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FINITE ELEMENT SOLUTION OF THE FUNDAMENTAL
EQUATIONS OF SEMICONDUCTOR DEVICES II*

T MILOS ZLAMAL, Brno
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Abstract. In part I of the paper (see Zlamal [13]) finite element solutions of the nonstation-
ary semiconductor equations were constructed. Two fully discrete schemes were proposed.
One was nonlinear, the other partly linear. In this part of the paper we justify the nonlinear
scheme. We consider the case of basic boundary conditions and of constant mobilities and
prove that the scheme is unconditionally stable. Further, we show that the approximate
solution, extended to the whole time interval as a piecewise linear function, converges in
a strong norm to the weak solution of the semiconductor equations. These results represent
an extended and corrected version of results announced without proof in Zlamal [14].

Keywords: semiconductor devices, finite element method, fully discrete approximate
solution, convergence

MSC 2000: 65N30, 65N12

1. INTRODUCTION

We consider the case of constant mobilities,
Wn = const >0, p, = const > 0.

For simplicity, we restrict ourselves to two dimensions. After scaling introduced in

part I of the paper (see [13]), the nonstationary semi-conductor equations assume

* The manuscript of this paper was found in the inheritance of the late Prof. M. Zlamal
(1924-1997) in the form of a preprint edited by Department of Mathematics of EPFL
(Lausanne). It was submitted for publication by his co-workers with agreement of Mrs.
Zladmal, the widow of Prof. Zldmal. The paper is a continuation of Reference [13].
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the form (see I, (1.5)—(1.7))

(1.1) —AY=alp—n+ N(z)) inQ Vte(0,T),
(1.2) g—? =0,V - (Vn—nVy) — R(n,p) inQ,
(13) B 5,9 (Vp+ pV0) ~ Bln.p) in Q.
__np—1 _
R(’I’L,p)—m, Q—QX(O,T)

Here all quantities are dimensionless, 65 = vspus (s = n,p), s are positive constants
introduced in part I, + = (x1,22) and the boundary T of the bounded domain
is a polygon, i.e. the union of a finite number of linear segments I3, 1 < j < J
(Tj4+1 follows I according to the positive orientation). We also fix a partition of

the set {1,...,J} into two subsets D and N and denote I'* = L, r2=(J I
jeD JEN
The boundary conditions are Dirichlet nonhomogeneous and Neumann homogeneous

boundary conditions

(1.4) 7/”1"1 = w*|r1’ n’l"l = n*’Pl’ p’rl :p*’rl’ n*,p*>0onI",
o) _on _0p
(1.5) dvire — ovlre — duire

v is the unit outward normal to Q and we assume
0.
In addition, we have the initial condition
(1.6) n’t:o =n(z), p|t:0 =p%x) in Q, n°(x),p’(x) >0 on O
and the requirement
(1.7) n(x,t) >0, p(x,t)>0 on Q.

The weak formulation of the problem reads as follows (it differs somewhat from that

introduced in part I, Remark 1.2):

Problem P. Given ¢* € H->*(Q), n*,p* € H"(Q), ¢ > 2, n*|, >0, p*|, >
0 and N measurable and bounded on Q, n% p° € H»(Q), ¢ > 2, n® > 0 and
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p® > 0 on §, find 9,n,p such that ¢ — ¢* € L>®(0,T;V N HY>®(Q)), n — n*,
p—p* € L*0,T;V) and

(1.8) vVt e (0,T) d(¢,v) =alp—n+ N(z),v) Yv eV,
(1.9) i(n,v) + 6,72 (1;m,0) + (R(n, p),v) =0
dt in 2'((0,T)) Yo €V,
(1.10) = P 0) + 07 (¥5p,0) + (R(n,p),v) =0
(1.11) n|t:0 =n?, p’t:O =p° inQ,
(1.12) Ve [0, 7] n>0, p>0 ae. inf.

Here (-,-) denotes the scalar product in L2(Q), V = {v: v € HQ), v|F1 =
0} and the form d(,v) has the same meaning as in part I, (1.18), whereas

7% (¢;n,v) and 72(¢, p,v) arise by dividing the original ones by mobilities, i.e.

(1.13) d(ap,v) = /vw.de, DQ(w;n,v):/(annvw)Vvdx,
Q Q
(i) = [ (Vp+pVe)- Vods.

We will prove later that if ¥, n, p, belonging to the spaces introduced above, satisfy
(1.8)—(1.10), then n,p € C([0,T]; L3()), hence the initial condition (1.11) makes
sense. We also prove that under a condition on 0f) introduced later the problem P

has at most one solution.

In the sequel, we assume that all requirements concerning the data introduced in
the definition of the problem P are satisfied (if more assumptions are needed, they

will be explicitly introduced).

2. A FULLY DISCRETE APPROXIMATE SOLUTION

We consider a family {7},} of triangulations of Q. If an element K belongs to T},

then hx denotes the greatest side of K and, of course, we have the requirement

h = max hg — 0.
KeTy,
In the paper we need the following assumption.
AY: The family {T},} fulfills the minimum angle condition, i.e. if 8}, is the minimum
angle of all angles of T}, then 6;, > 6y > 0, and it is of acute type, i.e. any angle of

any triangle from | J 7}, is not greater than %n.
h
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Remark 2.1. If J is the Jacobian matrix of the linear mapping which maps

a given triangle K on the reference triangle K , then

Chi < |det J| < C™'hi VK €| Th.

These bounds are very simple consequences of the minimum angle condition (see

Zlamal [15]). We will use them implicitly at several places.

By W}, we denote the space
Wy, = {v: v e C(Q), v is a linear polynomial on each K € T}, },

Vi, € W}, is the space
Vi, = {’U: v e Wh,U’FI = 0}.

Let ¥, N, P, v belong to to W;. By ¥,,... we denote the value of 1,... at the

node x7. The discrete analogues of the forms 7%(¢; n,v) and 72(¢); p,v) are
(2.1) 72(W; N, v)

Z Z v</ (JT)'DKJTYN - V" dx—/ N,VV - Vo" da:)

KeTy, r=j,k;m
(2.2) 7(W; P,o)

=> Y v</ ) 1BEJTVP . V" dx+/

P.YVY .-Vu" dx),
KeTy, r=j,km K

J is the Jacobian matrix of the mapping which maps K on K in such a way that
the node 2" is mapped to the vertex (0,0) in the reference plane (see I, p. 33), v, is

T

the value v(x"), v" is the basis function associated with the node x” and BX, DX

are the matrices
K= dla‘g<B(\II1 - \1/2)73(\1/1 - \1/3))7
B(&) = €(e* — 1)1
(2.3) X _( ) ( ) —00 < & < o0.
= dla‘g<D(\I/1 - \1/2)>D(\I/1 - \1/3))7
D(¢) = e B(¢) = B(=¢)
Here ¥, ¥y, U5 stand for the local notation of the values of ¥ at the vertices 27,
2*, 2™ such that ¥; = U;, Uy =Wy, Ug = ¥,,. All factors in the first terms on the
right-hand sides of (2.1), (2.2) depend on the mapping chosen and we have two such

mappings. Nevertheless, the integrands are the same, i.e. the forms are uniquely
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determined. (2.1) and (2.2) are definitions equivalent to those introduced in part I,
(2.18) and (2.19) (of course, we have to put us = 1, s = n,p in these equations).
The L2(Q)-scalar product (-,-) will be approximated by (,-), defined in part I,

q

(3.3) ((w,v)p = 3 mju,v;, mj > 0). We consider an equally spaced partition of the
j=1

interval [0,T]: t; = iAt, i =0,...,r, 7 = Alt. By f; we understand, as in part I, the

interpolate of a given function f.

Now, we can introduce the fully discrete approximate solution ¥¢, N P! i =

0,...,r. The defining equations are

) d(¥%,v) = a(P' — N* 4+ Ny, v)p,

) AN AN MO =0y
) (AP, 0), + 0,At72 (U P, v) + At(R',v);, = 0 ’ Y
) Wi=wt@d), Nj=n'(f), Pj=p'(f) Val €T,

) N°=nj, PO=pl,

)

(2.
(2.
(2.
(2.
(2.
(2. N'>0, PP>0 onQ, i=1,...,m

NN N NN
© 0 N o Ot

Here AN = N* — Ni=1 AP = P' — Pi~! and R' = R(N', P?).

3. STABILITY, EXISTENCE, UNIQUENESS

We introduce three more assumptions.
Al: The measure of the angles (lying inside ) of the polygonal boundary T is
smaller than m at vertices where two sides of I'' or I'? meet and smaller than
%n at vertices where a side of I'! and a side of I'? meet,
A% y* € H>9(Q), N e HM(Q), q¢>2,
A3 * € H*(Q), N € HY(Q), q > 2, n*p"n’p° € H3}(Q), ¢*
H?4(T;) Vj € D.

Remark 3.1. Consider the boudary value problem
—Au=f inQ, feL®Q),

U’F_ =g, €D, g;¢ H2—1/qo7qo(pj),
9;(0;) = gjt1(0;) if 4, +1 €D,

el = g5 JEN, g5 € HIZVma(Iy),

(3.1)

Here o, is the vertex of I' where I and Ij.; meet. Then, if the condition A!

is satisfied and qo € [2,2 + €] where € is a sufficiently small positive number, the
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operator

‘ ou ‘
To.q0 : ue{fAu; u|Fj, j € D E jGN}

from H?%(Q) into the subspace of L% (Q) x [[ H? /%% (T;) x [[ H'~'/90:%(Ty)
jeD JEN

defined by the consistency condition (3.1) is an isomorphism (see Grisvald [7],

p. 209-210). Therefore Tofqlo is bounded, i.e. we have

(3.2)ull 200 ) < C<||f||qu(Q) S g5l vy + 3 ||gj||Hu/qo,qo(rj)),
jE€D jEN
2<qg <2+e..

Theorem 3.1. If A° is fulfilled, the scheme (2.4)—(2.8) with the requirement
(2.9) is unconditionally stable in the following sense: for an arbitrary h and for At
sufficintly small, At < Aty where Aty does not depend on h, we have

T
(3.3) 12?§T{‘INZHL2(Q)’ 1P (|22 1" |2y } + {AtZ(INZH%Jl(Q)
i=1

1/2
i ||PZ||%{1(Q)>} < C(IN oy + 1Pl oy + 1)-

In (3.3) and in the sequel, C' denotes a positive constant, not necessarily the same
at any two places, which does not depend on hg, h, At and on the index 7. It is
also independent of the parameter 6 introduced in the proof of Theorem 4.1, with

an exception mentioned later.

Proof. a) We consider the first term in (2.1), i.e.

(3.4) AT N0 =Y Y UT/K(JT)’lDKJTVN~Vdex.

k€T r=j,k,m

In this paragraph, the coordinates are denoted by z, y. Let (z,,y,), r = j, k, m, be
the vertices of the element K € Tj,. After elementary, though not short computation,
we come to the following expression for the form A:
(3.5) AT N, v) = > [0 (N — Ni)(Brm Vm — Bunkve)

KeTy,

+ai (Nj = Nig)(Binjvj — Bjmvm)

+ agy (Nk — Nj) (Bjvr — Bijvj)],
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where

o = Faramey @ — By = )+ (05 = 9y = 9
(3.6) ol = m[(ﬂvk — T ) (@ — 25) + (Yr — Ym) Yk — y5)],

0 = Taraaiey (= 1)@m= 21 + (e = )0 — )
(3.7) B,s =B(U, —9,), r,s=jkm.

K

The coeflicients a.

can be expressed in a different form. Let us denote by 6, the
measure of the angle of K lying at the vertex («,,y,). The square brackets on the
right-hand sides of (3.6) are scalar products of sides of K considered as vectors and

we easily derive

1
(3.8) af = 5 cotd,., r=jk,m.

From the acuteness and from the minimum angle condition it follows immediately
that

1
(3.9) Oéaféicot%:a r=74k,m, VKEUTh.
h

The function B(¢) has the property
B(=§) = B(§) +§ VE € (—o0,00).

Cosequently,

Bysvs — Bsyvy = Brs(vs - 'Ur) + (\I/s - \I’r)'Ur
and also

B,svs — Bgrv, = Bsr(vs - 'Ur) + (\I/s - \I/r)’l)s,
hence

1 1

B,svs — Bgpv, = i(Brs + Bsr)(vs - 'Ur) + 5(\1/5 - q’r)('l)r + Us)-

Introducing coefficients
1

(3-10) brs = bsr = i(Brs + Bsr)a
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we get

(3.11) A(T; N,v) =a(¥; N,v) + %b(\ll; N,v),
(3.12) a(U;N,v) = > [l k(N — Ni) (0 — vi)
KeTy,

+ ai(bmj(Nj - Nm)(”j - Um)
+ afbii (N — Nj) (v — )],

(3.13) DTN, 0) = > [af (W — Uk) (N — Nie) (v + vk

+ (W5 = Un) (N = Non) (0 + )
+ oy (U — W5) (N — Nj) (g, +v5)].

Evidently, the form a(¥; N, v) is symmetric with respect to N and v. Further

(3.14) a(T;v,v) = d(v,v),
d(¥,v) = a(0; T, v)

= Z (af (W — Wp) (U — vi) + g (U5 — W) (0 — Un)

+ an (Ur — W) (v — v5)).

The equality follows from a(0;w,v) = A(0;w,v) = d(w,v) (set DX =T in (3.4)),
the inequality from (3.9) and from the properties of the function y(¢) = 3(B(£) +

B(—€)) = 365EL We have y(0) = 1, x(€) = x(—£), x(00) = 0o and x'(£) > 0
V¢ € [0,00). Therefore,

x(€) =1 VEe (—00,00)

and hence b5 > 1.
In the sequel, by Nv (N, v € W},) we always mean the function w € W), such that

w(z?) = w; = N(27)v(2?) = Njv;

and by w? the function ww. Then

(315 > > vr/ N,V - Vv dz =

KeTy r r=j, k m KeTy,

/ V¥ - V(Nv) = d(¥, Nv).

Hence, by (2.1), (3.4) and (3.11) we obtain
1
(3.16) 72(U; N,v) = a(¥; N,v) + (¥ N, v) = (T, Nv).
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Denoting
1
(3.17) c(¥; N,v) = —Eb(\II;N, v) + d(¥, Nv)

and taking into account (3.14), we conclude that

(318) D%L(‘II;va) :a(‘II;va) 70(\IJ;N,U),
(3.19) (T3 N, v) = % S [0 (@, — W) (N + Ni) (0 — 1)
KeTy

+ a][f(\pj - \I/m)(Nj + Nm)(vj — Um)
+ ap (U = U;)(Ni + Nj) (v — v;)].

In a similar way we derive
(3.20) 72(¥; N,v) = a(¥; P,v) + ¢(¥; P,v)
and, moreover,
1 2
(3.21) (T w,w) = 5d(\I/,w )-

b) First, let us note that Theorem 3.1.6 of Ciarlet ([3], p. 124), and Sobolev’s
imbedding theorems yield

(3.22) 71l o) < ClTl 10y VT € HYY(Q), ¢ > 2.

We use the following notation: o = ¢}, w =n%, o =p}, N' = N, —w, P' = P! — o,
]2 = (v,0)n, Yo € W Setting v = ¥ — 1% in (2.4), we easily obtain

(3.23) 1%y < CUNIn + [P*ln + 1), loll} = d(v,v) Yo e V.
From (2.5) and (2.6) we obtain

(3.24) 6, '(AN*,NY), + Ata(¥% N*, NY)

= At(a(T; N w) + (T N, N + (T w, NY) — 6, (R", N)p,),
(3.25) 40, '(AP', P'), + Ata(¥'; P', P')

= At(a(\Ifi; P o) — c(¥"; P', P") — ¢(V*; o, P") — 5;1(Ri, ]_Di)h).
We have to estimate the terms on the right-hand sides of (3.24) and (3.25). Since
the function (&) is bounded by

1 1
(3.26) Sl <x(© <143l ve£o,
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it follows from (3.12), (3.9) and (3.23) that

a(T5 N W) < D (@ INE, = Nil |lwm — wkl +..)
KeTy

Fllwll e Y (f [T, — L] [N, — Ni| +...)
KeTy,

< Nwllv [1N*[lv + |l oo o 1 v IV |y

<CINllv (@ +[12]lv) < CIN v (IN[ln + [P*{ln + 1)
1 i i 1A
<IN + CUINTIR + [P + ).

Further, by (3.19),

|e(T5w, N')| < Cllw| oo 12| v [N [lv
(N + 1Pl + DIN v

. — 1 .
<SCUNIR+NPE + 1) + ZINIG-

Q Q

<
<

By (3.21) and (2.4), we obtain

C(‘I’i; NZ,NZ) o C(‘I’i; ]_ji, pZ) _ 7%(1(\112, (FZ)Q o (Nz)2)

1 . . — .
o §a(Pz —_ N? + NI, (Pz)2 o (Nz)2)h
1 . . . . 1 — .
= —5a(P' = N, (P)? = (N')*)n = 5a(N, (P')? = (N')*)n
1 . . . .
— ioz(P’ — N*, —20P" + 0> + 20N" — w?);.
Since
_ o a
(3.27) (P'— N, (P")* - Z N2(Pi+Nj) >0,
it follows easily that
(3.28) (U5 N NY) — (W5 P PY) < C(INIIG + [1PY]17 + 1)

Finally, by (3.13) from part I, we derive |R'| < 1 + N+ P* < C + |N| + |P!| and

[(RY, NO)ul < CAUN + PR +1).
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Adding (3.24) and (3.25) and using the above estimates and the inequality
a(¥;v,v) = d(v,v)

(see (3.14)), we get

6, (AN', N'),, +5;1(A13i713i)h+%At(HNiH\Q/ﬂL IP*T) < CAL(IN'[7+ [ P'7 +1).-

Summing from ¢ = 1 to ¢ = m yields

(3:29) &, INT I + 6, PR + Ay (NI + 1P
i=1

m
SGINNG + 8, M IPONG +C + Cat Y (IN°I1E + I1PYIIR).

i=1

For At such that ;1 — CAt > %651 and 5;1 — CAt > %5*1, ie. for At <

s min(0;1,651) = Atg, we easily derive

2C n vp
m—1 ) )
S IN™ IR + 8, P15 < CUNCR + 1POll7 + 1)+ CAt Y (INVI7 + I1PUII7)
i=1

and the discrete Gronwall inequality implies
INlln < CUNln + 1POlln + 1), [P ln < CUANln + I1P°fln +1), i=1,....m,

while (3.29) yields

ALY (NS + 1PYI) < CUINCIE + IPO7 + 1).

i=1

Since ||v|| < ||lv|ln < CJlv]| Vv € W}, (see Raviart [12]) and since we have proved
(3.23), the estimate (3.3) is proved. O

Remark 3.2. Here we use the letter K for “stiffness” matrices. Therefore, we
denote the element by e instead of by K. We derive easily for the general case of

nonconstant mobilities that

(3.30) vi(WsN,v) = Y (vO)TKL (RN, mp (5 Pw) =y (vO) K (¥)P,
ecTy, e€Ty,
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where
\a :(Ujavkavm)Ta e = (\Ijja ‘Ilka ‘Ilm)T,
N* :(NjaNkaNm)Ta P :(Pjapkapm)T,

e e 1 e e (\s€ e e 1 e
(331) KZ(\IJS) = lu’n(Kl - _K2)> Kp(\p ) = :u’p(Kl + _KZ)'

2 2
Here p¢ = ps(z, ||V¥|), (s = n,p), x° is the center of gravity of e (see part I) and

Kl *{k r}rs 1 kl 71{;1"’ KQ*{]C

ra 1
k’n = akbjm + ambkjv k?12 = k’21 = _ambjka k13 = k?l;l = _aibjmv
kgy = 0brs + 05bmp, Ky = kgy = —0Sbem, k3z = a5bmk + fbjm,
k= o (U — U) + 0, (U — W), kfy = —al, (U — 0;), ki = af(¥; — Up),

k3 = —kiy, K3y = a5, (U — ¥ i) +aj (‘I/k — V), k33 = —aj(\l/m - Uy),
k3 = —kis, K3y = —k3s, k33 =aS(Vp — Wi) + af (T — T)).

The coefficients a¢ and b, are given by (3.6) or (3.8) and by (3.10), respectively.
For the forms v} (U; W,v) and 7} (¥; Z,v) one can derive

(3.32)  vp (T W0) = > 0SB (Wi — Wi) (0m — vk) + .. ],
eeTy
(3.33) MU Z0) = psas B (Zm — Zi) (Um — vi) + - ],
e€Ty
U, — U, L -t
s = — m = </0 exp[—W, — (¥ — U, )¢] df)
=¥ B(U, —0,),
(3.34) .
p_ Yoo W 1 U, 4 (U — 0 )ede )
ER s A exp[¥, + (¥ — ¥,)¢]d¢
=e V' B(V, — V),
V(T W,0) = Y (v) K (B9 W<,
eeTy
(3.35) (W Zv) = > (v Kg(8°)Z°,
eeTy
Ke(‘I’e) =y K5, Kj(%°) = KKZ,
(336) K3 - {k ra 1 k3 - kfr’ K4 - {k ra 1 k?s = kfr
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and the formulas for k2, and k2, are the same as for k!, with the exception that

we replace the coeflicients b, by 37, and

e P, respectively. Lemma 3.1 from part I

follows directly from the expressions (3.32), (3.33) and from (3.9).

Formulas (3.30) and (3.35) show that the global “stiffness” matrices can be derived
from “element stiffness” matrices by the well known assembly procedure always used
in finite element computations.

Before passing to the next theorem we introduce some lemmas.

Lemma 3.1. Let the family {T},} satisfy the minimum angle condition, let A!
be satisfied and ¢* € H>9(Q), F € Wy,. If U € W}, is the solution of

U(2?) =¢*(2) Vol €T,
d(T,v) = (F,v), Yv €V,

then ¥ belongs to H*P(2), 1 < p < oo if =2, p= o0 if ¢ > 2, and
(3.37) 1P| 1.0 ) < CU|F | Lao (@) + 19" | 2090 (02)),
where gy = 2+ ¢, e =0 if ¢ = 2 and ¢ is positive and sufficiently small if ¢ > 2.

The proof of Lemma 3.1 requires two more lemmas.

Lemma 3.2. Let the family {T},} satisfy the minimum angle condition. If
F € Wy, and 1 < ¢ < oo then there exists G € L9(Q)) such that

(F,v)p = (G,v) Yv € Wy,
1GllLa) < CIF|lLac)-

Proof. Let ¢ <oo. Then

‘ Z —area Z Frv,.

KETh r:j,k,m

coynf ¥ F}/{ > |vr|q’}1/ql

KeTy, r=j,k,m r=j,k,m

e { s mire} LS )

KeT, “r=j,km r=j,k,m

Now, let w be the vector (wj,wy,w,)T and consider the functional ®(w) =

ff{ |@w]?d¢ (w is the linear polynomial assuming the values w, (r = j,k, m) at the
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nodes of the reference triangle K ). Denoting by y the vector w we have

HWH

[¥llg =1 and )

d(w

— =0 > min ® C >0.

g ~ 200 > Sin, 200 =
Hence
(3.38) S BA|FJ7 < ChE / |F|qd§<(]/ F|? da

r=j,k,m

and

(F,0)ul C Y IF a0l o (i) < CIE Loy 0]l o (0y-
KeTy

Now (F,v);, is a linear bounded functional on W), C L9 (Q). Almost the same
argument proves this assertion for ¢ = co. By the Hahn-Banach theorem, we can
extend this functional onto LY (©) and the norm is preserved. Hence, keeping the
same notation, we have ||(F,-)xll+ < C||F| rs(q). On the other hand, the extension
has a unique representation (G,v), where G € LY(Q) and [|G||Laq) = |[(F, )|« <
Cl|F|lpa) (see, e.g., Kufner, John, Fucik [8]). O

Lemma 3.3. Let the family {T},} satisfy the minimum angle condition. If
7€ H?9(), 1 < ¢ < oo, then there exists g € L4(Q) such that
d(t —11,v) = (9,v) Yv € Wy,
||9HL4(Q) < CHT”HZ‘Q(Q).
Proof. We have
jd(r = mr,0)] < 3 IV = ) Leqo 1Vl o 16 -
KeTy,

It is easy to show that
Vo], ) S Chi ol o -

Therefore

jd(r —71,0)| < C Y BV =)l [0l L ) -
KeTy

Since [|V(7 — 71)lla(x)y < Chi |7l g2.4(x) (see [3], Theorem 3.1.6) we get

d(r —1,0)| <C Y Irllazacolloll e () < CllTllaza@llol Lo o)
KeTy,

and the proof can be completed in the same way as the proof of the preceding lemma.
O
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Proof of Lemma 3.1. Let ¢ be the solution of the problem
_ oy

r2 ov

9
ov

We have ¢ € V, d(p,v) = (G + g,v) — d(®*,v) Yv € V. On the other hand,
¥ — V7 eV, and
d(¥ —7,v) = (F,0)n — d(¥7,v)
= (G,v) +d(¢" =41, 0) —d(¥",v)
= (G +g,v) —d@*,v) Yv € V.

—Ap=G+g+Ay*, ¢l =0,

rz’

Therefore ¥ —1)7 is the Ritz projection of ¢. According to the theorem by Rannacher
and Scott ([11], p. 438), it follows that || ¥ — 17| g1r(q) < Cll@llm1r) for 2 <p < oo
(the theorem is proved for the case ' = (); however, under the condition A! the
operator u — {—Au; g—ﬂrj,j € N} from the space {u: u € H>%(Q), ulpr = 0}

into the space L%(Q) x [[ H!~!/%:%(T}) is an isomorphism for gy € [2,2 + €] (see
JEN
Remark 3.1) and this is the reason why the proof is valid for the case I'" # ), T2 # (),

t00). Sobolev imbedding theorems yield

19 —¥7llme) < Cllollazo@, @ =2+¢,
where ¢ = 0 if p < 0o and ¢ is positive and sufficiently small if p = co. Consequently,
(3.2) gives

. op*
1910y < € (1P + 16" Loy + X[
JEN v

Hl—l/qo,qo(Q))
< C([|Fllpoo ) + 19" 200 (2))-

Here we have used an inequality which holds for u € H?>?(Q), p > 1 and for each 7,
1< J:

0
(3.38) lull gm0y + | 5 < Cllullz2r(e-

VIIH=1/p.p(T})

(Concerning the proof, we consider Calderon’s extension u of u; see, e.g., Necas [10],
Theorem 3.10 and Remark 3.5, p. 80-81). Then ||t g2.r(p2) < C|lullg2.p (). Let QF
be a domain from C'! such that I; C 9Q! and @ C Q'. Then

= + |5
= Ul g2-1/p.p(1y) v l|H1=1/p.p(Ty)

Jul 2y
u H2—1/p‘p(1"j) v ’Hlfl/Pm(Fj)

. Ju
< Nl gz-2p0 000y + H%Hm—uw(aﬂw

< Ol gzr vy < Cllu| g2e g2y < Cllull 20 )
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The second inequality follows from the theorem on traces; see, e.g., [10], Theorem 5.5,
p- 99. O

Theorem 3.2. Let A be fulfilled. Then there exist U¢, N, P*" i =1,...,r,
satisfying (2.4)—(2.9). If, in addition, A' and A? are fulfilled and At is suffi-
ciently small, At < Aty where Aty does not depend on h, then these solutions are

unique.

Proof. a)Theexistence of U/, N P! i =1,...,r, can be proved by elementary
degree theory in the same way as we proved the existence theorem in part I (see
Theorem 3.1). The proof makes use of two things: of the a priori estimate (3.1) and
of the maximum principle (Lemma 3.1 from part I).

b) As far as uniqueness concerns, we prove first another a priori estimate. To this
end we set v = (N%)3 — w3 and v = (P")3 — g3 in (2.5) and in (2.6), respectively (we
recall that if w € W), then w™ is the function zq: wv” € Wy, m=2,3,...). We

r=1

get
(3.39) 6, (AN*, (N3, + Atr7 (U5 N, (ND)?)

=6, "(AN",w?) + At(73 (¥ N, w?®) = 6, (R', (N + 0, (R, w®)),
(3.39") 6, (AP, (P')°)p + Atmh (U5 PP, (P')?)

=0, (AP, 0®)p + At(77 (U5 PP, 0°) — 6, (R, (P))*)n + 6, (R, 0°)n).

We estimate the second terms on the left-hand sides of the above equations. For
w € W, w > 0, we have (see (3.12), (3.13), (3.14) and (3.26))

1 1 1
Ea(\I/; w,w3) + 56(\11; w,w?) — Zd(‘P,w“)
1
=7 2 (g 2bmi(wm — wi) (wy, — w}) +2(Tm — Wi (wm — wi) (wy, + w})
KET,

— (U — Up) (Wi, — wi)] + ...}
2 % Z {%KH‘I’m — U] (W — wi)* (w2, + wpwy + wh)
KeTy
+ (W — U) (win — we)*(wh, —wf)] + ...}

If ¥, — Uy >0, then |, — Ug|(w2, + wpwy, + wi) + (Uyy, — Up) (w2, —w?) =
(U, — Up) (2w2, + wwy) = 0.

If U,, — ¥y <0, then ¥, — Uy|(w?, + wpwi + wi) + (Up, — Up) (w2, — wi) =
(U — Up) (wiwy, + 2w3) > 0.
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Therefore
1 3y, L 3y L 4
§a(\11;w,w )+ §b(\If;w,w ) — Zd(\Il,w )20 YweW,, w>0,
and

3
(3.40) 72 (s w,w?) > —a(P;w, w?) — Zd(\ll,w‘l) Yw € Wy, w = 0.

| =

The same argument gives

(3.41) 72 (T w,w?) > ~a(¥;w, w?) + Zd(\ll,w‘l) Yw € Wy, w = 0.

DN | =

From these inequalities we obtain, by adding (3.39) and (3.39') and taking into
account (3.16) and (3.20), that

(3.42) 6, (AN, (N)*)n + 6, (AP, (P')*)n + %At[a(\lﬂ; Nt (NH)?)
4 a(\Ifi;Pi, (PZ)?)) + gd(‘lﬂ, (PZ)4 o Q4 o (Nz)4 +w4)}
<0, AN, W) + 6, (AP, 0°)n + AKX +Y7),
X =a(Th N W) + %b(\lli;Ni,w?’) —d(T', N'w? — w?)
— AW — 5 (R (NP + 6 (R P,
Yi — a(\I’i;Pi,Q3) _ %b(\pi;Pi,Q3) +d(\I/Z,PZQ3 _ Q4)
+ id(\l’i7g4) . 5;1(Ri’ (Pi)3)h +(5;1(Ri793)h.

Now, we estimate some terms in (3.42). Since a(¥;w,w3) > 0 for w € W), we get
from (2.4)

a(\I/i;Ni, (Nz)B) + a(\I/i;Pi, (Pz)3) + gd(\lﬂ, (Pz)4 _ 94 _ (Nz)4 +w4)

) ) ) ) 3 ) )
Oz(Pz _ ]Vz7 (Pz)4 _ (Nz)4)h 4 ia(Pz _ NZ, _Q4 4 w4)h
) ) 3
o(Np, (P) = (N'))n + Sa(Nr, o +w')n

_ . 3 . . 3
a(P' = N* —p* +wh), + ia(NI, (PHY* — (NDYh), + ia(NI, —o* +wh),

q
> = C(IN* I + 1P G+ 1), wlin = myw).
j=1
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In the last estimate we have used the estimates (3.3), (3.22) and the fact that
(P'=N' (P = (N) ) = Z = N)P(P}+ N)((P)? + (N})*) = 0

for nonnegative N* and P*.
In the same way as before we find that, due to (3.3) and (3.23),

(P N*, w0?| < BJ|wl|F ooy IV N1y + w17 oy 127 1V VP [lv
< C|INlv < C(IN'[)} + 1),
(W% P',0%)| < C(IP'[[F + 1)
Further
b(T%; N, )| < 2/ Foe (o 1€° IV [N]lv < CUINIIF + 1),
b(T*; P, 0%)| < (”PZHV +1),
|

|d(T8, Nw? — w)| = |a(P? — N* + Ny, N'w? — wh)y|

SC(INTIP+ 1P +1) < C,
A2, )| < 4l I IvIlllv < C,
A2, P'o® — o) < C,
|d(¥", 0" < C,
(R (NPl < CUNIG 5 + 115 + 1),
(R, (P )nl < CUN I35+ I1P1E 5 + 1),
(R, w®)n] < COL+ [N'[ln + [1P*]ln) < C
(R, ¢*)n] < C.

All these estimates and (3.42) lead to

8, (AN (N + 6, (AP, (P'))n
<6 AN, WP, + 6, 1 (AP, 0°) + CAt
+ CAL(IN[I + | P[I3) + CAL(|IN*|I3

12,0)-

Since

= ‘(Nmaw3)h - (N07w3)h| < Cv

Z(ANi, w3)h
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we get, using (3.3),

zm:[@?l(AN’} (N + 8, (AP, (P)*)]

i=1

<C+CALY (N1, + P
i=1

|ih)a m<r.

Young’s inequality ab < ‘;—p + ‘;p, for p = 4 gives (AN",(N")*), = |[N'[1,
(NN = 1(INIE, — [INTHI1 ) and again for At < Aty it follows from

the discrete Gronwall inequality that

max {|| N[, [ P'llan} < CUNllan+ [ Pllan+1).

1<i<r

Forv € Wy, v > 0, it is easy to show that the norms ||-||4,, and [|-|| L+(q) are equivalent
uniformly with respect to h on the space W},. Therefore

(3.43) max {[|N'[| sy, | P'llzsey} < CUN s + 1P zsg@) +1)-

Remark 3.3. Before proceeding to the next paragraph, notice that in the proof
of (3.43) we have not used the assumptions A' and A%. An inequality for the |[-[| n(q)-
norm of the form (3.43) is true for n = 3,4,... However, we need just (3.43) for
proving another a priori estimate playing an important role in our proof of the next

theorem.
¢) Now we use the assumptions A' and A%. From (2.4), (3.37) and (3.43) it follows
(go =2+ ¢, € > 0 and sufficiently small) that

(3.44) oax 10| 1,00 () < Cllglagr(HNiHmo(Q) + 1P| oo ) + 1)

< C(IN°|| paay + [I1P°] gy + 1)

d) Let ¥¢, N*, P* and Ui, Ni, Pi.i=1,...,r, be two solutions of the problem
(2.4)—(2.7), (2.9) with initial values N°, P° and N°, PP respectively, such that

(3.45) [Nl zay + 1PN za) < C IN®lzagey + |P°| sy < C.
Hence, by (3.43) and (3.44), it follows that

(3.46) 112?<><T(\|Ni||L4(Q) + 1P | Lace) + 1% g1 (qy) < C,

112?<><T(\|Ni||L4(Q) + 1P | Lage) + 1% 1.0 (o)) < C.
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We set Ui = Q! — 0 Ni = Ni — N, pi = pi Pl i=0,...,r. We consider
the variational form (2.5) of the continuity equation for N and N, subtract these
equations and afterwards choose v = N*. We do the same thing for (2.6) and add
the result to the preceding one, getting

(3.47) 6, 1(AN', N'), + 6, L (AP, P')y, + At(a(TF; N, NY) + a(U7; P, PY))
= At(—a(TH; N', NY) + a(T'; N, N') + ¢(T; N', N*) + (T N, NY)

— ¢(T% N, N*) — a(T'; P, P') + a(T'; P!, P') — c(T'; P', P
— ¢(T%; P! PY) 4 ¢(T%; P, PY) — (R — R, 6,7\ N' + 6, P)y),
1<i<r.

The third term on the left-hand side of (3.47) is bounded from below, due to (3.14),
as follows: . _

(U5 N, N) + a(W5 PP 2 |INVI3 + | P
We estimate the terms on the right-hand side of (3.47). Since [x/(€)| < 3 for all
& € (—o0,00), we have

(T N', NY) — a(T%; N', NY)|
=[5 @ G Bt Ve~ NN~ N+ )
KET;L
<5 3 (L, — TN, — NiIRG, - Nl +..).
KeTy

Evidently, [¥% — ¥i| < OhKH{IVIiHHI,oo(K), r,s = j,k,m. Thus, using (3.9), the in-
equality from Remark 2.1 and (3.3), we obtain (notice that vjz +oi+0v2, < ¢ [ 02 dE)

(W' N, NY) — (T N, V)|
< O g (o Z hi(of [N}, — Ni| N, — Ni[+...)

KT,

. _ _ _ 1/2
< cnwnwm{ S R ((RE)? + (Wi + (N%)Q)}

KeTy,

’ { 2 (af(m@ﬁé)ﬂ...)}w

KTy,
SOV groe @ INTIIN?lv < CIE || 100 (@) [Nl v

Similarly,
la(¥%; P, P*) — a(T%; P', P)| < C”lei”Hl‘oo(Q)”Pi”V.
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In the same way we find, with regard to (3.46),

(T N*, N < O 100 (0 |V ]| N |y < CJINTJ2 + —||Niu2v,
(T P, P < C|| P2 + —||ﬁ"||2v,

LNG N — (TGN NY| < C8| o gy [|N v,
SPLPY) = (TG PP < O e | Pl

and, due to (3.13) from part I,
(R = R, 6, N + 6,1 PY)u| < CINI + (| PR
Thus, it follows from (3.47), that
5 (AN N+ 0, (AP, B+ San(I R} + 11 P)3)
< O[T || 1o o (IN[v + 1P'lv) + CAL(INII5 + [[1P°]17)-
Consequently,

- NN — i i 1 & Di
(3.48) 0 (AN, N'n + 6, (AP, P+ S AN + (1P]15)
< OAH(IT 31 00y + INIE + I P7)7).

Since W' satisfies
(3.48") AP, v) = a(P' = N',v), Yo eV, Wi(z/)=0 Vol eI,
we have by Lemma 3.1

1% s < CUN ooy + 1P o). do=2+¢, &> 0.

We apply the inequality (see, e.g., Gilbarg, Trudinger [5], p. 139)

(3-49) ||u||L‘1(Q) < ||u||2p(ﬂ)||u| L7(Q) Vu € LT(Q) pLg<r, -—= 5 + ,

forp=2,g=qo,r=2(gp—1) = = q%' Hence by the Sobolev imbedding theorem

N[l ooy < INIMIN fag -0y < CIUNTIMIN
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Squaring and using Young’s inequality (with p = %) we get

Ol i) < UNIT + IPI7) + CANIE + [1P*]7)-

|

From (3.48) it follows that

~ o~ ~ o~ 1 ~. ~.
0 (ANT, N')n 46, (AP, P+ ZAH(INTIG + [1P1]15)

SCAL(IN7 +I1PIR), i=1,....r.

By summing up we obtain
~ ~ 1 L ~
O HIN™IE + 05 HIP™ 17 + At S UNE +1P)5)
i=1

m
SO INOIR + 6, IPOIE + Cae Y S(IN'IE + I1P17)

i=1

and for At < Aty = 5= min(d,*,6, ") we have

n »Yp

m
S IN™ I + 8, IP™ 15 4+ At Y (NI + P11

i=1
m—1
S C(IN°l7 + I1POIR) + Cat > (INIG + I1P]17)-
i=1
The discrete Gronwall inequality gives
330 max(IF - B+ 1P - P+ { A (R - W)
i=1

P - P’I?p(n))} < CO(IN? = N°|| +|P° = P°l).

Further, (3.48"), (3.37) and (3.50) imply

(3.51) max [0 — U|| 1.0 (q) + {Atz ¢ — q/i@,l,m(m}

1<igr ‘
i=1

< C(IN° = NO|| +[|P° — P°|)), 1<q< ce.

If N0 = NO PO — PO then ¥ = ¥/, N' = Ni, PP = P’ for i = 1,...,r, which

proves the uniqueness.
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We state the main result of this paragraph as

Lemma 3.4. Let A°, A, A% and (3.45) be fulfilled. If At is sufficiently small,
At < Aty where Aty does not depend on h, then the differences N' — Ni, P' — P
and U — T satisfy the inequalities (3.50) and (3.51), respectively. Here W%, N, P
and Ei, ﬁi, pi satisty (2.4)—(2.7) and (2.9).

4. CONVERGENCE

We extend the approximate solution piecewise linearly onto the interval [0,T]:

t—t; 1

N° = N"7' 4 ———AN’
A ’
- t—ti1 .
P’ =Pl ——— AP
+ At ’
; t—t; ; .
PO =gl T ELAGE op [ti—1,ti], i=1,...,r

At

Here § = (h, At) and ¥° is uniquely defined by d(¥°,v) = a(P°— N°+ Ny, v), Vv €
Vi, UO(27) = ¢p*(27) Vad e TL.

Lemma 4.1. Let A°, A' and A? be fulfilled. If n® and p° satisfy the correspond-
ing boundary conditions (1.4) and (1.5), n®,p® € H?(Q) and At > ch?, then there
exists a triple n,p, v, ¥ —¢* € C([0,T]; VN HY>(Q)), n—n*,p—p* € L>(0,T;V),
n,p € C([0,T]; LY(Q)) for any number q > 1, such that for 6 — 0 we have

(4.1) Y — ¥ (o, 7] 112 () — O,
H”*NwammmmnﬁQ

Ip = P°llc(o.r);29(0)) — O

The triple n,p, 1 is the unique solution of the problem P (see Introduction).

Remark 4.1. The assumption that n® and p° satisfy the boundary conditions
is restrictive. It will be removed in Theorem 4.1 at the cost that the convergence

theorem will be weaker.

Proof. a) We use the compactness method (see Lions [9] and the refer-

ences given there). We show that from any sequence {¥% N% P%7} of the family
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{W9 N% P°} with §; — 0 one can choose a subsequence { W% ) N pdi()} guch
that for any ¢, 1 < ¢ < o0,

1 = | o g0, 17: 1110 () — O
In — N 00,77, Lace)) — O,

Hp — P(Sj(y) HC([O,T];L‘I(Q)) — 0 lf Vv — 00,

and that 1, n, p is a solution of the problem P. If this problem has a unique solution
then (4.1) follows.

b) We derive some more a priori estimates. In these estimates, i.e. in (4.5), (4.6)
and (4.11), the constant C' may depend on a parameter 6 to be introduced later. More
exactly, it will depend or not depend on 6 according to whether n® and p° depend
or do not depend on 6. However, the result is the same: the convergence (4.1).

From (3.44) it follows that

i
4. max ||W ,00 < C.
( 2) 1<igr || HHI @)= C

We set v = AN’ in (2.5) which is legitimate even for i = 1. Introducing a form
a1(¥; N,v) = a(¥; N,v) — d(N,v), ie.

(4.3) ar(;N,0) = Y [af (b — 1) (N = Ni) (0 — v6) + .. ],

we get, due to (3.17) and (3.18),
(4.4) 7Y ANT|Z + Atd(N', ANT) = — At(al(\I/Z;NZ,ANZ) + SH(F N AN
— (U N, AN + 67 Y(RY, ANi)h).

We estimate the terms on the right-hand side of (4.4). Since |x/(£)| < 3, we have
[X(€) = 1] < 5¢] and by (4.2),

a1 (¥ N*, v))|
<OV gy > hr (ol [Ny = Ni|jom —vil +..)
KeTy
' _ 1/2 1/2
gc{ > [a]’-{(N;nN,Q)ZJr...} { > hﬁ((varv,%Jrvfn)}
KeTy KeTy

< CIN* v llvlln-
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Consequently,
. . . 1 . .
[Atar (U5 N ANY)| < 20, AN + CALZ N3
Similarly,

ALB(T; NE ANY)| < CALE |11, (e |V [ AN
1

< §5;1||ANi||i + CAZ(IN|F.
By (3.43), the third term is bounded by
|Atd(T"; N, ANY)| = a|At(P' — N* + N7, N'AN");|
< CAHINn[|AN* (| + CAL(IN" |74 + 1 P[5 DI AN[1
< CAP + %1||AN"||%L
and
8, AR, AN | < CAL(L+ [|N[|1 + [|P*[) | AN
< CAP + %5;1\|ANZ'\|§.

Summing up (4.4) for i = 1,...,m < r we arrive at the inequality
-1 W2 m)|2 02
573 IANTIR + S ALINT I + 56D AN,
i=1 i=1
< AN + CAt+ 257 i AN
= 9 \4 9 g h>
ie.
0 S IANE + At(IN 17 + Y 1AN ) < Car,
i=1 i=1
Two a priori bounds, needed in the sequel, are

2

|| AN? _

(4.5) At; |l S C, ax N2y < C.
In the same way we get

A 3l <C P! <C

(4.6) £y | SO max 1P| 20y < C.
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c) We subtract from (2.5) the equation corresponding to ¢ = ¢;,_; and choose
v =AN". We obtain

(4.7) 5 (AN — ANTL AN, + At d(AN?, ANY)
= — At(m(\lfi;Ni,ANi) —a (U1 N ANY)
+a (T N AN — aq (T, NIL AN
— (T N, ANY) + ¢(T'~1; N ANT)
— (T N AN 4 (T N AN
+ 6, (R' = R ANY),),  2<i<r

We estimate the terms on the right-hand side of the above equations. First,
d(AV v) = a(AP? — AN* v), Yv €V, and AV? =0 on I'!. By (3.37),

(4.8) ‘IA\IIi‘IHl,oo(Q) < C(HANiHqu(Q) + ‘IAPi‘Iqu(Q)), g =2+¢, €>0.
From (4.2), (4,5), (4.8) and from the Sobolev imbedding theorem we conclude that
@ (W5 N, AN) — ay (871 N, ANY)|

=1 D (o] O = Ul )Ny, = NQ(AN,, — ANG) + .. ]
KeTy,

S C|AY o) Y hilof Ny, — N[ |AN}, — ANi| + .. ]
KeTy,
< Ch|AY || g1 () [NV [ANTlv < CR[|ANT|T + AP},
lap (U1 N AN — ap (T NTH AN
< OO e (o AN < Chl|ANTF.

Further, by (4.8) and (3.49),

(s NE ANY) — o015 NE AN)| < O AW | g0 |V ANy

< C(IAN"[| Lo () + [AP || Lao @) ANl < CJAN?MAN?F)
1 i) l— i 1
+O([APT AP AN v), A= -
By Young’s inequality with p = £ and by Schwartz inequality and Young’s inequality
with p = &, we get

(T N ANY) — (T~ N AN

< C(IANP + 1AP?) + = (IANT]T + [|APT[R).

L
16
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Finally,

(B NS ANY) — (U5 N ANY))

SO @ > hxlal|AN), + ANi[|AN}, — AN{| +...)
KeTy

i i i 1 i
< CIAN?[[JAN|ly < CIAN?|]* + T I3

and
(R — R AN")| < C(|ANT|1? + [AP)?).

From all these estimates and from (4.7), summing up by parts, we obtain that

1 - ,
SO0 IIANTIG + ALY AN
=2

r

1 -1 12 1 712 7|12 2
< S0 IANYE + At(Ch+ ) STUAN + AP }) + CAL,

=2

An inequality of the same type can be derived for P*. Combining the two inequalities

we get for h sufficiently small, h < hg where hg does not depend on At, that

(4.9) S AN 46, | APT[7 + At > (JANY + |AP)3)
i=1
SOHANYE + 6, IAPHE + At(JANYT + [|[APYT) + CAt2.
We will prove that

(4.10) G AN + 0, AP + At(JANTG + [APY) < CAt2.

Then (4.9) implies the last desirable a priori estimate

2 AP
I

2
) <
H(Q)

" /I|AN?
(4.11) AtZ;(H N Hl(ﬂ)+

Concerning (4.10) we choose i = 1 and v = AN in (2.5). We get

S HIANYE + Atd(NY, ANY) = — At(ar (T NP AN + %b(\l}l; N1 AN?)
—d(TH N, ANY) + 6, (R, ANY),).
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It follows easily as above that
la1 (T N, ANY)|
|b(TH NY AN
|d(¥h, Nt ANY)|

< O WY g [NV [[ANY]| < C|ANY s,
<O oo @ INYIVIANT < CAN? |5,
< |a(P = N + N,,NlANl)
<
<

C(INI, AN W < CIANYn,
c+ HN1||h + ||P1Hh)||AN1||h ClANY|p.

[(RY, ANY)]
Therefore,

SHIANY|Z + At|ANY2 < — Atd(n®, ANY) + Atd(ng — N°, AN?Y)

+ CAL|ANY||.
Now, smce ” |1,2 =0, we have d(n®, AN') = —(An°, AN1) (An® means, of course,
d;x; + 2 ay ) Further,
d(n — NO, ANY)| < Chl|n® 2oy AN | < CHIAN v,
and thus

STHANYZ + At||AN1HV CAtHANth + CAth|AN' ||y
< CAR + 55;1\|AJ\71\|h + CAth? + 5At||AN1||V.

Consequently, 6, H|ANY||Z + At|AN!||2 < CA.

d) In this paragraph we prove uniqueness. In fact, we prove inequalities from
which uniqueness follows immediately and which are counterparts to (3.50) and
(3.51). First, we write (1.9) and (1.10) in an operator form. For a given ¢ €
L0, T; H>*(Q)) and n,p € L3(0,T; HY(Q)), n > 0, p > 0 a.e. in Q, we define
operators A, B € L?(0,T;V’) and R € L?(0,T; L?) by

(4.12) {<A Z> =V ('(/),n Z) <B7Z>V = ﬁ2(¢;p,z) Vz € L2(0,T; V),

= (R(n,p),z) Vz € L*(0,T; L*()).

Evidently, [#2(63m,2) < (Inllv + [éllmellnl)lzlv, hence [|Allaorvn <
C[Pll e 0. 7:11.5 2y + DInll 20,7501 (0) and, as [R(n, p)| < § +n+p for n,p >0,
we have || R z2(0,7;22()) < C(nllL2(0,7;22(0)) + IPll2(0,1;02(0)) +1)- V is a Hilbert
space which is dense in L2?(f2) with a continuous imbedding. We identify L2((2)
with its dual by means of the scalar product (-,-). Then L2(f2) can be identified
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with a subspace of V’ and the following dense and continuous inclusions hold:
V C L%*(Q) C V. Furthermore, the operation (-, ),,, expressing the duality between
V and V', is an extension of the scalar product (-,-). The reflexivity of V yields

E(nav) = a(n*n V) = E(”*n V)
= % (v,n—n"),, YoeV in 2'((0,T)).

The same is true for p.

By a lemma of Temam (see Girault, Raviart [6], p. 149, (1.3)) n and p have weak
derivatives n’ and p’, respectively, which satisfy
(4.13) §,;'n'=-A-6'"R 6 'p'=-B-6'R.
Hence n’,p’ € L?(0,T; V') and consequently (see [6], Theorem 1.1, p. 151) n — n*,
p — p* and also n,p belong to C([0,T]; L?*(2)). We see that the initial condition
(1.11) makes sense.

Now, let (vj,n5,p;), 7 = 1,2, be two solutions of the problem P with the same
boundary conditions and with initial conditions n;(0) = n?, p;(0) = p?, n?, p? €
L3(Q), j = 1,2. We assume that

(4.14)  [[Willeee o1t )) < C5  ngllLeo,1i2(0)) + IPjllze0,1522(0)) < C

and recall that C' is a constant which does not depend on any parameter. We set
e = o — 1, Ne = Mg — N1, Px = P2 — p1. We have 1, € L>(0,T;V N HH>*(Q)),
N, Ps € L2(0,T;V) and (4.13) implies

St (nl,2)y, = — (s — Ay, z2) Y(Ry — Ry, 2)

f(;r:
L v vz e L2(0,T; V).
d <p*7Z>V: _<BQ_BI’Z>V_6P (RQ_Rl,Z)

Choosing z = n, and z = p., adding and applying Green’s formula (see [6], Theorem
1.1, p. 151) we get

S0 I (DI + 5, - (1))

[\

1 B B t
= = (0, [n21% + 8, HIP2II%) — /0 ((A2 = A1, ni)y + (B2 — Br,pu)y ) dr
t
*/ (R2 — R1,57:1TL* +5;1p*)d7'.
0
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We estimate the last two terms. We have, with regard to (4.14),
(A2 = Ay = [l = [ 12V~ m Vi) - Vi, do
Q

= |In.l3 — / n. Ve - Vn, dr — / n1 V), - Vn, dz
Q Q
> [y = (12l o @) sl + Il @]l oo () llnellv

3
> Z\ln*ll%/ — Cllepall 1. ) — Clina|®.
Since

(4.15) d(Ys,v) = a(pe —ny,v) Yo eV and o,

1‘1:07

it follows from (3.2) that ||t g1.) < C(l|nsllLao() + [IP<llzew0@), @0 = 2+ ¢,
€ > 0, and using (3.49) we derive as in Section 3 that

Cllallin~ @) < gUnslly + Ipll3) + CCllnall® + Ip]*).

1
8
Hence
3 1
(A2 = Avna) > Zllnellt = gt + lIpal5) = CClmall® + llp[*).
In the same way we obtain
3 1
(B> = Bu,p.) > 7llp-Il% — g(\ln*HQv Hlpsl15) = Cllnal* + [|p« )
and, moreover,

[(Ry — R, 6, s + 6, 'pa)| < C(||ns|1® + [|p<]|?)-

Therefore
G e (D17 + 8, - ()11 + /Ot(ln*(7)||2v +lp(n)I}) dr
< &y 2l + 8, IRl + C/Ot(lln*(T)lz +lp(7)|*) dr
and the Gronwall inequality gives

(4.16) In2 = nallcqomzz) + [In2 — nall L2001 (@)
+ [Ip2 — prlleqo, 2 + Ip2 — P12 (0,130 ()
< C(|lng —n3 + [Ipg — pY1)-
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From (4.16) and (3.2) it follows that

(4.17) |2 — 1l cormz@) + V2 — Yl o,7;m1 @)
< C(|lng —n3l + [Ipg — pY1)-

If n? = n9 and p? = pY then (4.16) and (4.17) imply 91 = s, N1 = na, p1 = p2 on
Q2 x (0,7, which proves the uniqueness of the problem P provided A! is satisfied.

Remark 4.2. If we say “uniqueness of the problem P”, we mean, of course, that
the data satisfy only the assumptions introduced in the definiton of problem P. In
particular, n® and p° need not satisfy the boundary conditions. We did not use this

assumption in deriving (4.16).

We state the result of this paragraph as

Lemma 4.2. Let A! and (4.14) be fulfilled. Then the differences ny —n1, pa —p1
and o — 11 satisfy the inequalities (4.16) and (4.17), respectively. Here 1;, n;j, p;,

j = 1,2, are two solutions of the problem P with the same boundary data and with

the initial data ng, pg-].

e) We need one more lemma.

Lemma 4.3. Let the family {T},} satisfy the minimum angle condition. If
u € Wy, and q > 2 then there exists G € L9(2) such that

(4.18) (u,v) = (u,v)n = (G,v) Yv € Wx, ||G|Laq) < ChQ/qHVUHLZ(Q).

Remark 4.3. For ¢ = 2 the result was proved by Ciavaldini ([4], p. 470).
Proof. One proves easily that

~

[ Fas-17)| < il

R

where I(]?) = £(f1 + fo + f3) (f; are the values of f at the vertices of I?) is the
~ 1/2

approximate value of [ fd¢ and |u|m,r = ( > fR|D"‘u\2d§) ,m=1,2,...

la|=m

281



Let w € W), and consider f: uw. Then A2 I

(, w) — (4, )] = ’Z 2 area(K </I?a@dg—1(a@)>‘

KeTy,

<C Y Wkl glol &

KeTy,

1/2 1/2
<c{zu|iK} {zhwwiwfn)} .

KEeT), KeT,

< Clul, ||, % and therefore

We make use of the inequality
a2+ b0+ < (aq/ + 7 +cq/)2/q/, a,b,c>0.

(To prove it consider the function F(a,b,c) = (a? +b7 ¢ )?/7. Set a = af, b = an,
c=al, o = a®+b%+c2. Then £24+12+¢2 = 1. Evidently, £24+n2+¢2 < &7 +n? +¢7,
hence F(£,7,¢) is bounded from below by 1 and, as F(a,b,c) = o?F(£,n,(), the
above inequality follows.) We get

1/2
[, 0) — (1, W) <c|w||m<m{ 3 B (fwy|” + wg]? +|wm‘Z>2/"} '

KeTy
By (3.38),
Y 1/2
(0) = ()] < O Ul 3 Al |
KeTy
1/2
< C’hZ/Q||Vu|Lz(Q){ > ||w|iq,(K)} .
KeTy,
Now, we chose w = ||vHLq ") Since [|w (@) = 1, we have [|w k) < 1
VK € UTh, hence Hw||Lq x) S Hw||Lq,(K) and further

/ 1/2
|(u, w) — (u,w)p| < Ch2/4||Vu|Lz(Q){ Z |w||’iq,(K)} = Ch2/q‘|Vu||L2(Q)

and
|(u,0) = (u, 0)n] < CR |V 2oy |0]] Lo -
The proof can be completed in the same way as that of Lemma 3.2.
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f) From (4.5), (4.6) and (4.11) it follows that

9
(4.19) IN?lleqo,ry ooy < C, HEN(S‘

)

<
L2(0,T;H' ()

<C.

0
4.20 P? . <C, H—P‘S’ <
(4.20) 1Pl e o, 7y;m1.(2) ot Nlr2omm @)

We shall consider sequences of functions from the families {N°} and {P°}. We
leave out subscripts and use always the same notation {N°} and {P°} for these
subsequences, and ¢ is always such that § — 0.

The family {N°} is bounded in C([0,T]; H'(2)). It is also equicontinuous since

ta
QN(S(T) dr

<Oty — to]V/?
" 8t X ‘1 2|

nmw%N%mmm{
H(9)

due to (4.19). As the imbedding of H*(Q) into L%(£2) is compact for any 1 < ¢ < oo,
the set {N?(t)} is relatively compact in L9(f2) for any ¢ € [0,7]. The assumptions of
the Arzela-Ascoli theorem for functions with values in a Banach space are satisfied
(see, e.g., [8], p. 42), therefore there exists a subsequence (still denoted by N?) such
that

[n — N(SHC([O,T];LQ(Q)) —0

where n € C([0,T]; LY(€)). The function n does not depend on ¢. If, namely, n;,
Jj =1,2, correspond to g;, g1 < g2, then

In2 = nalleqo, ;20 )
< Inz = N°lloqo.r1:2m(@)) + In1 = N2 lloqo,11:m 2)

< C(||n2 = N°|lc(o,r1:po2(9)) + 11 — Nl oo, 1001 (9))) — 0.

Due to (4.19) and (3.2) we have also |[N° — n}|| 1o (0,7;v) < C. Consider the family
{2},
4 g 4 * 1
(® ,z>L1(07T;V) :/0 d(N° —nj,z)dt Vz e L°(0,T;V).

It is a bounded linear functional on L' (0,T; V). Consequently, there is a subsequence
{®?} such that ®° converges weakly* to an element of L>(0,7;V"), i.e.

<¢5,Z>L1(07T;V) = (®,2) 1oy V2 € LNO,T;V), @€ L®(0,T; V')
(see, e.g., Céa [2], p. 26). We have
T
@ Aiorw = | o2y dt o€ LO.TV)
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(see, e.g., [8], p. 125). According to the Lax-Milgram theorem, there exists 7 €
L*>(0,T;V) such that
(p,v)y =d(R,v) YvEV.

If we define 7 = n+n*, then 7 — n* € L>°(0,7; V) and, since fOT d(n*—n},z)dt — 0
if h — 0,

T T
/ d(N5,z)dt—>/ d(m, z)dt Vz € L*0,T;V).
0 0

We want to prove that 7 = n. The set { N’ —n%} is bounded in L2(0,7T; V). Therefore
(see e.g. [2], p. 24) there exists a subsequence, denoted again in the same way,
such that N° — n} converges weakly to a function 7 € L?(0,T;V). We choose the
functional F'(w) = fOT d(w, z) dt which is a linear bounded functional on L2(0,T; V).
Then [ d(N° —nj,z)dt — [ d(@i,z)dt and [} d(N°, z)dt — [, d(7i + n*, z)dt.
Hence 7 = 1 + n*. Further, we consider the functional F(w) = fOT(w, z) dt on the
same space. Again, F € (L%(0,T;V)) = fOT(N‘S —n},z)dt — fOT(ﬁ,z) dt. But
fOT(N‘S — N7, 2)dt — fOT(n —n* z)dt, thusn —n*=n =n—n* and 7 = n.

Summing up, there exists a function n € C([0,T]; L9(2)) such that n — n* €
L>(0,7;V) and

(4.21) In = N®lleqo, 7329y = 0,

T T
/ d(N‘S,z)dtH/ d(n, z)dt Vz € L*(0,T;V).
0 0
Similarly, there exists p € C([0,T]; L?(£2)) such that p — p* € L>°(0,T; V) and

(4.22) lp = P*lleo.ryzay — 0,

T T
/ d(P‘;,z)dtﬁ/ d(p,z)dt Vz € L*(0,T;V).
0 0

As |n®—NO||+||p°—P°|| — 0if h — 0, we see that n and p satisfy the initial condition
(1.11). Let E(t) be the subset of Q where n(t) < 0 and v*(t) = n(t) on E(t), v*(t) =0
on Q—E(t). Then v*(t) € L3(Q), ((n(t)—N°(t),v*(t)) — 0if § — 0 for each t € [0, T
and (n(t) — N°(0),0" () = (1) By, — N7 n() ey > In sy,
Thus ||n(t)||z2(e@) = 0 = meas E(t) = 0. The requirement (1.12) is fulfilled.

g) We define a function ¢ by (1.8), where n and p are the functions from (4.21),
(4.22), and by the requirement ¢ — ¢* € V. Evidently, ¢ — ¢* € C([0,T];V N
H'>°(Q)). We show that the first assertion of (4.1) is true. To this end, let us first

consider the function G° determined by
(G°,v) = (P°,v) — (P°,v)n — [(N?°,v) — (N°,0)3] + (N1,v) — (N1,0);, Yo € W,
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Due to Lemma 4.3, (4.19) and (4.20) we have
IG® || oo () < Ch/, Go=2+4¢e £>0.

Here and in the sequel, the constant C' does not depend on ¢ (nor on the parameters
mentioned at the beginning of the third section). Let F° be defined by

(F%,v) = (P° = N° 4+ Ny — G°,v) = (P° — N° 4+ Np,v), Yo € W),
and Z € W), by
d(Z,v) =0 Yv € Vj, ARRE Rt

Then
W —Z eV, d¥ —Zv)=a(Fv) YveV,.

Let ¢ be the solution of the problem

9y’
ov

—AY’ = a(F‘;,v) Yv eV, <,0‘5|1,1 =

T2

The equivalent variational formulation is
] 5N §
eV, d(e’,v)=a(F°v) YoeV.

Therefore ¥° — Z is the Ritz projection of ¢°, ¥° — Z = R(°). To use this fact we
must bring ¢° in connection with the function ¢. Let z be the function defined by

. 0z
_AZZOa Z’r\l :¢ |1’\1’ 5 2 =
Then
o —z—¢°
AWz ) =alp-nt N F), @z = ZEETE) g

hence by the Sobolev imbedding theorem and (3.2)

Cllv = 2z — &° |l oo,y 200 (@)

1 — 2 = @[l oy =(@) <
<Clp=n+N = Fllogoryzo @) = o(1).

Now, ¢ — W0 =) — 2 — % + 2 — Z + ¢° — 9 — R(¢° — ¢%), consequently, due to the
Rannacher-Scott theorem (see [11], p. 438),

<o(1) + ||z = Z|l g0y + Cll® — 3l (o, ry; 1 @)
< o(1) + ||z = Z|l g () + ChY )| || o 0,77 290 (52))
<o(l)+ |z — Z”Hl‘oo(Q) + OhliZ/qo,

1Y — || c(o,m7 1o ()
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ie.
(4.22) 1 = Ol oo,y 00 @) < 0(1) + |2 = Z| s (-

Concerning the term ||z — Z|| g1, (), we define ¢ by

. ¢
7AC:0, C’r*l:wlh'\la 5‘1_27
Then
C—q/}}kE‘/, d(C*w}kav)zfd(w}kav) Vv eV
Further,

Z — 7 € W, d(Z — Y7, v) = —=d(¥],v) Yv €V
so that Z — ¢ = R(¢ — 7). We have
(=Z=¢=v; = (G —¥1)+ R(CG —¥7) = R(C— 1) =C— ¢ = R(¢C = ),
consequently,
1€ = Z|| ooy < ClIC = Crll e (@) < CR2/%|¢|| 20 () < ChE2/0
and, by (3.2),

|2 = Z|| g1 () < ||z = (Il (0) +0(1) < Cllz = ([l 5290 (0) + 0(1)
<C Z %" = Y7l g2-1/90.00 (1) + 0(1).

jED
If we show that
(4.23) | — 7/’?||H2—1/ao‘qo(rj) = o(1)

for all j € D, the convergence of ¥ to ¢ in the C([0,7T]; H-*°(£2))-norm will follow
from (4.22").

Since I is a segment, it is sufficient to show that

”f - fIHH2*1/qo=qo(QO) = 0(1) if fe H27q0(90),

where Qo = (0,1) and the elements K covering Qg are subintervals of [0, 1].
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We use the notation w = f — f;. Then (see, e.g. [10], p. 81),
|’ () — W' (y)|%
1% ey = 10 + / /| 0 dedy
|’ (z) — w'(y)|*
= L lellrancry +ZZ/ / |x_ O sy

The integrals over the segments K will be transformed on K = [0,1]. We get

2(1—qo) ||~
ol sy < A IR

2(1—qo) |’ (€ ()|
+2 D I J; \5 e

2(1 q ~
Zh 0 | ||H2 1/4q9, qO(K)

Now, we use the interpolation inequality

[l gzt < Cllllgetmo 1| Fream s 80 # 51, 1< po,p1 < o0,
1 1—-6 0

:<1—9)80+981, — = + —

p Po D1

(see Berg and Lofstrom [1], p. 153, formula (7)), where we choose s* = 2 — -~
P* =4qo, so =1, 51 =2, po = p1 = p* = qo. We have

2(1— ~ -~ -
1% ey < czhjg @] 1100 ) 1015 2
2(1—q
th 2 \fIHMO(K
C’th(l q0) 2qo 1|f‘H2 0 (&)

B Ch‘f|H2,q0(QO),

where

Himr = 3 1DV ewy m=1.2,...

loe|=m

and

||f - fI”H?*l/qo,qo(QO) é Chl/qo.

Remark 4.4. If * € H*>(Q), ¢ > 2, then 1/1*’11 € HZfl/q’q(Fj). We can
J
choose € so small that ¢ > go = 2+e. One can expect that this is sufficient for (4.23)
to hold, i.e., the assumption 1/1*’11 € H?%(I}) for all j € D is superfluous.
J
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h) It remains to prove that the functions n and p satisfy (1.9) and (1.10), re-
spectively. We restrict ourselves to (1.9). Consider a function ¢(t) € D((0,7)) and
define

var =@ in (tic1,ti], i=1,...,m

For a given v € V we choose {v,} such that v;, € V}, and
HU_UhHV —0 if h—0.

We set v = vp¢' in (2.5) and sum up. We get
(4.24) D (AN" 0p)n’ + 6, AL > TE(T5 N vp)g' + ALY (R vp)ng’ = 0.
i=1 i=1 i=1

Concerning the first term we have

T

T
(ANi,vh)thi = 4 ~ZN? , Uh @At dt

i=1
- /f(aatNé vh) (cpAtcp)dtJr/OT(;)tNa h*U)thdt
+/0T[(gt]\f5 )h(%Néav)}odt+/0T(%N6,U)g0dt.

The first three integrals on the right-hand side converge to zero if & — 0, the last
converges as follows:

/T(QN‘S v) dt—/TQ(N‘S v) dt——/T(N‘S V) dt —/T(n ) dt
o \ot yUjpdt = , ot ,V)pdl = ) V)@ o , V)@ di,

thus

r T

(4.25) > (AN vp)ng' — f/ (n,v)'dt if §— 0.
i=1 0

Concerning the second term in (4.24) we have

T
AtZﬂi(\I/i; o)t = AtZd ' op) " +At2a1 LN o)

i=1
— Ath(\I/i; N wp)eh
i=1
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The sum At > d(N% vp,)e" can be expressed in the form
i=1

ti

AtZd vh<p —Z dN ,Up)oar dt

ti—1

:Z/ d(N*, vy, — @Atde/ )(par — @) dt
+Z/

Due to (4.19), the first three terms on the right-hand side converge to zero, whereas

T T
/ d(N°, v)pdt — / d(n,v)pdt
0 0

d(AN*, v gpdt—i—/ d(N°,v)pdt.

due to (4.21). Further

AtZal N ,UR)P

< CAHY |11 o) hz IN*Iv llonllv < Ch — 0

i=1

and

t; '
Atz vh o= Z/ N’,vh)cpmdt
= Z/ (T N vp)(par — @) dt
i=1 7 ti—1

T

t4
ot —t . .
Ut AN? dt
P e AN

i=

T t;
° tz _t '. P
+;/ A (DTSN v )pdt

T
+/ <c(\1/5;N5,vh)—/N5v\1/5~vuhdx><pdt
0 Q
T
+/ /N5V\Il5~V(vh7v)g0dt
0 JQ
T
+/ /N5V\I/5-Vv<pdxdt.
0 JQ

Since [c(¥; N,w)| < C||¥| 1,00 [| N[V ||w]lv for ¥,n,w € W, we find easily by
means of (4.2), (4.8) and (4.19) that the first three terms on the right-hand side
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converge to zero if § — 0. Concerning the integrand of the fourth term we have (we

denote by v,, n =1,...,q, the values of v}, at the nodes)
c(qf5;N5,vh)—/N5v\I/%hdx
Q

1
= 3 [l W, — WSV + N o — i)+
KeTy,

— Y 2area(K)V¥’ - Vuy) / NOde.

KeTy,

On the one hand (see (3.14)),

A0, op) = > [ef (B, = U)) (vm — vk) + .. ],
KeTy,

on the other hand,

vh Z / VU . Vo, dz = Z area(K)V\Il5~Vvh.

KeT), KeT,

Therefore, area(K)VV¥° - Vo, = aJK(\Ilfn —U9) (v — V) + .., and

(PO N°, vp) — / NV . Vo, dz

= > {arwi, - [%N‘S—i—Nk —2ﬁﬁdg}+...}
KET,
- {aJK(\Ilfn — ) (e — Uk)% (N = N+ =N+ ).
KeTy
Consequently,

(W% NO ) — / NV . Yy, d
Q

< ORI || e llvnlv NIy < Ch — 0.
The fifth term converges to zero and, since
T
/ / (N°VW° — nVep) - Vodadt
0 Jo

T T
:/ cp/N5VN(\IJ‘S—1/J)~Vvdxdt+/ @/(Né—n)vw-VdedtHO
0 Q 0 Q
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due to (4.1) and (4.19), we see that
r o _ T
(4.26) Atz:ﬂ,%(\llz;Nl,vh)gpZ — / 72 (;n,v)edt if §— 0.
i=1 0
Finally, denoting R% = R(N?, P°), we have
At Z(Rz, VR R = Z/ (R',vp)npar dt
i=1 i=17ti-1
r t; )
= Z/ (R vn)n(par — ) dt
i=17ti-1
r ti ' r ti
+Z/ (RZ *Ré,vh)h(pdt#*z:/ (Ré *R,”Uh)h(pdt
i=17ti-1 i=1"ti-1
T t; r t;
+ Z/ (R,vn)n — (R, vp))pdt + Z/ (R,vp —v)pdt
i=1Yti—1 i=1Yti-1
T
+/ (R,v)pdt.
0
All sums on the right-hand side converge to zero, hence
T ) T
(4.27) At Z(R’,vh)goi — / (R(n,p),v)pdt.
i=1 0
From (4.24), (4.25), (4.26) and (4.27) it follows that

T T T
f/ (n,v)p dt+5n/ Dz(w;n,v)godt+/ (R,v)pdt =0
0 0 0

and the proof of Lemma 4.1 is complete. O

Theorem 4.1. Let A°, A and A® be fulfilled and At > ch?. If ¢, n,p is the
(unique) solution of the problem P, then

(4.28) 1 — ®llcqorymra@) — 00 ¥ — ¥l L2010 (2)) — O,
(4.29) In— Nllcqorsza@) — 0, P = PPlleqomcaey) — 0
for any 1 < g < oo asd — 0.

Proof. Let Qg be the polygon lying in 2 with sides parallel to the sides of € at
the distance 6, where 6 > 0 is sufficiently small. One can construct easily a function
w(z,0) with the following properties:
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a) w(z;0) =0 on Q—Qys,
b) w(z;0) =1 on Q,
c) we CH Q)N HAQ), |D|<CO7L, |al=1.

Let 27, j = 1,2, be the solutions of the boundary value problems

ov Ir

2

*AZJ =0 in Q’ 21|F1 :TL*|F1, ZZ’FI :p*’FI’

By virtue of Remark 3.1 and the inequality (3.38') we have 2/ € H?(). Consider

the functions

We have
9s°(0)
0 2 0 *
(4.30) S0) € H(Q), | = 5", ——| =0,
(x;0) (x) on Qy, s=mn,p
Further,

(4.31) [I8°O)llo@) < s lIs® = @) < COY2, [|s°(0)l|prra() < CO YD,
s=mn,p, q>2.

(Of course, the constant C' does not depend on 6.)

Denote by 1(8), n(0), p(f) the solution of the problem P with the initial val-
ues n°(0), p°(0) (the boundary conditions (1.4) and (1.5) remain) and by ¥°(6),
N%(6), P%(9) the corresponding fully discrete approximate solution. By (4.30) and

by Lemma 4.1, for each (sufficiently small) 6 we have

(4.32) [4(0) — ‘I’é(e)HC([o T);HL2 () — 0,
[n(6) — N6(9)||C( 0,7;2(2)) — 0,
Ip(0) — (Q)HC([O,T];Lz(Q)) —0 asd—0.

It follows from (4.31) and from Lemmas 4.2 and 3.4 that

(4.33) In = ()l o, ry;z2(5)) < C(IIn® = n(O) + [1p° — p°(O)]1)
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and

IN°(0) = N°llcqo,risz2)) < C(I(n° =n®@) 1l + (2° = p°(0)):]])
< O(In® = n°@) + [n® = nd|| + In°(8) — n°(0)1||
+ [Ip° = p°(O) || + [In° — Pl + 1p°(8) — °(6:)])).-

We have

Is” = s3]l < CR?||s || 20 < CR2,

$9(0) — $°(0)1]] < Ch||s°()|| sracy < CRO~ YD for ¢>2, s=n,p
Q)

(see [3], Theorem 3.1.6, p. 124). Hence, choosing e.g. ¢ = 3 in the above estimates,
we see that

(434)  [IN°(0) = Nlloory:e20)) < C(In° = n®@) + [Ip° — p°(9) ]| + ChO~?/).
Now, due to (4.33) and (4.34) we have

In = N°lleo.yz2(@)
< In = n(0)loqo.ry:L2@) + 17(0) = N°(0) [l co.11:22(52))
+IN°(0) = Nl e (o r1:z2)
< Ci([n=n°@)l + llp = p°(O)])
+ C2hf7?% 4+ |n(8) — N° ()l opo.11:22(2))-

To prove that [[n — N°||c(jo,r);2(2)) — 0, let €0 be an arbitrary positive number.
The second inequality in (4.31) guarantees the existence of 6y so small that Cy(||n —
n®(6o)||+ [1p° —p(60)||) < %eo. From (4.32) it follows that for |§| = h+ At sufficiently
small, |§] < dp, we have C2h<90_2/3 + [In(6o) — N°(60)lc(o,13;22(02)) < 3€0- Hence
|n — N5||C([0’T];Lm)) < gg for |0] < dp. In the same way we prove the second part of
(4.29). (4.28) follows in a similar way by virtue of Lemmas 4.2, 4.1 and 3.4. O
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