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Abstract. We investigate the nonstationary equations of the semiconductor device theory
consisting of a Poisson equation for the electric potential ¡p ai,d of two highly nonlinear
continuity equations for carrier densities « and p. We use simplicial elements with linear
polynomials and four-node two-dimensional and eight-node three-dimensional isoparametric
elements. There are constructed finite element solutions such that the current densities J„, J.
and the electric field strength || Vifil are constant on each element. Two schemes are proposed:
one is nonlinear, the other is partly linear. The schemes preserve the property of the exact
solution (corresponding to the physical meaning) that the carrier densities n and p are
positive. Existence of the solution is proved in both cases, unicity in the second case. A
subsequent paper II will be devoted to problems of stability and convergence.

1. Introduction. We consider a system of three equations in a bounded domain
ß c Rm, m = 2, 3, which form the basic model of mobile carrier transport in a
semiconductor device (see, e.g., Buturla, Cottrell, Grossman, Salsburg [1]):

(1.1) -At = £(p-n + N(x)),

(1.2) gj= v [/>„(*, ||v*||)vn-/!„(*, II v*||)/iv*]-*„(/!,/>),

(1.3) |£ = V \Dp(x, ||V^||)VP + pp(x, \\vn)pV^]-Rp(n,p).

The unknowns are the electrostatic potential \b and the electron and hole densities n
and p. All coefficients appearing in (1.1)—(1.3) are positive, q and e are constants (q
is the electron charge, e is the dielectric permittivity), the diffusion coefficients
Ds(x,í), s = n, p, are related to the mobilities ps(x, £) by the Einstein relation
Ds(x, £) = UTps(x, |) where UT is the thermal voltage. N(x) is a given function of
x = (xx,...,xm) which is equal to ND(x) - NA(x), ND(x) and NA(x) being the
donor and acceptor impurity densities. N changes its values extremely rapidly if x
approaches the so-called junctions (curves or surfaces lying in ß). Close to junctions,
max11 vN11 assumes values 1018 - 1023 cm"4. Rs(n, p) are recombination terms. We
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28 MILOS ZLAMAL

simplify the system, taking

x np - n2
R„(n,p) = Rp(n,p) = R(n,p) = \       '

' Tp(n + ",) +Tn(p + «,-)

and further t„ = t^ = t. These simplifications are not essential for the construction
of the approximate solution as well as for all results of this paper. Let us remark at
this place that in practical computations t is of the magnitude 10"6s and the length
t0 of the time interval is t0 = kr, where 1 < /V < 10.

Before formulating the problem completely, we scale the system by introducing
new dependent as well as independent dimensionless variables and the new dimen-
sionless doping profile and mobilities,

¡b=UT4>,    n = n¡ñ,    p = n,p,    x- = tx¡       (j = 1,..., m), t = tí,
(1.4)

N=n,N,    ps = p0ps,    s = n,p.

Here / = 5 X 10"4cm is the realistic value of diam(ß), «, = 1010cm"3 is the
intrinsic number, and for silicon at room temperature ¡u0 = 1300cm2/Vs for elec-
trons and u0 = 500cm2/Vs for holes. Keeping the same notation of all variables, of
the mobilities and of the doping profile as before, we get

- Ai|/ = a(p - n + N(x))    in fi V/e (0J),

Y„V •{/!„(*, l|v^||)[Vn-iiV^]} -R(n,p)\
ine,

Y^V -{pp(x, \\V4<\\)[VP + pV^]} -R(n,p)j

The values of a = l2qn¡/eUT, ys = tUtp0/12 (s = n, p) and T are a = 0.016,
y„ = 130, yp = 50, T e [1,10]. The quantity supa|| v¿V|| is of the order 103 - 108.

Let us remark that the expressions in the brackets on the right-hand sides of (1.2)
and (1.3) are equal to J„ and -J , respectively, where

J„ = W„(x,\\VxP\\)(UTVn - nv^),        ip= -qpp(x,\\v^\\)(UTVp + pV^).

J„ and Jp are the electron and hole current densities. In the scaled system the current
densities are

J, = )Sfj;       (s = n,p),

ßs = ^j^-ßoißn = 1-04 X ludern"2, ßp = 4X 10-5Acm-2),

where J* and J* are dimensionless quantities,

(1.9)    J;=pn(x, ||V^||)(VH-/IV^),        J;= -pp(x, \\vt\\)(vp+pViP).

The first terms on the right-hand sides of (1.6) and (1.7) are equal to y„V • J* and
— ypV ■ J*, respectively.

(1.5)

(1.6)

(1.7)

dt

3i

(1.8)
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FUNDAMENTAL EQUATIONS OF SEMICONDUCTOR DEVICES. I 29

We denote by T = T1 U T2 the boundary of ß. The basic boundary conditions
are Dirichlet nonhomogeneous and Neumann homogeneous boundary conditions

(1.10)

(1.11)

r1 — "ir1''/'Ir1 = ^*!r''    "Ir1 = "
n*(x), p*(x) > Oon T1

P\p

dxp_
dv

9n
dv

dp
dv r2

= 0
}    Vie (0,7].

ß if T1 = 0and    ¡p(x°,t) = 0,        y

Here rp*(x), n*(x), p*(x) are sufficiently smooth functions defined on ß (of course,
for computations we need to know the values of these functions on T1 only).

In addition, we have an initial condition

(1.12)     n = n°(x),        p=p°(x)    in ß,        n°(x), p°(x) > 0   on ß.

In case that f = 0 we need the compatibility condition

(1.13) f[p°- n° + N]dx = 0    if T1 = 0.

The last requirement is

(1.14) n(x,t)>0,       p(x,t)>0   onQ.
Remark 1.1. We can easily prove that any sufficiently smooth functions \p, n, p

satisfying (1.5)-(1.7) and (1.10)—(1.12) satisfy automatically (1.14) if ps(x, £) are
continuously differentiable functions.

We formulate the problem (1.5)—(1.7), (1.10)—(1.14) in a variational form. We
denote by V the space

V = (tietf^ß), i)|r' = 0}.
Let us remark that we use the usual notations of the Sobolev spaces //"'(ß), m = 1,
2,..., and Hmp(Q), m = 1, 2,..., 1 < p < oo (H"'a = Hm). Also LP(Q), 1 < p
< oo are the Lebesgue spaces and ( •, • ) will denote the scalar product in L2(ß).

Set w = e'^n, z = e^p which is the so-called Boltzmann statistics. Then v« —
nvip = e^vw, v/> + pV^ = e'^sjz. Multiplying (1.5)—(1.7) by a function v e V,
integrating over ß and using Green's theorem and (1.11) we get

(1.15) d(ip,v)-a(p-n + N,v) = 0 \
(1.16) (h,v)+ynvl(4,;w,v)+(R(n,p),v) = 0\    VoeK,

(1.17) (p,v)+yyU; z,v)+(R(n,p),v) = oj

where

d(\p,v) = /   Vi// • Wdx,        vl(\L; w,v) = [ pn(x, || V^lOe^Vw • Vvdx,
Jet Jo

(1.18) tt1(\P; z,v) = f p (x, || ViplDe' + Vz ■ W
Jo

dx.

We are looking for ip, n, p such that

\b — \p*, n — n*, p — p* G V,

(1.19)
n = e+w, p = e~*z, 4>(x°,t) = 0

if r1
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30 MILOS ZLAMAL

Of course, the conditions (1.12)—(1.14) remain, which means that w(x,t) > 0,
z(x, t) > 0 on Q. Without using Boltzmann statistics, the equations (1.16) and (1.17)
have the form

(1.20) (h,v) + yy(^;n,v)+(R(n,p),v) = 0\
)     vv G V

(1.21) (p,v) + yyU; p,v) +(R(n, p),v) = 0

(1.22)
v2(\b; n,v) = j  p„(x, || Vi/'IDlv« - «V»//] • Vvdx,

tt2(xP; p,v) = í pp(x,\\Vrl>\\)[vp + pV*] • Vvdx.

Remark 1.2. Let the data have the following properties:
(l)Te C2, dist(r1,T2)> 0;
(2) N € L*(ß), q > m;
(3) ¿g1 «s ps(x,i) < d0 (= const > 0), s = «, p;
(4) /i°, p° g L2(ß), n°, p° > 0 a.e. in ß;
(5) xp* e //2«(ß), <? > w, n*, p* g //^ß), «*, p* > 0 a.e. on T/1.

Then the problem (1.5)—(1.7), (1.10)—(1.14) can be formulated as follows: Find
^ -t//* g F Vi g (0,7), «Kjc°, r) = 0 if T1 = 0, « - n*, p - p* g L2(0, 7; F) n
L°°(0, 7; 72(ß)) satisfying (1.12)-(1.14) and

Vi g (0,7)    d(xb,v) -a(p - n + N,v) = 0   VoeF,

4(n,o)+Y1,»'2( + ; «, y) +(R(n, p),v) = o\
>    in <2'((0,7))Vt;G K.

-(p,i;)+Y/,W2(^;p,l;)+(A(«,p),t;) = 0J

We can easily prove that for any such p and n,

dn = d(n-n*)e & = d(p - p*) g
eft </r v ' di c/i v  »    .     /

(F' is the dual of K). Hence, as « - «*, p - p* g L2(0, 7; F) we have (see, e.g.,
Girault-Raviart [3, p. 152]) n - n*, p - p* g C([0,7]; L2(ß)) and the initial
conditions (1.12) make sense. Existence as well as unicity of the solution (not defined
in this way) was proved by Mock [5] for the case that T1 = 0 and Ds, ps are
constant. Gajewski [2] proves existence and unicity for the case that the boundary
conditions are of a general type and the diffusion coefficients and the mobilities are
of the form

Ds= UTms,    ms = const > 0,    ps(x, || V^||) = ms + Ms(x, || V^ID-

It is known that the discretization of the equations (1.5)—(1.7) by finite differences
does not give good results if it is carried out in the standard way (see Scharfetter and
Gummel [8, p. 73]). This is caused by extremely large values of Hv^H close to
junctions. Scharfetter and Gummel [8] proposed for the one-dimensional case to
treat the equations (1.9) as differential equations in n and p with J„, J , pn, pp and
Vif assumed constant between mesh points. The scheme which they derived proved
to be successful (see Mock [6] and references given there). We use the same idea: the
quantities J„, J , pn, pp and || V^H are assumed constant on each element. Starting
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FUNDAMENTAL EQUATIONS OF SEMICONDUCTOR DEVICES. I 31

from this requirement we construct finite element approximations of the forms vl,
■n1, v2, TT2 (see (1.22)). Then we introduce two fully discrete schemes for the solution
of the problem (1.15)—(1.17). The first one is nonlinear, the other is partly linear and
its motivation comes from results of a singular perturbation theory (see Section 4).
We prove existence of positive solutions as well as uniqueness in the second case and
show by means of Lemma 3.1 that the matrices appearing in these schemes have
several important properties.

In the near future we want to investigate stability and convergence of both
schemes. These are extremely difficult problems. The only results which were
published, are, to our knowledge, results introduced in Mock's monograph [6].
Stability of a fully discrete scheme is there proved in one case only, namely for the
scheme presented by Mock [5]. This scheme turns out to be the one-dimensional case
of our nonlinear scheme (see Remark 3.1).

2. Discretization in Space. We cover ß by triangles or quadrilaterals if ß g R2
and by tetrahedrons or hexahedrons if ß c R3, with nodes lying in ß. We consider a
family {^h) of such partitions. Let K (a closed set) denote an element of STh,
hK = dia.m(K), h = max^^^ hK,

®h =   U   K    (hi general, ß,, * ß),

düh = Th = T¿ U Tj;. Th (i = 1,2) are the parts of Th corresponding to P. We
choose the partitions in such a way that all nodes of Th belong to P (i = 1,2) and
that a boundary side and a boundary face, respectively, lie either in Tl or in T¡;.

We consider linear polynomials on simplices and four-node and eight-node
isoparametric elements on quadrilaterals and on hexahedrons, respectively. The
geometry of the elements and the restrictions of the trial functions to K can be
expressed in this common way:

(2.1) x = x(Z)= Z xJMj(0,       {-(ii.Üe*.
7=1

d

(2.2) v(x)\K=Z»jMj(t),       t^K.
J-t

Here xJ = (x{,..., xJm) is a vertex of K, d = 3, 4, 8, v is the value v(xj) and K is
the reference element. K is either the triangle (0,0), (1,0), (0,1), or the tetrahedron
(0,0,0), (1,0,0), (0,1,0), (0,0,1) or the square (-1,-1), (1,-1), (1,1), (-1,1) or the
cube (-1,-1,-1),...,(-1,1,-1), (-1,-1,1),...,(-1,1,1). Further, M,(£) (usually
denoted by Nj(i-)) are shape functions. We have for simplices

(2.3) MM) = \-tx-£„„        M2(É) = £i,...,MM+1(É) = £m,

for quadrilaterals

mxu) = ¿a - éi)(i - y,   m2u) = ¿o + ija - y,
m3u) = i(i + £,)(! + y,    m4(o = ¿(i - ^)(i + y

(concerning the remaining shape functions see, e.g., Zienkiewicz [9, p. 169]).
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32 MILOS ZLAMAL

To each partition from ( STh} we associate the finite-dimensional space

(2.5) Vh-loe C°(ßJ; v\K= £ VjMj(i), Hrj = 0

Also the space

(2-6) Wh = L^C°{Qh); v\K= £ 0jMj(i)\

will be needed.
As approximations of the functions $, n, p, w, z we take functions ty,N,P g Wh

and the functions W, Z g Wh defined by

(2.7) Wj = e-*'Nj,        Zj = e*'Pj    VxJ g Qh;

here the index j denotes a value at the node xJ. (2.7) is in agreement with the
Boltzmann statistics.

First we construct finite element analogues of the forms v1(\p;w, v) and
TTl(ib; z, v). We start from the requirement that the quantities J„, ip, pn, pp and V^
should be constant on each element. (1.9) is equivalent to

(2.8) J*-/!„(*, || v*||)e*Vw,       j;--M,(*,||ViH|)e-*V*.
Let as (s = n, p) be constant vectors which are the assumed approximations of Js on
K and ¡uf = ps(xK, \\vp(xK)\\) where xK is the center of gravity of the element K.
Then we require

(2.9) on = pKne*Vw,       ap = -pKpe-*Vz.

Introducing the notation ^(£) = ^/(x(í)) where x(£) is given by (2.1) and defining
in the same way all the remaining functions, we derive

(2.10) (ifvw=e"H",        -MpVz = e*JTop,

J being the Jacobian matrix of the mapping (2.1):

(2.11) J^=^u'",XA-
We consider first simplicial elements. Integrating the 7 th components of (2.10) in

the interval [0,1] along the £7th axis and using a local notation wx,...,wm + l for
values of w at the vertices xJ (j = 1.m + 1) of K, we obtain

tf
\Wm+l  -  Wl¡

= diag(/1exp[-^(¿1,...,0)]^1,...,/1exp[-lí(0,...,é„,)]j¿m)y7a",

M

'o

1 - zij

diag(/oIexp[^(¿1,...,0)]^1,...,jJ')1exp[^(0,...,¿m)]^m)y7o''.
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FUNDAMENTAL EQUATIONS OF SEMICONDUCTOR DEVICES. I 33

In these equations we replace w by W, z by Z and \¡> by 4', we compute the
integrals and solve the resulting equations. We get

¡a" = py>(JTY1BKVrV= p^(JTYlBKJTvW,

\o'- -pKpe-^(JTylDKvZ= -pKpe*>(JTYlDKJTvZ,

BK=diag(B(% - %),...,B(% - *m+1)),    B(Z) = t(e( - l)"1,

DK = diag(Z)(^ - *2),...,£(*, - *m+1)),   D(i) = e*B(t) = £(-£)■

Now, we define discrete analogues of the forms v1 and tt1 for the case that v = tA
Here 1/ g Fä is the basis function associated with the node xk and defined by
vk(xJ) = 5*, y, re = \,...,q and g is the number of all nodes not lying on Tlh. The
expressions (2.12) for a" and ap depend on the mapping (2.1). We choose this
mapping in such a way that the node xk is mapped on the vertex (0,0) and (0,0,0),
respectively, of the reference element K. It is true that this way does not determine
(2.1) uniquely; however, it suffices to a unique determination of the forms v\ and tt\.
Since we have (assuming ßA = ß)

v\); w,i/) = £ f J* • vvkdx,        tt1^; z,vk) = - £ f J* ■ Wkdx,
K     K K     K

and since vk vanishes outside the set Sk, which is the union of all K g 3~h  such that
xk is a vertex of A", we define these discrete analogues in the following way:

v\(*;W,vk)=   £   pKne**j(JTylBKJTvW-wkdx,

(2.14)
KeS,

TT1h(^;Z,vk)=   £   pKpe-^f (JTylDKJTvZ-Wkdx.

ftFor an arbitrary v = ££=1 vkv (x) g Fa we define

(2.15)    ri(*; FT,») -  £ D^ii*! W,e*),    ir¿(*; Z,0) = £ da»¿(*; Z,d*).
* = 1 A- = l

The forms vj; and 7r¿ are symmetric with respect to the arguments W, v and Z, v,
respectively. We prove it only for v\. We have to show that v\(^f, vJ,vk) =
v\(ty; vk,v') for j, k = \,...,q. Evidently, if xJ and xk are not neighbors, then
v\(^; vJ,vk) = 0 = v\C^; vk,vj). If xj and xk are neighbors, then consider all
elements from 3Th such that x' and xk are their vertices. Let K be such an element.
From the definition (2.14) we see that it suffices to prove

j(jkT)~lBkJkTWJ ■ Wkdx = f(jJTy1BJJJTvvk ■ WJdx.

Here Js, s = j, k, are the Jacobian matrices of the mapping (2.1) which map K on K
in such a way that x5 is mapped on the origin and Bs = e*'BK. The above equation
is equivalent to

(vV)TBkjk-\jkT)-xvvk = (v**)ty/»(jr/)-W,

which can be verified in an elementary way. As the verification is lengthy, we omit it.
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34 MILOS ZLAMAL

Remark 2.1. It is evident that in the same way we can derive the discrete
one-dimensional forms v\ and tt\. These forms are equivalent to the finite-difference
scheme proposed by Scharfetter and Gummel [8],

Remark 2.2. For t = 0we have BK = DK = I. Hence, if pn = pp = 1 the forms
v\ and tt\ are equal to fa VW ■ Vvdx and ja vZ ■ vvdx, respectively, which are
the bilinear forms associated with the Laplace operator restricted to Vh.

Now, we introduce the forms v\ and tt\ for the case of four- and eight-node
isoparametric elements. We get them in the same way as above if we integrate (2.10)
in the interval [-1,1] along the parallels to the axes going through the points (-1, -1)
and (-1, -1, -1), respectively. They become

(2.16)

v\(^;W,vk)=   £   py^JlTYlBKvW-[  Wkdx,
KeSk «

\r¿(*;Z,i>*)=   £   pKpe-^(JxTY1DKvZ-j^wkdx,

(

KES,

(2.17)

v\(*\W,ü)=  £ vkv\(*;W,vk)
k = l

'I

»¿(*;Z,d)-  £  vkTrl(*;Z,vk)
k = l

Vv vh.

Here,

\{W2-WXW<-l.-D.    **-2{W4-Wi

BK = diag(5(¥, - *2), B(% - %))

DK = diag(-D(*, - %), D(% - *4))

VZ =
i/z2-zxn
2 I Z4 - Z,

>    if m = 2,

Jx=J(-l,-l,-l),    VW =
¡w2-wx

w,- wx
wx)w<

vz
( 7  - 7 \z,2      z-,

'4 _ Zj
-5 ~~ Zi if m — 3.

BK = diag(B(% - %), B(% - %), B(*x - %))
DK = diag(D(*1 - %), D(% - *4), D(% - %))

This time, the node xk is mapped by (2.1) on the vertex (-1, -1) and (-1, -1, -1),
respectively, of the reference element K.

Finally, we derive vl(^;   N,v) and  irf2^;   P,v) for the case of simplicial
elements. The y'th component of the term e*lBkv W in (2.12) is

e*>B(% - *J+l)(WJ+i - Wx)

= e*>B(% - %+x)[e-^(NJ + x - Nx) +(e~^ - e"*')^]
= D(*i - *j+i)(NJ+1 - Ni)-(*J+i - %)NX,

hence

e*'BKvW = DKvN - NXV^ = DKJTvN - NxJTv<fr
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and

(2.18)

v2(*;N,vk)=   £   pKi (JT)~1DKJTvN- vvkdx

£   pK( NkV* ■ Wkdx,

KeS,

i€S,

v2(V; N,v)= £ vkv2(*; N,vk)   Vv g Vh.
k = l

Similarly, we get

L2(*; P,vk)=   £   pKpf {JTy1BKJTvP-Wkdx

(2.19)

KCES,

+  £   Mp Í PkV* ■ Wkdx,
„_„      J irrfeS,

^2(^; p,v)=Z «***(*; /,,"*) Vu g vh.
k = l

3. A Nonlinear Scheme. In this section we restrict our attention to simplicial
elements and to Neumann boundary conditions, i.e., we assume P = 0. We will
prove existence of the fully discrete approximate solution using, as in Mock [5],
elementary degree theory. We need two things: 1) A priori estimates of the solution
which we are able to get, as Mock [5], only for the case that T1 = 0. 2) A
maximum principle which we prove for simplicial elements under the condition, not
too restrictive, that they are of acute type; for four- and eight-node isoparametric
elements we are able to prove the maximum principle only for parallelograms and
rectangular prisms, respectively.

Sufficient conditions for proving existence are as follows.
A: N(x), n°(x), p°(x) are defined on ß, n°(x) > 0, p°(x) > 0 on ß, ps(x,£)

(s = n, p) are positive functions for x g ß, ¿g [0, oo) which for each x g ß are
continuous for £ g [0, oo). Also, ßA must be such that all points xK lie in ß.

The forms d(\p, v) and (u, v) will be replaced by

(3.1)    dh(*,v)=f   vV-Wdx,       (u,v)h = \ZlK(uv)   V*,u,v^Wh.
Jo.

Here, I   is the quadrature formula
m + l

(3.2) I*W-ÏÏTîmBa*K)Z Fj.
y-i

If u and v denote the vectors whose components are the values of u and v at the
nodes, then

(3.3) (u,v)h = uTMv,       M={(v\vk)h}gM=x,

where o1, v2,...,vq are the basis functions: vJ G Wh, v'(xk) = 8k. Evidently, the
mass matrix M is diagonal with positive diagonal elements (we denote them by mf),
hence M is lumped by means of the quadrature formula IK (see, e.g., Zienkiewicz [9,
p. 537]).
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36 MILOS ZLAMAL

We have to replace the condition (1.13). We could restrict ourselves to the case
tih = ß and replace N, n°, p° by Nh, n°h, p°h g Wh defined as follows: (Nh,v)h =
(N,v), (n°h,v)h = (n°,v), (p°h,v)h = (p°,v) Vi; g W„ (then (p°h - n°h + Nh,\)h =
Ia[P° ~~ n° + N]dx = 0). Since computing exactly the L2-products is impossible,
we replace N, n°, p° by their interpolates (i.e., functions from Wh having the same
values at all nodes as the original functions) and ask instead of (1.13)

(3.4) (p/°-«? + JV„l)A = 0,
i.e.,

7 = 1

Let us remark that the choice of the discretization of the second term in (1.15)
does not play any role in proving existence of the solution.

For simplicity, we consider an equally spaced partition of the interval [0, 7]:
r, = ¡At, i = 0, l,...,r, r = T/At. We denote by *', N\ P\ W, Z' g Wh (W
and Z' are determined by (2.7)) the approximations of i^', «', p', w', z'. In the
sequel, the upper index /' will always mean a value at the time /,. The forms v1 and
TTl will be replaced by v\ and tt\ and h(t,), p(t,) by AN'/At = (N' - N'-l)/At
and by AP'/At, respectively.

Now, we are ready to introduce a fully discrete version of the problem (1.15)—(1.19),
(1.12)-(1.14) when T¡ = 0.

Find *', N', 7' g Wh satisfying

dh(*',v) - a(P' - N' + N„v)h = 0,        *¿ = 0

(3.5) (AN¡,v)h + A/yX(*'; W, o) + At(R(N\ P'), v)„ = 0
(AP-,v)h + Aty^K*'; Z',v) + At(R(N', P'),v)„ - 0

(3.6) Wj'-e-VNj,       Z} = e*¡Pj,       y-1,2,...,

(3.7) iV° = «°,        7°=p0,
(3.8) N',P'>0   onß„.

Remark 3.1. If we discretize the one-dimensional problem in the above way and if
we take y„p„ = ypPp = 1 we get a scheme identical with the difference scheme
presented by Mock [5].

If W g Wh has a local extreme at a point from ßA then evidently it attains it also
at a node. W attains a local maximum (minimum) at a node xj if and only if the
values of W at all neighboring nodes are not greater (smaller) than Wj. A simplicial
partition is called of acute type if all angles of the triangles and all interior angles
between faces of tetrahedrons, respectively, are not greater than \tt.

The following lemma is a generalization of a lemma from Zlâmal [10, p. 210]:

Lemma 3.1. Let the given simplicial triangulation be of acute type. If W G Wh
attains a local maximum (minimum) at a node xj G ßA then

(3.9) vl(*,W,vJ)>0(*zQ),
where vJ is the basis function associated with the node xJ. The same assertion is true for
the form ttI(^\ Z,v).

Vv G Wh, i =
l,2,...,r,
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Proof. We consider first triangles and prove the lemma for the case of the
maximum and of the form v\. Since p*e*' > 0, it is sufficient to prove that (see
(2.14))

(3.10) ¡(JTylBKJTvW- wJdx>0   VÏES,

Displacement, rotation and reflection do not change the form of the above in-
tegrand. To see this, consider a rotation or reflection given by x = Ay, y = (yx, y2)T,
A being the corresponding matrix. Then the mapping y(|) is equal to yt-1x(£) (see
2.11) and the new Jacobian matrix J* is equal to A'lJ. Hence, we get

¡(JT)~lBKJTvxW- VxvJdx

= \ásiA\f (JTylBKJT(ATylvyW-(ATy1vvvJdy
JK,

= f (J*T)~lBKJ*TvvW- VvvJdy.JK,

We obtain the same result for a displacement x = y + a.
We take such transformations that (0,0) is the vertex of K* corresponding to xJ

and the remaining vertices are (x2,0), (x3, y3), x2 > 0, y3 > 0 (for the moment we
denote the coordinates by x, y and x, y, z, respectively). If we denote by Wx, W2,
W3 the values of W at these vertices then Wx ̂  W¡, i = 2, 3, v{ = 1, v{ = vJ = 0
and we find that the integral in (3.10) is equal to

j±- \(WX - W2)B(% - %)(x2 + y2 - x2x3)
LXiy-i

+ (WX- W3)B(%- %)x2(x2- x3j\.

The function B(£) is positive on the whole axis -oo < £ < oo. As the triangulation
is of acute type we have x2 ^ x3 > 0 and xj + y2 — x2x3 > 0 (easy to prove).
Hence, (3.10) is true.

Now we consider tetrahedrons and prove that (3.10) is true. By displacement,
rotation and reflection we achieve that the tetrahedron K* has vertices A = (0,0,0),
B = (x2,0,0), C = (x3, y3,0), D = (xA,y4,z4), x2 > 0, y3 > 0, z4 > 0. We find
that (3.10) is equal to

j-~7-[(Wl - W2)B(% - %)FX +(WX - W3)B(% - *3)72

+ (WX- WA)B(%-%)F3],

where

Fi = (*? + y2 - x2x3)z¡ +(x4y3 - x3y4)[y3x4 +(x2 - x3)y4 - x2y3],

F2 = x2(x2- x3)z¡ + x2y4[y3x4+(x2 - x3)y4- x2y3],

^3 =  -■^2>'3[>'3^4+(Ji2-^3)>;4-^2>;3]-

To finish the proof, it is sufficient to show that Fj > 0, j = 1, 2, 3. We compute the
cosine of the interior angle between the planes BCD and ACD. We find that this
cosine is equal to Fx/Dx, where Dx > 0 and \FX\ < Dx. From acuteness there follows
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Fx > 0. We compute the cosine of the interior angle between the planes BCD and
ABD. We find that this cosine is equal to F2/D2, where D2 > 0 and |72| < D2. From
acuteness there follows F2 > 0. From acuteness it follows that the point (x4, y4) of
the x^-plane lies on the same side of the straight line going through BC as the
point A. Consequently y3x4 + (x2 - x3)y4 — x2y3 < 0 and F3 ^ 0.

Remark 3.2. Lemma 3.1 is true for four-node isoparametric elements if these
elements are parallelograms with diagonals making angles with sides which are not
greater than \tt. It is also true for eight-node isoparametric elements if these
elements are rectangular prisms.

: Wh be positive functions on ßA, satisfying

(/>'-i-Ar<-i + jV,,l)A = 0.

Theorem 3.1. Let the conditions A and (3.4) be satisfied. If the triangulation is of
acute type then the problem (3.5)—(3.8) has a solution.

Proof. Let N'~\ P'~]

(3.11)
We consider the system

'dh(*°,v)-a(P°-N° + N„u)h = 0,       *£ = 0      N

(N*, v)h + eAtyyh(**; W\ v) + eAt(R(N\ Pe),v)h

(3.12)    |     =(Ni~\v)h
(P\ v)h + eAtypTTlh(*e; Z\ v) + eAt(R(N\ P'),v)h

.    =(P,~\v)l !

where

Wf = e- "'Ar/ 0 < e < 1.j ' ~j j
Suppose, we prove that for e = 1 (3.12) has a solution 4'', N', P' such that N' > 0,
P' > 0 on Qh. This solution satisfies the condition (Pi - N' + N„l)h = 0 (put
v «= 1 in the first equation in (3.12)). Taking successively i = 1, 2,..., r, we prove
the theorem.

First, we derive a priori estimates of 4'e, Ne, Pe supposing that the system (3.12)
has a solution such that Ne > 0, Pe > 0 on tlh. We have

(3.13)     0 <
dR(n,p)

dn
< 1, 0< dR(n,p)

dp <1        (n>0,p>0).

Therefore -R(n, p) < -R(0,0) = \. We denote by ¥E the vector (^[,...,^¡)Tand
use the same notation for the other functions. Since v\(^; W, 1) = »>J(^; 1, W)
we get from the second of equations (3.12)

0

£ mjNf <  £ mjNji-i

consequently  \\Ne\\x < CX[\\N

7 = 1 7 = 1
;-i.

1
+ -At £ mJt

7=1

+ 1] = C{   , where C[      is a constant not
depending on e, 'íre, N£, Pe, 0 < e < 1 (it can and will depend on h and Ai)- The
same argument proves HP'H^ < C{~1. The matrix form of the first equation in (3.12)
is

(3.14) K<ffe = aM(Pc - N' + N,),
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K is symmetric, singular and X = 0 is a simple eigenvalue with v = (1,..., 1)T being
the eigenvector. The necessary and sufficient condition (Pe - Ne + Nr, l)h = 0 for
solving (3.14) is satisfied, as we assume that a solution of (3.12) exists. We use the
condition tyj = 0, which means that we delete the y0th row and column in K,
thereby obtaining a positive definite matrix K0. Hence,

ll*fIk « 1*0IJaMÍP'-N' + N^L,
consequently,

ll>[/Fll     < C [llN'-MI     4-IIP'-Ml     4- il = C'~l||™   || oo  ^- *-— 3 L11 •*■ ^        II00    'II* 11°°   '    l\        *^3

Denoting C¿~1 = max,,. <3Cy_1 we see that

(3.15) ||N'||00<C¿-1,    ||Pe||oc <C¿-\    ||¥loo < C¿~\       0<e<l.

Let X e Ä3« be the vector with components V{,..., ¥£ N{,..., Nj, P{,..., P*
and Y the vector corresponding to the right-hand sides of the system (3.12). This is a
nonlinear system, the left-hand side of which is a linear function of the parameter e.
Denote by G(X) and F(X) the vectors corresponding to the left-hand sides of (3.12)
for e = 0 and e = 1, respectively. Then (3.12) is equivalent to

(3.16) (1 - e)G(X) + eF(X) = Y.

Let us consider G(X) and F(X) as (continuous) mappings from S c R3q into R3q,
where S is the domain

11**11» < C¿~\   0<Nf<C¿-\   0<Pf<C¿-\        j=\,...,q.
For e = 0, (3.16) reduces to G(X) = Y. This system has just one solution in S. The
second and third component of this solution are N'-1, P'-1 and the first is
determined uniquely (owing to (3.11)) by (3.14) where we replace the index e by
r — 1. Therefore, if deg(G, S, Y) means the degree of G with respect to S and Y (see,
e.g., Ortega, Rheinboldt [7, p. 154]) then deg(G, S, Y) = 1. According to the
Poincaré-Bohl theorem (see [7, p. 157]), deg(F, S, Y) = deg(G, S, Y) if we prove that

(3.17) Y # (1 - e)G(X) + eF(X)    VX g dS, 0 < e < 1.

Then it follows from Kronecker's theorem (see [7, p. 161]) that the equation
F(X) = Y has a solution in S, i.e., (3.12) with e = 1 has a solution such that N',
P' > 0 on Üh.

Suppose, Y = (1 - e0)G(X) + e0F(X) for some Xe3S and some e0 g [0,1].
Since (3.15) holds as long as Nc > 0, Pe > 0, necessarily at least one of the
components of Ne° and Pe° is equal to zero. Let, say, Nf° = 0. Because we have also
Nk° > 0, Pk° 5= 0, k = \,...,q, the function jVe° attains a local minimum at xJ,
consequently the same is true about We°. We set v = vJ in the second equation in
(3.12) and we get, on account of (3.9),

myJV/-1<e0AimyA(0,P/<>)<0,

which is a contradiction.
Remark 3.3. Evidently, Theorem 3.1 remains true for isoparametric elements if we

restrict oursleves to domains ß which can be covered either by parallelograms
having the property introduced in Remark 3.2 or by rectangular prisms.
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Remark 3.4. In practical computations the approximation (yV7, v)h of (N, v) is not
sufficient. On elements lying close to junctions we use a more accurate quadrature
formula, or we cover such elements by smaller elements and use again the formula
(3.2).

4. A Partly Linear Scheme. We consider again simplicial elements; however, the
boundary conditions are of the general type (1.10) and (1.11) and P ¥= 0. Vh is
now the space

Vh={v^Wh, v\n = 0),        Tl*0,
the Dirichlet condition reads

(4.1)    */ = i>*(xJ),    Nj = n*(xJ),    Pj = p*(xJ)   Vx' G T¡, i = 1,...,r.

In addition, we have again (3.6), (3.7) and (3.8).
In the first equation of (3.5) we replace Nf = e*JWf and Pj = e~*JZj by e>'W-~'i

and e'*'Zj~l, respectively. This approximation is motivated by the fact that w and
z are slow variables (see Markowich [4, Introduction]). After this modification the
discrete Poisson equation has the form

(4.2) d^'.o) + aie^W'-1 - e-*'Z'-\v)h = a(N„v)h   Vu g Vh, i = l,...,r.

The remaining two equations differ from those in (3.5) in that the term R(N', P') is
replaced by R(N¡~\ 7"-1). Hence,

(43) (AN-,v)h + AtyA(-*<;W,vy
= -At(R(N-\P-'),v)h

.,   .     .   N   >   Vu e Vh, t = l,...,r.
(44) (AP;v)h + Atyyh(*';Z',v)

= -At(R(N'-\P-l),v)h i

We write the equations (4.2)-(4.4) in matrix form. We denote by 1Jr' the vector
(^i,... ,^)r and use the same notation for the other functions. Then the equations
are

(4.5) K*> + aM[£(4")W'-1 - E^)'1^'1] = «MN, + a,

(4.6) ,4„N' = M(N'-1 - AfR'-1) +Artf-1,        i=\,...,r,

(4.7) ApP' = M(P'-1 - AiR'-1) -I- Aie'-1.

Here

K= {dh(vJ,V")}lm_v       £(*')=■ diag(e*í,...,e*í).

¿, = 5n£(*T\       Bn = ME(V) + Aty„K„(r),
*„(*')= {"*(*'; vJ,om)}lm.lt

Ap = BpE(V),        Bp = ME(*')-1 + AtypKp(V),

R'-i = (Ä(iV1'-1,7r1)),...,(Ä(/v(;-1,7;-i))r,

and the vectors a, b1'-1, c'-1 come from the Dirichlet conditions.
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Lemma 4.1. Let the triangulation be of acute type. Then the matrices Bs (s = n, p)
and K are positive definite Stieltjes matrices and As are M-matrices. In addition, Bs
are strictly diagonally dominant and K is diagonally dominant (concerning the defini-
tion of M- and Stieltjes matrices, see [1, p. 54]).

Proof. We restrict ourselves to the proof that B„ is a positive definite strictly
diagonally dominant Stieltjes matrix. First, we prove that the elements b m of Bn
have the property bJm ̂  0 if j ¥= m, bn > 0. We have bjm = (e*vJ, vm)h +
Atynv\(^'\ vj, vm). The function vJ has a local minimum at xm if j ¥= m. Therefore,
by Lemma 3.1, bjm < (e*'vJ, v"')h = 0. Further, again by Lemma 3.1,

bjj = (e*'vJ,vJ)„ + AiYX(*'; oj.vj) > (e*'vJ,vJ)„ > 0.
Now, we prove that Kn(W) is diagonally dominant. Then Bn is strictly diagonally
dominant. To this end, let x>, j = q + 1,..., q* be the remaining nodes, i.e., the
nodes lying on r¿ and let us consider the matrix K*(^r') = {vlh(W; vJ,vm)}fm=x.
Let k m and k*m denote the elements of Kn(^') and K*(^'), respectively. Evi-
dently, kjm = k*m, j, m — 1,..., q. As above, we prove by Lemma 3.1 that k*¡ > 0,
k*m < 0 if j =£ m. Also, k*m = 0 if xJ and xm are not neighbors. Further, we have
vXi^l1; v',\) = 0, consequently Lqn'=ik*m = 0- " follows that

i
\kjj\ -   £ \kjm\

m = l
m *tj

'I

m = \

£ k*m = 0   if x> has no neighbor from Y\,

¿^    Kjm        \      q*

Z kjm ~ X kjm ^0   if xJ nas neighbors xm' from T\.

Since the form v\ is symmetric, Bn is symmetric. It has positive diagonal elements
and is strictly diagonally dominant. It follows easily that all eigenvalues of Bn are
positive, hence Bn is positive definite. It remains to prove that B~l > 0. To this end,
consider a vector f > 0 and the vector W determined by 5„W = f, which is
equivalent to

(e*'W,u)h + toysK*'; W,u) = (g,v)„,        W,g^Vl h-

W(xJ)-WJt        g(xJ)=fJm-J\

If  Wj = minW, then by Lemma 3.1,  p\W;  W,vJ) < 0, hence é*'Wj > g; > 0,
consequently W > 0, which means B'1 > 0.

Remark 4.1. For the two-dimensional case one can prove (assuming Tk =h 0 and
the triangulation to be of acute type) that KS(W) are positive definite diagonally
dominant Stieltjes matrices.

Theorem 4.1. Let the condition A be satisfied. If At < 1 and if the mesh is of acute
type there is just one solution of (4.2)-(4.4) satisfying (4.1), (3.7) and (3.8).

Proof. Let us assume that iV'-1 and 7'-1 are positive. The components of the
second term on the left-hand side of (4.5) are

amAeVw/-1 - e-*JZJ-1].
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These are increasing functions of tyj. As K is a positive definite matrix, the mapping
of Rq into Rq defined by the left-hand side of (4.5) is uniformly monotone.
Therefore (see [7, p. 167]), (4.2) has just one solution.

From the regularity of As, s = n,p (As are A/-matrices by Lemma 4.1) there
follows existence and uniqueness of N' and P'. It remains to prove that N' and P'
are positive. To this end, we consider the equations

JMNe + eA/Y„£„(*')W£ = MN'-1 + eA/(-MR'-1 + b'-1),
\MPe + eAtypKp(*')Ze = MP'"1 + £Ar(-MR'-1 + c'-1),

N£ = 7(*')W£,       P£ = £(^')"LZE,        e€[0,l],
The solutions exist and are unique (we apply the same argument as above). If we
show that Ne and 7e are positive for e g [0,1] then the proof is finished, since
Ne = ¿y', P" = 7' for e = 1. The variational form of (4.8) is

l(N\v)h + eAtynv\(*'; W\ o) = (N'~\ v)h - eAt(R(N'-\ P'~l), v) h,

(4.9)    I (P°,v)h + eAfy/r¿(*'; Z\v) = (P-\v)h - eAt(R(N'-\ P-1), v)h,
\ Vu g V„.

Ne and Pe depend continuously on e G [0,1] and for e = 0 they are positive on tih
(they are equal to A/'-1 and 7'-1, respectively). If they were not positive for
e G (0,1] there would exist e0 > 0 and xJ such that either Ne°(xJ) = 0, Ne°(x) > 0,
P*°(x) > 0 Vx g Qh or vice versa. Consider the first case. Then W° has a local
minimum at xJ. Setting v = vJ in (4.9) we get (by (3.13))

0 > /V;-1 - e0AíA(/V/-1,7/-1)

= NJ-1 - e0At
.       .    .      dR(&N'-\P'-1)     .

ÄIO.P/-1) + —-—¿5-—'-N'-1v      >    ' dn J > (1 - e0Ùj)Nj'-1 > 0,

which is not possible.
Appendix

In case of quadrilateral elements, Lemma 3.1 can be proved under the condition
that the elements are convex and their diagonals make angles with the sides which
are not greater than \m. However, in contradistinction to triangular elements, the
forms v\ and tt\ are not symmetric. The matrices A'^^) must be defined as follows:

*„(*')- {-i(*'; vm,vJ)}lm=x,       Kp(*i)={w1h(*i; »*",oy)>X—i-
The matrices Bs and As (s = n, p) are defined as in the case of triangles. One can
prove that K^'), Bs and As are M-matrices with positive diagonal elements, and
KS(W) are diagonally and Bs strictly diagonally dominant matrices.
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