constants of waves propagating on periodic structures.
Further on, we show how to compute the charge distribution
of periodic SAW structures with the aid of the new PBCs.

In the second part, we compare the measured and simu-
lated dispersion behavior of waves propagating on periodic
SAW structures on two different piezoelectric substrates.
Finally, we compare measured and simulated input admit-
tances of structures similar to SAW resonators.

I. Introduction

The development of SAW devices is nowadays mainly
done by utilizing computer tools, because this way is much
cheaper and faster compared with experimental measure-
ments on prototypes. A very accurate method for this pur-
pose is the finite element method (FEM) [1–6]. Therein,
the real behavior of devices is modeled on the basis of par-
tial differential equations (PDEs) which have to be dis-
cretized in time or frequency and space.

A finite element simulation of a complete SAW device
is at present not possible. For example, a 3D model of a
radio frequency resonator would consist of approximately
1010 elements, considering a necessary discretization of at
least ten elements per wavelength. This amount of ele-
ments can’t be handled efficiently by nowadays computers.
Therefore, the models have to be reduced in complexity
and size. This can be done by neglecting features which
contribute only in a diminutive way to the final output or
by regarding special properties of the simulated object like
periodicities.

1 The authors are with the Department of Sensor Tech-
nology, University of Erlangen-Nuremberg, Germany, e-mail:
manfred.hofer@lse.e-technik.uni-erlangen.de
2 The authors are with EPCOS AG, Munich, Germany
3 The authors are with the Department of Computational Mathemat-
ics and Optimization, University of Linz, Austria

Many SAW devices consist of periodic structures [7, 8].
This local periodicity can be utilized to reduce the size of
the FE model tremendously. The use of periodic boundary
conditions (PBCs) in the FEM allows the reduction of the
periodic simulation domain to one base cell. Nevertheless,
the complete dispersion behavior of all waves propagating
in the periodic structure can be computed.

Many publications have already been reported on the
field of periodic boundary conditions, but all of them deal
with the calculation of the phase constant only [9–13]. In
this paper, two different methods regarding the wave prop-
agation in periodic structures on arbitrary piezoelectric
substrates are explained in detail. They allow the simu-
lation of complete dispersion relations meaning the calcu-
lation of both, the phase and the attenuation constants.
These give valuable information to SAW designers such as
position of stopband edges, group and phase velocity and
even reflectivity of electrodes. Further on, we show how to
compute the response of periodically arranged electrodes
to a harmonic voltage excitation with the aid of PBCs.
Therewith, input admittances of structures similar to SAW
resonators can be simulated.

The proper functionality of the two new algorithms is
demonstrated by comparison of simulations with analytical
results of symmetric lamb modes. The practical applica-
tion of the new simulation schemes is shown by comparison
of measured and simulated dispersion curves for periodic
structures on two different piezoelectric substrates, 36◦

YX-LiTaO3 and 37.5◦ rotated quartz, respectively. Further
on, measured input admittances are compared to simulated
ones and show good coincidence. All comparisons empha-
size the applicability of the newly developed methods to
practical tasks.

II. Periodic Boundary Condition (PBC)

SAW resonators often consist of up to thousand of elec-
trodes. Therefore, only a negligible error is made by regard-
ing the reflector as an infinitely extended periodic structure
(see Fig. 1). The substrate - in the case of SAW devices a
piezoelectric single crystal material - spreads over the lower
half space (z ≤ 0), whereas the periodic placed electrodes
with arbitrary shape range from 0 ≤ z ≤ h. In the upper
half space, air is considered. An optional protection cover
may be additionally introduced into the model. The period
of the structure is the pitch p.

In every base cell (Fig. 1), a (surface-) wave impinging
from the left is mainly transmitted but also partly reflected
due to four main effects: a) piezoelectric shorting, b) ge-
ometric discontinuities, c) electrical regeneration and d)
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Fig. 1. Periodic SAW structure

mass loading [14]. A small part of the energy is converted
into heat due to ohmic losses or conversion into bulk acous-
tic waves.

A. Wave Propagation in Periodic Structures

A general periodic structure can be considered as suc-
cessive repetition of a base cell Ωp (see Fig. 2). In the
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Fig. 2. Base cell Ωp with geometric periodicity p

following, the boundary Γ4 in Fig. 2 will be referred to
as “left periodic boundary (Γl)” and boundary Γ2 will be
termed as “right periodic boundary”, denoted by Γr.

The main goal of our examination is to simulate arbi-
trary waves propagating in periodic structures. Therefore,
it is not sufficient to restrict the results to waves with wave-
length λ of a fraction of twice the width p of the base cell
(λ = 2p/i with i ∈ N+). These modes could be eas-
ily achieved by setting the degrees of freedom of the right
periodic boundary Γr equal to those on Γl (i = 2n with
n ∈ N+), or to the negative of those from Γl (i = 2n + 1
with n ∈ N0) [15, 16]. This kind of periodicity cannot be
used if arbitrary waves have to be considered. Therefore,
a more fundamental approach has to be pursued.

Due to the periodicity of the geometry, the resulting field
distribution must be also quasi-periodic, leading to

u(x + p)ejωt = u(x)e−γpejωt , (1)

with u denoting the field distribution and γ = α + jβ the
complex propagation constant. The variable α describes
the decay behavior and β stands for the phase propagation
constant of the wave. In general, a time harmonic excita-
tion is assumed. Therefore, the term ejωt will be omitted
further on.

With a periodic function up(x + p) = up(x), (1) can be

written as
u(x) = up(x)e−γp . (2)

Expanding this periodic function in a Fourier series

up(x) =
∞∑

m=−∞
ame−j 2πm

p x (3)

with am the Fourier coefficient, the complete field distribu-
tion can be written as superposition of damped waves

u(x) =
∞∑

m=−∞
ame−(γ+j 2πm

p )x . (4)

B. Dispersion diagram

The relation between the complex propagation constant
γ and the frequency ω is needed to describe wave prop-
agation in periodic structures. This dependency can be
illustrated in a dispersion diagram (Fig. 3).
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Fig. 3. Dispersion diagram of wave propagation in a periodic struc-
ture

In general, two different regions can be distinguished:
• Wave propagation: At frequencies below the lower
stopband edge ω1 and above the upper stopband edge ω2

the considered modes are propagating ones. At the onset-
frequency ωc a conversion to backscattered bulk waves oc-
curs. This results in loss of energy of the propagating wave
manifesting in a nonzero, positive damping coefficient α.
• Wave reflection: At frequencies in the stopband (ω1 <
ω < ω2) the waves are reflected at periodic disturbances
(e.g. electrodes). These reflections add coherently, there-
fore, no propagating modes exist and the waves are damped
exponentially (α > 0 at β = (2n+1)π/p with n ∈ Z). The
width of the stopband is proportional to the reflection per
disturbance [17]. If no disturbance is present, the stopband
vanishes.

C. FE Formulation of the Periodic Boundary Conditions
(PBCs)

The fundamental equations for the FE simulation of
piezoelectric media have been published earlier. There-
fore, our derivation directly starts at the algebraic system
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of equations for a harmonic piezoelectric problem [18](
Kdd + jωCdd − ω2Mdd Kdφ

Kφd −Kφφ

)
︸ ︷︷ ︸

K

(
d
φ

)
=

(
F
Q

)
,

(5)
where the notation has been chosen to

Kdd mechanical stiffness matrix,
Cdd mechanical damping matrix,
Mdd mechanical mass matrix,
Kφφ dielectric stiffness matrix,
Kdφ piezoelectric coupling matrix,
F nodal vector of external mechanical forces,
Q nodal vector of electric charges,
d nodal vector of mechanical displacements,
φ nodal vector of electric potentials.

For convenience, the matrix K is introduced as combina-
tion of all FE matrices. In further deductions, the vector
of unknowns will be denoted as u (u = (d,φ)T ) and the
source term on the right-hand-side as R (R = (F,Q)T ).
These definitions allow us to write (5) as

Ku = R . (6)

D. Schur-Complement Method

To be able to incorporate the periodicity condition (1),
we split the unknowns u into inner nodes ui and boundary
nodes ub (ub = (ul,ur)T ). The same splitting is applied
to the matrix K and the right-hand-side vector R(

Kii Kib

Kbi Kbb

) (
ui

ub

)
=

(
0
Rb

)
. (7)

The forces in the interior of the simulation area stay in
equilibrium. Therefore, the right hand vector contributing
to the inner nodes is a zero vector. This fact can be used
to establish the Schur-Complement of (7) obtaining

(−KbiK−1
ii Kib + Kbb)︸ ︷︷ ︸

S

ub = Rb , (8)

which can also be written as(
Sll Slr

Srl Srr

) (
ul

ur

)
=

(
Rl

Rr

)
(9)

with

Sll = −KliK−1
ii Kil + Kll (10)

Slr = −KliK−1
ii Kir + Klr (11)

Srl = −KriK−1
ii Kil + Krl (12)

Srr = −KriK−1
ii Kir + Krr . (13)

Due to the local support of the interpolation functions,
the periodic boundaries don’t couple geometrically. Hence,
all entries of Klr and Krl are zero. Furtheron, the Schur-
Complement matrices hold the following conditions

(Sll + Srr) = (Sll + Srr)T , (14)
Slr = ST

rl . (15)

After setting
η = e−γp , (16)

the periodicity condition (1) can be incorporated by re-
placing ur with ηul and Rr with −ηRl (the minus sign is
required for the equilibrium of the appearing forces on the
periodic boundaries). Therewith, we arrive at(

Sll Slr

Srl Srr

) (
ul

ηul

)
=

(
Rl

−ηRl

)
. (17)

The right hand side can be eliminated by multiplying
the first line with η and subsequent addition of both lines.
Hence, the equation can be written as a quadratic eigen-
value problem in η

η2Slrul + η(Sll + Srr)ul + Srlul = 0 . (18)

Therein, only the nodes on the left boundary appear. This
equation can be solved, for example, by inverse iteration
[19], with a two-sided Lanczos method [20], or by lineariz-
ing the system [21] which doubles the matrix size. The
latter solution method is straight forward to implement
and therein the standard non-symmetric eigenvalue solver
from LAPACK [22] can be used.

The matrices in (18) are dense but small: the size is
proportional to the number of unknowns of one periodic
boundary. Due to the Schur-Complement, an inversion of
the matrix Kii, which contains the unknowns of all inner
nodes and is therefore of notable size, has to be performed.
Kii includes the frequency weighted mass and damping
matrices and thus, the inversion has to be carried out for
every frequency step separately.

E. Method with Inner Nodes (Transformation to a General
Linear Eigenvalue Problem)

A different scheme can be developed by starting at (7) Kii Kil Kir

Kli Kll Klr

Kri Krl Krr

  ui

ul

ur

 =

 0
Rl

Rr

 , (19)

and incorporating the periodicity condition (1) in a simi-
lar way as before in the Schur-Complement Method. This
yields Kii Kil Kir

Kli Kll Klr

Kri Krl Krr

  Ii 0
0 Il

0 ηIl


︸ ︷︷ ︸

T1

(
ui

ul

)
=

 0
1
−η

Rl

(20)
with I denoting the identity matrix. Multiplication with
an appropriate matrix

T2 =
(

Ii 0 0
0 ηIl Il

)
(21)

from the left side eliminates the right hand side. The term
with the squared propagation constant η2 cancels out be-
cause the according matrix Krl is per definition a zero ma-
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trix. Finally, the problem can be written as a general eigen-
value problem

A
(

ui

ul

)
= ηB

(
ui

ul

)
(22)

with matrices

A =
(

Kii Kil

Kri 0

)
and (23)

B =
(

0 −Kir

−Kli −(Kll + Krr)

)
. (24)

Compared to the Schur-Complement formulation no ma-
trix inversion is needed. On the other hand the size of the
eigenvalue problem is much larger: Here, all inner nodes
and additionally the nodes on one periodic boundary con-
tribute to the eigenvalue matrix but, fortunately, the ma-
trices A and B keep sparse. At present, the sparsity of
the matrices cannot be used due the lack of an eigenvalue
solver for sparse, non-symmetric, complex matrices.

For the considered examples the Schur-Complement
Method compared to the Method with Inner Nodes is ap-
proximately three times faster using the LAPACK eigen-
value solver. Beside the calculation time both methods are
equal and deliver same results.

F. Solution with Defined Voltage Excitation on the Elec-
trodes

With the above methods, all possible freely propagating
modes can be calculated as eigenvalues of the described
eigensystems. These give the SAW device designer valu-
able insight into general propagation properties of special
chosen configurations and materials.

In addition to freely propagating modes (= homogeneous
solutions of the system of PDEs) one is also interested in
particular solutions describing the excitation properties of
the system: Here, the magnitude of the electric potential on
the electrodes is fixed to a predefined value. Due to the fact
that the electrodes are attached to a voltage source, addi-
tional energy is supplied to the propagating waves. There-
fore, the attenuation constant α may be set to zero. As-
suming a phase difference of θ from unit cell to unit cell,
the propagation constant takes the form γ = jβ = jθ/p.
Since, in this case, both ω and β are given, only a simple
system of linear equations has to be solved.

In principle, both methods (the Schur-Complement
Method and the Method with Inner Nodes) can be applied,
but the Schur-Complement needs an additional matrix in-
version and therefore the Method with Inner Nodes will be
utilized, resulting in

(A− ηB)
(

ui

ul

)
=

(
fi
fl

)
. (25)

The vector fl is a zero vector because no external forces
or electric potentials can be applied to the periodic bound-
aries. The additional boundary conditions of the potential
on the electrodes are regarded in the right hand side vector
fi.

The evaluation of the complete result vector (ui,ul) or
at least the contributions of the electric voltage for every
given phase difference θ and every frequency ω can hardly
be managed. Therefore, the calculation of the overall elec-
trode charge Q is performed. It can be used to compute
the input admittance Y

Y =
jωQ

U
(26)

for a given excitation voltage U and angular frequency ω.
The calculation of the charge is done by using Maxwell’s
equation

∇ ·D = q (27)

with D the dielectric displacement vector and q the electric
charge density. Using Gauss theorem and regarding the
piezoelectric effect, one yields∫

Γ

(Kφu −Kφφ)
(

u
φ

)
dΓ = Q , (28)

with Γ the vector of the integration area. If this area is
chosen directly on the electrode interfaces, one additionally
gets the charge distribution on the electrode (see Fig. 4).

Electrode

Substrate

Integration=
path

Air

Fig. 4. Integration path for the calculation of the electrode charge
distribution

G. Verification of the newly developed PBCs

The verification of the presented methods was done by
comparing the analytic solution with simulated results of
pure mechanical symmetric plate modes. They can be de-
scribed by [23]

tan ktsb/2
tan ktlb/2

= − 4β2ktlkts

(k2
ts − β2)2

, (29)

with b denoting the plate thickness, ktl the wave number
of the longitudinal wave, kts the wave number of the shear
wave and β the propagation constant.

The dependencies between wave numbers and propaga-
tion constant can be written as

k2
tl =

(
ω

cL

)2

− β2 and (30)

k2
ts =

(
ω

cS

)2

− β2 , (31)

with cL the velocity of the longitudinal wave and cS the
velocity of the shear wave. In Fig. 5 the complex valued
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Fig. 5. Dispersion diagram of the analytical solution of three lamb
waves of lowest order (after Mindlin: see [23])

analytic solution of the three lamb waves of lowest order is
displayed.

The FE model for the simulation of symmetric plate
modes can be seen in Fig. 6. Therein, p denotes the

G =l G4 Wp

x1

x2

p

hG =r G2

G1

G3

Fig. 6. FE model for calculation of plate modes

width of the base cell and h is the half plate thickness,
due to a symmetry boundary condition on Γ1. The bound-
aries denoted with Γl and Γr are the left and right periodic
boundary. On Γ1 displacements in x2 direction have been
suppressed to receive only symmetric lamb modes. On Γ3

a force free boundary is assumed.
The calculation was performed on the basis of the two

methods introduced above. Both methods deliver simi-
lar results. The Schur-Complement Method was approx-
imately three times faster, because the used LAPACK
eigenvalue solver could handle only dense matrices. A com-
parison of analytic (Fig. 5) and simulated results (Fig. 7)
shows a good qualitative congruence. Both, the phase and
the attenuation constant coincide very well.

A quantitative comparison can be seen in Fig. 8.
Therein, the values of simulated and analytical modes
match very good for small phase constants β. Looking at
higher values of β, one can discover little differences which
can be explained by the discretization: If the phase con-
stant increases, the wave length gets smaller and, therefore,
with a constant discretization of the simulation domain, the
amount of elements per wavelength decreases. Hence, the
geometric resolution of the FE grid at higher β values is
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not as good as at low values.
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Fig. 8. Quantitative comparison of analytical and simulated results
of lamb modes

III. Results

The model illustrated in Fig. 9 has been used for all
following calculations.

A. Dispersion Diagram of a Structure on 36◦ YX-LiTaO3

First, a simulation with aluminum electrodes of 0.2µm
height, a metalization ratio ζ (ζ = wEl/p with wEl the
electrode width) of 0.7 and a substrate material of 36◦ YX-
LiTaO3 was performed. The material data were taken from
[24] . The pitch p was chosen to be 1.33 µm. At this cut
of LiTaO3, the displacements of the surface wave do not
restrict to the sagittal plane. Therefore, the displacements
in all three space directions and the full anisotropy of the
material have to be taken into account, although the model
itself may be kept two dimensional.

The comparison of the simulated and measured results
are shown in Fig. 10. It was not possible to obtain mea-
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Fig. 10. Comparison of simulated (dots) and measured (crosses)
dispersion data

sured results for frequencies in the stopband. Therefore,
just the propagation branches of the surface wave can be
compared to the simulated results. In Fig. 10, many types
of propagation modes can be identified. The one starting
at low frequency in the middle of the figure is a Rayleigh
mode. In the upper part of the figure, bulk acoustic wave
modes can be determined which interact with the surface
wave. The interesting mode, which is compared to mea-
sured data, is a leaky surface wave (LSAW).

Compared to measured data, the simulation leads to
slightly higher stopband edges. This can be explained with
the finite simulation domain. With increasing depth of
the simulated substrate, the solution converges against the
measured results, because the i-th approximated eigenvalue
is bounded from below by the i-th exact eigenvalue while
Galerkin rules are not violated (e.g. when reduced integra-
tion is employed) [2]. Finer meshes lead to larger eigenvalue
problems which can’t be handled efficiently at the moment.

B. The Stopband Width of a Structure on 37.5◦ Rotated
Quartz as a Function of the Metalization Ratio

The following simulations and measurements have been
performed on a substrate of 37.5◦ rotated quartz with alu-
minum electrodes. The material constants have been taken
from [25]. The height of the electrode hEl was fixed to
250 nm, the pitch p at 4µm and the metalization ration
ζ has been varied to show the influence of the electrode
width on the propagation properties, like stopband edge
and stopband width. The substrate height was chosen to

be eight pitches.
As an example, the dispersion diagram of a SAW struc-

ture with a metalization ration of ζ = 0.5 can be seen in
Fig. 11. The measured frequencies are slightly beneath the
simulated ones. Again, this can be attributed to the chosen
FE grid. This property has been experimentally proofed by
simulations with substrate height of only four pitches. In
that case, the stopband edges raise additionally 2 MHz at
a total stopband width of about 5 MHz.

Various metalization ratios have been examined with our
method (see Fig. 12). Measurements are possible only out-
side the stopband. Therefore, the measured data has been
extrapolated to the value βp /π = 1 to obtain the mea-
sured stopband width for comparison. The influence of the
electrode width on the stopband size can be seen clearly.
It is caused mainly by the additional mass loading [14]. As
shown in [17], the stopband increases if the reflectivity per
electrode gets larger. This is the case when the total mass
of the electrode increases.
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Fig. 11. Exemplary dispersion diagram for ζ = 0.5 of SAW structures
on 37.5◦ rotated quartz
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C. Charge Distribution in Electrodes on 37.5◦ Rotated
Quartz

With the same configuration as in the preceeding chap-
ter, simulations of the charge distribution on an electrode
have been performed (see Fig. 13). For the calculation of
the charge distribution at all electrode edges, the air sur-
rounding the electrode has to be taken into account. In air,
the electric potential has to be calculated but the mechani-
cal field may be neglected due to the extremely low mechan-
ical stiffness of the surrounding air. Anyway, the vanishing
stress contribution on the free substrate surface must be
considered. Especially for materials with low dielectric con-
stants (relative dielectric constants of quartz: εrxx = 4.5
and εrzz

= 4.6) the surface charge of the electrode-air in-
terfaces has to be taken into account. The charge on these
interfaces can be estimated by 1/εr times the charge of the
electrode-substrate interface. Calculating the total charge
at electrodes on a quartz substrate one would make an error
of at least 16% by neglecting the charge on the electrode-
air interfaces.
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Fig. 13. Charge distribution at an aluminum electrode on 37.5◦

rotated quartz

D. Calculation of the Input Admittance of a Structure on
36◦ YX-LiTaO3

A periodically arranged structure on 36◦ YX-LiTaO3

with a pitch of 1 µm is examined (see Fig. 9). The metal-
ization ratio ζ is fixed to 0.7 and the electrode has a height
hEl of 200 nm. The substrate material data have been taken
from [24] and those of aluminum from [25]. The area above
the electrode has not been taken into account because the
considered material has a high permittivity (εr ≈ 40) and
therefore, this simplification has not much impact on the
simulation results. The depth of the simulation domain has
been chosen to three pitches.

To verify the results of the simulation, measured data
of a synchronous one-port resonator with 150 IDT fingers
and 60 reflector fingers on each side of the IDT has been

compared to the simulation. Due to the large amount of
IDT and reflector fingers, end effects as a result of the
finite length of the structure have a minor influence on the
admittance versus frequency curve in the vicinity of the
stopband. Therefore, this structure can be used to validate
the simulation of the strictly periodically structure to a
good approximation.
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Fig. 14. Simulated propagation constant β and decay constant α

A comparison of the dispersion curve with measured data
shows a good agreement of the stopband edge frequencies.
In the real part of the admittance plot, they can be figured
out as peaks at 1.905 GHz and 2.07 GHz. In the accord-
ing simulation in Fig. 15, the upper stopband edge is not
visible, because this is a result of a finite-length structure.

The values of the originally simulated admittance at the
resonance frequencies have been slightly larger than those
of the measurement. This is a result of the electrical resis-
tance of the electrode fingers and other small resistances
which appear in measurements, e.g. the contact resistance
between measurement tips and bonding pads. This series
resistance has been calculated to 0.3Ω and incorporated
into the simulated results.

Comparing the original simulated and measured data of
the admittance, a small frequency shift of 5.5 MHz (corre-
sponding to 3�) could be discovered. This is again an ar-
tifact of the chosen FE grid. In addition, for the imaginary
part of the admittance =(Y ), a shift to smaller values could
be figured out. Possible explanations for this difference are
a small spurious capacitance parallel to the measured de-
vice or small fabrication tolerances. These influences will
be investigated in more detail in the near future. To allow
a better comparison of measured and simulated data and
to account for the aforementioned effects, a parallel capaci-
tance of 2 pF has been incorporated into the simulated data
and the simulated curve has been shifted in frequency by
5.5MHz towards zero.

IV. Conclusion

Two different algorithms for the calculation of waves
in periodic piezoelectric structures have been introduced.
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They are based on the finite element method (FEM), which
allows the simulation of waves on any piezoelectric sub-
strates, with arbitrary electrode shapes or even additional
electrode cover layers.

The resulting eigenvalue problems is used to calculate
the dispersion relation of the propagating waves, including
the damping coefficient. By reformulating the system, it is
possible to calculate the charge distribution on an electrode
at given electric excitation.

Several simulation results on 36◦YX-LiTaO3 and 37.5◦

rotated quartz have been compared to measurements.
They show that the newly developed methods can be used
for the precise prediction of wave propagation parameters
and input admittances.
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genieure: Eine Einführung in die numerischen Grundlagen und
Computersimulation, B.G. Teubner GmbH, Stuttgart-Leipzig-
Wiesbaden, 2001.

[5] P. Ciarlet, The Finite Element Method for Elliptic Prob-
lems, North-Holland Publishing Company, Amsterdam-New
York-Oxford, 1978.

[6] Susanne C. Brenner and Ridgway L. Scott, The Mathematical
Theory of Finite Element Methods, Springer, New York, 1994.

[7] David P. Morgan, Surface-Wave Devices for Signal Process-
ing, vol. 19 of Studies in Electrical and Electronic Engineering,
Elsevier, 1991.

[8] Colin K. Campbell, Surface Acoustic Wave Devices, Applica-
tions of Modern Acoustics. Acacdemic Press, San Diego, 1998.

[9] Reinhard Lerch, “Analyse hochfrequenter akustischer Felder in
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