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Finite-Element Solution of Periodic Waveguides for 

Acoustic Waves 

MASANORI KOSHIBA, SENIOR MEMBER, IEEE, SEIICHI MITOBE, 

AND MICHIO SUZUKI, SENIOR MEMBER, IEEE 

Abslract- A numerical approach based on the finite-element method 

is described for the analysis of periodic waveguides for acoustic waves. 

The va lidity of the method is confirmed by comparing the numerical 

results for the dispersion curves of horizontal shear (SH) waves in a 

groove grating on an isotropic material with the experimental results. 

The application of this approach is a lso demonstrated by investigating 

the propagation characteristics of SH surface waves in a groove grating 

on a layered isotfopic material. Furthermore, ror a groove grating on 

a piezoelec tric material, the stop-band width and the center-rrequency 

shift in the dispenion diagram ror Rayleigh waves are calculated, which 

afe important parameters ro r design of a reflector, and the Influences 

or groove shape on these parameters are examined. 

I. INTRODUCTION 

I N recent years, attention has been given to the use of 
gratings on solid surfaces to reduce the propagation ve

locity of acoustic waves and to introduce bandgaps and 
cutoff frequencies into their dispersion relations for the 
purpose of producing delay lines and filtering devices [ 1]

[6]. Several methods for the analysis of periodic wave
guides in Fig. I have been proposed , and the coupled
mode theory, which derives the coupled-mode equations 
under the assumption of small perturbations , is widely 
used [7]-[12]. The calculation procedure of this method 
is relatively simple, but the accuracy is degraded for large 
perturbations. On the other hand, it is possible to increase 
the accuracy by expanding the acoustic and electromag
netic fields in terms of Fourier series by means of the Flo
quet theorem and deriving the homogeneous linear equa
tions of infinite order [13]-[19J. However, it seems to be 
difficult to apply this approach to arbitrarily shaped peri
odic waveguides. 

In this paper a numerical approach based on the finite
element method is described for the analysis of arbitrarily 
shaped periodic waveguides for acoustic waves. The va
lidity of the method is confirmed by comparing {he nu
merical results for the dispersion curves of horizontal 
shear (SH) waves in a groove grating on an isotropic ma
terial with the experimental results [4]. We also demon
strate the application of this approach by investigating the 
propagation characteristics of SH slIrface waves in a 

groove grating on a layered isotropic material. Further-, 
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Fig. I. Periodic waveguide. 

more, for a groove grating on a piezoelectric material, the 
stop-band width and the center-frequency shift in the dis
persion diagram for Rayleigh waves are calculated, which 
are important parameters for· design ofa reflector, and the 
influences of groove shape on these parameters are ex
amined. 

II . BASIC EQUATIONS 

The structure under study is periodic in the x direction 

with period d as shown in Fig. I . The region n sur
rounded by boundaries r I to r 4 is the basic cell. The me
chanical boundary conditions on r3 and r4 are Ux = uy = 

Uz = 0 or Txn = T\'n = Tzn = 0, where ux, uy, and Uz are 

the particle displacements, Txn, Tyn> and TUlare the 
stresses, and n denotes the outward nonnal direction to 
the boundary. The electrical boundary conditions on r 3 

and r 4 are ¢ = 0 or Dn = 0, where ¢ is the electric po

tential and Dn is the electric displacement. 
Assuming that no variation exists in the z direction, we 

have the following equations [1]: 

aT,/ ax + aT,/ ay + w2
p u - 0 (Ia) 

aD,/ ax + aD,/ ay - 0 ( Ib) 

where 

[ «, 
T 

(2.) u ~ u, u,] 

T" = [Txx T" Tv] T (2b) 

Ty = [T.ry . ] T Tyy Tz.y . (2c) 

Here w is the angular frequency, p is the mass density, 
and T denotes a transpose. 
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III. FINITE-ELEMENT ApPROACH 

Dividing the region n into a number of second-order 
triangular elements in Fig. 1, u and ¢ within each element 
are defined in terms of the particle displacement and the 
electric potential at the corner and mi~side nodal points: 

where 

u ~ [N]'{u} , 

.p ~ {N}'{.p} , 

{N} {o} {o} 

[N] ~ {o} {N} {oj 

{OJ {O} {N} 

(3a) 

(3b) 

(4 ) 

Here {u} ~ and {¢} ~ are the particle displacement and 
electric potential vectors corresponding ~o the nodal pojnts 
within each element, r e~pective l y, {N } is the shape func
tion vector [20], [21] , {O} is a null vector, and { . } and 
{ • } T denote a column vector and a row vector, respec
tively. 

The well -known constitutive relations for piezoelectric 
materials are written as [1] , [20] , 

T~[c]S - [e]E (Sa) 

D~[<lE+ [ e]S (5b) 

where T, S, D, and E are the stress, strain, electric dis
placement , and electric field vectors, respectively, and 
[e], tel, and [f] are the elastic constant, piezoelectric, 
and permittivity tensors, respectively . 

The strain vector S and the electric fie ld vector E are 
expressed as [20] 

S~[B,]{u} , 

, E ~ - [B,] {.p} , 

(6a) 

(6b) 

where [Bw] and [Bo] are giveri by 

{N,} {o} {o} {o} {o} { N, } 

[B,] ~ {o} {N, } {o} {o} {o} {N, } 

{o} {o} {o} {N, } {N, } {o} 
(7a) 

[B,] ~ [{ N, } {N, } {o}) . (7b) 

Here {N,} = a{N} / axand {N, } = a{N} / ay. 
Equation (5) is now expressed in terms of {u} e and 

{.p} , as 

T ~ [c][B, ]{u} + [e]'[B, ] {.p} (8a) . ' , 

D ~ - [<l [B, ] { .p }, + [e] [B,] {uJ,. (8b) 

Using a Galerkin procedure on (1) , we obtain 

]] [N] (aT, /ax + aTJ ay + w'p,u) dO ~ {O} 
, 

(9a) 

, 

where the integration is carried over the element subdo
main !It . 

Integrating by parts, (9) becomes 

]] ([N, ] T, + [N,] T, - w' p,[N]u) dO 
, 

- J.[N]T, dr ~ {O} 

H ({N, }D, + {N, }D, ) dO 
, 

( lOa) 

( lOb) 

where (N, ] = a(N]/ax, (N, ] = a(N] / ay, T, ~ 

[Txn Tyn TVI ]T, and the second integration on the left
hand side is carried over the contour r t of the region !l ~ . 

Noting that Tn and Dn are continuous across r t (bound
ary conditions at the interface between two different me
dia) and considering the boundary conditions on r3 and 
r 4 (See Section II),. from (3), (8), and (10) the following 
global matrix equation is derived: 

[ 

[K] 
[C] , 

where 

[C] ] {u} 
- [G] {.p} 

_ ,[[M] [O] ] [{U} ] 
w [0] [0] · {.p} 

, ~,( - 1) ' ~' J.[N]T, ir, dY 

,~, ( - I) ' ~' J. {N}D,i r, dY 
(11) 

[K] ~ ~ H [B, ] [c] , [B,] ' dx dy ( 12,) 
, 

[C] ~ ~ H [B , ][e]~[B , ]' dxdy (12b) 
, 

( 12e) 
, 

[M] ~ ~ H p, [N][N]' dxdy. (I2d) 
, 

Here {u} is the nodal particle displacement vector, {¢} 
is the nodal electric potential vector, [0] is a null mat rix , 
and Ee and E; extend over all different elements and the 
elements related to the boundaries r 1 and r 2 , respec
tively. Constraints on the stress and the electric displace-
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men! on f3 and r 4 are natural boundary conqitions and 

will be automatically satisfied. Constraints on the particle 

displacement and the electric potential on P3 and r 4 may 

be imposed simply by deleting a row and a column of the 
relevant elemen"( matrices. 

The periodic conditions are given by 

u I r2 = pu Irl 

T ~ lr 2 = pT;r; Irl 

$ Ir, ~p$ l r, 

D:r I rl = pDx I r] 
where 

P ~ exp ( - j~d). 

Here 13 is the phase constant in the x direction. 
Using (13), from (I I) we obtain 

IK) [ C) 

I C) t - [e) 

_ w' [M) 

[0) 

where 

{ul -

{';I -

{,' I 
{qil 

[0) {al] 
{qil [0) 

{u 10] 

{ u I, 

{ $ 10 
{$ I, 

- {Ol 

[K)oo 

(13.) 

(13b) 

(13c) 

(13d) 

(14) 

(15) 

(16) 

( 17) 

eigenvalue equation: 

([K) + [C) [er' [Cit) {ul - w'[M) {ul - {Ol· 

(20) 

This equation detennines the propagation characteristics 

of periodic waveguides. In the present analysis , the Cho· 

lesky method, the Householder's method, the method of 

bisections, and the method of inverse iterations are suit
ably used fo r solving (20). 

IV . COMPUTED RESULTS 

First, we consider a groove grating on an isotropic rna· 

terial. Fig. 2 shows the dispersion curves of SH waves of 

an isotropic waveguide with rectangular grooves, where 

k, = wl vs and V s is the bulk shear wave velQcity. Our 

results agree well with the experimental results [4). Com~ 

parison of the results in Fig. 2(a) and (b) shows that the 

deeper grooves give a greatly increased amount of wave 
slowing. 

Fig. 3 shQwS the dispersion curve of the fundamental 

SH surface wave of a layered isotropic waveguide with 

rectangular grooves. where ksl = wl vs l. and V s I and Vs 2 

are fhe bu'tk shear wave velocities of the substrate and the 

film. respective ~ y. The phase velocity of this SH surface 

wave is lower than that of the fundamental Love wave 

and, for large (3d, this velocity may become even lower 

than the bulk shear wave velocity of the film (V, 2)' 

Next we consider a groove grating on a piezoelectric 

material (Y-Z LiNb03 ) and investigate the stop-band 

width and the center-frequency shift at {Jd = 11" (the first 

Bragg refle c~ion) in the dispersion diagram for Rayleigh , . 
waves . In the case of Rayleigh waves, we set Ux = uy = 

U z = D y = 0 on the boundary f 3 in Fig. I [20]. 

Fig. 4 shows the nonnalized stop-band width !1F 110 
and the nonnal ized center·frequency shift !11110 of a pi· 

[K)m + P [K)02 
[K) -

[K)" + p'[K)" [K)" + [K)" + pIK)" + p'[K)" 
( 18) 

Here the components of the {u} I and {1>} I vectors are 

the values of the particle displacement and the electric 

potential at nodal points on the boundary r I, respectively; 

the com pon ent~ of the {u}o and { <P }o vectors are the val· 

ues of the panicle displacement and the electric potential 

at nodal points in the interior region except the boundaries 

r I and r 2, respectively; the matrices [C], [ G], and [ M], 
are given by replaci ng K in (18) by C, G, and M, respec~ 

lively; * and t denote a complex conjugate and a complex 
conjugate transpose, respectively; and ~K ] oo , [K)Ol> ... , 

and [Kb are the submatrices of [K]: 

I K)oo [K)m [K)02 

[KJ - [K)" [K)" [K)" 

[K)" [K)" [K)" 

( 19) 

Eliminating {<p} from (15), we obtain the following final 

ezoelectric waveguide with rectangular grooves , where 

!1 F 110. !11110, and/o are given by 

"'Fllo ~ (t. - /,)110 (21) 

"'1110 ~ [(J., + /,) 12 - lol/fo (22) 

10 -' vRI2d· (23) 

Here fu and It are the upper and lower bound frequencies 

of the stop band, respectively, and VR is the velocity of 

the Rayleigh wave on a Y-Z LiNb03 substrate. In Fig. 4 
the groove width is one-half of the period d, the groove 

depth h is varied , and the substrate thickness is about five 

times the period d. Our results for the center·frequency 
shift agree well with the experimental results [6]. 

Lastly , we examine the influences of groove shape on 

the stop·band width and the center· frequency shift of the 

groove grating on Y- ZLiNb03• Fig. 5 shows !1F 110 and 
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Fig. 2. Dispers ion curves of SH waves of isotropic waveguide wilh rectangular grooves. (a) Shallow groove. (h) Deep groove. 
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Fig. 3. Dispersion curve of fundamenlal : SH surface wave of layered 

isolropic waveguide wilh rectangular grooves . 

!J.JIJo at (3d = 11" of a piezoelectric waveguide with trap
ezoida l grooves (0 *" 0) , where dashed lines are fo r the 
rectangular grooves (6 = 0) and are the same as the solid 
lines i'n Fig. 4·. It is fou nd from Fig. 5 that the center
frequency shift is decreased as 6 becomes la rger. This is 
due to the fact that for large 6, namely, a gentle slope , the 
energy storage effect 13J becomes smaller. When the area 
of trapezoidal groove (SI) is larger than that of rectan
gular groove ( S,), namely. S, > Sf in Fig . 5 (a), the stop
band width for trapezoidal grooves is smaller than that for 
rectangu lar grooves. Also, as 6 becomes large r, the stop
band width is decreased. When SI = S, in Fig . 5(b), the 
infl uence of 6 on the stop-band width is extremely small . 
When S, < S, in Fig. 5(c), the stop-band width fo r trap
ezoidal grooves is slightly larger than that for rectangular 
grooves. For very large 0 (for example, 0 = 80 0

), how-
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Fig. 4 . Slop-band width and cencer-frequency shift for Rayleigh wave of 

piezoelectric waveguide with reccangular grooves. 

ever, the stop-band width for trapezo idal grooves be
comes small er than that fo r rectangular grooves. 

V . CONCLUSION 

A method of analys is based on the fi nite-elemcnt 
method was developed for the solution of the propagation 
problem in periodic waveguides for acoustic waves. Nu
merical examples are presented for the groove gratings for 
SH waves and Rayleigh waves. This approach can be eas
ily appl ied to the metallic gratings [21. [5], (7) , [8], [1 3]
[1 6]. [ 19J . 
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Fig. S. Stop-band width and center-frequency shift for Rayleigh WDVe of 
piezoelect ric waveguide with tnlpt1.oidal grooves. (a) S, > S •. (b) 5, -
ST' (e) S, < S, (5, and S, are aTtaS oflra pe:widal and rectangular grooves, 
respectively) . 

REFERENCES 

[I) B. A. Auld, Acmmic Fields (Iml Wa" u ill Solids, vols. I and II . New 
York : Wiley-Intersciencc, 1973. 

12) H. Mauhews, Ed .. Surface WO" t Filurs. New York:: Wi ley-Inter
science,1917. 

[3) R. C . M. Li and 1. Melngams, " The inHuence of Stored energy al 
step discontinuities OR the behavior o f surface-wave gratings." IEEE 
Trons. Sonics UlIrClSOII .• vol. SU-22. pp. 189- 198, May 1915. 

(4) B. A. Auld, 1. J . Gagnepain, and M. Tan. " Horizontallihear surface 
waves o n corrugated s urf ace~," Elu/ron. Uff., vol. 12, pp. 650-
652. Noy . 1976. 

[51 S. Urabc, Y . Koyamada, and S. Yoshikawa. "E~perime n ts on me
tal1 ic-stri p.gl1lting for SAW reflector," Trans. Ins/. Elu/ron. Com
mrm. Eng. Japan. vol. J60-A , pp. 875-876. Sept. 1977 (in JapillCse). 

[61 J . Melngailis and R. C. Williamson. "Interaction o f surface waves 
and bulk waves in gratings : Phase shi fts and sharp surface-wave/re· 
fleeted bulk wave resonators," in 1978 UI/rason . S)'mp. PrQC., 1978, 
pp. 623- 629. 

[7J Y. Suzuki and H. S h imi~ u , " Reflection of surface acoustic waves due 
to piezoelect ric and elastic penurbat ion by periodic strip electrodes 
and its applications to resonators," /tIS!. EltClron . Commun. Eng. 

Japan. Tech. Res. Rep. US74-45. Jan. 1975 (in Japanese). 
[8J Y. Suzuki. H. Shimizu. M. Takeuchi. K. Nakamura, and A. Yamada, 

"Some studies on SAW resonators and multiple-mode filters," in 1976 
UI/roson. Symp. PrQC., 1976, pp. 33-38. 

[9J S . R. Seshadri, "Love wave interaction in I thin film with a periodic 
surface corrugatio n," IE££ Trons. Sonics UI/Mson., vol. SU-25, pp. 
378-383, Nov . 1978. 

11 0) -, "Effect o f periodic surface corrugat ion on the propagation of 
Raylei8h wayes," J. II COItS/ . Soc. Amt r., vol. 65, pp. 687-694 , Mar. 
1979. 

[11 J M. Tsutsumi aoo N, Kumagai, " SchavioTof Bleustein-Gulyaev wayes 
in a periodically corrugated piezoelectric crystal ," IEEE TrQIIs. Mi
cra"'Ol'e Theory Tuh ., yol. MTT-28, pp, 627- 632. June 1980. 

[I 2J H, A. Haus 100 P. V. Wright, "The analysis o f 8rating structures by 
coupling-or-modes theory," in 198() UI/roson. S)'mp. Proc" 1980. 

pp.277-281. 



KOSHIBA .. , al.: SOLUTION OF PERIODIC WAV EGUIDES FOR ACOUSTIC WAVES 

113] S. G. Joshi and R. M. White, " Dispersion of surface elastic waves 
produced by a conducting grating on a piezoelectric crystal ," J . Appl. 

Phys., vol. 39, pp. 5819-5827, Dec. 1968. 
114] K. Bljttekja:r, K. A. Ingebrigtsen, and H. Skcie, " A method for ana

lyzing wavcs in structures consisting of metal strips on dispersive mc
dia," IEEE Trans. Electron Devices, vol. ED-20, pp, 1133-1138 , 
Dec. 1973. 

(15) -, " Acoustic surface waves in piezoelectric materials with peri
odic metal stri ps on the surface," IEEE Trans. Electron Devices, vol. 
ED·20, pp. 1139- 1146, Dec. 1973 . . 

[16] S. Datta and B. J. Hunsinger, "An analytical theory for the scattering 
of surface acoustic waves by a single electrode in a periodic array on 
a piezoelectric substrate," J. Appl. Phys., voL 51, pp. 4817-4823, 
~p t. 1980. 

117] N. E. Glass and A. A. Maradudin, "Shear surface elastic waves on 
large amplitude gratings," Electran. Lett., vol. 17, pp. 773-774, Oct. 
1981. . 

[18} J . Z. Wilcox, K. H. Yen, T. J. Wilcox, and G. Evans, " Horizontal 
shear acoustic waves on layered surfaces wi th sinusoidal corruga
tions," 1.. Appl. Ph),' " vol. 53, pp, 2862- 287Q, Apr. 1982. 

[19} E. J. Danicki, " Propagation of transverse surface acoustic waves in 
rotated Y-cut quartz substrates under heavy periodic metal elec
trodes," IEEE Trans. Sonies UlmlSon., vol. SU-30, pp. 304-312, 
Sept. 1983 . 

[20) Y. Kagawa and T. Yamabuchi, "A finite element approach to elec
tromechanical problem with an applicat ion to energy-trapped and sur
face-wave devices," IEEE Trans, Sonics VI/roson., vol. SU-23, pp. 
263-272, July 1976. 

[2 1) M. Koshiba, S, Karakida, and M. Suzuki, " Finite-element analysis 
of Lamb wave scattering in an elastic plate waveguide, " IEEE Trans. 

Sonies Ultrason" yoL SU-3!, pp. 18-25, Jan. 1984 . 

Masanorl Koshiba (SM'84), for I photograph and biography please see 
p. 466 of this TRANSACTtONS. 

Seiichi Mitobe was born in Kamifurano, Japan, 
on January 7, 1960. He received the B.S. and 
M.S. degrees in electronic engineering from Hok
!:aido University, Sapporo, Japan, in 1983 and 
1985, respectively. He is presently studying to
ward the Ph,D. degree in electronic engineering 
at Hokkaido University. 

Mr. Mitobe is a member of the Institute of 
Electronics and Communication Engineers of Ja
pan. 

Michio Suzuki (SM'57), fo r a photograph and biography please see page 
466 of this TRANSACTtONS. . 


	p472.pdf
	p473.pdf
	p474.pdf
	p475.pdf
	p476.pdf
	p477.pdf

