2982 IEEE TRANSACTIONS ON MAGNETICS, VOL. 46, NO. 8, AUGUST 2010

Finite-Element Sparse Matrix Vector Multiplication on Graphic Processing
Units

Maryam Mehri Dehnavi, David M. Ferndndez, and Dennis Giannacopoulos

Department of Electrical and Computer Engineering, McGill University, Montreal, QC H3A2A7, Canada

A wide class of finite-element (FE) electromagnetic applications requires computing very large sparse matrix vector multiplications
(SMVM). Due to the sparsity pattern and size of the matrices, solvers can run relatively slowly. The rapid evolution of graphic processing
units (GPUs) in performance, architecture, and programmability make them very attractive platforms for accelerating computationally
intensive kernels such as SMVM. This work presents a new algorithm to accelerate the performance of the SMVM Kkernel on graphic
processing units.

Index Terms—Computer architecture, graphic processing units (GPUs), parallel processing, sparse matrix vector multiplication

(SMVM).

1. INTRODUCTION

HE performance of finite-element (FE) electromagnetic
T applications can be dominated by the iterative solvers
used, such as conjugate gradient (CG) based methods. As
problems become larger and more complex, the computation
overhead of these kernels dramatically increases the execution
time of such solvers on single-core CPUs. Thus, the devel-
opment of efficient methods to improve the performance of
iterative solvers on parallel processors is almost inevitable.

One of the most important kernels in iterative solvers such
as the CG method is the sparse matrix vector multiplication
(SMVM). This operation is performed at each iteration and
often consumes a majority of the computation time. The main
objective of the SMVM kernel is to calculate Ax, where A is
a sparse matrix and z is a dense vector. Major limitations of
SMVM computation involving FE matrices are large memory
storage and bandwidth requirements as well as indirect and
irregular memory accesses.

Graphic processing units (GPUs) have recently evolved into
very attractive commodity data-parallel coprocessors. Easy-to-
learn programming interfaces such as CUDA [1] have allowed
massive multithreading and increased utilization of large num-
bers of cores on the GPU, making them cost-efficient highly
parallel platforms to solve computationally intensive scientific
problems [2].

The main objective of this work is to accelerate the perfor-
mance of finite-element SMVM kernels on the NVIDIA
GT8800 graphic cards using a new algorithm, namely
Prefetch-Compressed Row Storage (PCSR).

II. GPU ARCHITECTURE

Modern GPUs are massively parallel and conform to single
instruction multiple data (SIMD) architectures. Several levels
of parallelism are offered by GPUs through multiple pipelines
and vector processing. GPU architectures such as AMD-ATI
X1k series process data in parallel using vector processors,
while others such as NVIDIA G80 use multiple pipelines

Manuscript received December 21, 2009; accepted February 07, 2010. Cur-
rent version published July 21, 2010. Corresponding author: M. Mehri (e-mail:
maryam.mehridehnavi@mail.mcgill.ca).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMAG.2010.2043511

Device
[SM 14

[sm2
SM 1
(Shared Memory

Registers
(" w I '_"7717'\ " w .| Instruction)
[sp1 JosP2 T sP8 T gy

t t t /
Constant Cache
p v

| Texture Cache ||
NN J

" Device Memory

Fig. 1. GT8800 underlying architecture.

to perform parallel operations. With the ability to launch
thousands of threads in parallel and processing trillions of
operations in seconds, NVIDIA GPUs are among the best for
general-purpose programming [1], [2].

The NVIDIA GT 8800 graphic card (Fig. 1) consists of 14
streaming multiprocessors (SMs), each containing eight scalar
processors (SPs), or processor cores running at 1.5 GHz. Each
of the SMs accesses a separate 16 KB shared memory and a
total of 8192 registers. The 14 SMs are connected via 512 MB
of off-chip device memory.

Using the CUDA programming model, the GPU is viewed as
a compute device capable of executing a large number of threads
in parallel. While the main core of the code is run on the CPU,
parts of the applications that exhibit rich data parallelism are
implemented as kernel functions on the device (GPU). Data re-
quired by the kernel is transferred to the GPU global memory,
and the parallel portion of the application is then executed on the
device using many different threads. The programmer divides
the threads into threads blocks that are distributed among the
SMs allowing each multiprocessor to run a maximum of eight
blocks. Thread blocks allocated to one SM communicate via fast
shared memory, but blocks from different SMs can only com-
municate through global memory with a memory access latency
of up to 600 cycles. Every 32 threads in a block execute the same
instruction and are called a warp. When threads in the same warp
follow different paths of control flow, we say that these threads

0018-9464/$26.00 © 2010 IEEE

DEHNAVI et al.: FE SPARSE MATRIX VECTOR MULTIPLICATION ON GPUs

2983

CSR Algorithm
for i=1 to number of rows
Y[i]=0
for j=PTR[i] to PTR[i+1]
Y[i]=Y[i] +VAL[j] * X [INDX[j]]
end for
end for

Fig. 2. CSR algorithm.

diverge in their execution. Thread divergence forces the threads
in a warp to execute sequentially, thus reducing the execution
speed of the application and should be avoided [1].

III. SPARSE MATRIX VECTOR MULTIPLICATION (SMVM)

The SMVM kernel is one of the most popular kernels in
solving sparse linear systems for large and complex finite el-
ement simulations. A variety of sparse matrix representations
exist, each having a distinct form of data storage and access, ma-
nipulation of matrix entries, and calculation of the matrix vector
multiplication product. Compressed Sparse Row (CSR) is one
of the most commonly used data structures for SMVM solvers.
The nonzero elements of the sparse matrix in this format are
stored in a value vector (VAL), while the corresponding index
values are held in another vector (INDX). The format also uses
a pointer array (PTR), which points to the first entry of each row
in VAL and INDX [3]. The sparse vector matrix product in this
format is calculated using two nested loop iterations (Fig. 2).

IV. PCSR (PREFETCH-COMPRESSED ROW STORAGE)

Many challenges exist in optimizing the performance of
scientific applications such as the SMVM kernel on GPU
platforms. Some are as follows: global memory access latency,
limited shared memory, thread synchronizations, thread di-
vergence, inadequate number of threads, and limited global
memory bandwidth. The way the programmer addresses these
issues differs depending on the application [1].

A new SMVM algorithm, namely PCSR, is proposed in this
section. By combining CSR with a novel partitioning scheme
and computation strategy, the execution time of the SMVM
kernel is accelerated on the NVIIDA GPUs. To clarify the
major advantages of our method, a survey of previous work on
SMVM kernel optimization techniques for the GPU are first
presented, and the details of the new implementation are then
described.

A. Previous Work

Since the release of CUDA in 2007, few works have investi-
gated the SMVM kernel optimization on the GPUs. Buatois et
al. [4] investigated the performance of Blocked-CSR on the G80
series of NVIDIA graphic cards. To increase the performance
of their method, the matrix filling ratio is decreased, adding
extra nonzeros to the value vector and increasing the number
of memory transactions. Sengupta et al. [5] proposed the use of
segmented scan for calculating SMVM on GPUs. Wiggers et al.
[6] reorders matrix rows to increase parallelism in the SMVM
kernel and reduce thread divergence when a row is calculated by
a single thread. Sorting matrix rows increases processing over-
head considerably increasing the execution time on the host.
Comparing the performance of various SMVM representations

T 5| & | &
256 256 256
Iy 1 by Iy Iy
PIR) [0]4] - ’zsslzm\ 1,5‘01530
Row split Row split
B, B, B,
oo]uls w28l
Row‘ssplil

between blocks

Fig. 3. PCSR partitioning scheme (e.g., row 10 is partitioned between blocks
1 and 2 (B1 and B2); the Split Vector shows that three elements of row 10 are
stored in B1 and 14 in B2).

on the GPU, Bell et al. [9] proposed a new method to optimize
the CSR format on the GPU. To decrease thread divergence, in-
stead of calculating each row by a single thread, all threads on
a single warp are responsible for computations of one row. Ma-
trices with average nonzeros less than 32 per row do not ben-
efit from their proposed technique, and since every element is
fetched from the global memory separately and only when their
value is required, a majority of memory fetches are uncoalesced
when run on the GT8800.

Previous results were implemented on various versions of
NVIDIA GPUs, each with a different memory bandwidth and
processing power. To compare our method to other work, we
applied the row-per-thread and row-per-warp methods using the
code in [9] on our GPU and present comparison results. Our
proposed algorithm introduces new techniques to hide global
memory access latency via data perfecting and memory coa-
lescing. The technique also regularizes the data access pattern
on the GPU by proper partitioning and padding the matrix with
zeros. Detailed description of the method and its major contri-
butions are given in the proceeding sections.

B. PCSR Algorithm

Details of the partitioning scheme and padding method used
in PCSR are proposed in this section. Methods of efficiently ac-
cessing the x vector and the algorithm steps are also presented.

* Partitioning scheme

To obtain a reasonable execution time on the GPU, global
memory accesses should be minimized by transferring data
on to shared memory. Due to the limited storage of shared
memory, vectors require to be partitioned and transferred
in small segments. Different row sizes in small matrices
complicate the partitioning of the vectors. We propose an
efficient partitioning method that benefits from the inherent
parallelism on the GPU. To maximize resource usage on
an SM, 768 threads should run simultaneously on its ar-
chitecture. Therefore, if three blocks are active per SM,
256 threads should be executed via one block to maximize
performance. The value and index vectors in the CSR rep-
resentation should also be divided into blocks of 256 el-
ements (vectors are padded with zeros to be divisible to
256). Searching through the row pointer vector, rows split
between the blocks are found, and their id as well as their
spreading pattern between two blocks is stored in a new
vector called the Split Vector (Fig. 3). For matrices with
more than 256 average number of nonzeros per row, the

2984

split vector will store only the id of blocks holding ele-
ments of more than one row to keep the size and transfer
time of the split vector to GPU memory negligible com-
pared to the total data transfer time.

Simultaneous loading of data from global memory to
shared memory, coalesced memory accesses, and reduced
memory transfer time are the major benefits of parti-
tioning. Partitioning the vectors and loading them from
global memory at the beginning of the kernel, will also
reduce the effects of thread divergence. Divergent threads
in the computation section of the kernel will fetch their
required data from on-chip shared memory, avoiding the
serialization of global memory accesses.

Zero padding

Minimizing thread divergence on GPUs is essential for
achieving good performance. If each thread calculates one
row, the diversity in row sizes will cause thread divergence
and threads will execute sequentially. Assigning a warp to
each row [9] will also cause thread divergence since the
number of nonzeros per row are not necessarily multiples
of 32. Since the execution is serialized in divergent threads,
we reduce the number of operations per thread by padding.
Padding each row to be a multiple of the padding factor (n)
will allow the kernel to reduce the product vector using par-
allel reduction. Every n value in the product vector can be
added via parallel reduction and stored in another vector
called sum. Because of the padding, in the reduction pro-
cedure, threads will not add values of more than one row.
The number of elements corresponding to a row in the sum
array is less than the product vector. Thus, to calculate the
results of each row, a thread will only add the elements
in the sum vector corresponding to that row, reducing the
number of operations executing sequentially (although in-
creasing the padding factor is beneficial in reducing thread
divergence, larger n decreases the vector filling ratio and
increases the value vector size).

Texture memory

The x vector cannot be divided between blocks due to
the irregular indirect access to its elements in the SMVM
kernel. Accessing the global memory for every index in-
creases memory latencies. To avoid such accesses, the =
vector is loaded on to texture memory, and its elements
are spread on the shared memory of each block simultane-
ously. The texture memory is an on-chip cached memory
space, thus a texture fetch costs one memory read from
global memory only on a cache miss; otherwise, it just
costs one read from the texture cache. Loading the x vector
to texture memory decreases global memory access laten-
cies and enhances the performance of the SMVM kernel.
In the proposed technique, threads in a block simultane-
ously load 256 elements of the z vector corresponding to
the index vector values on to shared memory. The tech-
nique enables simultaneous spreading of the x vector on
the GPU with minimum memory access latency and also
minimizes the effects of thread divergence throughout the
kernel.

* Algorithm steps

Fig. 4 shows the seven steps in the PCSR algorithm.
Partitions of the index and value vector allocated to
each block (256 elements) are first loaded into shared

IEEE TRANSACTIONS ON MAGNETICS, VOL. 46, NO. 8, AUGUST 2010

: Load VAL and INDX vectors to shared memory

: Load and spread the x vector

: Calculate the product vector in parallel

: Load PTR array values related to the block

: Reduce the product vector via padding and store in sum
: Calculate each row by one thread

: Load results in to global memory

NN B W=

Fig. 4. Prefetch-CSR algorithm.

Loop Load partition i to shared memory

S

i Syncthreads()

Load current partition to shared
memory

Compute partition 7

Load partition i+/ to shared memory

Syncthreads()
Syncthreads()
Compute current partition
Compute partition i+/
Syncthreads()

}

Load partition i+2 to shared memory

(a) (b)

Fig. 5. Prefetching data in PCSR. (a) Without prefetching. (b) With
prefetching.

memory simultaneously to coalesce memory accesses and
reduce memory transfer time. The z vector elements are
then loaded from texture memory and spread in shared
memory. The 256 elements allocated to each block are
multiplied with the corresponding values of the = vector
in parallel by the 256 threads in a block. After determining
the index and split pattern of the rows in each block using
the Split Vector, required elements of the PTR array are
loaded into shared memory. Depending on the padding
factor, the product vector is reduced in parallel to generate
the sum vector values. Using the sum vector, the final
value of each row is calculated by different threads with
minimum thread divergence, and the results are written
into the global memory simultaneously.

C. Prefetching

The time required to load data from global memory is high
due to the 300 cycle global memory access latency. Perfecting
the required data for the next iteration in each thread block hides
much of the global memory access delay. While many threads
are waiting on global memory accesses, others process with the
necessary calculations for the current data in shared memory.
Details of the prefetching methods are shown in Fig. 5; the
prefetching loop is also unrolled to maximize performance.

V. RESULTS

We have investigated the performance of our technique on
various sparse matrices from [7] with different average nonzeros
per row (Table I). The performance of the algorithm is tested
on GT8800 NVIDIA graphic cards using CUDA 2.3, and the
execution speed of the kernel is represented in GFLOPS (bil-
lion floating operations per second). The SMVM kernel is a
part of iterative solvers, thus data transfers between host and de-
vice memory occur at most twice (at the beginning and the end
of iteration) and are neglected over a large number of SMVM
operations [9].

DEHNAVI et al.: FE SPARSE MATRIX VECTOR MULTIPLICATION ON GPUs

Onp=1 ©p=2 Bp=4 Ep=8

GFLOPs

consph cant shipsecl s3dkt3m2

mac_econ

Average

Fig. 6. Effect of the padding factor (n) in PCSR.

Ono-prefetch Eprefetch=1 Mprefetch=2 ® prefetch=3 M prefetch=4

GFLOPs

s3dkt3m2

consph cant

shipsecl

mac_econ Average

Fig. 7. Varying the number of prefetches in PCSR.

TABLE I
NONZEROS (NNZ) AND FILLING RATIO PERCENTAGE FOR DIFFERENT PADDING
FACTORS (n) IN MATRICES

Matrix consph cant shipsec mac_econ s3dkt3m2
Name
nnz 6010480 4007383 7813404 1273389 3843910
nnz/row 72.1 64.1 55.4 21.24 6.1
n=2 98.8 99.2 98 93.8 97.8
n=4 96.4 98 97.3 80 97.7
n=8 92.2 93.3 96.1 44 68.69

In Fig. 6, the performance of the proposed technique has been
shown. The execution time of the kernel is tested for padding
factors of 1, 2, 4, and 8 (the filling ratio of the padded matrices
are shown in Table I).

Padding the matrix rows to be multiples of four increases the
performance to 60% compared to no padding (padding factor 1).
For padding factors larger than four, the number of zeros added
due to padding are increased, decreasing the filling ratio and
the SMVM kernel performance. Setting the padding factor to
its optimum value (four), Fig. 7 shows the effects of prefetching
data to hide global memory latency. The results show an av-
erage 16% increase in performance if each block prefetches
and operates on four partitions of 256 value vector elements
(Section IV-B).

Because of the variety in the memory bandwidth and compu-
tation capabilities of different NVIDIA cards, comparisons with
other work are done via running their methods on the GT8800.
Fig. 8 and Table II provide a comparison of our method to
the row-per-warp and row-per-thread methods on GT8800 [9].
The performance of PCSR is also compared to the execution
of the SMVM kernel on a quad-core CPU and the Cell-PPE.
The cell results were obtained using the Cell SDK 3.0 and the
PMS method [8]. The CPU platform used was Intel core2 Quad
2.4 GHz architecture with 4 MB of L2 cache per core-pair and
4 GB of global DRAM. As shown in Table II, on average our
algorithm outperforms the row-per-warp and row-per-thread
techniques presented in previous work by 2.45 and 3.37 times
respectively. Speedups of up to 18.8 times were achieved

2985

¢ Quad-Core - ® Cell ~-A Row-Thread % Row-Warp - X P-CSR

3.5 X > k-
X
. X
3
o 25
9
=]
- 2
é X
15 X
X x X X
& i & = & i
& n = [
0.5 u
1]
° ° ° i °* °
0
consph cant shipsecl mac_econ s3dkt3m2 Average

Fig. 8. PCSR performance compared to the row-per-thread and row-per-warp
methods on GT8800 as well as the QUAD-Core CPU and Cell architectures.

TABLE II
SPEED UP OF PCSR COMPARED TO THE ROW-PER-THREAD AND
ROW-PER-WARP METHODS ON GT 8800, THE CPU AND THE CELL

Matrix .
Name consph cant shipsecl mac econ s3dkt3m2 Average
By o 3.56 2.37 3.64 3.37
thread
Row " r39 260 226 238 2.64 245
warp
Cell 527 5.04 5.18 577 5.41 5.34
CPU 17.03 17.52 18.7 13 18.8 17

compared to the quad-core CPU, and the execution time was
less than what is achieved through optimized SMVM kernel on
the Cell.

VI. CONCLUSION AND FUTURE WORK

We have introduced several efficient techniques to accel-
erate the execution of the sparse matrix vector multiplication
(SMVM) on NVIDIA graphic processing units. The proposed
methods increased the performance of the SMVM kernel on
GT 8800 up to 18.8 times compared to the quad-core CPU
and three times compared to previous work on accelerating
SMVM for GPUs. Reducing the execution time of finite-ele-
ment solvers such as the conjugate gradient method using the
proposed optimizations will be investigated in future work.

REFERENCES

[1] NVIDIA CUDA [Online]. Available: http://developer.nvidia.com/ob-
ject/cuda.html

[2] J. D. Owens et al., “A survey of general-purpose computation on
graphics hardware.,” Comput. Graphics Forum, pp. 80113, 2007.

[3]1 S. Yousef, Iterative Methods for Sparse Linear Systems. Philadel-
phia, PA: SIAM, 2003, p. 528.

[4] L. Buatois, G. Caumon, and B. Lévy, “Concurrent number cruncher:

An efficient sparse linear solver on the GPU,” in High Per-

formance Computing and Communications. Berlin, Germany:

Springer-Verlag, 2007, vol. 4782, Lecture Notes in Computer Science,

pp. 358-371.

S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens, “Scan primitives

for GPU computing,” in Proc. Graphics Hardw., 2007, pp. 97-106.

[6] W. A. Wiggers, V. Bakker, A. B. J. Kokkeler, A. B. J. , and G. J. M.

Smit, “Implementing the conjugate gradient algorithm on multi-core

systems,” in Proc. Int. Symp. System-on-Chip, 2007, pp. 11-14.

S. Williams et al., “Optimization of sparse matrix vector multiplication

on emerging multicore platforms,” in Proc. ACM/IEEE Conf. Super-

comput., 2007, Article no. 38.

D. Fernandez, D. Giannacopoulos, and W. Gross, “Efficient multicore

sparse matrix-vector multiplication for FE electromagnetics,” IEEE

Trans. Magn., vol. 45, no. 3, pp. 1392-1395, Mar. 2009.

N. Bell and M. G. Fernandez, “Efficient sparse matrix-vector multipli-

cation on CUDA,” NVIDIA Tech. Rep., 2008.

[5

[ty

[7

—

[8

—

[9

—

